Mathematica4初等数学部分
Mathematica-4_393406052

提取解
1 − <, 8x → 1 + <<
In[2]:= Print["x2=", x/.%[[2]] ] Out[2]= x2=1 −
例 x5 + 5 x3 − 2 = 0
In[1]:=
隐式解的运算
Out[1]= 88x →
Solve@x^5 + 5 x^3 − 2
8x → 8x → 8x → 8x →
3
0, xD
1. 代数函数运算
Simplify[Sum[Root[-2 + 5 #1 ^3 + #1 ^5 &, k], {k, 1, 5}]]
#1:未知变元
FullSimplify[Product[Root[-2 + 5 #1 ^3 + #1 ^5 &, k], {k, 1, 5}]]
Out[15]= Out[16]=
i j
−
−b −
è!!!!!!!!!!!!!!!!! b2 + 4 a c
>, :x →
Solve求解时,若有解,给出一般解表 示式;“不能”求解时,给出或警告信息等 回答以说明方程是无解方程。 Reduce是把所给方程简化,直到最简或 发现矛盾方程。前者给出全体可能解,后 者给出“False” 。
Root@−2 + 5 #13 + #15 &, 1D<, Root@−2 + 5 #13 + #15 &, 2D<, Root@−2 + 5 #13 + #15 &, 3D<, Root@−2 + 5 #13 + #15 &, 4D<, Root@−2 + 5 #13 + #15 &, 5D<<
mathematica 初中数学

在Mathematica中,我们可以使用各种内置函数和运算符来执行初中数学中的各种计算。
例如,我们可以使用内置的数学函数来计算平方、平方根、立方、立方根等。
平方可以使用#^2表示,例如3^2将返回9。
平方根可以使用#^2 & [#]表示,例如Sqrt[3]将返回1.732。
立方可以使用#^3表示,例如4^3将返回64。
立方根可以使用#^(1/3)表示,例如CubeRoot[64]将返回4。
此外,我们还可以使用内置的数学函数来计算三角函数、指数函数和对数函数等。
例如,我们可以使用Sin[#]来计算正弦值,使用Cos[#]来计算余弦值,使用Tan[#]来计算正切值。
指数函数可以使用#^#2表示,例如3^2将返回9。
对数函数可以使用Log[#1, #2]表示,例如Log[10, 1000]将返回3。
此外,我们还可以使用内置的数学运算符来进行加法、减法、乘法和除法等基本运算。
例如,我们可以使用#1 + #2来执行加法运算,使用#1 - #2来执行减法运算,使用#1 * #2来执行乘法运算,使用#1 / #2来执行除法运算。
Mathematica使用说明

Mathematica 入门一、引 言Mathematica 是美国Wolfram 公司开发的一个功能强大的数学软件系统,它主要包括:数值计 算、符号计算、图形功能和程序设计. 本指导书力图在不大的篇幅中给读者提供该系统的一个简 要的介绍. 指导书是按Mathematica 4.0版本编写的, 但是也适用于Mathematica 的任何其它图形 界面的版本.Mathematica 在数值计算、符号运算和图形表示等方面都是强有力的工具,并且其命令句法惊 人地一致, 这个特性使得Mathematica 很容易使用.不必担心你还不太熟悉计算机.本入门将带你 迅速了解Mathematica 的基本使用过程, 但在下面的介绍中,我们假定读者已经知道如何安装及启动Mathematica. 此外,始终要牢记的几点是:● Mathematica 是一个敏感的软件. 所有的Mathematica 函数都以大写字母开头; ● 圆括号( ),花括号{ },方括号[ ]都有特殊用途, 应特别注意; ● 句号“.”,分号“;”,逗号“,”感叹号“!”等都有特殊用途, 应特别注意; ● 用主键盘区的组合键Shfit+Enter 或数字键盘中的Enter 键执行命令.二、一般介绍1. 输入与输出例1 计算 1+1:在打开的命令窗口中输入1+2+3并按组合键Shfit+Enter 执行上述命令,则屏幕上将显示:In[1] : =1+2+3 Out[1] =6这里In[1] : = 表示第一个输入,Out[1]= 表示第一个输出,即计算结果.2. 数学常数Pi 表示圆周率π; E 表示无理数e; I 表示虚数单位i ; Degree 表示π/180; Infinity 表示无穷大.注:Pi,Degree,Infinity 的第一个字母必须大写,其后面的字母必须小写.3. 算术运算Mathematica 中用“+”、“-”、“*”、“/” 和“^”分别表示算术运算中的加、减、乘、除和 乘方.例2 计算 π⋅⎪⎭⎫ ⎝⎛⋅+⎪⎭⎫⎝⎛⋅--213121494891100. 输入 100^(1/4)*(1/9)^(-1/2)+8^(-1/3)*(4/9)^(1/2)*Pi则输出 3103π+这是准确值. 如果要求近似值,再输入N[%] 则输出 10.543这里%表示上一次输出的结果,命令N[%]表示对上一次的结果取近似值. 还用 %% 表示上 上次输出的结果,用 %6表示Out[6]的输出结果.注:关于乘号*,Mathematica 常用空格来代替. 例如,x y z 则表示x*y*z,而xyz 表示字符 串,Mathematica 将它理解为一个变量名. 常数与字符之间的乘号或空格可以省略.4. 代数运算例3 分解因式 232++x x 输入 Factor[x^2+3x+2] 输出 )x 2)(x 1(++ 例4 展开因式 )2)(1(x x ++ 输入 Expand[(1+x)(2+x)] 输出 2x x 32++例5 通分 3122+++x x 输入 Together[1/(x+3)+2/(x+2)]输出 )x 3)(x 2(x38+++例6 将表达式)3)(2(38x x x+++ 展开成部分分式输入 Apart[(8+3x)/((2+x)(3+x))]输出 3x 12x 2+++ 例7 化简表达式 )3)(1()2)(1(x x x x +++++ 输入 Simplify[(1+x)(2+x)+(1+x)(3+x)]输出 2x 2x 75++三、函数1. 内部函数Mathematica 系统内部定义了许多函数,并且常用英文全名作为函数名,所有函数名的第一个 字母都必须大写,后面的字母必须小写. 当函数名是由两个单词组成时,每个单词的第一个字母都 必须大写,其余的字母必须小写. Mathematica 函数(命令)的基本格式为函数名[表达式,选项] 下面列举了一些常用函数:算术平方根x Sqrt[x] 指数函数x e Exp[x] 对数函数x a log Log[a,x]对数函数x ln Log[x]三角函数 Sin[x], Cos[x], Tan[x], Cot[x], Sec[x], Csc[x] 反三角函数ArcSin[x], ArcCos[x], ArcTan[x], ArcCot[x], AsrcSec[x], ArcCsc[x]双曲函数 Sinh[x], Cosh[x], Tanh[x], 反双曲函数 ArcSinh[x], ArcCosh[x], ArcTanh[x] 四舍五入函数 Round[x] (*取最接近x 的整数*) 取整函数 Floor[x] (*取不超过x 的最大整数*) 取模 Mod[m,n] (*求m/n 的模*)取绝对值函数 Abs[x] n 的阶乘 n! 符号函数 Sign[x] 取近似值 N[x,n] (*取x 的有n 位有效数字的近似值,当n 缺省时,n 的默认值 为6*)例8 求π的有6位和20位有效数字的近似值. 输入 N[Pi] 输出 3.14159输入 N[Pi, 20] 输出 3.1415926535897932285 注:第一个输入语句也常用另一种形式: 输入 Pi//N 输出 3.14159例9 计算函数值(1) 输入 Sin[Pi/3] 输出23 (2) 输入 ArcSin[.45] 输出 0.466765 (3) 输入 Round[-1.52] 输出 -2 例10 计算表达式)6.0arctan(226sin 2ln 1132+-+-e π 的值 输入 1/(1+Log[2])*Sin[Pi/6]-Exp[-2]/(2+2^(2/3))*ArcTan[.6] 输出 0.2749212. 自定义函数在Mathematica 系统内,由字母开头的字母数字串都可用作变量名,但要注意其中不能包含空 格或标点符号.变量的赋值有两种方式. 立即赋值运算符是“=”,延迟赋值运算符是“: =”. 定义函数使用 的符号是延迟赋值运算符“: =”.例11 定义函数 12)(23++=x x x f ,并计算)2(f ,)4(f ,)6(f . 输入Clear[f,x]; (*清除对变量f 原先的赋值*) f[x_]:=x^3+2*x^2+1; (*定义函数的表达式*) f[2] (*求)2(f 的值*)f[x]/.{x->4} (*求)4(f 的值,另一种方法*)x=6; (*给变量x 立即赋值6*)f[x] (*求)6(f 的值,又一种方法*)输出17 97 289注:本例1、2、5行的结尾有“;”,它表示这些语句的输出结果不在屏幕上显示.四、解方程在Mathematica 系统内,方程中的等号用符号“==”表示. 最基本的求解方程的命令为 Solve[eqns, vars]它表示对系数按常规约定求出方程(组)的全部解,其中eqns 表示方程(组),vars 表示所求未知变量. 例12 解方程0232=++x x 输入 Solve[x^2+3x+2==0, x] 输出 }}1x {},2x {{-→-→例13 解方程组 ⎩⎨⎧=+=+1dy cx by ax输入 Solve[{a x + b y == 0,c x + d y ==1}, {x,y}]输出 ⎭⎬⎫⎩⎨⎧⎭⎬⎫⎩⎨⎧+-→-→ad bc a y ,ad bc b x例14 解无理方程a x x =++-11输入 Solve[Sqrt[x-1]+ Sqrt[x+1] == a, x]输出 ⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧+→24a 4a 4x 很多方程是根本不能求出准确解的,此时应转而求其近似解. 