气体在金属中的溶解度

合集下载

钢铁冶金原理

钢铁冶金原理

1、表面张力:垂直作用在液面上任一直线的两侧,沿液体的切面向着两侧的拉力,N/m2、穿透度:它为反应过程中,矿球半径改变的分数,用f 表示,0(1)r r f =-。

它和R 的关系为1/31(1)f R =--。

3、沉淀脱氧:向钢液中加入能与氧形成稳定化合物的元素,形成的氧化物能借自身的浮力或钢液的对流运动而排出。

4、萃取精炼:在一定温度下,在熔盐粗金属中加入附加物,附加物与金属相内杂质生成不溶解于熔盐的化合物而析出,从而达到精炼的目的。

5、二元碱度:渣中的碱性氧化物CaO 含量与酸性氧化物SiO 2含量之比为炉渣的二元碱度。

6、反应度:或称转化率,矿球已反映了的百分数,用R 表示,30(/)1r r R =-。

7、分解压:分解反应的平衡常数等于分解出的气体B 的平衡分压,规定用()B AB P 表示,称为此化合物的分解压。

8、负吸附:溶解组分质点和溶剂质点之间的作用力大于溶剂质点之间的作用力。

溶解组分在表面不出现过剩浓度,称为负吸附。

9、G-D 方程:11220BB n dG n dG ndG ++==∑ 或11220BB x dG x dG xdG ++==∑ 他表示恒温、恒压下,溶液中各组分的偏摩尔吉布斯自由能(或其他偏摩尔量)的改变不是彼此独立的,而是互相制约、互相补偿的。

10、0i γ的物理意义:1)表示溶液中组元i 在浓溶液中服从拉乌尔定律和在稀溶液中服从亨利定律两定律间的差别。

2)是组元i 在在服从亨利定律浓度段内以纯物质i 为标准态的活度系数。

3)是不同标准态的活度及活度系数相互转换的转换系数。

4)是计算元素标准溶解吉布斯能的计算参数。

11、光学碱度:在氧化物中加入显示剂,用光学的方法来测定氧化物施放“电子的能力”以表示出2O -的活度,确定其酸-碱性的光学碱度。

12、过剩碱:用碱的总量减去形成复合化合物的消耗的碱性氧化物,用来表示渣中碱性氧化物。

13、亨利定律:当溶液组分B 的浓度趋近于零(0B x →)的所谓稀溶液中,组分B 的蒸汽压与其浓度B x 成线性关系:()BH x B p K x '=,p '--组分B 在B x 的平衡蒸汽压,()H x K --比例常数。

不锈钢焊接气孔产生的原因及措施

不锈钢焊接气孔产生的原因及措施

不锈钢焊接气孔产生的原因及措施
产生气孔的原因主要有以下几个方面:
1.不锈钢表面的氧化物、油污等杂质:不锈钢表面存在氧化物、油污等杂质会干扰焊接过程中的气体流动,使得气体无法完全排出,导致气孔产生。

2.气体溶解度变化:焊接温度升高时,气体在液态金属中的溶解度下降,容易从液态金属中逸出,形成气孔。

3.气体转化反应:焊接过程中,金属及其氧化物与气氛中的气体发生化学反应,产生气体。

例如,在氩气保护下焊接时,如果空气中的氧进入焊缝中,会与焊材中的铁发生氧化反应,产生气体。

4.延展性差的焊材:焊材的延展性差,容易在焊接时产生气孔。

针对不锈钢焊接气孔的产生,可以采取以下措施进行防治:
1.清洁焊接表面:在焊接前,需对不锈钢表面进行彻底的清洁,清除氧化物、油污等杂质。

可以使用有机溶剂、去污剂等进行清洗。

2.提供足够的氩气保护:在不锈钢焊接过程中,使用足够的纯度高的氩气进行保护,以防止空气中的氧进入焊缝,减少气孔产生的机会。

3.适当调整焊接参数:根据具体的焊接条件和焊材的特性,合理调整焊接电流、电压、焊接速度等参数,以保证焊接过程的稳定性和焊缝的良好质量。

4.选择合适的焊接材料:选择具有良好延展性的焊接材料,以减少焊接过程中的应变和应力,降低气孔产生的可能性。

5.加强焊接操作技术培训:对焊工进行专业的培训,提高其焊接操作技术和焊接质量控制意识,减少气孔的发生。

综上所述,不锈钢焊接气孔产生的原因主要包括不锈钢表面杂质、气体溶解度变化、气体转化反应和焊材延展性差等因素,针对这些原因可以采取清洁焊接表面、提供足够的氩气保护、调整焊接参数、选择合适的焊接材料和加强焊接操作技术培训等措施进行防治。

