用样本频率分布估计总体分布

合集下载

用样本的频率分布估计总体分布(VI)

用样本的频率分布估计总体分布(VI)

收集样本数据
按照抽样计划进行数据收集,确保数据的真 实性和完整性。
数据整理
对收集到的数据进行整理,包括核对、筛选、 分类等,确保数据的质量。
数据的分组与频数统计
数据分组
根据研究目的和数据的特征,将数据分成若干组,以 便进行频数统计。
频数统计
对每组数据进行频数统计,计算每个组内的数据个数。
绘制频数分布表
03
估计总体分布
估计总体均值
计算样本均值
根据样本数据,计算所有数值的平均值,得到样本均值。
估计总体均值
将样本均值作为总体均值的估计值,即用样本均值来估计总体均 值。
误差分析
分析样本均值与总体均值的误差大小,了解估计的准确性和可靠 性。
估计总体方差
计算样本方差
根据样本数据,计算所有数值的方差,得到样 本方差。
根据每个组的频率,可以作出频率分布直方图。
实例结论总结
通过以上实例分析,我们可以看到, 通过将数据分组并计算每个组的频率, 可以大致估计出总体的分布情况。这 种方法适用于大样本数据,当样本量 足够大时,频率分布可以近似地代表 总体分布。
VS
பைடு நூலகம்
在实际应用中,可以根据需要选择合 适的分组方式和组距,以便更好地估 计总体分布。同时,需要注意样本的 代表性和数据的可靠性,以保证估计 结果的准确性。
估计总体方差
将样本方差作为总体方差的估计值,即用样本 方差来估计总体方差。
误差分析
分析样本方差与总体方差的误差大小,了解估计的准确性和可靠性。
估计总体分布形状
观察样本频率分布
01
根据样本数据,绘制频率分布直方图或曲线图,观察分布形状。
估计总体分布形状

用样本的频率分布估计总体的频率分布

用样本的频率分布估计总体的频率分布

用样本的频率分布估计总体的频率分布频率分布是一种用于描述数据集中频次分布情况的统计工具,它描述了每个数值或数值范围出现的频率。

在样本中,我们可以利用频率分布来估计总体的频率分布,从而了解总体的特征。

为了确切估计总体的频率分布,我们需要采取一定的统计方法,下面将介绍一种常用的方法,直方图。

一、直方图的构建构建频率分布的首要任务是将数据分为不同的组或区间。

一般来说,我们会根据数据的特点选择合适的组距,然后根据不同的组距将数据分组。

例如,假设我们有一组数据代表了一些班级学生的测试成绩,我们选择了组距为10,那么我们可以将数据分为以下几个组:然后,我们统计每个组内数据出现的次数,即频次,得到每个组的频次数。

