泰勒

合集下载

泰勒

泰勒

泰勒Taylor,Brook(1685~1731)泰勒(Taylor,Brook)英国数学家。

1685年8月18日生于英格兰德尔塞克斯郡的埃德蒙顿市;1731年12月29日卒于伦敦。

泰勒出生于英格兰一个富有的且有点贵族血统的家庭。

父亲约翰来自肯特郡的比夫隆家庭。

泰勒是长子。

进大学之前,泰勒一直在家里读书。

泰勒全家尤其是他的父亲,都喜欢音乐和艺术,经常在家里招待艺术家。

这时泰勒一生的工作造成的极大的影响,这从他的两个主要科学研究课题:弦振动问题及透视画法,就可以看出来。

1701年,泰勒进剑桥大学的圣约翰学院学习。

1709年,他获得法学学士学位。

1714年获法学博士学位。

1712年,他被选为英国皇家学会会员,同年进入促裁牛顿和莱布尼兹发明微积分优先权争论的委员会。

从1714年起担任皇家学会第一秘书,1718年以健康为由辞去这一职务。

泰勒后期的家庭生活是不幸的。

1721年,因和一位据说是出身名门但没有财才的女人结婚,遭到父亲的严厉反对,只好离开家庭。

两年后,妻子在生产中死去,才又回到家里,1725年,在征得父亲同意后,他第二次结婚,并于1729年继承了父亲在肯特郡的财才。

1730年,第二个妻子也在生产中死去,不过这一次留下了一个女儿。

妻子的死深深地刺激了他,第二年他也去了,安葬在伦敦圣.安教堂墓地。

由于工作及健康上的原因,泰勒曾几次访问法国并和法国数学家蒙莫尔多次通信讨论级数问题和概率论的问题。

1708年,23岁的泰勒得到了“振动中心问题”的解,引起了人们的注意,在这个工作中他用了牛顿的瞬的记号。

从1714年到1719年,是泰勒在数学牛顿产的时期。

他的两本著作:《正和反的增量法》及《直线透视》都出版于1715年,它们的第二版分别出于1717和1719年。

从1712到1724年,他在《哲学会报》上共发表了13篇文章,其中有些是通信和评论。

文章中还包含毛细管现象、磁学及温度计的实验记录。

在生命的后期,泰勒转向宗教和哲学的写作,他的第三本著作《哲学的沉思》在他死后由外孙W.杨于1793年出版。

泰勒公式

泰勒公式

泰勒公式泰勒(Tayloy)公式是微积分中的一个重要公式,也是进行数学理论研究与计算的重要的工具,但大多数的高等数学教材中,对泰勒公式应用的介绍都较少,导致学生难以掌握泰勒公式及其应用技巧。

由于低次多项式不能精确地表示函数并进行近似计算,在遇到一些精度要求较高,需要进行误差估计的情况时,就需要用高次多项式来近似表示函数并给出相应的误差公式。

泰勒公式是数学分析中一个重要的偏方程,因此在数学中有很高的地位。

泰勒公式教学方法泰勒公式是高等数学微分学教学中的重点和难点,其教学方法一直吸引着广大数学教师研究。

但是泰勒中值定理和泰勒公式比较抽象深奥,真的会让大部分同学感到困惑不解。

虽然他们已经充分预习,认真听讲,但还是会感到一头雾水,满腹疑问。

困难、无知、不理解是学生学习泰勒公式后的主要感受。

作为一个传道授业解惑的老师,我一直希望改变这种现象,希望泰勒公式给学生留下最深的印象是好的、有用的、实用的。

所以这门课的教学需要老师投入更多的精力去设计自己的教学方法和教学思路。

例:设函数f(x)在x=x0处存在二阶导数,试证:等式右端是一个二次多项式加一个高阶无穷小项。

我们回顾一下它的证明。

通过上节课的知识,我们只需要用一次洛必达法则和导数的定义就证明了这个结论。

但是,我们并不是第一次用多项式来表示一般的函数了,在第二章学习微分的时候,我们知道,如果函数f(x)在x=x0处可微,则f(x)=f(x0)+f忆(x0)(x-x0)+o(x-x0)。