钢中的气体元素

钢中的气体元素

•■测试与分析〜钢中的气体元素宋红艳(中车株洲电力机车有限公司,湖南株洲412001)摘要:介绍了钢中氮、氢、氧等气体的来源、存在形式和对钢材性能特别是力学性能的影响。

举例说明了氮、氢和氧元素在碳结构钢和不锈钢中的应用。

关键词:气体元素;钢;应用中图分类号:T G 115.3+3文献标志码文章编号:1008-1690(2021)01-0058-03Gaseous Elements in SteelsSONG Hongyan(Zliuzhou C R R C Power Loco Co ., Ltd ., Zhuzhou 412001, Hunan China )Abstract : Source , existence form of gaseous elements such as nitrogen , hydrogen and oxygen i n s teels and their e ffect on performances of s t e e l product , especially mechanical properties , were introduced . The applications of nitrogen,hydrogen and oxygen i n carbon structural steel and stainless s t e e l were explained with examples .Key words : gaseous element ; steel ; application1钢铁中气体的存在形式钢中气体仅包括氮、氢、氧三种,在钢铁中并非呈气体状态存在,主要是形成化合物或固溶于钢铁 组织中,仅少量以游离形式存在钢铁的缺陷中。

钢铁中的氮主要源于空气,在冶炼和浇注过程 中,空气与金属熔池或炉渣接触时,溶解于到钢液,与金属形成氮化物,也有以氮化锰和氮化铬等铁合 金作原材料加人的钢中氮主要形成氮化物,如 Fe 4N 、Fe 2N 、CriV 、V N 、TiN 、A l N 、Si 3N 4 等,还有部分 形成固溶体,只有极微量的氮以分子形式吸附于金 属表面或存在于金属空隙中,而且在钢中的溶解度 随着某些合金元素浓度的增加而增加,例如含铬合 金的含氮量较高。

焊接过程气体对金属的作用 -氢

焊接过程气体对金属的作用 -氢

-
脱氢处理
将焊件加热到一定温 度,促使氢扩散外逸。
金属通过渣进入金属,其溶解度取决于气相中水 和氢的分压、熔渣的碱度、氟化物的含量。
氢通过气相进入金属,溶解度取决氢的状态。如为分子 态,溶解度符合平方根定律
SH K H2
pH 2
实际上,电弧焊气相中 氢不完全是以分子态存在, 还有相当多的原子氢和离子 等。电弧焊时氢的溶解度比 用平方根定律计算出来的标 准溶解度高得多。
合金元素对氢在Fe中 溶解有很大影响。 氢在固态钢中的溶解度与 组织有关。在奥氏体的溶解度 >铁素体+珠光体
焊缝金属中的氢及其扩散
扩散氢:以H、H-、H+形式存在,与金属形成间隙固溶 体可自由扩散。 残余氢:聚集到陷阱(晶格缺陷、显微裂纹、非金属夹 杂)中,结合成分子,不能自由扩散。
随放置时间的增加, 扩散氢↓,残余氢↑,总 的含氢量↓。
氢对焊接质量的影响
- 氢 脆
氢脆:氢在室温附近使钢的塑性严重下降的现象。 氢脆是由于溶解在晶格 中的氢引起的,变形导致位错 运动堆积,形成显微空腔,氢 在空腔聚集结合成分子,产生 很高的压力,金属变脆。
-
白 点
白点:碳钢或低合金钢焊缝,如含氢量高,常在其拉伸 或弯曲断口出现银白色圆形局部脆断点。
溶解途径
焊接方法不同,氢向金属中溶解的途径不同。
-
气体保护焊,氢以原子或质子的形式溶入金属;
电渣焊,氢通过渣层溶入金属; 手工焊和埋弧焊,上述途径兼而有之。
氢通过渣溶入金属,氢或水首先溶入渣中。
对含有自由氧离子的渣
H 2O (O2 ) 2(OH )
对不含自由氧离子的渣
2) H2O (SimOnq ) 2(OH ) (SimOn(q ) 1