二、计算频率频率是频次的一个重要衍生指标,它反映的是不同数据值或数据范围在总体中的比例。

频率的计算公式为:频率=频次/总样本量在直方图中,我们通常将频率表示为每个组的相对频率。

这样可以更好地反映出组与组之间的差异。

三、绘制直方图绘制直方图是一种直观地表现频率分布的方法。

在直方图上,x轴表示不同的组或区间,y轴表示频率。

我们可以用矩形的高度来表示每个组的频率,矩形的宽度表示组距。

通过绘制多个矩形,可以将频率分布更直观地展示出来。

在绘制直方图时,需要注意以下几点:1.组距应该选择合适,既不过小也不过大,以保证直方图的直观性和准确性。

2.直方图的高度应该符合频率的大小,即高度越高表示频率越大。

3.直方图的矩形之间应该没有间隙,以保证数据的完整性。

四、利用样本频率分布估计总体频率分布样本的频率分布可以提供总体频率分布的一种估计方法。

我们可以基于样本数据构建直方图,并计算每个组的频率。

然后,我们可以将样本频率分布与总体的频率分布进行比较。

如果两个分布形状相似并且没有明显的偏差,那么我们可以认为样本的频率分布可以很好地估计总体的频率分布。

当然,在使用样本频率分布进行总体频率分布估计时,还需要注意以下几点:1.样本的选取应该具有代表性,以避免样本偏差对估计结果的影响。

用样本频率分布估计总体分布第二课

用样本频率分布估计总体分布第二课
大家好
1
用样本的频率分布估计 总体分布(二)
2
回顾
画一组数据的频率分布直方图,可以按以下的 步骤进行:
一、求极差,即数据中最大值与最小值的差 二、决定组距与组数 :组距=极差/组数 三、分组,通常对组内数值所在区间,
取左闭右开区间 , 最后一组取闭区间 四、登记频数,计算频率,列出频率分布表
五、画出频率分布直方图(纵轴表示频率/组距)
7
新课讲解
频率分布折线图
频率/组距
0.50
0.40 0.30 0.20 0.10
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 月平均用水量/t
连接频率直方图中各小长方形上端中点的折线,叫 频率分布折线图
8
当样本容量无限增大,分组的组距无限缩小,那 么频率分布折线图就会无限接近一条光滑曲线
0.00047 0
0.00033 0.0002
频率/组距 0.0014
0.0012
0.001
0.0008
0.0006
0.0004
0.0002
0
26
750 1050 1350
16510
1950 2250 2550
理论迁移
例 某地区为了了解知识分子的年龄结构, 随机抽样50名,其年龄分别如下:
42,38,29,36,41,43,54,43,34,44, 40,59,39,42,44,50,37,44,45,29, 48,45,53,48,37,28,46,50,37,44, 42,39,51,52,62,47,59,46,45,67, 53,49,65,47,54,63,57,43,46,58. (1)列出样本频率分布表; (2)画出频率分布直方图; (3)估计年龄在32~52岁的知识分子所占的比例 约是多少.

用样本的频率分布估计总体

用样本的频率分布估计总体

温故知新
知识形成
课堂练习
课堂小结
课后巩固
频率分布直方图
频率分布折线图
总体密度曲线
优点:很清晰的看出数据的变化态势 缺点:原始数据损失
如何解决?
温故知新
知识形成
课堂练习
课堂小结
课后巩固 103 140 121 117 138
四、茎叶图
116 93 117 123 118 143 117 135 96 127 80 138 108 128 118 100 91 124 135 71 117 109 91 87 110 93 103 136 117 115 132 90 127 120 133 118 90 131 125 84 145 126 94 130 123
组数:当数据在100个以内时,按数据多少常分5-12组 组距:指每个小组的两个端点的距离
极差 组距 =14.8 ≈15 组数
极差为74,分为5组
温故知新
知识形成
课堂练习
课堂小结
课后巩固
一、频率分布直方图的画法: 3.将数据分组 起点:70.5 共5组,每组组距15 [70.5, 85.5) [85.5, 100.5) [100.5,115.5) [115.5,130.5) [130.5,145.5] 思考: 这样安排有什么好处?
温故知新
知识形成
课堂练习
课堂小结
课后巩固
1. 一个容量为100的样本,数据的分组和各组的相关信息 , 如下表,试完成表中每一行的两个空格.
分组 [12,15) [15,18) [18,21) [21,24) [24,27) [27,30) [30,33) [33,36] 合计
频数 6 8 16 21 18 16 10 5 100

