小型溢流重力坝设计
毕业设计 重力坝设计

毕业设计重力坝设计
1. 引言
重力坝是水利工程中常用的一种坝型,其主要特点是坝体厚重且体积大,具有重力作
用稳固坝体的特点。
在设计重力坝时,需要考虑到多种因素,如水文条件、地质条件、工
程造价等因素,以确保设计的坝体结构具有充分的安全性和经济性。
2. 水文条件
水文条件是设计重力坝时需要考虑的重要因素之一。
主要包括水文特征、水文历时和
频率以及预测值。
在设计重力坝时需要充分考虑降雨涝、暴雨及洪水等水文条件,预计出
各种水位的出现频率,并采用适当的控制水位高度的设计措施。
3. 地质条件
地质条件也是设计重力坝时需要充分考虑的一个因素。
主要包括地质构造、物理性质、地质力学性质和地质灾害等因素。
在设计重力坝时,需要对地质条件进行全面的地质勘测
及分析,并采取适当的加强坝体和基础的设计措施。
4. 坝体及基础的设计
重力坝的坝体具有良好的稳定性,是因为其坝体体积庞大且较宽厚,具有良好的抗滑性。
在设计坝体时需要注意选择坝体的材料及其强度,且坝体中的混凝土应加强措施,以
增强坝体的稳定性。
在基础设计方面,需要以地质灾害为基础,采取适当的加固措施以确
保重力坝的基础稳定性。
5. 结论
设计重力坝需要全面考虑水文条件、地质条件、坝体设计以及基础设计等多个因素。
仅仅注重单一因素,难以达到坝体的最佳安全和经济设计。
除上述因素外,设计过程中还
需要考虑成本和材料等多个因素,以确保设计出具有良好稳定性且经济性较高的坝体结
构。
[学士]重力坝毕业设计
![[学士]重力坝毕业设计](https://img.taocdn.com/s3/m/cbd9a4120622192e453610661ed9ad51f11d5452.png)
第一部分重力坝毕业设计第一章基本资料设计洪水位(P = 5 %)上游:510.15m下游:480.12m校核洪水位(P = 1 %)上游:510.64m下游:481.10m正常蓄水位上游:509m死水位:488m可利用河底高程478.5m混凝土容重:24 KN/m3坝前淤沙高程:486m泥沙浮容重 10 KN/m3,内摩擦角为20°混凝土与基岩间抗剪断参数值:f `= 0.6c `= 0.3Mpa坝基基岩承载力:[f]=1000Kpa坝基垫层混凝土:C15坝体混凝土:C15= 22m/s50年一遇最大风速为:v`= 16m/s多年平均最大风速为:v吹程 D =1000m第二章重力坝的断面选取与荷载计算第一节流量-水位关系曲线计算流量-水位关系曲线计算表注:流量-水位关系曲线河谷断面图第二节重力坝坝体断面1.坝顶高程的确定①. 正常水位时gD/v2=9.81×1000/222=20.279.81h/222=0.0076×22-1/12×(9.81×1000/222)1/3h=0.79m当gD/v2=20~250时,h为累计频率h5%的波高∴h1%=h=1.24h5%=0.98m9.81Lm/222=0.331×22-1/2.15×(9.81×1000/222)1/3.75Lm=8.65mh z =π×0.982/8.65×cth(2πH/ Lm)hz=0.35m△h=h1%+h z+h c=0.98+0.35+0.4=1.73m根据公式Q=δsεmB(2g)1/2H3/2 得H={Q/[δsεmB(2g)1/2]}2/3={66.18/[1×1×0.502×24×(2×9.81) 1/2]}2/3 =1.15m设计洪水位=509+1.15=510.15m坝顶高程=509+1.73=510.73m②校核洪水位时gD/v2=9.81×1000/162=38.329.81h/162=0.0076×16-1/12×(9.81×1000/162)1/3h=0.53m当gD/v2=20~250时,h为累计频率h5%的波高∴h1%=h=1.24h5%=0.66m9.81Lm/162=0.331×16-1/2.15×(9.81×1000/162)1/3.75Lm=6.29mh