证明哥德巴赫猜想
哥德巴赫猜想成立的证明

哥德巴赫猜想成立的证明因为,科学是如实反映客观事物固有规律的系统知识,所以,本文只谈客观事物的固有规律,不谈任何人的断言;只欢迎大家用具体事例进行反驳,拒绝任何人以任何高腔压人.一,题意分析哥德巴赫猜想分为:猜想1,不小于6的偶数,可以表示为两个奇素数之和;猜想2,不小于9的奇数,可以表示为三个奇素数之和.只要猜想1成立,猜想2自然就成立.如果猜想1成立,大于9的任意奇数W,W-6之内的素数,都能够与所对应的偶数的素数对组成该奇数的素数组.如,奇数19,19-6=13,13之内有奇素数3,5,7,11,13.这些奇素数有:3+16=3+(3+13)=3+(5+11);5+14=5+(3+11)=5+(7+7);7+12=7+(5+7);11+8=11+(3+5);13+6=13+(3+3).所以,本文只谈猜想1.猜想1,涉及两个术语:偶数,素数.偶数,指能被2整除的数,叫偶数.素数,只能被1和自身数整除的数,叫素数.从定义看,这两个定义,没有丝毫的联系,无法直接进行证明.那么,要证明该论题,必须创造条件,在相互联系的基础上,才能进行:为了达到统一,我们还要看偶数除以小于它根号以下所有素数的余数组合,我们把小于偶数根号以下的所有素数,简称为小素数.如令偶数为M,M/2余0,M/3余2,M/5余1,M/7余2,由这4个小素数有余数组合,固定了偶数为86,或86+210N的这一类偶数.素数,只能被1和自身数整除的数,叫素数.与素数相对应的数为合数,合数是除了能被1和自身数整除外,还能被其它数整除的数.令任意合数为B,B能被1和自身数以外的其它数整除时,必然其中一个约数为B平方根以下的数D,D或者为素数,或者为合数,当D为合数时,B必然能被组成D的素因子整除,也就是说:当B能被B平方根以下的任意素数整除时,B为合数;当A不能被A平方根以下的所有素数整除时,A为素数,(这里的A>3).哥德巴赫猜想,是数学证明题,但又不同于其它的所有数学证明题:其它数学证明题是直观的,实在的.该题是抽象的,活动的.所谓抽象,是指不小于6的偶数,指大于4的所有偶数,具有无穷性,不固定性.该题的偶数的特性是不一样的,这里所说的特性,是指偶数除以它根号以下的所有素数的余数,是活动的,变化多端的.居于这两个方面,我们说偶数具有抽象性.在其它任何地方,提起偶数,只须要有一个定义”能被2整除的数,叫偶数”,就足够了.而这个题的偶数,涉及它能否表示为两个奇素数之和,素数是只能被1和自身数整除的数,或者说它是不能被自身数以外的其它素数整除的数,也可以说它是不能被它根号以下的素数整除的数,还可以说它是不能被小于它的素数整除的数.即,在该题谈论偶数,必须考虑它除以它根号以下所有素数的余数,我们把这种考虑叫做偶数的综合特性.所谓活动的,是指素数是活动的,它不同于整数,整数是除以1余0的数,可以用公差为1的等差数列表示,每一个项都是实实在在存在的,素数是不能用任何等差数列来表示,也就是说不能说任意一个等差数列的数都是素数;或者说,偶数内的大部份数不是素数,而大部份素数相对于具体偶数的对称数也不是素数,即,本身数是否是素数,因不固定而活动;对称数是否是素数,也因固不定而活动.或者说,素数的检验标准不同于整除,不同于偶数,决定了素数在偶数之内是活动的.衡量尺度,素数的最低(衡量尺度)是不能被它根号以下的所有小素数整除,素数相对于偶数来说,我们用不能被小于它的素数整除,统一到不能被偶数(衡量尺度)根号以下的素数整除.因为,抽象与活动,所以,我们不能象其它算术一样,出现一个具体的计算公式,计算出某一个具体的偶数必然有几个素数对.只能说明不小于6的偶数,必然存在素数对,或者说近似素数对个数.二,偶数的素数对定理我们把两个素数之和等于偶数的这两个素数,称为素数对.如,3+5=8,把3+5称为8的素数对.令不小于6的任意偶数为M,小于√M的素数为小素数。
哥德巴赫 猜想