求方程的近似解的方法有两种, 一种是在方程组的系数中使用小数,这样所求的解即为方程的近似解;另一种是利用下列专门用于 求方程(组)数值解的命令:NSolve[eqns, vars] (*求代数方程(组)的全部数值解*)FindRoot[eqns, {x, x0}, {y, y0} ,]后一个命令表示从点),,(00 y x 出发找方程(组)的一个近似解,这时常常需要利用图像法先大致确定所求根的范围,是大致在什么点的附近.例15 求方程013=-x 的近似解 输入 NSolve[x^3-1== 0, x]输出 {{→x -0.5-0.866025ii},{→x -0.5+0.866025ii},{→x 1.}} 输入 FindRoot[x^3-1==0,{x, .5}] 输出 {→x 1.}下面再介绍一个很有用的命令:Eliminate[eqns, elims] (*从一组等式中消去变量(组)elims*)例16从方程组 ⎪⎩⎪⎨⎧=+=-+-+=++11)1()1(1222222y x z y x z y x 消去未知数y 、z .输入Eliminate[{x^2+y^2+z^2 ==1,x^2+(y-1)^2 + (z-1)^2 ==1, x + y== 1},{y, z}] 输出 0x 3x 22==+-注:上面这个输入语句为多行语句,它可以像上面例子中那样在行尾处有逗号的地方将行与行 隔开, 来迫使Mathematica 从前一行继续到下一行在执行该语句. 有时候多行语句的意义不太明 确,通常发生在其中有一行本身就是可执行的语句的情形,此时可在该行尾放一个继续的记号“\”, 来迫使Mathematica 继续到下一行再执行该语句.五、保存与退出Mathematica 很容易保存Notebook中显示的内容,打开位于窗口第一行的File菜单,点击Save 后得到保存文件时的对话框,按要求操作后即可把所要的内容存为*.nb文件. 如果只想保存全部输入的命令,而不想保存全部输出结果,则可以打开下拉式菜单Kernel,选中Delete All Output,然后再执行保存命令. 而退出Mathematica与退出Word的操作是一样的.六、查询与帮助查询某个函数(命令)的基本功能,键入“?函数名”,想要了解更多一些,键入“??函数名”,例如, 输入?Plot则输出Plot[f,{x,xmin,xmax}] generates a plot of f as a functionof x from xmin to xmax. Plot[{f1,f2,…},{x,xmin,xmax}] plots several functions fi它告诉了我们关于绘图命令“Plot”的基本使用方法.例17 在区间]1,1y=的图形.[-上作出抛物线2x输入Plot[x^2,{x,-1,1}]则输出例18 .输入Plot[{Sin[x],Cos[x]},{x,0,2Pi}]则输出??Plot则Mathematica会输出关于这个命令的选项的详细说明,请读者试之.此外,Mathematica的Help菜单中提供了大量的帮助信息,其中Help菜单中的第一项Help Browser(帮助游览器)是常用的查询工具,读者若想了解更多的使用信息,则应自己通过Help菜单去学习.空间图形的画法(基础实验)实验目的 掌握用Mathematica 绘制空间曲面和曲线的方法. 熟悉常用空间曲线和空间曲面 的图形特征,通过作图和观察, 提高空间想像能力. 深入理解二次曲面方程及其图形.基本命令1.空间直角坐标系中作三维图形的命令Plot3D命令Plot3D 主要用于绘制二元函数),(y x f z =的图形. 该命令的基本格式为Plot3D[f[x,y],{x,x1,x2},{y,y1,y2},选项]其中f[x,y]是y x ,的二元函数, x1,x2表示x 的作图范围, y1,y2表示y 的作图范围.例如,输入Plot3D[x^2+y^2,{x,-2,2},{y,-2,2}]则输出函数22y x z +=在区域22,22≤≤-≤≤-y x 上的图形(图2.1)与Plot 命令类似, Plot3D 有许多选项. 其中常用的如PlotPoints 和ViewPoint. PlotPoints 的用 法与以前相同. 由于其默认值为PlotPoints->15, 常常需要增加一些点以使曲面更加精致, 可能要 用更多的时间才能完成作图. 选项ViewPoint 用于选择图形的视点(视角), 其默认值为 ViewPoint->{1.3,-2.4,2.0},需要时可以改变视点.2.利用参数方程作空间曲面或曲线的命令ParametricPlot3D 用于作曲面时, 该命令的基本格式为ParametricPlot3D[{x[u,v],y[u,v],z[u,v]},{u,u1,u2},{v,v1,v2},选项]其中x[u,v],y[u,v],z[u,v]是曲面的参数方程表示式. u1,u2是作图时参数u 的范围, v1,v2是参数v 的 范围.例如,对前面的旋转抛物面, 输入ParametricPlot3D[{u*Cos[v],u*Sin[v],u^2},{u,0,3},{v,0,2 Pi}]同样得到曲面22y x z +=的图形(图2.2).由于自变量的取值范围不同, 图形也不同. 不过, 后者比较好的反映了旋转曲面的特点, 因 而是常用的方法.又如, 以原点为中心, 2为半径的球面. 它是多值函数, 不能用命令Plot3D 作图. 但是, 它的 参数方程为,20,0,cos 2,sin sin 2,cos sin 2πθπϕϕθϕθϕ≤≤≤≤===z y x因此,只要输入ParametricPlot3D[{2 Sin[u]*Cos[v],2 Sin[u]*Sin[v],2 Cos[u]},{u,0,Pi},{v,0,2 Pi}]便作出了方程为22222=++y x z 的球面(图2.3)..用于作空间曲线时,ParametricPlot3D 的基本格式为ParametricPlot3D[{x[t],y[t],z[t]},{t,t1,t2},选项]其中x[t],y[t],z[t]是曲线的参数方程表示式. t1,t2是作图时参数t 的范围.例如, 空间螺旋线的参数方程为).80(10/,sin ,cos π≤≤===t t z t y t x输入ParametricPlot3D[{Cos[t],Sin[t],t/10,RGBColor[1,0,0]},{t,0,8 Pi}]则输出了一条红色的螺旋线(图2.4).在这个例子中,请读者注意选项RGBColor[1,0,0]的位置.用于作空间曲线时, ParametricPlot3D 的选项PlotPoints 的默认值是30, 选项ViewPoint 的默 认值没有改变.3.作三维动画的命令MoviPlot3D:无论在平面或空间, 先作出一系列的图形, 再连续不断地放映, 便得到动画. 例如, 输入调用作图软件包命令<<Graphics\Animation.m.执行后再输入MoviePlot3D[Cos[t*x]*Sin[t*y],{x,-Pi,Pi},{y,-Pi,Pi},{t,1,2},Frames->12]则作出了12幅曲面图, 选中任一幅图形, 双击它便可形成动画.实验举例一般二元函数作图例2.1 (教材 例2.1) 作出平面y x z 326--=的图形,其中20,30≤≤≤≤y x . 输入Plot3D[6-2x-3y,{x,0,3},{y,0,2}]则输出所作平面的图形(图2.5).如果只要位于第一卦限的部分, 则输入Plot3D[6-2x-3y,{x,0,3},{y,0,2},PlotRange->{0,6}]观察图形.2.6).图2.6例2.2 (教材 例2.2) 作出函数2214y x z ++=的图形.输入k[x_,y_]:=4/(1+x^2+y^2)Plot3D[k[x,y],{x,-2,2},{y,-2,2},PlotPoints->30,PlotRange->{0,4},BoxRatios->{1,1,1}]则输出函数的图形2.7. 观察图形, 理解选项PlotRange->{0,4}和BoxRatios->{1,1,1}的含义. 选项 BoxRatios 的默认值是{1,1,0.4}.例2.3 (教材 例2.3) 作出函数22y x xye z ---=的图形. 输入命令Plot3D[-x*y*Exp[-x^2-y^2],{x,-3,3},{y,-3,3},PlotPoints->30,AspectRatio->Automatic];则输出所求图形(图 图2.8例2.4 (教材 例2.4) 作出函数)94cos(22y x z +=的图形. 输入Plot3D[Cos[4x^2+9y^2],{x,-1,1},{y,-1,1},Boxed->False,Axes->Automatic,PlotPoints->30,Shading->False]则输出网格形式的曲面图2.9, 这是选项Shading->False 起的作用, 同时注意选项Boxed->False 的作用.二次曲面例2.5 (教材 例2.5) 作出椭球面1194222=++z y x 的图形. 这是多值函数, 用参数方程作图的命令ParametricPlot3D. 该曲面的参数方程为,cos ,sin sin 3,cos sin 2u z v u y v u x === (ππ20,0≤≤≤≤v u ).输入ParametricPlot3D[{2*Sin[u]*Cos[v],3*Sin[u]*Sin[v], Cos[u]},{u,0,Pi},{v,0,2 Pi},PlotPoints->30]则输出椭球面的图形, 可使图形更加光滑.图2.10例2.6 (教材 例2.6) 作出单叶双曲面1941222=-+z y x 的图形. 