X2检验公式
医学统计学之卡方x2检验

举例
买彩票
奖项 中奖概率
T
A
一等 1% 10 0
0
二等 5% 50 0
0
三等 10% 100 20
2%
四等 20% 200 180
18%
五等 64% 640 800
80%
二、基本原理
基本思想是检验实际频数和理论频数的差别是否 由抽样误差所引起的,由样本率来推断总体率。
x2反映了实际频数于理论频数的吻合程度,x2值
α=0.05。
T11 =44(41/70)=25.8 T12=44(29/70)=18.2 T21=26(41/70)=15.2 T22 = 26(29/70)=10.8
(2)求检验统计量值
2 (20 25.8)2 (24 18.2)2 (21 15.2)2 (5 10.8)2 8.40
作χ2检验后所得概率P接近检验水准α,需要
计数资料的统计推断
卡方检验是χ2检验(Chi-square test) 是现代统计学的创始人之一,英国人K . Pearson(1857-1936)于1900年提出的 一种具有广泛用途的统计方法,是分类 计数资料的假设检验方法,可用于两个 或多个率间或构成比之间的比较,计数 资料的关联度分析,拟合优度检验等等。
2 检验的应用
①检验两个样本率之间差别的显著性; ②检验多个样本率或构成比之间差别的
显著性; ③配对计数资料的比较; ④检验两个双向无序分类变量是否存在
关联。
某医生想观察一种新药对流感的预防效 果,进行了如下的研究,问此药是否有 效?
组别 实验组 对照组 合计
发病人数 14 30 44
未 发 病人数 86 90 176
观察例数 100 120 220
第7章 x2检验

例7-3:某实验室采用两种方法对58名可疑 红斑狼疮患者的血清抗体进行测定,问:两 方法测定结果阳性检出率是否有差别?
表7-3 两种方法的检测结果 免疫荧光法 + - 乳胶凝集法
合计
+ 11(a) 2(c) 13
- 12(b) 33(d) 45
合计 23 35
58
检测结果一致: (a)免+乳+ ,(d) 免-乳检测结果不一致:(b) 免+乳- , (c)免-乳+ 比较两种检测方法有无差异时,只需比较不一致的 结果 。
感染率 18.18 45.45 27.27
一、基本思想
1.各组合概率Pi的计算 周边合计不变的条件下,表内4个实际频数 变动的组合数共有“周边合计中最小数+1”
表7-4 两组新生儿HBV感染率的比较 组别 阳性 阴性 合计 感染率(%) 预防注射组 4 18 22 18.18 非预防组 5 6 11 45.45 合计 9 24 33 27.27
公式:
b c 40
2 ( b c ) 2 x , bc b c 40
v 1
(7 7)
(| b c | 1) x , bc
2 2
v 1
(7 8)
1.建立检验的假设,确定检验水准 H0:b=c ;H1:b c =0.05 2.计算 χ2 统计量
b+c=2+12=14<40
(a b)! (c d )! (a c)! (b d )! pi a!b!c!d!n!
(7 9)
(a b)! (c d )! (a c)! (b d )! pi a!b!c!d!n!
(7 9)
2.累计概率P的计算 1)单侧检验:现有样本四格表及其以左的所 有四格表组合的累积概率为左侧概率(PL); 现有样本四格表及其以右的所有四格表组合的 累积概率为右侧概率(PR)。 H1为π1>π2,则P单侧 =PR; 若H1为π1<π2,则P单侧=PL 2.双侧检验: 计算满足Pi ≤P*条件下的各种组合之四格表 的累计概率。
x2检验 医学统计学

基本思想
所谓两属性X和Y互相独立,是指属性X的概 率和属性Y的概率分布无关,否则称这两种 属性之间存在关联性。即
ij
ri cj
( nri n
)( ncj n
)
Tij
n ij
nri ncj n
1. 建立假设 H0:两种属性之间相互独立 H1:两种属性之间相互不独立
α=0.05
2. 计算检验统计
表10-1 两种药治疗急性下呼吸道感染有效率比较
处理
有效例数
无效例数
合计
有效率(%)
A药 B药 合计
68(64.818)a 52(55.182)c
120 (a+c)
6(9.182)b
74 (a+b)
11(7.818)d
63 (c+d)
17 (b+d)
137 (n=a+b+c+d)
91.89 82.54 87.59
P=0.01, x2 =6.63 ▪ P=0.05时, v=1, x2 =3.84
v=2, x2 =5.99
四格表χ2检验公式
当n≥40,T≥5时
2
( ARC TRC )2 TRC
2
ad bc2 n
a ca bc db d
1. 建立假设 H0:两药疗效相同 H1:两药疗效不相同
为两组疗效之间的差异有统计学意义。
观察组和对照组疗效比较
组别 显效 有效 无效
观察组 58
44
18
对照组 56
43
35
合计
114
87
53
配对四格表χ2检验
▪ 一般形式
甲属性
乙属性
x2检验或卡方检验和校正卡方检验的计算