《用样本估计总体》典型例题

《用样本估计总体》典型例题

《用样本估计总体》典型例题【考情分析】用样本的频率分布估计总体分布的有关问题在高考中的常考题型有两个:(1)根据频率分布表和频率分布直方图进行频数或频率的计算,这种考查形式出现的频率很高;(2)频率分布直方图的绘制,这种考查形式常出现在解答题中,用样本的数字特征估计总体的数字特征也是高考中的常考题型,从近几年高考命题的趋势可以看出,对本节概念的考查开始逐步朝着对数据分析能力考查的方向发展,题目往往需结合相关数字特征的统计意义进行求解.题型1统计图表的信息读取(逻辑推理)典例1、[推测解释能力](2018·全国卷I)某地区经过1年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下列结论中不正确的是( )A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半思路本题以实际生活为背景考查了统计图表信息提取的知识,图表命题涉及广泛,解决本题时要注意题目条件中的“农村的经济收入增加了一倍,实现翻番”,否则计算出错,导致判断失误.解析方法一(通解)设建设前经济收入为a,则建设后经济收入为2a,则由图可得建设前种植收入为0.6a,其他收入为0.04a,养殖收入为0.3a.建设后种植收入为0.74a,其他收入为0.1a,养殖收入为0.6a,养殖收入与第三产业收入的总和为1.16a,所以只有A是错误的.方法二(优解)因为0.6<0.37×2,所以新农村建设后,种植收入增加,而不是减少,所以A是错误的.答案A题型2与统计图表有关的计算(数据分析)典例2、[分析计算能力(2020-天津卷)从一批零件中抽取80个,测量其直径(单位:mm),将所得数据分为9组:[5.31,5.33),[5.33,5.35),⋯,[5.45,5.47),[5.47,5.49],并整理得到如下频率分布直方图,则在被抽取的零件中,直径落在区间[5.43,5.47)内的个数为( )A.10B.18C.20D.36×组距,进行求解思路本题通过分析、读取频率分布直方图中数据的信息,利用公式频率=频率组距运算.解析根据题意,在被抽取的零件中,直径落在区间[5.43,5.47)内的频率为(6.25+5.00)×0.02= 0.225,则个数为80×0.225=18.答案 B题型3数字特征的含义与计算(数据分析)典例3-1[概括理解能力](全国II卷)为了评估一种农作物的种植效果,选了n块地作试验田.这n 块地的亩产量(单位:kg)分别为x1,x2,x3,⋯,x n,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是( )A.x1,x2,x3,⋯,x n的平均数B.x1,x2,x3,⋯,x n的标准差C.x1,x2,x3,⋯,x n的最大值D.x1,x2,x3,⋯,x n的中位数思路 本题依据数据的数字特征的意义,分析判断数据运用数字特征进行评价时,应从平均数、众数、中位数、方差、极差等多个角度对这组数据进行分析,全面考虑各数字特征的优缺点. 解析 平均数和中位数都能反映一组数据的集中趋势,而且平均数能反映一组数据的平均水平;标准差和方差都能反映一组数据的稳定程度.答案 B典例3-2、(2019-江苏卷)已知一组数据6,7,8,9,10,则该组数据的方差是_________.思路 本题考查了平均数和方差的计算公式,解决本题的关键是熟记平均数和方差的计算公式,本题考查了学生的分析计算能力和数学运算核心素养.解析 由平均数公式可得这组数据的平均数为8,则方差为(−2)2+(−1)2+0+0+12+226=53. 答案 53题型4用样本数字特征估计总体数字特征的简单计算典例4、[简单问题解决能力]某学校高一年级共有三个班,按优秀率进行评选.1班30人,优秀率30%,2班35人,优秀率60%,三班35人,优秀率40%,则全年级优秀率为_________.解析 本题通过优秀率、加权平均数来考查样本估计总体的数字特征,分析题意,根据班级优秀率求解全年级优秀率.由于某学校高一年级共有三个班,按优秀率进行评选:1班30人,优秀率30%,2班35人,优秀率60%,三班35人,优秀率40%,则全年级优秀率为:30×30%+35×60%+35×40%30+35+35=44%.答案 44%题型5用样本数字特征估计总体数字特征的综合计算(数学建模)典例5、[综合问题解决能力](2019·全国卷Ⅲ)为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A,B 两组,每组100只,其中A 组小鼠给服甲离子溶液,B 组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:记C为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P(C)的估计值为0.70.(1)求乙离子残留百分比直方图中a,b的值;(2)分别估计甲,乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).思路本题属于样本平均值估计总体的综合应用,根据频率分布直方图的特征,通过数据分析,在频率分布直方距计算a的值.解析(1)由已知得0.70=a+0.20+0.15,故a=0.35.b=1−0.05−0.15−0.70=0.10. (2)甲离子残留百分比的平均值的估计值为2×0.15+3×0.20+4×0.30+5×0.20+6×0.10+7×0.05=4.05.乙离子残留百分比的平均值的估计值为3×0.05+4×0.10+5×0.15+6×0.35+7×0.20+8×0.15=6.00.。