曲面的参数方程为,tan 3,cos sec 2,sin sec u z v u y v u x === (.20,2/2/πππ≤≤<<-v u )输入ParametricPlot3D[{Sec[u]*Sin[v],2*Sec[u]*Cos[v], 3*Tan[u]},{u,-Pi/4,Pi/4},{v,0,2 Pi},PlotPoints->30]图2.11例2.7 作双叶双曲面13.14.15.1222222-=-+z y x 的图形.曲面的参数方程是,csc 3.1,sin cot 4.1,cos cot 5.1u z v u y v u x ===其中参数πππ<<-≤<v u ,20时对应双叶双曲面的一叶, 参数πππ<<-<≤-v u ,02时对应双叶双曲面的另一叶. 输入sh1=ParametricPlot3D[{1.5*Cot[u]*Cos[v],1.4*Cot[u]*Sin[v],1.3/Sin[u]},{u,Pi/1000,Pi/2},{v,-Pi,Pi}, DisplayFunction->Identity];(*DisplayFunction->Identity 是使图形暂时不输出的选项*) sh2=ParametricPlot3D[{1.5*Cot[u]*Cos[v],1.4* Cot[u]*Sin[v],1.3/Sin[u]},{u,-Pi/2,-Pi/1000}, {v,-Pi,Pi},DisplayFunction->Identity];Show[sh1,sh2,DisplayFunction->$DisplayFunction](*命令Show[sh1,sh2]是把图形sh1,sh2放置在一起, DisplayFunction->$DisplayFunction 是恢复显示图形的选项*) 输出为图2.12.例2.8 可以证明: 函数xy z =的图形是双曲抛物面. 在区域22,22≤≤-≤≤-y x 上作出它的图形.输入Plot3D[x*y,{x,-2,2},{y,-2,2},BoxRatios->{1,1,2}, PlotPoints->30]输出图形略. 也可以用ParametricPlot3命令作出这个图形, 输入ParametricPlot3[{r*Cos[t],r*Sin[t],r^2*Cos[t] *Sin[t]},{r,0,2},{t,0,2 Pi},PlotPoints->30]输出为图2.13例2.9 (教材 例2.7) 作出圆环v z u v y u v x sin 7,sin )cos 38(,cos )cos 38(=+=+=,(πππ22/,2/30≤≤≤≤v u )的图形.输入ParametricPlot3D[{(8+3*Cos[v])*Cos[u],(8+3*Cos[v])*Sin[u],7*Sin[v]},{u,0,3*Pi/2},{v,Pi/2,2*Pi}];图2.14例2.10 画出参数曲面]2,001.0[],4,0[)5/2/ln(tan cos sin sin sin cos ∈∈⎪⎩⎪⎨⎧++===v u u v v z vu y v u x π的图形.输入命令ParametricPlot3D[{Cos[u]*Sin[v],Sin[u]Sin[v],Cos[v]+Log[Tan[v/2]+u/5]}, {u,0,4*Pi},{v,0.001,2}];则输出所求图形(图2.15).曲面相交例2.11 (教材 例2.8) 作出球面22222=++z y x 和柱面1)1(22=+-y x 相交的图形. 输入g1=ParametricPlot3D[{2 Sin[u]*Cos[v],2 Sin[u]*Sin[v],2 Cos[u]},{u,0,Pi},{v,0,2 Pi},DisplayFunction->Identity];g2=ParametricPlot3D[{2Cos[u]^2,Sin[2u],v},{u,-Pi/2,Pi/2},{v,-3,3},DisplayFunction->Identity];Show[g1,g2,DisplayFunction->$DisplayFunction]则输出所求图形(图2.16)例2.12 作出锥面222z y x =+和柱面1)1(22=+-y x 相交的图形. 输入g3=ParametricPlot3D[{r*Cos[t],r*Sin[t],r}, {r,-3,3},{t,0,2 Pi},DisplayFunction->Identity];Show[g2,g3,DisplayFunction->$DisplayFunction]输出为图2.17.图2.17例2.13 画出以平面曲线x y cos =为准线, 母线平等Z 轴的柱面的图形. 写出这一曲面的参数方程为⎪⎩⎪⎨⎧=∈-∈==s z R s t t y t x ],,[,cos ππ 取参数s 的范围为[0, 8]. 输入命令ParametricPlot3D[{t,Cos[t],s},{t,-Pi,Pi},{s,0,8}]则输出所求图形(图2.18).例2.14 (教材 例2.9) 作出曲面x y x y x z =+--=2222,1及xOy 面所围成的立体图形. 输入g1=ParametricPlot3D[{r*Cos[t], r*Sin[t],r^2},{t,0,2*Pi},{r,0,1},PlotPoints->30]; g2=ParametricPlot3D[{Cos[t]*Sin[r],Sin[t]Sin[r],Cos[r]+1},{t,0,2*Pi},{r,0,Pi/2},PlotPoints->30];Show[g1,g2]则输出所求图形(图图2.19例2.15 (教材 例2.10) 作出螺旋线t z t y t x 2,sin 10,cos 10===(R t ∈)在xOz 面上的正投影曲线的图形.所给螺旋线在xOz面上的投影曲线的参数方程为10==.,cosx2ztt输入ParametricPlot[{2t,10Cos[t]},{t,-2Pi,2Pi}];则输出所求图形(图图2.20注:将表示曲线的方程组, 消去其中一个变量, 即得到曲线在相应于这一变量方向上的正投影曲线的方程, 不考虑曲线所在平面, 它就是投影柱面方程; 对于参数方程, 只要注意将方程中并不存在的那个变元看成第二参数而添加第三个方程即可.例2.16 (教材例2.11) 作出默比乌斯带(单侧曲面)的图形.输入Clear[r,x,y,z];r[t_,v_]:=2+0.5*v*Cos[t/2];x[t_,v_]:=r[t,v]*Cos[t]y[t_,v_]:=r[t,v]*Sin[t]z[t_,v_]:=0.5*v*Sin[t/2];ParametricPlot3D[{x[t,v],y[t,v],z[t,v]},{t,0,2 Pi},{v,-1,1},PlotPoints->{40,4},Ticks->False]则输出所求图形(图空间曲线例2.17 (教材 例2.12) 作出空间曲线)60(2,sin ,cos π≤≤===t t z t t y t t x 的图形. 输入ParametricPlot3D[{t*Cos[t],t*Sin[t],2*t,RGBColor[1.0,0,0.5]},{t,0,6 Pi}]则输出所求图形(图图2.22例2.18 绘制参数曲线 ⎪⎩⎪⎨⎧===2/cos 2sin t z t y t x 的图形.输入命令ParametricPlot3D[{Sin[t],2Cos[t],t.2},{t,0,12}];则输出所求图形(图2.23).例2.19 绘制参数曲线 ⎪⎪⎩⎪⎪⎨⎧=+==t z t y t x arctan 211cos 2的图形.输入命令ParametricPlot3D[{Cos[t]^2,1/(1+2*t),ArcTan[t]},{t,0,8}]; 则输出所求图形(图2.24).动画制作例2.20 平面正弦曲线的运动. 输入Table[Plot[Sin[x+t*Pi],{x,0,6 Pi}],{t,0,2,1/8}]则作出了16幅具有不同相位的正弦曲线(输出图形略). 双击屏幕上某一幅画, 则可形成动画. 下面是动画的最后一幅图(图2.25).例2.21 (教材 例2.13) 作模拟水波纹运动的动画. 输入调用软件包命令<<Graphics\Animation.m执行后再输入MoviePlot3D[Sin[Sqrt[x^2+y^2]+t*2*Pi],{x,-8 Pi,8 Pi},{y,-8 Pi,8 Pi},{t,1,0},PlotPoints->50,AspectRatio->0.5,ViewPoint->{0.911,-1.682,2.791},Frames->12]则输出12幅具有不同相位的水面图形, 双击屏幕上任意一幅图, 均可观察动画效果. 下图是第一幅图(图2.26).图2.26例2.22 (教材 例2.14) 用动画演示由曲线],0[,sin π∈=z z y 绕z 轴旋转产生旋转曲面的过程.该曲线绕z 轴旋转所得旋转曲面的方程为,sin 222z y x =+ 其参数方程为])2,0[],,0[(,,sin sin ,cos sin ππ∈∈===u z z z u z y u z x输入For[i=1,i<=30,i++,ParametricPlot3D[{Sin[z]*Cos[u],Sin[z]*Sin[u],z},{z,0,Pi},{u,0,2*Pi*i/30},AspectRatio->1,AxesLabel->{"X","Y","Z"}]];则输出连续变化的30幅图形. 双击屏幕上任意一幅图, 均可观察动画效果. 下面是生成旋转曲面的过程中的第23幅图(图2.27).图2.27例2.23 将一张薄膜贴在1,0,1,0====y y x x 的方框上, 薄膜振动的函数取为)cos()sin()sin()cos 1)(cos 1(16),,(224141222t n m y m x n m n n m t y x u m n ππππππ+⋅-+=∑∑==其中t 为参数, 作出图形随t 的变动而引起薄膜振动的动画.