x2检验或卡方检验和校正卡方检验的计算x2检验(chi-square test)或称卡方检验x2检验(chi-square test)或称卡方检验,是一种用途较广的假设检验方法。
可以分为成组比较(不配对资料)和个别比较(配对,或同一对象两种处理的比较)两类。
一、四格表资料的x2检验例20.7某医院分别用化学疗法和化疗结合放射治疗卵巢癌肿患者,结果如表20-11,问两种疗法有无差别?表20-11 两种疗法治疗卵巢癌的疗效比较组别有效无效合计有效率(%)化疗组19 24 43 44.2 化疗加放疗组34 10 44 77.3合计53 34 87 60.9表内用虚线隔开的这四个数据是整个表中的基本资料,其余数据均由此推算出来;这四格资料表就专称四格表(fourfold table),或称2行2列表(2×2 contingency table)从该资料算出的两种疗法有效率分别为44.2%和77.3%,两者的差别可能是抽样误差所致,亦可能是两种治疗有效率(总体率)确有所不同。
这里可通过x2检验来区别其差异有无统计学意义,检验的基本公式为:式中A为实际数,以上四格表的四个数据就是实际数。
T为理论数,是根据检验假设推断出来的;即假设这两种卵巢癌治疗的有效率本无不同,差别仅是由抽样误差所致。
这里可将两种疗法合计有效率作为理论上的有效率,即53/87=60.9%,以此为依据便可推算出四格表中相应的四格的理论数。
兹以表20-11资料为例检验如下。
检验步骤:1.建立检验假设:H0:π1=π2H1:π1≠π2α=0.052.计算理论数(TRC),计算公式为:TRC=nR.nc/n 公式(20.13)式中TRC是表示第R行C列格子的理论数,nR为理论数同行的合计数,nC为与理论数同列的合计数,n为总例数。
第1行1列: 43×53/87=26.2第1行2列: 43×34/87=16.8第2行1列: 44×53/87=26.8第2行2列: 4×34/87=17.2以推算结果,可与原四项实际数并列成表20-12:表20-12 两种疗法治疗卵巢癌的疗效比较因为上表每行和每列合计数都是固定的,所以只要用TRC式求得其中一项理论数(例如T1.1=26.2),则其余三项理论数都可用同行或同列合计数相减,直接求出,示范如下:T1.1=26.2T1.2=43-26.2=16.8T2.1=53-26.2=26.8T2.2=44-26.2=17.23.计算x2值按公式20.12代入4.查x2值表求P值在查表之前应知本题自由度。
第六章 χ2检验

二、计算检验统计量:
2 1 4 1 3
2
2 2 2 2 2 2 2 2 30 38 32 12 19 30 19 9 189 1 0 . 69 112 49 112 68 112 51 112 21 77 49 77 68 77 51 77 21
统计:按照α=0.05的检验水准,拒绝H0,接受H1,差异有统计学意义。 专业:结合本例,可以认为三种方法治疗慢性支气管炎的效果不同或 不全相同。
2.两组或多组样本构成比的比较
例6-4:欲了解儿童白血病患者的血型分布是否与成 年患者有所不同,资料见表6-4。试分析儿童白血病 患者与成年患者的血型分布构成比有无差别?
第六章 χ2检验
《医学统计学》余松林主编
本章内容
第三节 独立性检验 第四节 趋势检验 第五节 多个四格表的联合分析 第六节 四格表的费歇尔精确概率检验
第三节 独立性检验
本节介绍应用χ2检验推断两个或两个以 上总体率(或构成比)之间有无差别及 两分类变量间有无相关关系。
一、四格表资料的χ2检验 (两个样本率的比较)
表6-4 儿童急性白血病患者与成人急性白血病患者的血型分布
分组
儿童 成人 合计
A型 30
19 49
B型 38
30 68
O型 32
19 51
AB型 12
9 21
合计 112
77 189
解:
一、建立假设,确定检验水准:
H0:儿童白血病患者与成人患者的血型分布构成比相同 H1:儿童白血病患者与成人患者的血型分布构成比不相同 检验水准α=0.05。
二、计算检验统计量:
第七章 X2检验(医学统计学)

∵ P=0.2668>0.05,∴ 在α=0.05水准上,不拒
绝H0,故尚不能两型患者的反应阳性率有差别。 四格表检验小结 1、当T>5(所有格子),且 n>40时,应用 2 ( A T ) x2 T 或
2 ( ad bc ) n 2 x (a b)(c d )(a c )(b d )
α=0.05
按公式
X2=2.56
2 A x 2 n( 1) n R nC
计算
2 2 x0 2 . 37 x V=(2-1)(4-1)=3 , , .5, 3 0.25, 3 4.11 ,0.5>P>0.25
──────────────────── ━━━━━━━━━━━━━━━━━━━━━━
1、建立假设
H0:π1=π2
H1:π1≠π2 α=0.05
2、计算X2值
因T11=3.84<5, 故需要使用校正公式
用专用公式:a=1、 b=14 、 c=10 、 d=18
x
2
( ad bc n / 2) n
|A-T|值的四格表的P值,将其相加,即得到检验
概率P。
双侧检验:
对所有 |A-T|值等于及大于样本
|A-T|值的四格表P值相加;
单侧检验:按检验目的,取阳性数增大或减小一
侧的|A-T|值等于及大于样本|A-T|值四格表;
四格表概率P的计算公式
(a+b)!(c+d)!(a+c)!(b+d)! P=──────────── a!b!c!d!n!
各种组合的四格表: 样本四格表
0 15 15 1 14 15 2 13 15 3 12 15 4 11 15
医学统计学x2检验公式