z =π×0.662/6.29×cth(2πH/ Lm)hz=0.22m△h=h1%+hz+hc=0.66+0.22+0.3=1.18m根据公式Q=δsεmB(2g)1/2H3/2 得H={Q/[δεmB(2g)1/2]}2/3={112.56/[1×1×0.502×24×(2×9.81) 1/2]}2/3s=1.64m校核洪水位=509+1.64=510.64m坝顶高程=510.64+1.18=511.82m,故取坝顶高程为512m而该坝的开挖深度为1.5m ∴坝高=512-478.5=33.5m2.坝顶宽度的确定坝顶宽度取坝高的9%,则坝顶宽度=33.5×9%=3.015m,故坝顶宽度取3.5m3.坝面坡度的确定下游面的坡度采用1:0.84.坝基防渗与排水设施的拟订距距坝踵5m处设一个帷幕灌浆断面图如下:第三节荷载计算摩檫系数f 'Γk 、粘聚力C 'ΓK 的材料性能分项系数分别为1.3、3.0, 则相应的设计值:摩檫系数f 'Γ=0.6/1.3=0.46 粘聚力C 'Γ=300/3=100 Kpa选用砼为C15,抗压强度性能分项系数为1.5,则设计值 fc=15000/1.5=10000 Kpa 扬压力系数α为0.2(查表得出) 1.设计洪水位W 1W 2W 3⑴.浪压力P 1=1/2γHL m /2=1/2×9.81×(0.98+0.35+8.65/2)×8.65/2=119.97 KNP 2=1/2γL m 2/4=1/2×9.81×8.652/4=91.75 KNP n = P 1+P 2 =119.97-91.75=28.22 KN P=1.2×P n =1.2×28.22=33.86 KNM 1n =-P 1×[1/3×(h 1%+h z +L m /2)+H 1-L m ]=-119.97×[1/3×(0.98+0.35+8.65/2)+31.65-8.65/2]=-3504.32 KN ·NM1=1.2M1n=1.2×(-3504.32)=-4205.18 KN·NM2n =P2×(1/3×Lm/2+H1-Lm/2)=91.75×(1/3×8.65/2+31.65-8.65/2)=2639.34 KNM2=1.2M2n=1.2×2639.34=3167.21 KN·N⑵.泥沙压力Psk =1/2γsbhs2tan2(45°-φs/2)=1/2×10×7.52×tan2(45°-20°/2)=137.89 KNPn =1.2Psk=1.2×137.89=165.47 KNM=-PnL=-165.47×1/3×7.5=-413.68 KN·N⑶.自重W1=γV1=24×3.5×33.5=2814 KNW2=γV2=24×23.3×29.1×1/2=8136.36 KNW3=γV3=9.81×1/2×1.62×1.62×0.8=10.30 KNW=W1+W2+W3=10960.66 KNM1=W1L1=2814×(26.8/2-3.5/2)=32783.1 KN·NM2=W2L2=8136.36×(26.8/2-3.5-23.3/2)=17357.57 KN·NM3=-W3L3=-10.30×(26.8/2-1/3×1.62×0.8)=-133.57 KN·N⑷.水压力上游:P1=1/2γH12=1/2×9.81×31.652=4913.45 KNM1=-P1L1=-4913.45×1/3×31.65=-51836.90 KN·N下游:P2=1/2γH22=1/2×9.81×1.622=12.87 KNM2=P2L2=12.87×1/3×1.62=6.95 KN·N⑸.浮托力P浮=γH2LB=9.81×1.62×26.8=425.91 KNM=0 KN·N⑹.