用样本频率分布估计总体分布

用样本频率分布估计总体分布

实验结果 频数
频率
正面向上 36 124 0.501 1
反面向上 35 964
频率分布条形图
0.498 9
结论:当试验次数
无限增大时 结果的频率大致相等。
0.6
“反面向上”记为1
0.5
注意:
0.4
① 各长方形长条的宽度要相同。
0.3
②相邻长条的间距要适当。
0.2
频率 组距 0.5 0.4 0.3 0.2 0.1
O 0.5 1 1.5 2 2.5 3 3.5 4 4.5 月均用水量/t
频率 组距 0.5 0.4 0.3 0.2 0.1
O 0.5 1 1.5 2 2.5 3 3.5 4 4.5
月均用水量/t
(1)居民月均用水量的分布是“山峰”状的,而 且是“单峰”的;
3.1 2.5 2.0 2.0 1.5 1.0 1.6 1.8 1.9 1.6 3.4 2.6 2.2 2.2 1.5 1.2 0.2 0.4 0.3 0.4 3.2 2.7 2.3 2.1 1.6 1.2 3.7 1.5 0.5 3.8 3.3 2.8 2.3 2.2 1.7 1.3 3.6 1.7 0.6 4.1 3.2 2.9 2.4 2.3 1.8 1.4 3.5 1.9 0.8 4.3 3.0 2.9 2.4 2.4 1.9 1.3 1.4 1.8 0.7 2.0 2.5 2.8 2.3 2.3 1.8 1.3 1.3 1.6 0.9 2.3 2.6 2.7 2.4 2.1 1.7 1.4 1.2 1.5 0.5 2.4 2.5 2.6 2.3 2.1 1.6 1.0 1.0 1.7 0.8 2.4 2.8 2.5 2.2 2.0 1.5 1.0 1.2 1.8 0.6 2.2

用样本的频率分布估计总体分布 课件

用样本的频率分布估计总体分布     课件
频率 (3)在 xOy 坐标平面内画频率分布直方图时,x=样本数据,y=组距,
频率 这样每一组的频率可以用该组的组距为底、组距为高的小矩形的 面积来表示.其中,矩形的高=频组率距=组距×样1 本容量×频数;
(4)同样一组数据,如果组距不同,横轴、纵轴单位不同,得到的 频率分布直方图的形状也会不同; (5)同一个总体,由于抽样的随机性,如果随机抽取另外一个容量 为100的样本,所形成的样本频率分布直方图一般会与前一个样本 频率分布直方图有所不同,但它们都可以近似地看做总体的分布.
【探究1】 一个容量为n的样本,分成若干组,已知某组的频数 和频率分别为40,0.125,则n的值为________. 解析 由题意得4n0=0.125,解得 n=320.
答案 320
【探究2】 在画频率分布直方图时,某组的频数为10,样本容量
为50,总体容量为600,则该组小矩形的面积是______.
解析 该组小矩形的面积即是数据落在该组的频率:1500=15.
答案
1 5
【探究3】 从某小区抽取100户居民进行月用电量调查,发现其 用电量都在50至350度之间,频率分布直方图如图所示.直方图中 x的值为________.
解析 ∵(0.002 4+0.003 6+0.006 0+x+0.002 4+0.001 2)×50 =1,∴x=0.004 4. 答案 0.004 4
用样本的频率分布估计总体分布
知识点1 频率分布直方图 1.频率分布直方图的画法
最大值与最小值
不小于k的最小
左闭右开
分组 频数累计 频数
频率
合计
样本容量
1
频率/组距 各小长方形的面积
1
2.频率分布折线图与总体密度曲线