这说明如果函数f(x)在x0处有一阶导数,则f(x)等于一个一次的多项式加x-x0的高阶无穷小;如果函数f(x)在x0处有二阶导数,则f(x)等于一个二次的多项式加(x-x0)2的高阶无穷小;如果函数f(x)在x0处有三阶导数呢,大家猜想,我们会得到什么结论?到了这里,学生会自然而然地想到:如果函数f(x)在x0处有三阶导数,那么f(x)就等于一个三次的多项式加(x-x0)3的高阶无穷小。

常用泰勒公式

常用泰勒公式

常用泰勒公式泰勒公式是一种近似计算函数值的方法,它是通过函数在某一点的导数值来逼近该点附近的函数值。

在数学和物理学领域,泰勒公式被广泛应用于函数近似、函数求导和数值计算等方面。

下面将介绍泰勒公式的常用形式和应用。

泰勒公式的一般形式是:f(x) = f(a) + f'(a)(x-a) + f''(a)(x-a)²/2! +f'''(a)(x-a)³/3! + ...其中,f(x) 是要求解的函数,在点 x 处的近似值;f(a) 是函数在点 a 处的值;f'(a) 是函数在点 a 处的导数值;f''(a) 是函数在点 a 处的二阶导数值;以此类推。

泰勒公式的原理是利用导数将函数表示为一系列单项式的和,然后根据需要的精度截断级数,得到函数的近似值。

当级数的项数增加时,近似值的精度也会提高。

泰勒公式的应用十分广泛。

例如,在计算机科学领域,泰勒公式被用于开发数值计算算法,例如计算机图形学中的曲线和曲面绘制,以及物理引擎中的碰撞检测和运动模拟等。

在物理学中,泰勒公式被用于近似解析解不存在的问题,例如非线性的运动方程。

此外,泰勒公式还可以用于求解微积分中的极限、导数和积分等问题。

泰勒公式有很多变种形式,例如麦克劳林级数、希尔伯特级数和泊松级数等,它们在不同的数学和物理学问题中具有不同的应用。

总结起来,泰勒公式是一种常用的近似计算函数值的方法。

它通过函数在某一点的导数值来逼近该点附近的函数值,具有广泛的应用领域和实际价值。

无论是在数学、物理还是计算机科学领域,我们都可以看到泰勒公式的身影。

歌手泰勒的个人资料

歌手泰勒的个人资料

歌手泰勒的个人资料泰勒·斯威夫特(Taylor Swift),1989年12月13日出生于美国宾夕法尼亚州,美国流行音乐、乡村音乐创作型女歌手、音乐制作人、演员、慈善家。

下面是店铺给大家带来的歌手泰勒的个人资料,欢迎阅读!歌手泰勒的个人资料:一、歌手泰勒的早年经历泰勒·斯威夫特于1989年12月13日出生于美国宾夕法尼亚州雷丁,童年时期在宾夕法尼亚州蒙哥马利县一个11英亩的圣诞树农场度过,在艾尔弗尼亚蒙特梭利教育学校上幼儿园。

9岁时,泰勒随家人搬到宾夕法尼亚州的怀奥米辛;10岁时,泰勒开始写歌,并在卡拉OK大赛、节日以及家乡周围一带演唱,她撰写了一篇350页的小说,但未出版; 受《周六夜现场》的启发,泰勒加入了儿童短喜剧团队TheatreKids Live,成为其中的一员,在团队中,她显示了与生俱来的喜剧天赋;在观看了她的卡拉OK表演后,柯克·克里默的母亲建议泰勒致力于乡村音乐而不是戏剧表演,泰勒还以一篇3页长的诗歌《我壁橱里的怪物》赢得了全国诗歌大赛,但她更专注于歌曲的创作。

二、歌手泰勒的音乐作品1.ange (收录于《AT&T Team USA Soundtrack》)2008-08-082.azier (收录于《乖乖女是大明星》电影原声带)2009-03-203.day Was A Fairytale (收录于《情人节》电影原声带)2010-01-224.fe & Sound (收录于《饥饿游戏》电影原声带)2011-12-265.es Open (收录于《饥饿游戏》电影原声带)2012-03-276.nan (公益单曲)2012-09-087.eeter Than Fiction (收录于《成名机会》电影原声带)2013-10-218.ghway Don't Care (收录于《Two Lanes of Freedom》)2013-03-26。