渗透压力W1=γA1=9.81×1/2×5×[31.65-1.62-0.2×(31.65-1.62)=589.19 KNW2=γA2=9.81×5×0.2×(31.65-1.62)=294.59 KNW3=γA3=9.81×1/2×(26.8-5)×0.2×(31.65-1.62)=642.22 KNWK =W1+W2+W3=1526 KNW=1.2×1526=1831.2 KNM 1K =-W 1L 1=-589.19×(26.8/2-5/3)=-6913.17 KN ·N M 1=1.2 M 1K =8160.35 KN ·NM 2K =-W 2L 2=-1.2×294.59×(26.8/2-5/2)=-3211.03 KN ·N M 2=1.2 M 2K =-3853.24 KN ·NM 3K =-W 3L 3=-1.2×642.22×[26.8/2-5-(26.8-5)/3] =-727.85 KN M 3=1.2 M 3K =-873.42 KN ∑P=5099.91 KN ∑W=8284.51 KN∑M=-16296.96 KN ·N 2.校核洪水位W 1W 2W 3⑴.浪压力P 1=1/2γHL m /2=1/2×9.81×(0.66+0.22+6.29/2)×6.29/2=62.09 KN P 2=1/2γL m 2/4=1/2×9.81×6.292/4=48.52 KNP n = P 1+P 2 =62.09-48.52=13.57 KN P=1.2×P n =1.2×13.57=48.52 KNM1n =-P1×[1/3×(h1%+hz+Lm/2)+H1-Lm]=-62.09×[1/3×(0.66+0.22+6.29/2)+32.14-6.29/2]=-1883.60 KN·NM1=1.2M1n=1.2×(-1883.60)=-2260.32 KN·NM2n =P2×(1/3×Lm/2+H1-Lm/2)=48.52×(1/3×6.29/2+32.14-6.29/2)=1457.70KNM2=1.2M2n=1.2×1457.70=1749.24 KN·N⑵.泥沙压力Psk =1/2γsbhs2tan2(45°-φs/2)=1/2×10×7.52×tan2(45°-20°/2)=137.89 KNPn =1.2Psk=1.2×137.89=165.47 KNM=-PnL=-165.47×1/3×7.5=-413.68 KN·N⑶.自重W1=γV1=24×3.5×33.5=2814 KNW2=γV2=24×23.3×29.1×1/2=8136.36 KNW3=γV3=9.81×1/2×2.6×2.6×0.8=26.53 KNW=W1+W2+W3=10976.89 KNM1=W1L1=2814×(26.8/2-3.5/2)=32783.1 KN·NM2=W2L2=8555.4×(26.8/2-3.5-23.3/3)=17357.57 KN·NM3=-W3L3=-26.53×(26.8/2-1/3×2.6×0.8)=-337.11 KN·N⑷.水压力上游:P1=1/2γH12=1/2×9.81×32.142=5066.76 KNM1=-P1L1=-5066.76×1/3×32.14=-54281.89 KN·N下游:P2=1/2γH22=1/2×9.81×2.62=33.16 KNM2=P2L2=33.16×1/3×2.6=28.74 KN·N⑸.浮托力P浮=γH2LB=9.81×2.6×26.8=683.56 KNM=0 KN·N⑹.渗透压力W1=γA1=9.81×1/2×5×[32.14-2.6-0.2×(32.14-2.6)=579.57 KNW2=γA2=9.81×5×0.2×(32.14-2.6)=289.79 KNW3=γA3=9.81×1/2×(26.5-5)×0.2×(32.14-2.6)=631.74 KNWK =W1+W2+W3=1501.1 KNW=1.2×1501.1=1801.32 KNM1=-1.2W1L1=-1.2×579.57×(26.8/2-5/3)=-8160.35 KN·NM2=-1.2W2L2=-1.2×289.79×(26.8/2-5/2)=-3790.45 KN·NM3=-1.2W3L3=-1.2×631.74×[26.8-5-(26.8-5)/3] =-859.17 KN∑P=5215.35 KN∑W=8072.97 KN∑M=-18184.32 KN·N3. 