2.2.1用样本的频率分布估计总体分布

2.2.1用样本的频率分布估计总体分布
2019/4/10
总体密度曲线
反映了总体在各个范围内取值的百分比,精确地 反映了总体的分布规律。是研究总体分布的工具. 用样本分布直方图去估计相应的总体分布时, 一般样本容量越大,频率分布直方图就会无限接 近总体密度曲线,就越精确地反映了总体的分布 规律,即越精确地反映了总体在各个范围内取值 百分比。
定额管理,即确定一个居民月用水量标准a, 用水量不超过a的部分按平价收费,超出a的 部分按议价收费.那么①标准a定为多少比较合 理呢? ②为了较合理地确定这个标准,你认 为需要做哪些工作?
通过抽样,我们获得了100位居民某年的月平均 用 水量(单位: t) ,如下表:
思考:由上表,大家可以得到什么信息?
2019/4/10
二、画频率分布直方图的步骤
1.求极差(即一组数据中最大值与最小值的差)
4.3 - 0.2 = 4.1
极差 4.1 2.决定组距与组数: = 组距= = 0.5 8 组数
当数据在100个以内时,常分8-12组.
3.将数据分组
[0,0.5 ),[0.5,1 ),…,[4,4.5]
4.列频率分布表
月均用水量 /t 4.5
归纳: 作频率分布直方图的方法为:
把横轴分成若干段,每一段对应一个组 的组距,以此线段为底作矩形,高等于 该组的频率/组距, 这样得到一系列矩形, 每一个矩形的面积恰好是该组上的频率, 这些矩形构成了频率分布直方图.
三、频率分布直方图再认识 1、小长方形
频率
的面积总和=?
频率 组距 0.5 0.4 0.3 0.2 0.1
O
0.5 1 1.5 2 2.5 3 3.5 4 4.5 月均用水量/t
2019/4/10
当总体中的个体数很多时(如抽样调查全国城市 居民月均用水量) ,随着样本容量的增加,作图时 所分的组数增多,组距减少,你能想象出相应的 频率分布折线图会发生什么变化吗?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
频率 •长方形的面积= 组距 频率 组距
频率分布直方图如下:
频率
组距
连接频率分布直方图 中各小长方形上端的 中点,得到频率分布折 线图
0.50 0.40 0.30 0.20 0.10 月均用水量 /t 4.5
0.5
1 1.5 2 2.5 3
3.5 4
利用样本频分布对总体分布进行相应估计
(1)上例的样本容量为 100,如果增至1000, 其频率分布直方图的情况会有什么变化?假如增
O
宽度:组距
高度:
频率 组距
0.5 1 1.5 2 2.5 3 3.5 4 4.5
月均用水量/t
上图称为频率分布直方图,其中横轴 表示月均用水量,纵轴表示频率/组距. 频率分布直方图中各小长方形的宽度 和高度在数量上有何特点?
图形的意义:频率分布直方图中各小长 方形的面积表示什么?各小长方形的面 积之和为多少? 频率 宽度:组距 组距
1
5
0
注:中间的数字表示得分的十位数字。 旁边的数字分别表示两个人得分的 个位数。
茎叶图
当样本数据较少时,用茎叶 图表示数据的效果较好,它不但 可以保留所有的信息,而且 可以 随时记录,给数据的记录和表示 都方便。
练习:某中学高一(2)班甲,乙两 名同学自高中以来每场数学考试成 绩情况如下: 甲的得分:95,81,75,91,86, 89,71,65,76,88,94 乙的得分:83,86,93,99,88, 96,98,98,79,85,97 画出两人数学成绩茎叶图,请根据 茎叶图对两人的成绩进行比较。
3、在一次中学生田径运动会上,参加男子跳高的17名 运动员的成绩如下表所示:
成绩(米)
人数
1.50 1.60
2 3
1.65
2
1.70
3
1.75