IE之父-泰勒

IE之父-泰勒

科学管理之父--泰勒与泰勒制一、泰勒其人泰勒出生于1856年,高中毕业时曾考入过哈佛大学。

但是泰勒颇有一些反抗精神,他不满于父亲的安排,放弃了上大学的机会,背叛富有的父亲,进了费城的一家水压工厂当学徒。

那时候当学徒很苦。

泰勒一年到头辛辛苦苦地工作,最后落到自己的兜里钱没几个,都让老板赚去了。

这样,泰勒就慢慢从语言和感情上都摆脱了家庭,成为一名普通工人,和工人一起发誓合伙对抗老板。

泰勒当然也懂得了怎样磨洋工。

技术工磨洋工,看上去干活很认真的,但干活速度太慢,而实际上速度是可以加快的。

非技术工磨洋工,监工来了加快工作,监工一走,赶紧歇着。

问题是,学徒期满后,泰勒转到费城的米德维尔钢铁厂当工人,6年之内是连升6级,从一个普通工人升为职员,又升为机工,机工班长,车间工长,总技师,一直到总工程师。

地位发生变化,薪水、待遇、工作环境发生了变化,工作性质也发生了变化,泰勒的立场也就发生了变化。

他从单纯的劳资对立观点,(劳资关系,是指劳工和资方之间的权利和义务的关系)走向了劳资调和观点,希望找到一种既满足老板的委托,对得起老板的提拔和信任,又能让工人受益的管理方法。

二、泰勒制的产生关键的变化在泰勒当上工长以后。

现在,泰勒的主要任务是让工人提高生产效率,让工人"吃的是草挤的是奶",成本效益比最佳化。

当时有很多种办法管理工人,最常见的一种就是计件制,多劳多得。

这样,谁磨洋工谁吃亏。

问题上,泰勒知道,计件制的关键在于如何确定单件价格,或者说确定标准件数。

超过标准件数,有一定的奖励,否则有一定的惩罚。

泰勒追问的是,这生产定额是怎么来的?为什么是6件而不是5件或7件?能不能提高到9件、10件?泰勒懂得,定额是一个讨价还价的过程。

比如定为6件,超过1件奖1块钱,过一段时间,所有的工人都轻轻松松的超过6件,到了9件,然后老板就把这个标准提高到9件了。

经过几次反复之后,工人就知道了,不能多干,干得越多定额就越高。

泰勒的十大经典语录

泰勒的十大经典语录

泰勒的十大经典语录
1. "生活就是不断前行,不断成长,不断改变。

"
2. "当别人试图将你击倒的时候,你要站得更直,笑得更灿烂。

"
3. "别让任何人破坏你的梦想,因为他们无法创造自己的梦想。

"
4. "每个人都会犯错,但我们从中学到的东西才是最重要的。

"
5. "成功不是关于得到你想要的东西,而是关于想要你得到的
东西。

"
6. "你不需要向任何人证明自己的价值,因为你的价值不取决
于别人的看法。

"
7. "爱是一种力量,让我们变得更强大,更勇敢,更有同情心。

"
8. "当你觉得自己无法前行的时候,就要记住,你是勇敢的,你是坚强的。

"
9. "永远相信自己,因为你是唯一能够给自己带来真正幸福的人。

"
10. "不要害怕失败,因为失败是成功的必经之路。

"
这些经典语录展现了泰勒·斯威夫特对于生活、爱情、成功和挫折的深刻理解,她的歌词和言论激励着无数人勇敢面对生活的挑战,坚持追求自己的梦想。

这些语录也反映了她作为一名杰出音乐人和公众人物的智慧和成熟。

泰勒简介

泰勒简介

.数学家布鲁克·泰勒Brook Taylor18世纪早期英国牛顿学派最优秀代表人物之一的英国数学家泰勒(Brook Taylor),于1685 年8月18日在米德尔塞克斯的埃德蒙顿出生。