抗滑稳定极限状态⑴基本组合时,取持久状况对应的设计状况系数ψ=1.0,结构系数γd=1.2γ0ψs(·)= γψ∑P=1.0×1.0×5099.91 =5099.91 KN1/γd R(·)= 1/γd(f'Γ∑W+ C'ΓA)=1/1.2(0.46×8284.51+100×26.8) =5409.06 KN∴γ0ψs(·)<1/γdR(·)即基本组合时满足设计要求⑵偶然组合时,取偶然状况对应的设计状况系数ψ=0.85,结构系数γd=1.2γ0ψs(·)= γψ∑P=1.0×0.85×5215.35 =4433.05 KN1/γd R(·)= 1/γd(f'Γ∑W+ C'ΓA)=1/1.2(0.46×8911.05+100×26.8) =6837.38 KN∴γ0ψs(·)<1/γdR(·)即偶然组合时满足设计要求4. 坝址抗压强度极限状态⑴基本组合时,设计状况系数ψ=1.0,结构系数γd=1.8γ0ψs(·)= γψ(∑W/T-6∑M/T2)×(1+m2)=1.0×1.0×[8284.51/26.8-6×(-16296.96)/26.82] ×(1+0.82) =730.23 Kpa≈0.73 Mpa1/γdR(·)=1/1.8×10000=5555.56 Kpa≈5.56 Mpa∴γ0ψs(·)<1/γdR(·)即基本组合时满足设计要求⑵偶然组合时,设计状况系数ψ=0.85,结构系数γd=1.8γ0ψs(·)= γψ(∑W/T-6∑M/T2)×(1+m2)=1.0×0.85×[8072.97/26.8-6×(-18184.32)/26.82] ×(1+0.82) =631.68 Kpa≈0.63 Mpa1/γdR(·)=1/1.8×10000=5555.56 Kpa≈5.56 Mpa∴γ0ψs(·)<1/γdR(·)即偶然组合时满足设计要求5.上游坝踵不出现拉应力极限状态因上游坝踵不出现拉应力极限状态属正常使用极限状态,故设计状况系数,作用分项系数和材料性能分项系数均采用1.0,扬压力系数直接用0.2代入计算,此处,结构功能的极限值C=0。
溢流坝段表孔设计计算说明

== 第4章 溢流坝段表孔设计溢流坝段既是挡水建筑物,又是重力坝枢纽最中重要的泄水建筑物。
设计时, 除了应满足稳定和强度要求外,还要满足因泄水带来的一系列要求, 包括 :(1 ) 具有足够的 孔口体形尺寸和较高的流噩系数,,以使之具有足够的溢流 能力。
( 2) 应具有良好的孔口体形,以使水流平顺 地过坝,不产生有害的负压、 震动和空蚀等。
( 3 ) 保证下游河床不产生危及坝体安全的局部冲刷。
( 4 ) 溢流坝段在枢纽中的位置,应使下游水流流态平顺,不产 生折冲水流, 不影响枢纽中的其他建筑物的正常运行。
(1) 又灵活可靠的下泄水流控制设备,如闸门启闭机 等4. 1 确定溢流断面长度4.1.1 设计单宽流量溢流重力坝的单宽流量 q 需综合考虑地质条件、枢纽布置下、游河道水深和消能工设计等因素,通过技术经济 比较后选定。
单宽流噩愈大,所需的溢流前缘 愈短,对枢纽 布置有利, 但 下 泄水 流动能大,对下游消能防冲不利 ,。
近年来随着 消 能工技术的进步,选定的单宽流量也不断增大。
本设计中,三峡坝之下游段地质条件优良,故可假定单宽流盐q=200m 3 /s , 据此可假定溢流坝段长度。