初始位置是).0,,(y x u 通过t 的不同值得到多幅画面, 然后将这些图形连续地一张张显示出来, 即可达到运动的动画效果. 输入命令<<Graphics 'Animation '; Clear[x,y,t,m,n];u[x_,y_,t_]:=Sum[16*(1+Cos[n*Pi])*(1-Cos[m*Pi])*Sin[n*Pi*x]*Sin[m*Pi*y]*Cos[Sqrt[m^2+n^2]*Pi*t] /(m^2*n^2*Pi*2),{m,1,4},{n,1,4}]Animate[Plot3D[u[x,y,t],{x,0,1},{y,0,1}, PlotRange->{-8,8}],{t,0,1.75,0.25}];图2.28附录Ⅰ 大学数学实验指导书项目三 多元函数微积分实验1 多元函数微分学(基础实验)实验目的 掌握利用Mathematica 计算多元函数偏导数和全微分的方法, 掌握计算二元 函数极值和条件极值的方法. 理解和掌握曲面的切平面的作法. 通过作图和观察, 理解二元 函数的性质、方向导数、梯度和等高线的概念.基本命令1.求偏导数的命令D命令D 既可以用于求一元函数的导数, 也可以用于求多元函数的偏导数. 例如: 求),,(z y x f 对x 的偏导数, 则输入D[f[x,y,z],x] 求),,(z y x f 对y 的偏导数, 则输入D[f[x,y,z],y]求),,(z y x f 对x 的二阶偏导数, 则输入D[f[x,y,z],{x,2}] 求),,(z y x f 对y x ,的混合偏导数, 则输入D[f[x,y,z],x,y] …………2.求全微分的命令Dt该命令只用于求二元函数),(y x f 的全微分时, 其基本格式为Dt[f[x,y]]其输出的表达式中含有Dt[x],Dt[y], 它们分别表示自变量的微分d x ,d y . 若函数),(y x f 的表 达式中还含有其它用字符表示的常数, 例如a, 则Dt[f[x,y]]的输出中还会有Dt[a], 若采用选 项Constants->{a}, 就可以得到正确结果, 即只要输入Dt[f[x,y],Constants->{a}]3.在Oxy 平面上作二元函数),(y x f 的等高线的命令ContourPlot 命令的基本格式为ContourPlot[f[x,y],{x,x1,x2},{y,y1,y2}]例如,输入ContourPlot[x^2-y^2,{x,-2,2},{y,-2,2}]则输出函数22y x z -=的等高线图(图1.1). 该命令的选项比较多(详细的内容参见光盘中的实验案例库). 如选项Contours->15表示作15条等高线, 选项Contours->{0}表示只作函数值为0的等高线.实验举例求多元函数的偏导数与全微分例1.1 (教材 例1.1) 设),(cos )sin(2xy xy z +=求.,,,222yx zx z y z x z ∂∂∂∂∂∂∂∂∂输入Clear[z];z=Sin[x*y]+Cos[x*y]^2; D[z,x] D[z,y] D[z,{x,2}] D[z,x,y]则输出所求结果.y Cos x y2y Cos x y Sin x yx Cos x y 2x Cos x y Sin x y2y 2Cos x y 2y 2Sin x y 2y 2Sin x y2Cos x y 2x y Cos x y 2x y Sin x y 2Cos x y Sin x y2x y Sin x y2例1.2 设,)1(y xy z +=求yzx z ∂∂∂∂,和全微分dz.输入Clear[z];z=(1+x*y)^y;D[z,x] D[z,y]则有输出⎪⎪⎭⎫ ⎝⎛++++++-]1[1)1()1(12xy Log xy xy xy xy y y y再输入Dt[z]则得到输出⎪⎪⎭⎫⎝⎛+++++]1[][1])[][()1(xy Log y Dt xy y xDt x yDt y xy y 例1.3 (教材 例1.2) 设,)(y xy a z +=其中a 是常数, 求dz.输入Clear[z,a];z=(a+x*y)^y;wf=Dt[z,Constants->{a}]//Simplify则输出结果:(a+xy)-1+y (y 2Dt[x,Constants->{a}]+Dt[y,Constants->{a}](xy+(a+xy)Log[a+xy]))其中Dt[x,Constants->{a}]就是d x , Dt[y,Constants->{a}]就是d y . 可以用代换命令“/.”把它们 换掉. 输入wf/.{Dt[x,Constants->{a}]->dx,Dt[y,Constants->{a}]->dy}输出为(a+xy)-1+y (dxy 2+dy(xy+(a+xy)Log[a+xy]))例1.4 (教材 例1.3) 设v u e y v u e x u u cos ,sin -=+=,求.,,,yv x v y u x u ∂∂∂∂∂∂∂∂ 输入eq1=D[x==E^u+u*Sin[v],x,NonConstants->{u,v}](*第一个方程两边对x 求导数, 把u,v 看成x,y 的函数*) eq2=D[y==E^u-u*Cos[v],x,NonConstants->{u,v}](*第二个方程两边对x 求导数, 把u,v 看成x,y 的函数*) Solve[{eq1,eq2},{D[u,x,NonConstants->{u,v}],D[v,x,NonConstants->{u,v}]}]//Simplify(*解求导以后由eq1,eq2组成的方程组*)则输出}}][][1(][}],{tan ,,[,][][1][}],{tan ,,[{{v Sin E v Cos E u v Cos E v u ts NonCons x v D v Sin E v Cos E v Sin v u ts NonCons x u D u u u u u -+-->->-+->->-其中D[u,x,NonConstants->{u,v}]表示u 对x 的偏导数, 而D[v,x,NonCosnstants->{u,v}]表示v 对x 的偏导数. 类似地可求得u ,v 对y 的偏导数.微分学的几何应用例1.5 求出曲面222y x z +=在点(1,1)处的切平面、法线方程, 并画出图形.解(1) 画出曲面的图形. 曲面的参数方程为⎪⎩⎪⎨⎧=∈∈==2]2,0[],2,0[,cos 2/sin rz r u u r y u f x π 输入命令Clear[f];f[x_,y_]=2x^2+y^2;p1=Plot3D[f[x,y],{x,-2,2},{y,-2,2}];g1=ParametricPlot3D[{r*Sin[u]/Sqrt[2.],r*Cos[u],r^2}, {u,0,2*Pi},{r,0,2}] 则输出相应图形(图1.2).(2) 画出切平面的图形. 输入命令a=D[f[x,y],x]/.{x->1,y->1}; b=D[f[x,y],y]/.{x->1,y->1}; p[x_,y_]=f[1,1]+a(x-1)+b(y-1);g2=Plot3D[p[x,y],{x,-2,2},{y,-2,2}];则输出切平面方程为,012=-+y x 及相应图形(图1.3).(3) 画出法线的图形. 输入命令ly[x_]=1+b(x-1)/a;lz[x_]=f[1,1]-(x-1)/a;g3=ParametricPlot3D[{x,ly[x],lz[x]},{x,-2,2}]; Show[p1,g2,g3,AspectRatio->Automatic,ViewPoint->{-2.530,-1.025,2.000}];则输出相应图形(图1.4).例1.6 (教材 例1.4) 求曲面14),(22++=y x y x k 在点⎪⎭⎫⎝⎛2164,21,41处的切平面方程, 并把曲面和它的切平面作在同一图形里.输入Clear[k,z];k[x_,y_]=4/(x^2+y^2+1); (*定义函数k(x,y)*)kx=D[k[x,y],x]/.{x->1/4,y->1/2};(*求函数k(x,y)对x 的偏导数, 并代入在指定点的值*) ky=D[k[x,y],y]/.{x->1/4,y->1/2};(*求函数k(x,y)对y 的偏导数, 并代入在指定的值*) z=kx*(x-1/4)+ky*(y-1/2)+k[1/4,1/2]; (*定义在指定点的切平面函数*)再输入qm=Plot3D[k[x,y],{x,-2,2},{y,-2,2},PlotRange->{0,4}, BoxRatios->{1,1,1},PlotPoints->30, DisplayFunction->Identity]; qpm=Plot3D[z,{x,-2,2},{y,-2,2}, DisplayFunction->Identity];Show[qm,qpm,DisplayFunction->$DisplayFunction]则输出所求曲面与切平面的图形(图1.5).多元函数的极值例1.7 (教材 例1.5) 求x y x y x y x f 933),(2233-++-=的极值. 输入Clear[f];f[x_,y_]=x^3-y^3+3x^2+3y^2-9x; fx=D[f[x,y],x] fy=D[f[x,y],y]critpts=Solve[{fx==0,fy==0}]则分别输出所求偏导数和驻点:2236369y y x x -++-{{x->-3,y->0},{x->-3,y->2},{x->1,y->0},{x->1,y->2}}再输入求二阶偏导数和定义判别式的命令fxx=D[f[x,y],{x,2}]; fyy=D[f[x,y],{y,2}]; fxy=D[f[x,y],x,y]; disc=fxx*fyy-fxy^2输出为判别式函数2xy yy xx f f f -的形式:(6+6x)(6-6y)再输入data={x,y,fxx,disc,f[x,y]}/.critpts;TableForm[data,TableHeadings->{None,{ "x ", "y ", "fxx ", "disc ", "f "}}]最后我们得到了四个驻点处的判别式与xx f 的值并以表格形式列出.X y fxx disc f -3 0 -12 -72 27 -3 2 -12 72 31 1 0 12 72 -51 2 12 -72 -1易见,当2,3=-=y x 时,12-=xx f 判别式disc=72, 函数有极大值31; 当0,1==y x 时,12=xx f 判别式disc=72, 函数有极小值-5;当0,3=-=y x 和2,1==y x 时, 判别式disc=-72, 函数在这些点没有极值. 