1709年后移居伦敦,获法学硕士学位。

他在1712年当选为英国皇家学会会员,并于两年后获法学博士学位。

同年(即1714年)出任英国皇家学会秘书,四年后因健康理由辞退职务。

1717年,他以泰勒定理求解了数值方程。

最后在1731年12月29日于伦敦逝世。

泰勒的主要著作泰勒的主要著作是1715年出版的《正的和反的增量方法》,书内以下列形式陈述出他已于1712年7月给其老师梅钦(数学家、天文学家)信中首先提出的著名定理--泰勒定理:式内v为独立变量的增量,及为流数。

他假定z随时间均匀变化,则为常数。

上述公式以现代形式表示则为:这公式是从格雷戈里-牛顿插值公式发展而成的,当x=0时便称作麦克劳林定理。

1772年,拉格朗日强调了此公式之重要性,而且称之为微分学基本定理,但泰勒于证明当中并没有考虑级数的收敛性,因而使证明不严谨,这工作直至十九世纪二十年代才由柯西完成。

泰勒定理开创了有限差分理论,使任何单变量函数都可展成幂级数;同时亦使泰勒成了有限差分理论的奠基者。

泰勒于书中还讨论了微积分对一系列物理问题之应用,其中以有关弦的横向振动之结果尤为重要。

他透过求解方程导出了基本频率公式,开创了研究弦振问题之先河。

此外,此书还包括了他于数学上之其他创造性工作,如论述常微分方程的奇异解,曲率问题之研究等。

1715年,他出版了另一名著《线性透视论》,更发表了再版的《线性透视原理》(1719)。

他以极严密之形式展开其线性透视学体系,其中最突出之贡献是提出和使用“没影点”概念,这对摄影测量制图学之发展有一定影响。

另外,还撰有哲学遗作,发表于1793年。

编辑本段2.美国陆军上将美国陆军上将泰勒1901.8.26~1987.4.19 ,美国陆军上将。

泰勒简介

泰勒简介

.数学家布鲁克·泰勒Brook Taylor18世纪早期英国牛顿学派最优秀代表人物之一的英国数学家泰勒(Brook Taylor),于1685 年8月18日在米德尔塞克斯的埃德蒙顿出生。

1709年后移居伦敦,获法学硕士学位。

他在1712年当选为英国皇家学会会员,并于两年后获法学博士学位。

同年(即1714年)出任英国皇家学会秘书,四年后因健康理由辞退职务。

1717年,他以泰勒定理求解了数值方程。

最后在1731年12月29日于伦敦逝世。

泰勒的主要著作泰勒的主要著作是1715年出版的《正的和反的增量方法》,书内以下列形式陈述出他已于1712年7月给其老师梅钦(数学家、天文学家)信中首先提出的著名定理--泰勒定理:式内v为独立变量的增量,及为流数。

他假定z随时间均匀变化,则为常数。

上述公式以现代形式表示则为:这公式是从格雷戈里-牛顿插值公式发展而成的,当x=0时便称作麦克劳林定理。

1772年,拉格朗日强调了此公式之重要性,而且称之为微分学基本定理,但泰勒于证明当中并没有考虑级数的收敛性,因而使证明不严谨,这工作直至十九世纪二十年代才由柯西完成。

泰勒定理开创了有限差分理论,使任何单变量函数都可展成幂级数;同时亦使泰勒成了有限差分理论的奠基者。

泰勒于书中还讨论了微积分对一系列物理问题之应用,其中以有关弦的横向振动之结果尤为重要。

他透过求解方程导出了基本频率公式,开创了研究弦振问题之先河。

此外,此书还包括了他于数学上之其他创造性工作,如论述常微分方程的奇异解,曲率问题之研究等。

1715年,他出版了另一名著《线性透视论》,更发表了再版的《线性透视原理》(1719)。

他以极严密之形式展开其线性透视学体系,其中最突出之贡献是提出和使用“没影点”概念,这对摄影测量制图学之发展有一定影响。

另外,还撰有哲学遗作,发表于1793年。

编辑本段2.美国陆军上将美国陆军上将泰勒1901.8.26~1987.4.19 ,美国陆军上将。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

泰勒中值定理:若函数f(x)在开区间(a,b)有直到n+1阶的导数,则当函数在此区间内时,可以展开为一个关于(x-x.)多项式和一个余项的和:f(x)=f(x.)+f'(x.)(x-x.)+f''(x.)/2!•(x-x.)^2,+f'''(x.)/3!•(x-x.)^3+……+f(n)(x.)/n!•(x-x.)^n+Rn其中Rn=f(n+1)(ξ)/(n+1)!•(x-x.)^(n+1),这里ξ在x和x.之间,该余项称为拉格朗日型的余项。