材料成型原理第六章 答案

材料成型原理第六章  答案

第六章1.焊接和铸造过程中的气体来源于何处?它们是如何产生的?答:焊接区内的气体:焊条药皮、焊剂、焊芯的造气剂,高价氧化物及有机物的分解气体,母材坡口的油污、油漆、铁锈、水分,空气中的气体、水分,保护气体及其杂质气体铸造过程中的气体:熔炼过程,气体主要来自各种炉料、炉气、炉衬、工具、熔剂及周围气氛中的水分、氮、氧、氢、CO2、CO、SO2和有机物燃烧产生的碳氢化合物等。

来自铸型中的气体主要是型砂中的水分。

浇注过程,浇包未烘干,铸型浇注系统设计不当,铸型透气性差,浇注速度控制不当,型腔内的气体不能及时排除等,都会使气体进入液态金属。

2. 气体是如何溶解到金属中的?电弧焊条件下,氮和氢的溶解过程一样吗?答:气体溶解到金属中分四个阶段:(1)气体分子向金属-气体界面上运动;(2)气体被金属表面吸附;(3)气体分子在金属表面上分解为原子;(4)原子穿过金属表面层向金属内部扩散。

电弧焊条件下,氮和氢的溶解过程不一样,氢在高温时分解度较大,电弧温度下可完全分解为原子氢,其溶解过程为分解—吸附—溶入。

在电弧气氛中,氮以分子形式存在,其溶解过程为吸附—分解—溶入。

3.哪些因素影响气体在金属中的溶解度,其影响因素如何?答:气体在金属中的溶解度与压力,温度,合金成分等因素有关:(1)当温度一定时,双原子的溶解度与其分压的平方根成正比(2)当压力一定时,溶解度与温度的关系决定于溶解反应类型,气体溶解过程为吸热反应时,△H为正值,溶解度随温度的升高而增加;金属吸收气体为放热反应时,△H为负值,溶解度随温度的上升而降低。

(3)合金成分对溶解度的影响:液态金属中加入能提高气体含量的合金元素,可提高气体的溶解度;若加入的合金元素能与气体形成稳定的化合物(即氮、氢、氧化合物),则可降低气体的溶解度。

此外,合金元素还能改变金属表面膜的性质及金属蒸气压,从而影响气体的溶解度。

(4)电流极性的影响:直流正接时,熔滴处于阴极,阳离子将向熔滴表面运动,由于熔滴温度高,比表面积大,故熔滴中将溶解大量的氢或氮;直流反接时,阳离子仍向阴极运动,但此时阴极已是温度较低的溶池,故氢或氮的溶解量要少。

菲克扩散定律的热力学理论及其应用

菲克扩散定律的热力学理论及其应用

菲克扩散定律的热力学理论及其应用1.菲克定律菲克定律是固体物理学中关于扩散宏观理论的基础,具体如下[1]:设扩散沿X方向进行,单位时间内通过垂直于X 方向的单位面积扩散的量决定于物质浓度n 的梯度,即式中,物质浓度n可以取为单位体积内的摩尔数,(J为相应的扩散通量),(1)式及(2)式分别称为菲克第一定律和菲克第二定律,其中第一定律只适用于稳定扩散。

(1)式和(2)式很容易推广到三维形式。

菲克定律中的D叫扩散系数,并且D>0,它一般与物质的温度、浓度等因素有关。

由菲克定律可得下述结论;D>0,扩散沿着浓度减少的方向进行,扩散的结果将物质的浓度分布趋于均匀;稳定扩散时,J=0,表明均匀物质系统内浓度均匀分布时,没有净扩散流。

菲克定律可用来成功地解释常见的各种扩散现象,成为人们研究一般扩散现象的经典公式。

然而,自然界的扩散现象并不总是符合菲克定律。

在金属合金的沉淀中,存在着一种叫“亚稳分畴分解”(Spiondal decomposition)机制[2],在这一沉淀机制里,合金组元的扩散由低浓度向高浓度方向进行,这种通过扩散不是消除浓度差异,而是增大浓度差异,使组元分化的扩散叫“逆扩散”。