医学统计学x2检验公式1. 首先,让我们来了解什么是医学统计学中的x2检验。
x2检验是一种用于比较两个或多个类别变量之间差异的统计方法。
它的目的是确定观察到的频数与期望的频数之间的差异是否显著。
2. 在x2检验中,我们需要计算一个统计值x2(chi-square),它表示观察到的频数与期望的频数之间的偏离程度。
x2值越大,说明观察到的频数与期望的频数之间的差异越大。
3. x2检验的公式如下:x2 = Σ((观察值-期望值)^2 / 期望值)其中,Σ表示对所有类别进行求和,观察值是指实际观察到的频数,期望值是指根据某种假设或模型计算得到的频数。
4. 为了更好地理解x2检验的公式,让我们通过一个简单的例子来说明。
假设我们研究了两种不同的治疗方法对某种疾病的疗效,观察了200名患者的治疗结果,得到以下数据:治疗方法疾病痊愈未痊愈方法A 120 30方法B 50 05. 在这个例子中,我们对两种治疗方法的疗效进行比较。
我们假设两种方法的疗效相同,即期望的频数是根据总样本数和各个类别的比例计算得到的。
6. 首先,我们需要计算每个类别的期望频数。
对于方法A的疾病痊愈类别,期望频数计算公式为:(方法A总样本数/总样本数)* 总痊愈人数= (150/200)* 170 = 127.5。
7. 同样地,对于未痊愈类别,期望频数计算公式为:(方法A总样本数/总样本数)* 总未痊愈人数= (150/200)* 30 = 22.5。
8. 对于方法B的疾病痊愈类别,期望频数计算公式为:(方法B总样本数/总样本数)* 总痊愈人数= (50/200)* 170 = 42.5。
9. 同样地,对于未痊愈类别,期望频数计算公式为:(方法B总样本数/总样本数)* 总未痊愈人数= (50/200)* 30 = 7.5。
10. 现在,我们可以使用x2检验的公式来计算统计值x2了。
根据上述公式,我们将计算每个类别的(观察值-期望值)^2 / 期望值,并对所有类别求和。
χ2检验的公式

χ2检验的公式χ2检验是一种常用的统计方法,用于检验两个分类变量之间是否存在相关性。
它的全称是卡方检验,是由卡方分布衍生而来的统计检验方法。
χ2检验的公式如下:χ2 = Σ ( (Oij - Eij)^2 / Eij )其中,χ2表示卡方值,Oij表示观察到的频数,Eij表示期望的频数。
在χ2检验中,我们需要先确定一个原假设和备择假设,然后根据实际观察到的频数和期望频数,计算出卡方值。
最后,根据卡方值和自由度的关系,确定拒绝域,从而判断原假设的可信程度。
χ2检验可以用于比较两个分类变量的分布情况,例如比较两组样本在不同类别上的分布是否存在差异。
这种差异可能源于不同类别之间的关联性,也可能是由于其他因素导致的。
χ2检验的目的就是通过计算卡方值,判断这种差异是否显著。
在进行χ2检验时,需要注意以下几点:1. 样本容量要足够大。
当样本容量较小时,χ2检验的结果可能不准确。
2. 数据应该是独立的。
χ2检验要求样本观测值之间是相互独立的,否则会导致结果的偏差。
3. 期望频数要大于5。
当期望频数小于5时,χ2检验的结果可能不可靠。
4. 自由度的确定。
在计算卡方值时,需要根据分类变量的类别数和样本容量来确定自由度的取值。
χ2检验的步骤如下:1. 建立假设。
根据研究问题,确定原假设和备择假设。
2. 收集数据。
根据研究问题,收集相应的数据样本。
3. 计算期望频数。
根据总体分布的假设,计算出每个类别的期望频数。
4. 计算卡方值。
根据观察频数和期望频数,使用χ2检验公式计算出卡方值。
5. 确定拒绝域。
根据显著性水平和自由度的关系,确定拒绝域的边界。
6. 做出判断。
比较计算得到的卡方值和拒绝域的边界,判断原假设的接受或拒绝。
χ2检验的应用非常广泛,特别是在医学、社会科学和市场研究等领域。
例如,医学研究可以使用χ2检验来比较不同治疗组的治愈率是否存在差异;社会科学研究可以使用χ2检验来分析不同人群之间的社会行为是否存在关联;市场研究可以使用χ2检验来分析不同产品的偏好是否存在差异。