最后,把函数的等高线和四个极值点用图形表示出来,输入d2={x,y}/.critpts;g4=ListPlot[d2,PlotStyle->PointSize[0.02],DisplayFunction->Identity]; g5=ContourPlot[f[x,y],{x,-5,3},{y,-3,5},Contours->40,PlotPoints->60,ContourShading->False,Frame->False,Axes->Automatic,AxesOrigin->{0,0},DisplayFunction->Identity];Show[g4,g5,DisplayFunction->$DisplayFunction]则输出图1.6.从上图可见, 在两个极值点附近, 函数的等高线为封闭的. 在非极值点附近, 等高线不 封闭. 这也是从图形上判断极值点的方法.注:在项目一的实验4中,我们曾用命令FindMinimum 来求一元函数的极值, 实际上,也可 以用它求多元函数的极值, 不过输入的初值要在极值点的附近. 对本例,可以输入以下命令FindMinimum[f[x,y],{x,-1},{y,1}]则输出{-5.,{x->1.,y->-2.36603×10-8}}从中看到在0,1==y x 的附近函数),(y x f 有极小值-5, 但y 的精度不够好.例1.8 求函数22y x z +=在条件0122=-+++y x y x 下的极值. 输入Clear[f,g,la]; f[x_,y_]=x^2+y^2;g[x_,y_]=x^2+y^2+x+y-1; la[x_,y_,r_]=f[x,y]+r*g[x,y]; extpts=Solve[{D[la[x,y,r],x]==0,D[la[x,y,r],y]==0,D[la[x,y,r],r]==0}]得到输出⎭⎬⎫⎩⎨⎧⎭⎬⎫⎩⎨⎧+->-+->-+->-⎩⎨⎧⎭⎬⎫⎩⎨⎧-->--->--->-)31(21),31(21),33(31,)31(21),31(21),33(31y x r y x r再输入f[x,y]/.extpts//Simplify得到两个可能是条件极值的函数值}.32,32{-+但是否真的取到条件极值呢? 可利用等高线作图来判断.输入dian={x,y}/.Table[extpts[[s,j]],{s,1,2},{j,2,3}] g1=ListPlot[dian,PlotStyle->PointSize[0.03],DisplayFunction->Identity]cp1=ContourPlot[f[x,y],{x,-2,2},{y,-2,2},Contours->20,PlotPoints->60,ContourShading->False,Frame->False,Axes-> Automatic,AxesOrigin->{0,0},DisplayFunction->Identity]; cp2=ContourPlot[g[x,y],{x,-2,2},{y,-2,2},PlotPoints->60,Contours->{0},ContourShading-> False,Frame->False,Axes->Automatic,ContourStyle->Dashing[{0.01}],AxesOrigin->{0,0},DisplayFunction->Identity]; Show[g1,cp1,cp2,AspectRatio->1,DisplayFunction->$DisplayFunction]输出为⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧+-+-⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧----)31(21,2321,)31(21,2321 及图1.7. 从图可见,在极值可疑点,2321,2321⎪⎪⎭⎫ ⎝⎛----⎪⎪⎭⎫ ⎝⎛+-+-2321,2321 处, 函数),(y x f z =的等高线与曲线0),(=y x g (虚线)相切. 函数),(y x f z =的等高线是一系列同心圆, 由里向外, 函数值在增大, 在)31(21),31(21--=--=y x 的附近观察, 可以得出),(y x f z =取条件极大的结论. 在),31(21+-=x )31(21+-=y 的附近观察, 可以得出),(y x f z =取条件极小的结论.梯度场例1.9 画出函数222),,(y x z z y x f --=的梯度向量. 解 输入命令<<Graphics`ContourPlot3D` <<Graphics`PlotField3D` <<Calculus`VectorAnalysis`SetCoordinates[Cartesian[x,y,z]];f=z^2-x^2-y^2;cp3d=ContourPlot3D[f,{x,-1.1,1.1},{y,-1.1,1.1},{z,-2,2},Contours->{1.0},Axes->Tr ue,AxesLabel->{"x","y","z"}];vecplot3d=PlotGradientField3D[f,{x,-1.1,1.1},{y,-1.1,1.1},{z,-2,2},PlotPoints->3,Ve ctorHeads->True];Show[vecplot3d, cp3d];则输出相应图形(图1.8)例1.10 在同一坐标面上作出⎪⎪⎭⎫⎝⎛++=2211),(y x x y x u 和 ,11),(22⎪⎪⎭⎫⎝⎛+-=y x y y x v 的等高线图(0>x ), 并给出它们之间的关系.解 输入命令<<Calculus`VectorAnalysis` <<Graphics`PlotField`SetCoordinates[Cartesian[x,y,z]];check[u_,v_]:={Grad[u][[1]]-Grad[v][[2]],Grad[v][[1]]+Grad[u][[2]]} u=x(1+1/(x^2+y^2));v=y(1-1/(x^2+y^2)); check[u,v]//Simplifyugradplot=PlotGradientField[u,{x,-2,2},{y,-2,2},DisplayFunction->Identity];uplot=ContourPlot[u,{x,-2,2},{y,-2,2},ContourStyle->GrayLevel[0],ContourShading->False,DisplayFunction->Identity,Contours->40,PlotPoints->40]; g1=Show[uplot,ugradplot,DisplayFunction->$DisplayFunction];vgradplot=PlotGradientField[v,{x,-2,2},{y,-2,2},DisplayFunction->Identity];vplot=ContourPlot[v,{x,-2,2},{y,-2,2},ContourStyle->GrayLevel[0.7],ContourShading->False,DisplayFunction->Identity,Contours->40,PlotPoints->40]; g2=Show[vplot,vgradplot,DisplayFunction->$DisplayFunction]; g3=Show[uplot,vplot,DisplayFunction->$DisplayFunction];g4=Show[ugradplot,vgradplot,DisplayFunction->$DisplayFunction];则输出相应图形(图1.9),其中(a) ),(y x u 的梯度与等高线图;(b) ),(y x v 的梯度与等高线图; (c) ),(y x u 与),(y x v 的等高线图; (d) ),(y x u 与),(y x v 的梯度图.图1.9从上述图中可以看出它们的等高线为一族正交曲线. 事实上, 有,,2222x v y x x y u y v y x x x u ∂∂-=+=∂∂∂∂=+=∂∂ 且,0=∇⋅∇v u 它们满足拉普拉斯方程022222222=∂∂+∂∂=∂∂+∂∂y vx v y u x u 例1.11 (教材 例1.6) 设,),()(22y x xe y x f +-=作出),(y x f 的图形和等高线, 再作出它的梯度向量gradf 的图形. 把上述等高线和梯度向量的图形叠加在一起, 观察它们之间的关系.输入调用作向量场图形的软件包命令<<Graphics\PlotField.m再输入Clear[f];f[x_,y_]=x*Exp[-x^2-y^2];dgx=ContourPlot[f[x,y],{x,-2,2},{y,-2,2},PlotPoints->60, Contours->25,ContourShading->False,Frame->False,Axes->Automatic,AxesOrigin->{0,0}] td=PlotGradientField[f[x,y],{x,-2,2},{y,-2,2},Frame->False] Show[dgx,td]输出为图1.10. 