(注:f(n)(x.)是f(x.)的n阶导数,不是f(n)与x.的相乘。

)证明:我们知道f(x)=f(x.)+f'(x.)(x-x.)+α(根据拉格朗日中值定理导出的有限增量定理有limΔx→0 f(x.+Δx)-f(x.)=f'(x.)Δx),其中误差α是在limΔx→0 即limx→x.的前提下才趋向于0,所以在近似计算中往往不够精确;于是我们需要一个能够足够精确的且能估计出误差的多项式:P(x)=A0+A1(x-x.)+A2(x-x.)^2+……+An(x-x.)^n来近似地表示函数f(x)且要写出其误差f(x)-P(x)的具体表达式。

设函数P(x)满足P(x.)=f(x.),P'(x.)=f'(x.),P''(x.)=f''(x.),……,P(n)(x.)=f(n)(x.),于是可以依次求出A0、A1、A2、……、An。

显然,P(x.)=A0,所以A0=f(x.);P'(x.)=A1,A1=f'(x.);P''(x.)=2!A2,A2=f''(x.)/2!……P(n)(x.)=n!An,An=f(n)(x.)/n!。

至此,多项的各项系数都已求出,得:P(x)=f(x.)+f'(x.)(x-x.)+f''(x.)/2!•(x-x.)^2+……+f(n)(x.)/n!•(x-x.)^n.接下来就要求误差的具体表达式了。

设Rn(x)=f(x)-P(x),于是有Rn(x.)=f(x.)-P(x.)=0。

所以可以得出Rn(x.)=Rn'(x.)=Rn''(x.)=……=Rn(n)(x.)=0。

根据柯西中值定理可得Rn(x)/(x-x.)^(n+1)=Rn(x)-Rn(x.)/(x-x.)^(n+1)-0=Rn'(ξ1)/(n+1)(ξ1-x.)^n(注:(x.-x.)^(n+1)=0),这里ξ1在x和x.之间;继续使用柯西中值定理得Rn'(ξ1)-Rn'(x.)/(n+1)(ξ1-x.)^n-0=Rn''(ξ2)/n(n+1)(ξ2-x.)^(n-1)这里ξ2在ξ1与x.之间;连续使用n+1次后得出Rn(x)/(x-x.)^(n+1)=Rn(n+1)(ξ)/(n+1)!,这里ξ在x.和x之间。

但Rn(n+1)(x)=f(n+1)(x)-P(n+1)(x),由于P(n)(x)=n!An,n!An是一个常数,故P(n+1)(x)=0,于是得Rn(n+1)(x)=f(n+1)(x)。

综上可得,余项Rn(x)=f(n+1)(ξ)/(n+1)!•(x-x.)^(n+1)。

一般来说展开函数时都是为了计算的需要,故x往往要取一个定值,此时也可把Rn(x)写为Rn。

麦克劳林展开式:若函数f(x)在开区间(a,b)有直到n+1阶的导数,则当函数在此区间内时,可以展开为一个关于x多项式和一个余项的和:f(x)=f(0)+f'(0)x+f''(0)/2!•x^2,+f'''(0)/3!•x^3+……+f(n)(0)/n!•x^n+Rn其中Rn=f(n+1)(θx)/(n+1)!•x^(n+1),这里0<θ<1。

证明:如果我们要用一个多项式P(x)=A0+A1x+A2x^2+……+Anx^n来近似表示函数f(x)且要获得其误差的具体表达式,就可以把泰勒公式改写为比较简单的形式即当x.=0时的特殊形式:f(x)=f(0)+f'(0)x+f''(0)/2!•x^2,+f'''(0)/3!•x^3+……+f(n)(0)/n!•x^n+f(n+1)(ξ)/(n+1)!•x^(n+1)由于ξ在0到x之间,故可写作θx,0<θ<1。

麦克劳林展开式的应用:1、展开三角函数y=sinx和y=cosx。

解:根据导数表得:f(x)=sinx , f'(x)=cosx , f''(x)=-sinx , f'''(x)=-cosx ,f(4)(x)=sinx……于是得出了周期规律。