哥德巴赫猜想1. 引言哥德巴赫猜想是一个有关质数的数学问题,最早由德国数学家哥德巴赫在1742年提出。
该猜想的内容是:任何一个大于2的偶数都可以表示为两个质数之和。
哥德巴赫猜想虽然至今尚未被证明,但它是数论领域的一个重要问题,也是数学界最著名的未解问题之一。
本文将对哥德巴赫猜想的历史背景、相关概念、研究进展以及一些证据进行介绍和分析。
2. 历史背景哥德巴赫猜想得名于德国数学家克里斯蒂安·哥德巴赫(Christian Goldbach),他在一封给欧拉的信中提出了这个猜想。
这封信发表于1742年,信中写道:“我猜想每个偶数都可以表示为两个质数之和。
”然而,哥德巴赫并没有给出任何证明或者推理。
自哥德巴赫提出这个猜想以来,许多数学家都对此展开了研究,试图证明或者推翻这个猜想。
然而,尽管有许多重要的进展,但至今尚未找到一个通用的证明方法。
3. 相关概念在进一步讨论哥德巴赫猜想之前,我们先来了解一些相关的数学概念。
3.1. 偶数偶数是能够被2整除的整数,例如2、4、6等。
根据哥德巴赫猜想,任何一个大于2的偶数都可以表示为两个质数之和。
3.2. 质数质数是只能被1和自身整除的整数,例如2、3、5、7等。
质数是数论中的基本概念,对于研究哥德巴赫猜想至关重要。
4. 研究进展自哥德巴赫猜想提出以来,数学家们一直在尝试证明或者推翻这个猜想。
以下是一些重要的研究进展:4.1. 哥德巴赫猜想的证明虽然哥德巴赫猜想尚未被证明,但已经有一些特殊情况下的证明。
例如,哥德巴赫猜想在大于2的偶数小于4×10^18时已经被证明成立。
这个证明是由数学家陈景润在2013年提出的。
4.2. 数值验证除了部分特殊情况下的证明外,数学家们还通过计算机进行了大量的数值验证。
他们使用计算机算法生成了巨大的质数表,并验证了哥德巴赫猜想在一定范围内的成立性。
4.3. 相关猜想在研究哥德巴赫猜想的过程中,数学家们提出了一些相关的猜想。
陈景润对哥德巴赫猜想的证明

陈景润对哥德巴赫猜想的证明这个问题是德国数学家哥德巴赫(C.Goldbach,1690-1764)于1742年6月7日在给大数学家欧拉的信中提出的,所以被称作哥德巴赫猜想。
同年6月30日,欧拉在回信中认为这个猜想可能是真的,但他无法证明。
从此,这道数学难题引起了几乎所有数学家的注意。
哥德巴赫猜想由此成为数学皇冠上一颗可望不可及的“明珠”。
“用当代语言来叙述,哥德巴赫猜想有两个内容,第一部分叫做奇数的猜想,第二部分叫做偶数的猜想。
奇数的猜想指出,任何一个大于等于7的奇数都是三个素数的和。
偶数的猜想是说,大于等于4的偶数一定是两个素数的和。
”(引自《哥德巴赫猜想与潘承洞》)哥德巴赫猜想貌似简单,要证明它却着实不易,成为数学中一个著名的难题。
18、19世纪,所有的数论专家对这个猜想的证明都没有作出实质性的推进,直到20世纪才有所突破。
直接证明哥德巴赫猜想不行,人们采取了“迂回战术”,就是先考虑把偶数表为两数之和,而每一个数又是若干素数之积。
如果把命题"每一个大偶数可以表示成为一个素因子个数不超过a个的数与另一个素因子不超过b个的数之和"记作"a+b",那么哥氏猜想就是要证明"1+1"成立。
1900年,20世纪最伟大的数学家希尔伯特,在国际数学会议上把“哥德巴赫猜想”列为23个数学难题之一。
此后,20世纪的数学家们在世界范围内“联手”进攻“哥德巴赫猜想”堡垒,终于取得了辉煌的成果。
到了20世纪20年代,有人开始向它靠近。
1920年,挪威数学家布爵用一种古老的筛选法证明,得出了一个结论:每一个比6大的偶数都可以表示为(9+9)。
这种缩小包围圈的办法很管用,科学家们于是从(9十9)开始,逐步减少每个数里所含质数因子的个数,直到最后使每个数里都是一个质数为止,这样就证明了“哥德巴赫猜想”。
1920年,挪威的布朗(Brun)证明了“9+9 ”。
1924年,德国的拉特马赫(Rademacher)证明了“7+7 ”。
证明哥德巴赫猜想