(1 ) 设计洪水位 工况下: Q = 23540 m3/s则可假定 Q 23540 L = — == 117 .7 m200( 2 ) 校核洪水位 工况下: Q = 3526 0 m3/s则可假定Q 35260L = — == 176 .3m200选取二者中的最大值, 确 定溢流段长度为176. 3m本设计选用平面钢闸门形式,因 其 结构简 单,而且闸墩受力条件良好。
取孔口净宽为b = 8 米。
a 、计算孔口数:(1 )设计 洪水位工况下·. n =117 .7= 14 .71( 2 ) 校核洪水位 工况下: 176 .3n 21 .94由此可确定 孔口数为22 孔。
据此计算Q 溢 = 22X 8X200 = 35300 m3/s, 满足设计洪水位和校核洪水位工况下所需的下泄流量。
重力坝设计设计范文

重力坝设计设计范文重力坝是一种常见的水利工程建筑物,用于储存水资源和调节水流。
它通过巨大的自重来抵抗泄水和水压力,以及其他外力的作用。
重力坝设计是一个复杂而关键的过程,需要综合考虑地质、水文、结构、材料等多方面因素。
下面将介绍一般情况下重力坝设计的基本步骤和关键要点。
首先,进行地质勘察和分析是重力坝设计的基础。
地质条件直接影响着坝址的选取和坝体的稳定性。
因此,需要对岩石、土壤等地质特征进行详细的探测和评估。
同时还需要了解地震、滑坡等自然灾害的潜在风险,以及地下水、渗流等水文条件。
在地质勘察的基础上,确定坝址和坝型。
合适的坝址通常应在拦截流域的狭缩处或大曲率的地方,以减小水流的冲击力和侵蚀力。
而坝型的选择则根据地质条件、设计要求和施工技术等因素来决定。
常见的坝型包括重力坝、拱坝、混凝土面板堆石坝等。
接下来,进行水文和水力学分析。
基于历史水文数据、降雨模拟等方法,对设计洪水、最大汛期年径流量等参数进行计算和预测。
此外,还需要进行水库调度分析,确定不同季节和水位下的库容和泄洪设计。
根据水文和水力学的分析结果,进行坝体的尺寸、稳定性和安全性计算。
重力坝设计通常需要考虑坝顶宽度、坝高、坝底宽度、坝面坡度等参数。
为了确保坝体的稳定性,需要进行地基处理、防渗设计、静力分析、动力分析等工作。
在设计过程中,还需要充分考虑强震、波浪冲击等外力的影响。
最后,进行重力坝的设计计算和验算。
在设计计算过程中,需要按照相关的设计规范和标准,进行坝体结构和材料的强度计算、应力分析等工作。
同时,还需要进行施工方案的评估和优化,确保施工过程的安全性和高效性。
综上所述,重力坝设计是一个复杂而关键的工作。
它需要综合考虑地质、水文、水力学、结构、材料等多方面因素,以确保坝体的安全和稳定。
通过地质勘察、水文分析、结构设计等一系列步骤,可以得出合适的坝址、坝型和坝体参数。
最后,进行设计计算和验算,确保重力坝的可靠性和安全性。
重力坝设计-泄流计算1

设闸门。
3、校核洪水位=校核洪水位情况下的堰上水头 Hw +堰顶高程
3
Q溢 Cm s L 2g Hw2 代入各系数及校核洪水流量得:
3
1 0.502 (1 0.0127Hw) 17.1 29.81 Hw2
用试算法代入试算后得出: H w 10.66m 。
1) 0
k]
Hw nb
1 0.2[(11) 0.45 0.45] Hw 7.1
1 0.2 0.45Hw 7.1
1 0.0127Hw
其中, n 为溢流孔数, n 1 ; b 为每孔的净宽, b 7.1m; 0 为
闸墩形状系数,闸墩头部采用圆弧形,则 0 0.45 ; k 为边墩头部形状,边
由此得出:
校核洪水位= Hw +堰顶高程=10.66+1695.89=1706.55m。
154
补充:(鹤地公式)
对丘陵、平原地区水库,其风浪要素值宜按鹤地水库试验公式计算:
gh2% vo2
1
0.00625vo8
(
gD ) vo21 3gLm0.0386(gD
)
1 2
vo2
vo2
式中:h2%——累积频率为 2%的波高(m);
3
通过公式: Q溢 Cm s L 2g Hw2
C——上游堰面为铅直时,C=1.0;