分别算出f(0)=0,f'(0)=1, f''(x)=0, f'''(0)=-1, f(4)=0……最后可得:sinx=x-x^3/3!+x^5/5!-x^7/7!+x^9/9!-……(这里就写成无穷级数的形式了。

)类似地,可以展开y=cosx。

2、计算近似值e=lim x→∞ (1+1/x)^x。

解:对指数函数y=e^x运用麦克劳林展开式并舍弃余项:e^x≈1+x+x^2/2!+x^3/3!+……+x^n/n!当x=1时,e≈1+1+1/2!+1/3!+……+1/n!取n=10,即可算出近似值e≈2.7182818。

3、欧拉公式:e^ix=cosx+isinx(i为-1的开方,即一个虚数单位)证明:这个公式把复数写为了幂指数形式,其实它也是由麦克劳林展开式确切地说是麦克劳林级数证明的。

过程具体不写了,就把思路讲一下:先展开指数函数e^z,然后把各项中的z写成ix。

由于i的幂周期性,可已把系数中含有土i的项用乘法分配律写在一起,剩余的项写在一起,刚好是cosx,sinx的展开式。

然后让sinx乘上提出的i,即可导出欧拉公式。

有兴趣的话可自行证明一下。

[编辑本段]泰勒展开式e的发现始于微分,当 h 逐渐接近零时,计算之值,其结果无限接近一定值 2.71828...,这个定值就是 e,最早发现此值的人是瑞士著名数学家欧拉,他以自己姓名的字头小写 e 来命名此无理数.计算对数函数的导数,得 ,当 a=e 时, 的导数为 ,因而有理由使用以 e 为底的对数,这叫作自然对数.若将指数函数 ex 作泰勒展开,则得以 x=1 代入上式得此级数收敛迅速,e 近似到小数点后 40 位的数值是将指数函数 ex 扩大它的定义域到复数 z=x+yi 时,由透过这个级数的计算,可得由此,De Moivre 定理,三角函数的和差角公式等等都可以轻易地导出.譬如说,z1=x1+y1i, z2=x2+y2i,另方面,所以,我们不仅可以证明 e 是无理数,而且它还是个超越数,即它不是任何一个整系数多项式的根,这个结果是 Hermite 在1873年得到的.甲)差分.考虑一个离散函数(即数列) R,它在 n 所取的值 u(n) 记成 un,通常我们就把这个函数书成或 (un).数列 u 的差分还是一个数列,它在 n 所取的值以定义为以后我们干脆就把简记为(例):数列 1, 4, 8, 7, 6, -2, ... 的差分数列为 3, 4, -1, -1, -8 ...注:我们说「数列」是「定义在离散点上的函数」如果在高中,这样的说法就很恶劣.但在此地,却很恰当,因为这样才跟连续型的函数具有完全平行的类推.差分算子的性质(i) [合称线性](ii) (常数) [差分方程根本定理](iii) 其中 ,而 (n(k) 叫做排列数列.(iv) 叫做自然等比数列.(iv)' 一般的指数数列(几何数列)rn 之差分数列(即「导函数」)为 rn(r-1)(乙).和分给一个数列 (un).和分的问题就是要算和 . 怎么算呢我们有下面重要的结果:定理1 (差和分根本定理) 如果我们能够找到一个数列 (vn),使得 ,则和分也具有线性的性质:甲)微分给一个函数 f,若牛顿商(或差分商) 的极限存在,则我们就称此极限值为 f 为点 x0 的导数,记为 f'(x0) 或 Df(x),亦即若 f 在定义区域上每一点导数都存在,则称 f 为可导微函数.我们称为 f 的导函数,而叫做微分算子.微分算子的性质:(i) [合称线性](ii) (常数) [差分方程根本定理](iii) Dxn=nxn-1(iv) Dex=ex(iv)' 一般的指数数列 ax 之导函数为(乙)积分.设 f 为定义在 [a,b] 上的函数,积分的问题就是要算阴影的面积.我们的办法是对 [a,b] 作分割:;其次对每一小段 [xi-1,xi] 取一个样本点 ;再求近似和 ;最后再取极限 (让每一小段的长度都趋近于 0).若这个极限值存在,我们就记为的几何意义就是阴影的面积.