从图可以看到Oxy 平面上过每一点的等高线和梯度向量是垂直的, 且梯度的 方向是指向函数值增大的方向图1.10例1.12 求出函数244),(y xy x y x f +-=的极值, 并画出函数),(y x f 的等高线、驻点以及),(y x f -的梯度向量的图形.输入命令<<Graphics`PlotField`f=x^4-4*x*y+y^2;FindMinimum[f,{x,1},{y,1}]conplot=ContourPlot[f,{x,-2,2},{y,-3,3},ContourShading->False,PlotPoints->100,Contours->{-4,-2,0,2,4,10,20}];fieldplot=PlotGradientField[-f,{x,-2,2},{y,-3,3},ScaleFunction->(Tanh[#/5]&)];critptplot=ListPlot[{{-Sqrt[2],-2*Sqrt[2]},{0,0},{Sqrt[2],2*Sqrt[2]}},PlotStyle->{PointSize [0.03]}];Show[conplot,fieldplot,critptplot];则得到),(y x f 的最小值.4)82843.2,41421.1(-=f 以及函数的图形(图1.11).实验习题 1.设,xy e z =求.dz2.设),,(y xy f z =求.,,22222y x zy z x z ∂∂∂∂∂∂∂ 3.设),sin (cos ),(228/)(22y x e y x g y x+=+-求.,,2yx z y z x z ∂∂∂∂∂∂∂ 4.试用例1.5的方法求265433051830120),(xy x x x x y x f +++--=的极值. 5.求324y x z +=在01422=-+y x 条件下的极值.6.作出函数42210/)2(),(y x e y x f +-=的等高线和梯度线的图形, 并观察梯度线与等高线的 关系.实验2 多元函数积分学(基础实验)实验目的掌握用Mathematica 计算二重积分与三重积分的方法; 深入理解曲线积分、曲面积分的 概念和计算方法. 提高应用重积分和曲线、曲面积分解决各种问题的能力.基本命令1. 计算重积分的命令lntegrate 和NIntegrate 例如,计算dydx xy x ⎰⎰102, 输入Integrate[x*y^2,{x,0,1},{y,0,x}]则输出 151又如,计算dydx xy )sin(10102⎰⎰的近似值, 输入NIntegrate[Sin[x*y^2],{x,0,1},{y,0,1}] 则输出 0.160839注: Integrate 命令先对后边的变量积分.计算三重积分时,命令Integrate 的使用格式与计算二重积分时类似. 由此可见, 利用 Mathematica 计算重积分, 关键是确定各个积分变量的积分限. 2. 柱坐标系中作三维图形的命令CylindricalPlot3D使用命令Cylindricalplot3D, 首先要调出作图软件包. 输入 <<Graphics`ParametricPlot3D` 执行成功后便可继续下面的工作.使用命令Cylindricalplot3D 时,一定要把z 表示成r ,θ的函数. 例如,在直角坐标系中方 程22y x z +=是一旋转抛物面, 在柱坐标系中它的方程为2r z =. 因此,输入 CylindricalPlot3D[r^2,{r,0,2},{t,0,2Pi}] 则在柱坐标系中作出了该旋转抛物面的图形.3. 球面坐标系中作三维图形命令SphericalPlot3D使用命令SphericalPlot3D, 首先要调出作图软件包. 输入 <<Graphics`ParametricPlot3D` 执行成功后便可继续下面的工作.命令SphericalPlot3D 的基本格式为SphericalPlot3D[r[],θϕ, {}],,{},,,2121θθθϕϕϕ其中r[],θϕ是曲面的球面坐标方程, 使用时一定要把球面坐标中的r 表示成ϕ、θ的函数. 例如,在球面坐标系中作出球面,22222=++z y x 输入Sphericalplot3D[2,{u,0,pi},|v,0,2,pi|,plotpoints->40]则在球面坐标系中作出了该球面的图形. 4. 向量的内积用“.”表示两个向量的内积. 例如,输入 vecl={al,bl,cl} vec2={a2,b2,c2} 则定义了两个三维向量, 再输入 vec1. vec2 则得到它们的内积a1a2+b1b2+c1c2实验举例计算重积分例2.1 (教材 例2.1) 计算,2dxdy xyD⎰⎰ 其中D 为由,,2y x y x ==+ 2=y 所围成的有界区域.先作出区域D 的草图, 易直接确定积分限,且应先对x 积分, 因此, 输入 Integrate[x*y^2,{y,1,2},{x,2-y,Sqrt[y]}] 则输出所求二重积分的计算结果.120193例2.2 (教材 例2.2) 计算,)(22dxdy e Dy x⎰⎰+- 其中D 为.122≤+y x如果用直角坐标计算, 输入Clear[f,r];f[x,y]=Exp [-(x^2+y^2)];Integrate[f[x,y],{x,-1,1},{y,-Sqrt[1-x^2],Sqrt[1-x^2]}]则输出为dx x 1Erf e 211x 2⎥⎦⎤⎢⎣⎡-π⎰--其中Erf 是误差函数. 显然积分遇到了困难.如果改用极坐标来计算, 也可用手工确定积分限. 输入Integrate[(f[x,y]/.{x->r*Cos[t],y->r*Sin[t]})*r,{t,0,2 Pi},{r,0,1}] 则输出所求二重积分的计算结果eπ-π 如果输入NIntegrate[(f[x,y]/.{x->r*Cos[t],y->r*Sin[t]})*r,{t,0,2 Pi},{r,0,1}] 则输出积分的近似值1.98587例 2.3 (教材 例 2.3) 计算dxdydz z y x)(22++⎰⎰⎰Ω, 其中Ω由曲面222y x z --=与22y x z +=围成.先作出区域Ω的图形. 输入g1=ParametricPlot3D[{Sqrt[2]*Sin[fi]*Cos[th],Sqrt[2]*Sin[fi]*Sin[th], Sqrt[2]*Cos[fi]},{fi,0,Pi/4},{th,0,2Pi}] g2=ParametricPlot3D[{z*Cos[t],z*Sin[t],z},{z,0,1},{t,0,2Pi}] Show[g1,g2,ViewPoint->{1.3,-2.4,1.0}]则分别输出三个图形(图2.1(a), (b), (c)).考察上述图形, 可用手工确定积分限. 如果用直角坐标计算, 输入 g[x_,y_,z_]=x^2+y^2+z;Integrate[g[x,y,z],{x,-1,1},{y,-Sqrt[1-x^2], Sqrt[1-x^2]},{z,Sqrt[x^2+y^2],Sqrt[2-x^2-y^2]}] 执行后计算时间很长, 且未得到明确结果.现在改用柱面坐标和球面坐标来计算. 如果用柱坐标计算,输入Integrate[(g[x,y,z]/.{x->r*Cos[s],y->r*Sin[s]})*r, {r,0,1},{s,0,2Pi},{z,r,Sqrt[2-r^2]}]则输出π⎪⎪⎭⎫⎝⎛+-15281252 如果用球面坐标计算,输入Integrate[(g[x,y,z]/.{x->r*Sin[fi]*Cos[t],y->r*Sin[fi]*Sin[t],z->r*Cos[fi]})*r^2*Sin[fi],{s,0,2Pi},{fi,0,Pi/4},{r,0,Sqrt[2]}]则输出π⎪⎪⎭⎫ ⎝⎛+-321662551这与柱面坐标的结果相同.重积分的应用例2.4 求由曲面()y x y x f --=1,与()222,y x y x g --=所围成的空间区域Ω的体积.输入Clear[f,g];f[x_,y_]=1-x -y;g[x_,y_]=2-x^2-y^2;Plot3D[f[x,y],{x,-1,2},{y,-1,2}] Plot3D[g[x,y],{x,-1,2},{y,-1,2}] Show[%,%%]一共输出三个图形,首先观察到Ω的形状. 为了确定积分限, 要把两曲面的交线投影到Oxy 平面上输入 jx=Solve[f[x,y]==g[x,y],y] 得到输出 ⎭⎬⎫⎩⎨⎧⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛-++→⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛-+-→22445121,445121x x y x x y为了取出这两条曲线方程, 输入 y1=jx[[1,1,2]] y2=jx[[2,1,2]] 输出为⎪⎭⎫ ⎝⎛-+-2445121x x⎪⎭⎫ ⎝⎛-++2445121x x再输入tu1=Plot[y1,{x,-2,3},PlotStyle->{Dashing[{0.02}]},DisplayFunction->Identity];tu2=Plot[y2,{x,-2,3},DisplayFunction->Identity]; Show[tu1,tu2,AspectRatio->1, DisplayFunction-> $DisplayFunction]输出为图2.2, 由此可见,y 是下半圆(虚线),y 是上半圆,因此投影区域是一个圆.设21y y =的解为1x 与2x ,则21,x x 为x 的积分限. 输入 xvals=Solve[y1==y2,x]输出为 ()()⎭⎬⎫⎩⎨⎧⎭⎬⎫⎩⎨⎧+→⎭⎬⎫⎩⎨⎧-→6121,6121x x 为了取出21,x x , 输入x1=xvals[[1,1,2]]x2=xvals[[2,1,2]]输出为()6121- ()6121+。