U.Dehlinger 及R.Becker 首先描述了这一现象,关于“逆扩散”的例子还可见文献[2]。

“逆扩散”显然违背菲克定律,为了解释“逆扩散”,有必要寻求新的理论。

2.扩散的热力学理论据热力学理论,在定温、定压下,多元系各相达到平衡时,其中每一组在各相中的化学势都相等。

即对于第i组元来讲,其化学势μi均匀分布是其平衡的必要条件,而μi的梯度将导致相应的扩散通量J i。

现考虑定温、定压下多元素中i组元原子的扩散,1摩尔i组元原子在化学势μi的势场中所受的力应为(3)式所示,因受力原子的平均速率正比于F i[3],即(4)式所示:比例系数B i表示单位力作用下i组元原子的平均速率,叫迁移率。

注意(4)式与牛顿第二定律不同,这是由于在原子尺寸范围内,运动着的原子由于和其他原子碰撞,运动方向不断改变的缘故。

关于紫铜熔铸中吸气的原因及其危害

关于紫铜熔铸中吸气的原因及其危害

关于紫铜熔铸中吸气的原因及其危害张劭*摘要论述了氢和氧在铜液中的溶解能力、熔铸紫铜时的吸气条件、气孔形成的机理、气孔在加工型材上的表现、防止吸气的措施等。

关键词:紫铜吸气溶解固溶体脱氧溶解度About the Reason and Detriment of Gas-Absorptionduring Smelting of Pure CopperZhang Shao(Luoyang Copper working Plant)ABSTRACT Hydrogen and oxygen solubility in molten copper, condition of gas-absorption during smelting of pure coper, mechanism of gas hole formation, gas hole appearance on worked material and measure to gas absorption prevention have been briefly described.Key Words:Pure Copper, Gas Absorption, Solution, Solid Solution, Deoxidation, Solubility紫铜熔炼方法(不同于黄铜)的核心是防止吸气。

熔铸生产中某个环节的局部吸气往往是铸锭产生缺陷的重要原因,其缺陷的表现特征以及危害程度是大家所熟知的。

但是,在多个环节对防止吸气失去控制的情况下,会表现怎样的情况和造成怎样的后果,这是鲜为人知的。

某厂发生的一起罕见的紫铜(TP2,T2)管大量起泡的严重质量事故提供了实例。

事故中报废管材数10 t,历经数月逐步改进熔铸工艺条件,才基本上查明原因制止了事故延续。

笔者参与了该质量事故调查和改进工作。

分析了具体情况,现就事故情况进行分析从中总结了一些规律性的东西,供同行们借鉴参考。

惰性气体精炼

惰性气体精炼

影响金属实际吸气量的因素
• 金属中气体的扩散系数与合金元素有关。例如,Mg和Ti都 显著降低氢在铝液中的扩散系数。 • 氧化膜和覆盖剂越致密越厚,金属吸气量越少。 • 金属中的含气量随时间的变化为:
16
2.4 脱气精炼
• 目的是脱除溶解于金属中的气体。 • 气体从金属中脱除途径:一是气体原子扩散至金属表面, 然后脱离吸附状态而逸出;二是以气泡形式从金属熔体中 排除;三是与加入金属中的元素形成化合物,以非金属夹 杂物形式排除。 • 根据脱气机理不同可分为:分压差脱气、化合脱气、电解 脱气和预凝固脱气。
17
2.4.1 分压差脱气的热力学分析
18
2.4.1 分压差脱气的热力学分析
19
2.4.1 分压差脱气的热力学分析
20
2.4.2 分压差脱气的动力学分析
C0 log[ ] K 't Ct
21
分压差脱气的动力学分析
22
2.4.3 分压差脱气精炼方法
• 气体脱气法、熔剂脱气法、沸腾脱气法和真空脱气法。 • 气体脱气法:气体脱气法所用气体有惰性气体.活性气体 和混合气体数种。此外,还有在精炼气体中加入固体熔剂 粉末的气体和熔剂混合物脱气法。
14
2.3.2 影响金属实际吸气量的因素
• 在合金一定时,熔体中的实际含气量取决于吸气速度、 熔炼温度及时间等。从气体溶解机制可知,金属的吸 气速度主要决定于其扩散速度。
• 气体分压越大,温度越高,扩散系数越大,金属吸气 D0 K 速度就越快。 J p exp[ ED / 2 RT ]x Nhomakorabea15
9
合金元素
• 与气体有较大亲和力的合金元素,通常会使合金中 的气体溶解度增大;与气体亲和力小的合金元素相 反。 • 氢在多元系合金中的溶解度:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