4
1.80
1
1.85
1
1.90
1
分别求这些运动员成绩的众数,中位数与平均数 。 解:在17个数据中,1.75出现了4次,出现的次数最多, 即这组数据的众数是1.75. 上面表里的17个数据可看成是按从小到大的顺序排 列的,其中第9个数据1.70是最中间的一个数据,即这组 数据的中位数是1.70; 这组数据的平均数是 1 x (1.50 2 1.60 3 ... 1.90 1) 1.69 米 17 答:17名运动员成绩的众数、中位数、平均数依次是 1.75(米)、1.70(米)、1.69(米)。
总体密度曲线反映了总体在各个范围内取值的
百分比,精确地反映了总体的分布规律。是研究总
体分布的工具.
用样本分布直方图去估计相应的总体分布时, 一般样本容量越大,频率分布直方图就会无限接 近总体密度曲线,就越精确地反映了总体的分布
规律,即越精确地反映了总体在各个范围内取值
百分比。
茎叶图
某赛季甲、乙两名篮球运动员每场比赛得分的
中位数:是位置型数,反映处于中间部位的 数据信息
平均数:反映所有数据的平均水平
1、求下列各组数据的众数
(1)、1 ,2,3,3,3,5,5,8,8,8,9,9 众数是:3和8 (2)、1 ,2,3,3,3,5,5,8,8,9,9 众数是:3 2、求下列各组数据的中位数
(1)、1 ,2,3,3,3,4,6,8,8,8,9,9 中位数是:5 (2)1 ,2,3,3,3,4,8,8,8,9,9 中位数是:4
至10000呢?
(2)样本容量越大,这种估计越精确。
总体密度曲线
当样本容量无限增大,分组的组距无限缩小,那么 频率分布折线图就会无限接近一条光滑曲线——总体密 度曲线. 总体密度曲线
频率 组距
月均用 水量/t
a
b
(图中阴影部分的面积,表示总体在 某个区间 (a, b) 内取值的百分比)。
总体密度曲线
频率分布表:
分 组 [0,0.5) [0.5,1) [1,1.5) [1.5,2) [2,2.5) [2.5,3) [3,3.5) [3.5,4) [4,4.5] 合计 频数 4 正 8 正 正 正 15 正 正 正 正 22 正 正 正 正 正 25 正 正 14 正 一 6 4 2 100 频数累计 频率 0.04 0.08 0.15 0.22 0.25 0.14 0.06 0.04 0.02 1.00
产品 频数 0.5 5 一级品 0.4 ( 1 )样本的频率分布表为: 8 二级品 (2)样本频率分布 0.3 三级品 13 的条形图为: 0.2 0.1 4 次品
0.6
解: 解:
0.7
频率
频率 0.17 0.27 0.43 0.13 产品
一级品 二级品 三级品 次品
(3)此种产品为二级品或三级品的概率约为 0.27+0.43=0.7.
众数:在一组数据中,出现次数最多的数据叫 做这组数据的众数.
中位数:将一组数据按大小依次排列,把处在 最中间位置的一个数据(或最中间两个数据的 平均数)叫做这组数据的中位数.
平均数: 一组数据的算术平均数,即
1 X ( x1 x2 xn ) n
问题1:众数、中位数、平均数这三个数 一般都会来自于同一个总体或样本,它们 能表明总体或样本的什么性质? 众数:反映的往往是局部较集中的数据信息
二、众数、中位数、平均数与频率 分布直方图的关系
如何在频率分布直方图中估计众数
频率 组距
众数在样本数据的频率分布直方图中, 就是最高矩形的中点的横坐标。
0.5 0.4 0.3 0.2 0.1
O
0.5
1
1.5
2
2.5
3
3.5
4
4.5
月平均用水量(t)
可将众数看作直方图中面积最大长方形的“中心”
频率 组距
3.1 3.4 3.2 3.3 3.2 3.0 2.5 2.6 2.5 2.8