Mathematica4初等数学部分

第2章 Mathematica4.0软件包 ——初等数学部分本章主要介绍Mathematica4中与初等数学有关的各种命令。
例2-1 求近似值。
例如圆周率Pi ,我们在Mathematica4中输入以下四种命令就将得到三种不同的结果:Pi 显示结果πPi // N 显示结果π的16位近似数N[ Pi ] 显示结果π的16位近似值(包括整数位)N[ Pi, 200 ] 显示结果π的200位近似值(包括整数位)注:N[Pi] 给出Pi 的16位小数近似值(包括整数位),屏幕只显示小数点后面5位,如果将结果复制一下,就会看见16位小数近似值。
另外,N[ Pi ,m ] 给出指定的m 位P i 的近似值。
类似地有 N[ E ,80] 等等。
例2-2 求一个数x 的绝对值: Abs[ x ]例2-3 (1)关于分数和分式通分:(1/2)+(1/3) 比较:(1/2)+(1/3)//N命令Together[ f ] 表示将表达式f 通分;Apart[f] 表示将有理分式f 写为不可约分式之和。
例如:][;)1)(1(12245f Apart x x x x x f +--+-= Cancel[f] 表示消掉有理分式f 的公因子;ExpandAll[f] 表示将有理分式f 的分子分母都展开为多项式; ExpandNumerator [f] 表示将有理分式f 的分子展开为多项式; ExpandDenominator[f] 表示将有理分式f 的分母展开为多项式;(2)多项式的展开。
命令与格式如下:()],[][;15332x f t Coefficien f Expand x x f ++= 其中Expand[ f ] 表示将多项式f 展开为级数形状;Coefficient[ f, x 5 ]表示求多项式f 中x 5的系数。
运行之后得到结果:63346333198765432x x x x x x x x ++++++++(3)多项式的因式分解。
Mathematica中初等代数与线性代数使用

U[[i,j]]
矩阵U的第i行、第j列元素
U[[i]]、U[[i,All]
U的第i行n个元素
U的第j列元素 由行{i1,i2,…ip}和列{j1,j2,…jq}组成的子矩阵
U[[All,j]]
U[[{i1,i2,…ip]},{j1,j2,…jq}]]
U[[Range[{i0,i1}],[Range[{j0,j1}]]
A的全部(准确解、数值解)的特征向量
Eigensystem[A] Eigensystem[N[A]]
A的所有(准确解、数值解)的特征值和特征向量
06年建模B题
z = Import["f:\\z1.txt", "Table"]; s0 = s1 = s2 = s3 = s4 = 0; n0 = n1 = n2 = n3 = n4 = 0; For[i = 1, i <= Length[z], i++, If[z[[i, 2]] == 0 || z[[i, 2]] == 1, s0 = s0 + z[[i, 3]]; n0++]; If[z[[i, 2]] >= 2 && z[[i, 2]] <= 6, s1 = s1 + z[[i, 3]]; n1++]; If[z[[i, 2]] >= 7 && z[[i, 2]] <= 13, s2 = s2 + z[[i, 3]]; n2++]; If[z[[i, 2]] >= 14 && z[[i, 2]] <= 32, s3 = s3 + z[[i, 3]]; n3++]; If[z[[i, 2]] >= 33 && z[[i, 2]] <= 45, s4 = s4 + z[[i, 3]]; n4++]; ] t = {{0, s0*1./n0}, {4, s1*1./n1}, {8, s2/n2}, {24, s3/n3}, {40, s4/n4}}
Mathematica教程4

在Mathematica中用函数DSolve[]得到微分方程的准确解,用函数NDSolve得到微分方程的数值解,当然在此处要给出求解区间(x,xmin,xmax)。
NDSolve也是既能计算单个的微分方程,也能计算联立微分方程组。
它能对大多数的常微分方程和部分偏微分方程求解。
在常微分可能有一些未知函数yi,但这些未知函数都依赖于一个单变量x。
NDSolve[{eqn1,eqn2,…},y,{x,xmin,xmax}]求函数y的数值解,x属于[xmin,xmax]NDSolve[{eqnl,eqn2,…},{y1,y2,…}{x,xmin,xmax}]求多个函数yi的数值解NDSolve以InterpolatingFunction 目标生成函数yi的解,InterpolatingFunction目标提供在独立变量x的xmin到xmax范围内求少的近似值。
NDSolve用迭代法求解,它以某一个x值开始,尽可能覆盖从xmin到xmax的全区间。
为使迭代开始,NDSolve指定yi及其导数为初始条件。
初始条件给定某定点x处的y i[x]及尽可能的导数y'i[x],一般情况下,初始条件可在任意x处,NDSolve将以此为起点自动覆盖xmin 到xmax的全区域。
下面对初始条件y[0]=0和y[1]=0分别求出x从0到1的范围内y’[x]=y[x]的解。
再看下面的微分方程的数值解使用Mathematica页可以很容易的得到解的图形。
这儿给出如何观察微商的逆函数的近似值图形。
我们使用命令Evaluate代替InterpolatingFunction能够节省时间。
例如:前面我们学习了有关Mathematica的各种基本运算及操作,为了使Mathematica更有效的工作,我们可对Mathematica进行模块化运算。
在模块内部通过编写一系列表达式语句,使其实现一定的功能。
在Mathematica内部也提供了很多程序包,我们将学习如何调用它们。
Mathematica软件介绍及其应用

注意: 在Mathematica软件中,英文字母大小写严格区 分,函数与命令的第一个字母必须大写。函数与 命令后面的表达式要放在中括弧里
14
赋值与函数定义
Mathematica软件中可以直接给变量赋值,并进行 运算 (1)a=1 (2)b=2;c=3 Mathematica软件中的语句可以写在同一行里,中 间用分号隔开,分号之前的 命令不显示结果 (3)d=a+b*c 此外,还可以采用 延迟赋值的方式 延迟赋值并不显示结果,只有调用变量时,才进行 计算并赋值。
语句定义:可用Range与Table语句来定义集合 Range[imin,imax,di]给出的是一个数的集合,第一项为 imin,最后一项不超过imax,步长为di。 (3)t3=Range[1,30,3] Table[expr,{i,imin,imax,di}]给出的是一般的集合,它 由表达式expr在i依步长di从imin取到imax时得到的值构 成 (4)t4=Table[i^2,{i,2,21,2}] 25
常用数学软件选讲
Mathematica是美国Wolfram研究公司生产 的一种数学分析型的软件,以符号计算见长, 也具有高精度的数值计算、强大的图形功能 和动画等多媒体集成功能。在物理、化学、 机械制造、建筑等专业都展露出异样的风采 ..... Mathematica被美国Macword杂志誉为 “不只是一个软件,更是一场划时代的革 命”。
可见,使用表达式”x=.”可以消除变量的赋值
17
Mathematica软件还可以定义函数
(1): f[x_]=Sin[x] (*被定义的函数的自变量后需跟下划线“_”*) (2)?f (*此命令用来查看f的含义*)
18
? 的其他用途
mathmatica简介

Mathematica软件简介Mathematica是美国Wolfram Research公司开发的著名数学软件,它的主要功能是给人们提供一个方便的数学计算平台。
了解并掌握它的各种功能,有利于激发我们学习、应用数学的兴趣,能够使复杂的数值计算和符号运算方便、快捷,有助于我们学好数学,用好数学。
一、Mathematica的主要功能1、符号运算功能:Mathematica最突出的特点就是具有强大的符号运算功能,能和人一样进行带字母的运算,得到精确的结果。
符号运算功能可以分成4大类:(1)初等数学:进行各种数和初等函数式的计算与化简。
(2)微积分:求极限、导数(包括高阶导数和偏导数等)、不定积分和定积分(包括多重积分),将函数展成幂级数,进行无穷级数求和及积分变换。
(3)线性代数:进行行列式的计算、矩阵的各种运算(加法、乘法、求逆矩阵等)、解线性方程组、求特征值和特征向量、进行矩阵分解。
(4)解方程组:解各类方程组(包括微分方程组)。
2、数值计算功能:可以做任意位数的整数或分子分母为任意大整数的有理数的精确计算,做具有任意位精度的数值(实、复数)计算。
Mathematica具有众多的数值计算函数,能满足线性代数、插值与拟合、数值积分、微分方程数值解、求极值、线性规划及概率统计等方面的常用计算需求。
3、绘图功能:能绘制各种二维平面图形与全方位的三维立体彩色图形,自动化程度很高。
4、编程功能:用户可以自己编写各种程序(文本文件),开发新的功能。
二、基本知识1、启动与运行方法Mathematica作为标准的Windows程序,其启动方式与Windows下其它程序的启动方式一样。
启动后出现的Mathematica界面如图1所示。
Mathematica的界面由工作区窗口、基本图1输入模板和主菜单组成。
左边为工作窗口区,可以直接输入函数或命令;工作区窗口右边的是基本输入模板,由一系列按钮组成;图上方所示的是主菜单。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2章 Mathematica4.0软件包 ——初等数学部分本章主要介绍Mathematica4中与初等数学有关的各种命令。
例2-1 求近似值。