m ——流量系数,参考教材《水力学》,采用垂直上游堰面(n=0),
且 Hw Hd (设计水头)时,得出 m md 0.502 ;
——侧收缩系数(见教材《水力学》黄河水利出版社 P206):
153
1 0.2[(n
第五节 溢流重力坝

6、下游折冲水流及其防止
发生原因: 开启部分泄水孔,下游水流不能迅速在平面上扩散,在主流 两侧容易形成回流,主流受到压缩,使水流单宽流量增加, 流速在长距离内不能降低,引起河床冲刷。如两侧回流强度 不同,水位不同,还可将主流压向一侧,形成折冲水流。 危害: (1)冲刷河床和河岸; (2)影响航运; (3)电站尾水形成回流,抬高尾水,损失电能(落差减小)采取 防止措施: ①布置上,尽量使溢流坝下游水流与原河床主流位置方向一 致; ②运用管理,闸门均可开启,或对称开启; ③布置导流墙
设有胸墙的溢流面曲线
上述两种堰面曲线是根据定 型设计水头确定的.当宣泄 校核洪水时,堰面出现负压 值应不超过3—6m水柱高。
x2 y 4 2 H d
3.中间直线段 中间直线段与坝顶曲线和下部反弧段相切,坡度与 非溢流坝的下游坝坡相同。 4、溢流坝下游反弧段 下部反弧段是使沿溢流坝面下泄的高速水流平 顺地转向的工程设施,要求沿程压力分布均匀,不 产生负压和不致引起有害的脉动压力。通常采用圆 弧曲线,其反弧段半径应视下游消能设施而定。
Q=Qs-aQo
2、单宽流量的确定
单宽流量的大小是溢流重力坝设计中一个很重要的控制 性指标。单宽流量一经选定,就可以初步确定溢流坝段的 净宽和堰顶高程。单宽流量愈大,下泄水流的动能愈集中, 消能问题就愈突出,下游局部冲刷会愈严重,但溢流前缘短, 对枢纽布置有利。因此,一个经济而又安全的单宽流量, 必须综合地质条件、下游河道水深、枢纽布置和消能工设 计多种因素,通过技术经济比较后选定。 工程实证明对于软弱岩石常取q=20~50m3/(s·m); 中等坚硬的岩石取q=50~100 m3/(s·m);特别坚硬的岩 石q=100~150 m3/(s·m);地质条件好、堰面铺铸石防冲、 下游尾水较深和消能效果好的工程,可以选取更大的单宽 流量。近年来,随着消能技术的进步,选用的单宽流量也 不断增大。在我国已建成的大坝中,龚嘴的单宽流量达 254.2m3/(s·m),目前正在建设中的安康水电站单宽流量 达282.7m3/(s·m)。而委内瑞拉的古里坝其单宽流量已突 破了300m3/(s·m)的界限。
(完整版)重力坝设计说明书

网络教育学院《水工建筑物课程设计》题目:混凝土重力坝设计学习中心:专业:年级:年春/秋季学号:学生:指导教师:混凝土重力坝设计说明书目录第一章基本资料 (1)一、基本情况 (1)二、气候特征 (1)三、工程地质条件 (1)第二章大坝设计 (3)一、工程等级 (3)二、坝型确定 (3)三、基本剖面的拟定 (3)四、坝高计算 (3)五、挡水坝段剖面的设计 (4)第三章结构计算 (5)一、荷载及其组合 (5)二、挡水坝抗滑稳定分析计算 (7)三、挡水坝边缘应力分析与强度计算 (9)第四章细部构造设计 (13)一、材料区分及标号选择 (13)二、坝顶 (13)三、坝体防渗与排水 (13)四、坝体廊道系统 (13)第五章地基处理 (14)一、基底开挖 (14)二、固结灌浆 (14)三、惟幕灌浆与坝基排水孔 (14)第六章附件 (15)一、挡水坝段剖面图 (15)第一章基本资料一、基本情况本重力坝水库坝高53.9m,坝底高程31.0m,坝顶高程84.9m,坝基为微、弱风化的花岗岩层,致密坚硬,强度高,抗冲能力强。
水库死水位51.0m,死库容0.3亿m3,正常水位80.0m,设计状况时上游水位82.5m、下游水位45.5m,校核状况上游戏水位84.72m、下游水位46.45m。
二、气候特征1、根据当地气象局50年统计资料,多年平均最大风速14m/s,重现期50年最大风速23m/s,设计洪水位时2.6km,校核洪水位时3.0km;2、最大冻土层深度为125m;3、河流结冰期平均为150天左右,最大冰层1.05m。