(事实上,连续性也「差不多」是积分存在的必要条件.)积分算子也具有线性的性质:定理2 若 f 为一连续函数,则存在.(事实上,连续性也「差不多」是积分存在的必要条件.)定理3 (微积分根本定理) 设 f 为定义在闭区间 [a,b] 上的连续函数,我们欲求积分如果我们可以找到另一个函数 g,使得 g'=f,则注:(1)(2)两式虽是类推,但有一点点差异,即和分的上限要很小心!上面定理1及定理3基本上都表述着差分与和分,微分与积分,是两个互逆的操作,就好像加法与减法,乘法与除法是互逆的操作一样.我们都知道差分与微分的操作比和分与积分简单多了,而上面定理1及定理3告诉我们,要计算 (un) 的和分及 f 的积分,只要去找另一个 (vn) 及 g 满足 , g'=f (这是差分及微分的问题),那么对 vn 及 g 代入上下限就得到答案了.换句话说,我们可以用较简单的差分及微分操作来掌握较难的和分及积分操作,这就是"以简御繁"的精神.牛顿与莱布尼慈对微积分最大的贡献就在此.甲)Taylor展开公式这分别有离散与连续的类推.它是数学中「逼近」这个重要想法的一个特例.逼近想法的意思是这样的:给一个函数 f,我们要研究 f 的行为,但 f 本身可能很复杂而不易对付,于是我们就想法子去找一个较「简单」的函数 g,使其跟 f 很「靠近」,那么我们就用 g 来取代f.这又是以简御繁的精神表现.由上述我们看出,要使用逼近想法,我们还需要澄清两个问题:即如何选取简单函数及逼近的尺度.(一) 对于连续世界的情形,Taylor 展式的逼近想法是选取多项函数作为简单函数,并且用局部的「切近」作为逼近尺度.说得更明白一点,给一个直到到 n 阶都可导微的函数 f,我们要找一个 n 次多项函数 g,使其跟 f 在点 x0 具有 n 阶的「切近」,即 ,答案就是此式就叫做 f 在点 x0 的 n 阶 Taylor 展式.g 在 x0 点附近跟 f 很靠近,于是我们就用 g 局部地来取代 f.从而用 g 来求得 f 的一些局部的定性行为.因此 Taylor 展式只是局部的逼近.当f是足够好的一个函数,即是所谓解析的函数时,则 f可展成 Taylor 级数,而且这个 Taylor 级数就等于 f 自身.值得注意的是,一阶 Taylor 展式的特殊情形,此时 g(x)=f(x0+f'(x0)(x-x0)) 的图形正好是一条通过点 (x0,f(x0)) 而且切于 f 的图形之直线.因此 f 在点 x0 的一阶 Taylor 展式的意义就是,我们用过点 (x0,f(x0)) 的切线局部地来取代原来 f 曲线.这种局部化「用平直取代弯曲」的精神,是微分学的精义所在.利用 Talor 展式,可以帮忙我们做很多事情,比如判别函数的极大值与极小值,求积分的近似值,作函数表(如三角函数表,对数表等),这些都是意料中事.事实上,我们可以用逼近的想法将微积分「一以贯之」.复次我们注意到,我们选取多项函数作为逼近的简单函数,理由很简单:在众多初等函数中,如三角函数,指数函数,对数函数,多项函数等,从算术的观点来看,以多项函数最为简单,因为要计算多项函数的值,只牵涉到加减乘除四则运算,其它函数就没有这么简单.当然,从别的解析观点来看,在某些情形下还另有更有用更重要的简单函数.例如,三角多项式,再配合上某种逼近尺度,我们就得到 Fourier 级数展开,这在应用数学上占有举足轻重的地位.(事实上,Fourier 级数展开是采用最小方差的逼近尺度,这在高等数学中经常出现,而且在统计学中也有应用.)注:取 x0=0 的特例,此时 Taylor 展式又叫做 Maclaurin 展式.不过只要会做特例的展开,欲求一般的 Taylor 展式,作一下平移(或变数代换)就好了.因此我们大可从头就只对x=0 点作 Taylor 展式.(二) 对于离散的情形,Taylor 展开就是:给一个数列 ,我们要找一个 n 次多项式数列 (gt),使得 gt 与 ft 在 t=0 点具有 n 阶的「差近」.