例如圆周率Pi ,我们在Mathematica4中输入以下四种命令就将得到三种不同的结果:Pi 显示结果πPi // N 显示结果π的16位近似数N[ Pi ] 显示结果π的16位近似值(包括整数位)N[ Pi, 200 ] 显示结果π的200位近似值(包括整数位)注:N[Pi] 给出Pi 的16位小数近似值(包括整数位),屏幕只显示小数点后面5位,如果将结果复制一下,就会看见16位小数近似值。
另外,N[ Pi ,m ] 给出指定的m 位P i 的近似值。
类似地有 N[ E ,80] 等等。
例2-2 求一个数x 的绝对值: Abs[ x ]例2-3 (1)关于分数和分式通分:(1/2)+(1/3) 比较:(1/2)+(1/3)//N命令Together[ f ] 表示将表达式f 通分;Apart[f] 表示将有理分式f 写为不可约分式之和。
例如:][;)1)(1(12245f Apart x x x x x f +--+-= Cancel[f] 表示消掉有理分式f 的公因子;ExpandAll[f] 表示将有理分式f 的分子分母都展开为多项式; ExpandNumerator [f] 表示将有理分式f 的分子展开为多项式; ExpandDenominator[f] 表示将有理分式f 的分母展开为多项式;(2)多项式的展开。
命令与格式如下:()],[][;15332x f t Coefficien f Expand x x f ++= 其中Expand[ f ] 表示将多项式f 展开为级数形状;Coefficient[ f, x 5 ]表示求多项式f 中x 5的系数。
运行之后得到结果:63346333198765432x x x x x x x x ++++++++(3)多项式的因式分解。
命令与格式如下:f = 1 + 2x + x 2; Factor[ f ] 运行之后得到结果:(1 + x )2例2-4 求阶乘。
直接输入 n!求组合数⎪⎪⎭⎫ ⎝⎛=k n C kn 。
输入以下命令: Binomial[ n, k ]求多元组合数()!!!!2121n n r r r r r r ⋅⋅⋅+⋅⋅⋅++。
输入以下命令:Multinomial[ r 1, r 2, …, r n ]例如,下面的多元多项式的展开式中就会用到多元组合数:()54321543215432154321811854321],,,,[r r r r r r r r r r x x x x x r r r r r l Multinomiax x x x x f ∑=++++=++++=我们可以输入以下命令求其中某一项的系数,比如:()],[;95244312211854321x x x x x f t Coefficien x x x x x f ++++=运行之后就得到9524431221x x x x x 的系数:183783600例2-5 求和的公式。
输入以下命令∑=nj j 18,运行之后得到结果:39155155)(12)(1(90123456-+--++++n n n n n n n n n例2-6 验证不等式是否为真。
执行下列程序271315>+- 若得到结果“ True ”就表示此不等式成立,若得到结果“ False ”就表示此不等式不成立。
第一步 打开子程序包 <<Algebra`InequalitySolve` 第二步 InequalitySolve[ ()()x x x x ,03222>-- ]得到此不等式的解集:3||20||23><<-<<-x x x 其中两个竖线表示集合的并。
又一例子:第二步 InequalitySolve[ {}y x y x y x ,,&&122<<+ ] 其中&&表示集合的交。
执行后得到此不等式组的解集:2221&&2121||11&&211x y x x x y x x -<<<<--<<---≤<-注:InequalitySolve 命令只能求解多项式类型的不等式或不等式组。
例2-8 求解代数方程及方程组。
执行并比较以下几个命令: (1)Solve 命令}],,{},,,[{}],,{},1,1,1[{],0*[2z y x c z y x b z y x a z y x Solve z y x z y x z y x z y x Solve x c x b x Solve ==++-==+-==-+==++-==+-==-+==++注:Solve 命令只能求解多项式类型的方程或方程组。
(2)SolveAlways 命令SolveAlways[ { a x + y + z == 1, x + a y + z == a, x + y + a z == a^2 },{ x, y, z }]执行后得到:{ } 表示解是空集。
(3)Reduce 命令Reduce[ { a x + y + z == 1, x + a y + z == a, x + y + a z == a^2 }, { x, y, z }] 表示用消元法求以上线性方程组的所有可能的解。
(4)Eliminate 命令Eliminate[ { x + 2a == 1, -2x + y ==9 }, a ]表示在方程组中消去参数a ,得到结果:-9 + y == 2x又一个例子:()],02,02133[{lim 2223223x y y yx x y y y x y y yx x inate E ==-+-==-+-+-+-表示在方程组中消去参数x ,运行之后得到结果:-y + y 2==0第一步 先画图观察 第二步 求出数值近似解Plot[Log[10,x]-Sin[x],{x,0,10}]FindRoot[Log[10,x]-Sin[x]==0,{x,2.5}] FindRoot[Log[10,x]-Sin[x]==0,{x,7.5}] FindRoot[Log[10,x]-Sin[x]==0,{x,8.1}]例2-10 求一个数x 的近邻整数值Round[x] 求距离x 最近的整数值;Ceiling[x] 求距离x 最近的、且大于x 的整数值;(比较 x = -1.5, 1.5, -1.4, 1.4 时的区别)例2-11 求递归关系式。
第一步 进入子程序软件包 <<DiscreteMath`RSolve` 第二步 求解递归关系式2123---=n n n a a a 。
输入以下命令: RSolve[ a[ n ] == 3a[ n-1 ] - 2a[ n-2 ], a[ n ], n ]运行之后得到结果:{ { a[ n ] -> - C[1] + 22+n ( C[1] + 2C[2] ) } } 其中C[1]、C[2]是待定常数。
或者求解具有起点的递归关系式2,1,231021==-=--a a a a a n n n 。
输入以下命令: RSolve[ { a[ n ] == 3a[ n-1 ] - 2a[ n-2 ], a[ 0 ] == 1, a[ 1 ] == 2 }, a[ n ], n ]运行之后得到结果:{ { a[ n ] -> 2n } }例2-12-1 (1)求序列2n 从n = 1到n = 15的值。
输入以下命令: Table[ { n, 2^n }, { n, 1, 15 } ](2)求斐波那契(Fibonacci )数列Fibonacci[n] 从n = 1到n = 50的值。
输入以下命令:Table[ { n, Fibonacci[ n ] }, { n, 1, 50 } ]例2-12-2 Fibonacci 预测(神秘数字预测)Fibonacci ( Leonado Pisano Fibonacci, 1170 - 1250 )预测在港、台金融界称为神秘数字预测,在欧美叫螺旋历法( Spiral Calendar ),此方法在金融预测方面比较流行,请大家批判性的了解以下内容。
记Fibonaocci 数列为F1=1,F2=1, Fn = Fn-1 + Fn-2 ( n ≥ 3 )。
美国人 Carolan 创立螺旋历法,令投资理论界大为震惊,此方法主要以月球周期为计算的基础,类似中国的阴历。
在此方法中,月球周期Y = 29.53天,用它来计算重大事件的转折点(此方法主要用在政治和经济领域)。
方法如下:从一个重大事件发生的日期开始,对任何n ≥ 1,n n F F Y 53.29=天后,都有可能发生重大转折。
例2-12-3 1917年11月7日,俄国共产党攻占圣彼得堡的冬宫,3053.29F 天后有可能为转折点,即1991年8月8日,实际上1991年8月19日苏联发生政变,随后苏共下台,苏联解体。
程序如下: <<Miscellaneous`Calendar`Table[DaysPlus[{1917,11,7},Ceiling[29.53Sqrt[Fibonacci[n]]]],{n,1,50}]例2-12-41945年5月7日,德国在二战中被打败,宣布投降,从此一分为二,东德被苏联统治,西德被美国统治。
2853.29F 天以后,即1990年12月5日可能为转折点,实际上1990年12月2日是东西德统一后的第一个大选日,乃实际上的统一。
另外,德国由分裂到统一的时间,刚好是苏联共产党掌权时间的0.618倍。
例2-12-5柏林墙建于1961年8月12日,拆于1989年11月9日,近似等于2653.29F 天以后,只差27天。
另外,柏林墙存在的时间约为德国分裂时间的0.618倍。
例2-12-6 美国道.琼斯工业股票指数的预测。
美国人Carolan 将螺旋历法用于预测金融市场的转折点,效果奇佳。
1927年4月1日,是春分后的第一个新月,两年半后(1653.29F ),即1929年10月11日见顶,随后走入股灾,于1929年10月29日走到股灾底部, 1953.29F 天以后,即1935年1月19日(冬至后的月圆),股市开始反转。
例2-12-71985年3月21日,为春分及新月之日,两年半后(1653.29F ),即1967年10月2日见顶2746点,随后走入股灾,于1987年10月20日走到股灾底部1616点, 1953.29F 天以后,即1993年1月8日(冬至后的月圆),股市开始反转。