三、工程地质条件1、坝址地形地质(1)、左岸:覆盖层2-3m,全风化带厚3-5,强风化加弱风化带厚3m,微风化层厚4m;(2)、河床:岩面较平整,冲积沙砾层厚约0-1.5m,弱风化层厚1m左右,微风化层厚3-6m;坝址处河床岩面高程约在38m 左右,整理个河床皆为微、弱风化的花岗岩层,致密坚硬,强度高,抗冲能力强;(3)、右岸:覆盖层3-5m,全风化带厚5-7,强风化加弱风化带厚1-3m,弱风化带厚1-3m,微风化层厚1-4m。
重力坝设计方案

一、前言1、流域概况及枢纽任务××是罗江上的一条南北向大支流,河流全长 295 公里,流域面积 850 平方公里。
流域形状略呈菱形,上下游狭窄,中游宽大,河道坡陡流急,具有暴涨暴落的特性。
本枢纽工程以发电为主,兼顾防洪、灌溉,对航运和木材筏运也适当加以解决。
水库总库容 22.6 亿立方米,装机容量 24.8 万千瓦,灌溉上游农田130 万亩,确保减免昌州市(福州市)及附近 50 万亩农田和南江县(南平县) 的洪灾。
2、经水文、水利调洪演算确定:死水位 200.15m;发电正常水位 215.5m,相应下游水位 163.88m;设计洪水位 216.22m,相应下游水位 169.02m,通过河床式溢洪道下泄流量 5327.70m3/s;校核洪水位 217.14m,相应下游水位 169.52m,通过河床式溢洪道下泄流量6120.37 m3/s;泥沙淤积高程 174.6m,淤沙干容重 14.1KN/m3(浮容重=8.71 KN/m3 ),孔隙率 n=0.45 内磨擦角为φ =15o ;电站进水口底板高程为 186.20m (坝式进水口)。
3、气象资料相应洪水季节 50 年重现期最大风速的多年平均值为 17.3m/s,相应设计洪水位时吹程 2.54km,相应校核洪水位时吹程 2.66km。
4、地质勘测资料坝址处河床地面高程为 146.10m,河床可利用基岩高程为 140m,坝与基岩之间磨擦系数为 0.7,基岩允许抗压强度为 6.3Mpa ,坝基渗透系数(扬压力折减系数或者剩余水头系数) α α 可分别取 0.25,0.34。
1 25、建造材料有关数据5.1 龄期为 90 天,强度等级 C15 标号的混凝土允许抗压强度为 4.3Mpa。
5.2 砂石料有 3 个主要料场:5.2.1 房村料场位于坝上游右岸 22 公里处,与公路边小山丘相连,附近河岸地形开阔,可供加工堆存之用,分布呈长方形,长 1350m,宽 234m,表土层 3~4m,露出水面 0~7m。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
设计题目:小型溢流重力坝设计
1基本资料和枢纽布置
1.1基本资料
1.1.1地形地质
1.1.2水文
1.1.3其他有关数据
1.2枢纽布置
1.2.1坝址和坝型选择
1.2.2本枢纽的等级和坝的级别确定1.2.3枢纽的总体布置
2溢流重力坝设计
2.1溢流孔口设计
2.1.1溢流形式
2.1.2洪水标准确定
2.1.3设计流量的选择
2.1.4单宽流量的确定
2.1.5溢流孔口尺寸的确定
2.1.6定型设计水头的确定
2.1.7泄流能力校核
2.2消能防冲设计
2.2.1选择依据
2.2.2消能计算
2.3溢流坝剖面设计
2.3.1wes曲线坐标计算
2.3.2绘制溢流坝剖面
2.3.3溢流坝堰顶布置
3泵与泵站
3.1确定水量和扬程
3.2水泵及电机选型
3.3吸水和压水管路布置
3.4其它附属设备布置
4地基处理
4.1基础开挖
4.2基础回填
参考文献
附图
进度安排:
1基本资料和枢纽布置(三天)
2溢流重力坝设计(三周)
3泵与泵站(一周)
4地基处理(三天)
参考文献及附录(一天)
设计成果:
说明书一份,计算书一份,设计图纸4张(A1)。