放热反应
能形成稳定氢化物
氮、氢在铁中的溶解度
在铁的气化温度附近, 气体溶解度陡降。 氮、氢在液态铁中的溶解 度随温度升高而增大。 氮、氢在金属凝固 时溶解度陡降。 氮、氢在奥氏体中的 溶解度大于铁素体。
( PN2 =PH2 = 0.1MPa )
第II类金属吸氢过程是放热反应,因此随 a) 着温度的升高,氢的溶解度减小,
SH/mL.(100g)-1
b)
T/℃
SH/mL.(100g)-1
T/℃
图7-9 氢在不同金属中的溶解度随温度的变化(pH2=0.1MPa) a)I类金属 b)II类金属
氧在金属中的溶解度与温度的关系
溶 解 度
SO/%
氧在液态铁中的溶解度随 温度升高而增大
温度 T/℃
液态金属中加入能提高气体含量的合金元素,可提高气体的 溶解度;若加入的合金元素能与气体形成稳定的化合物(即 氮、氢、氧化合物),则降低气体的溶解度。
1.温度和压力的影响

理想气体溶解度的平方根定律:
S kx

Px
Px 为气体分压, Px ↑ → 溶解度↑
Kx 为常数,取决于温度和金属的种类。
金属吸收气体为吸 金属发生相变时, 当金属由液相转变
热反应,溶解度随温 由于金属组织结构的 为固相时,溶解度的 度的升高而增加;金 变化,气体的溶解度 突然下降将对铸件和 属吸收气体为放热反 将发生突变。液相比

双原子气体溶入金属液的两种方式: 吸附 — 分解 — 溶入
分解 — 吸附 — 溶入
双原子气体溶入金属液的两种方式

温度不够高或气体难以分解时
焊接温度下氢、氧等气体的溶解
二、气体的溶解度
溶解度 —— 在一定温度和压力条件下,气体溶
入金属的饱和浓度。
温度与压力
溶解度S的 影响因素
气体种类 合金成分
气体在金属中的溶解
在焊接和熔铸过程中,与液态金属接触的气体可分为简 单气体和复杂气体两大类。前者如H2、N2、O2等,后者 如CO2、H2O、CO等。本节主要讨论 H2、N2 和
O2
在金属中的溶解规律。
一、气体的溶解过程 二、气体的溶解度
一、气体的溶解过程

原子或离子状态 → 直接溶入液态金属; 分子状态的气体 → 先分解为原子或离子之后再溶 解到液态金属中。
1
溶 解 度
2
焊件中气孔的形成产 应,溶解度随温度的 固相更有利于气体的
上升而降低。 溶解。 生直接的影响。
温度 气体溶解度与热效应和温度的关系 1-吸热溶解 2-放热溶解
2、氮、氢、氧在金属中的溶解度
氮和氢在金属或合金中的溶解反应类型及形成化合物倾向
气体 金 属与合金 铁和铁基合金 氮 Al、Ti、V、Zr等金属及合金 Fe、Ni、Al、Cu、Mg、Cr、Co 等金属及合金 氢 Ti、Zr、V、Nb、Ta、Th 等金属及合金 放热反应 吸热反应 不能形成稳定氢化物 溶解反应类型 吸热反应 能形成稳定氮化物 形成化合物倾向
氢 溶 解 度 SH/ ml. (10 0g)
-1
3、合金成分对溶解度的影响
氮 溶 解 度 SN/ %
合金元素含量wMe /% 氢在二元系铁合金中的溶解度(1600℃)
合金元素含量wMe /% 氮在二元系铁合金中的溶解度(1600℃)
相关文档
最新文档