所谓在 0 点具有 n 阶差近是指:答案是此式就是离散情形的 Maclaurin 公式.乙)分部积分公式与Abel分部和分公式的类推(一) 分部积分公式:设 u(x),v(x) 在 [a,b] 上连续,则(二) Abel分部和分公式:设(un),(v)为两个数列,令 sn=u1+......+un,则上面两个公式分别是莱布尼慈导微公式 D(uv)=(Du)v+u(Dv),及莱布尼慈差分公式的结论.注意到,这两个莱布尼慈公式,一个很对称,另一个则不然.(丁)复利与连续复利 (这也分别是离散与连续之间的类推)(一) 复利的问题是这样的:有本金 y0,年利率 r,每年复利一次,要问 n 年后的本利和yn= 显然这个数列满足差分方程 yn+1=yn(1+r)根据(丙)之(二)得知 yn=y0(1+r)n 这就是复利的公式.(二) 若考虑每年复利 m 次,则 t 年后的本利和应为令 ,就得到连续复利的概念,此时本利和为y(t)=y0ert换句话说,连续复利时,t 时刻的本利和 y(t)=y0ert 就是微分方程 y'=ry 的解答.由上述我们看出离散复利问题由差分方程来描述,而连续复利的问题由微分方程来描述.对于常系数线性的差分方程及微分方程,解方程式的整个要点就是叠合原理,因此求解的办法具有完全平行的类推.(戊)Fubini 重和分定理与 Fubini 重积分定理(也是离散与连续之间的类推)(一) Fubini 重和分定理:给一个两重指标的数列 (ars),我们要从 r=1 到 m,s=1到 n, 对 (ars) 作和 ,则这个和可以这样求得:光对 r 作和再对 s 作和(反过来亦然).亦即我们有(二)Fubini 重积分定理:设 f(x,y) 为定义在上之可积分函数,则当然,变数再多几个也都一样.(己)Lebesgue 积分的概念(一) 离散的情形:给一个数列 (an),我们要估计和 ,Lebesgue 的想法是,不管这堆数据指标的顺序,我们只按数值的大小来分堆,相同的分在一堆,再从每一堆中取一个数值,乘以该堆的个数,整个作和起来,这就得到总和.(二)连续的情形:给一个函数 f,我们要定义曲线 y=f(x) 跟 X 轴从 a 到 b 所围出来的面积.Lebesgue 的想法是对 f 的影域作分割:函数值介 yi-1 到 yi 之间的 x 收集在一齐,令其为 , 于是 [a,b] 就相应分割成 ,取样本点 ,作近似和让影域的分割加细,上述近似和的极限若存在的话,就叫做 f 在 [a,b] 上的 Lebesgue积分.泰勒公式的余项f(x)=f(a) + f'(a)(x-a)/1! + f''(a)(x-a)^2/2! + …… + f(n)(a)(x-a)^n/n! + Rn(x) [其中f(n)是f的n阶导数]泰勒余项可以写成以下几种不同的形式:1.佩亚诺(Peano)余项:Rn(x) = o((x-a)^n)2.施勒米尔希-罗什(Schlomilch-Roche)余项:Rn(x) = f(n+1)(a+θ(x-a))(1-θ)^(n+1-p)(x-a)^(n+1)/(n!p)[f(n+1)是f的n+1阶导数,θ∈(0,1)]3.拉格朗日(Lagrange)余项:Rn(x) = f(n+1)(a+θ(x-a))(x-a)^(n+1)/(n+1)![f(n+1)是f的n+1阶导数,θ∈(0,1)]4.柯西(Cauchy)余项:Rn(x) = f(n+1)(a+θ(x-a))(1-θ)^n (x-a)^(n+1)/n![f(n+1)是f的n+1阶导数,θ∈(0,1)]5.积分余项:Rn(x) = [f(n+1)(t)(x-t)^n在a到x上的积分]/n![f(n+1)是f的n+1阶导数]泰勒简介18世纪早期英国牛顿学派最优秀代表人物之一的英国数学家泰勒(Brook Taylor),于1685 年8月18日在米德尔塞克斯的埃德蒙顿出生。

相关文档
最新文档