2.5 2.6 2.7 2.8 2.9 2.9 2.8 2.7 2.6 2.5
2.0 2.2 2.3 2.3 2.4 2.4 2.3 2.4 2.3 2.2
2.0 2.2 2.1 2.2 2.3 2.4 2.3 2.1 2.1 2.0
1.5 1.5 1.6 1.7 1.8 1.9 1.8 1.7 1.6 1.5
1.0 1.2 1.2 1.3 1.4 1.3 1.3 1.4 1.0 1.0
1.6 0.2 3.7 3.6 3.5 1.4 1.3 1.2 1.0 1.2
1.8 0.4 1.5 1.7 1.9 1.8 1.6 1.5 1.7 1.8
2.确定组距,组数:.如果将上述 100个数据按组距为0.5进行分组, 那么这些数据共分为多少组? (4.3-0.2)÷0.5=8.2
3 将数据分组,决定分点:以组距为 0.5进行分组,上述100个数据共分为9组, 各组数据的取值范围可以如何设定? [0,0.5),[0.5,1),[1,1.5), „,[4,4.5]. 4 画频率分布表:如何统计上述100个数 据在各组中的频数?如何计算样本数据 在各组中的频率?你能将这些数据用表 格反映出来吗?
分组 [0, 0.5) [0.5, 1) [1, 1.5) [1.5, 2) [2, 2.5) [2.5, 3) [3,, 3.5) [3.5, 4) [4,) 4.5]
合计
频率 0.04 0.08 0.15 0.22 0.25 0.14 0.06 0.04 0.02 1
在样本中中位数的左右各有50%的样本数, 条形面积各为0.5,所以反映在直方图中位数 左右的面积相等.
1.9 0.3 0.5 0.6 0.8 0.7 0.9 0.5 0.8 0.6
1.6 0.4 3.8 4.1 4.3 2.0 2.3 2.4 2.4 2.2
显然:这里的总体可以在一个实数区间取值,称为连 续型总体。样本的频率分布表示形式有: 频率分布表和频率分布直方图
1.极差:样本数据中的最大值和最小 值的差称为极差 0.2~4.3
如何在频率分布直方图中估计中位数
0.6 0.5 0.4 0.3 0.2 0.1 0
前四个小矩形的 面积和=0.49
后四个小矩形的 面积和=0.26
0.25
0.22
0.15 0.08 0.04 0.5 1 1.5 2 2.5
0.14 0.06 0.04 3 3.5 4 0.02
4.5
2.02
月均用水量/t
知识探究(二):频率分布直方图
5 画频率分布直方图 为了直观反映样本 数据在各组中的分布情况,我们将上述 频率分布表中的有关信息用下面的图形 表示: 频率
组距
0.5 0.4 0.3 0.2 0.1
O
0.5 1 1.5 2 2.5 3 3.5 4 4.5
月均用水量/t
频率 组距
0.5 0.4 0.3 0.2 0.1
思考:对一组给定的样本数据,频率分 布直方图的外观形状与哪些因素有关? 在居民月均用水量样本中,你能以1为组 距画频率分布直方图吗?
与分组数(或组距)及坐标系的单位长 度有关. 频率
0.4 0.3 0.2 0.1
O
组距
1
2
3
4
5 月均用水量/t
画频率分布直方图的步骤
1、求极差(即一组数据中最大值与最小值的差) 知道这组数据的变动范围4.3-0.2=4.1 2、决定组距与组数(将数据分组) 组距:指每个小组的两个端点的距离 组数:将数据分组,当数据在100个以内时, 按数据多少常分5-12组。 组数= 极差 4.1 8.2 3、 将数据分组(8.2取整,分为9组)
原始记录如下:
(1)甲运动员得分:
13, 51, 23, 8, 26, 38, 16, 33, 14, 28, 39
(2)乙运动员得分: 49,24,12,31,50,
31,44,36,15,37,25,36,39
相关文档
最新文档