证明哥德巴赫猜想杨哲为了证明哥德巴赫猜想,采用了偶数裂项分析法,把一个偶数分裂为两个部分,再把这两个部分逐步变换成为两个素数,而且这个偶数的大小恰好与这两个素数的和相等。
在偶数裂项分析过程中有两种情况,一种是盈亏平衡,偶数恰好与这两个素数的和相等;另一种是盈亏不平衡,使偶数与两个素数的和不相等。
依据两个素数之间的大小关系,建立兄弟素数定理,用来平衡在偶数裂项分析中出现的盈亏不平衡,解决了盈亏不平衡问题。
得到的结论是,哥德巴赫猜想命题成立,即任意一个大于2的偶数都可以表示成两个素数之和。
1 证明方法简介1.1 偶数裂项分析法:把偶数2n分裂为n+n=(p1+t)+(p2-t)=p1+p2的分析方法,定义为偶数裂项分析法。
其中n为任意自然数,p1,p2(p1≤p2)为任意二素数,t为满足以上关系式的自然数。
偶数裂项分析法的关键是要找到合适的p1,p2,t使得以上的等式成立,用以下两种方法寻找p1,p2,t比较简便,其中求素数值要用筛法。
最小t值法:当p1,p2二素数的大小相近时t取得最小值,比喻:100=50+50=(47+3)+(53-3)=47+53(t=3,p1=47,p2=53此时两素数大小相近)最大t值法:当p1,p2二素数的大小相远时t取得最大值,比喻:100=50+50=(3+47)+(97-47)=3+97(t=47,p1=3,p2=97此时两素数大小相远)1.2 兄弟素数定理(简称BP定理):1.2.1 例表分析:p1=p1´+k1=11=11+0=7+4=5+6=3+8,p2=p2´+k2=13=13+0=11+2=7+6=5+8=3+10从例表分析可以看出,对于任意一个素数p至少存在一个比p小的素数p´与一个自然数k使得k,p´的和与这个素数p相等,所以有如下的BP定理。
1.2.2 BP定理:定义满足以上条件的素数p为兄素数,素数p´为弟素数,定义自然数k为差量数,所以兄弟素数定理表述如下: 任意一个兄素数p,总是可以表达为一个弟素数p´与一个差量数k之和。
哥德巴赫猜想之证明

哥德巴赫猜想之证明周密先看一个矩阵:1934年,一个来自东印度(现在的孟加拉国)的普通学者——钱德拉,在数论领域中取得了一个辉煌成就,这个成就使他青史留名,永垂不朽.钱德拉的正方形筛子的第一横行是首项为4,相邻两数之差为3的等差数列:4,7,10,…(可以一直写下去,永远写不到头).第二行,第三行,……以后的任何一行也都是等差数列,只不过相邻两数之差逐渐变大,分别是5,7,9,11,13,…而且都是奇数.4 7 10 13 16 19 22 25 ……7 12 17 22 27 32 37 42 ……10 17 24 31 38 45 52 59 ……13 22 31 40 49 58 67 7616 27 38 49 60 71 82 93 ……19 32 45 58 71 84 97 110 ……………………………………………………这个方筛的奥妙在于:如果某个自然数N出现在表中,那么2N+1肯定不是质数,如果N 在表中不出现,那么2N+1肯定是质数.我们来看几个实例.既然此表从4开始,跳过了1,2,3这三个数,当然它们是决不会在表中出现的.这时,2×1+1=3,2×2+1=5, 2×3+1=7.你看, 3,5,7都是质数.再看出现在表中的数17,它的2倍再加1等于35,35不是质数.几乎所有的质数都可从表中逆推出来.我据此做出了几个类似矩阵(简化一些):5 8 11 14 17 20,,,,,,,8 13 18 23 28 33,,,。
,,11 18 25 32 39 46,,,,,,,,,,,,,,,,,,,再此矩阵中若干自然数N出现在此矩阵中则2N—1肯定不是质数,若不出现则2N—1必然为质数,因为第一个矩阵5 不出现,第二个矩阵6不出现而2*5+1=2*6—1,所以成立。
同理,再列出一个矩阵:6 9 12 15 18,,,,,9 14 19 24 29,,,,12 19 26 33 40,,,,,,,,,,,可得出若自然数N出现在此矩阵中则2*N—3肯定不是质数,若不出现则2N—3必为质数,道理同上。
哥德巴赫猜想的证明

“1+1”张耀洲提要:他证明了任两个奇素数和的集合等于全体大于4的偶数集合。
从而证明了哥德巴赫猜想。
符号:Z 是全体自然数的集合;(P k ,P )1(+K )为第k(k+1)个奇素数;P K (P M )为小于2P k (2P )1(+k )的最大素数;Κ,Ν,Μ∈Z 。
引理1:集合A={2i│i=0,1,2,...n }任两个元素和的集合等于B={2i+2i│i=0,1,2,..n };若有B ,则有A 。
引理2:集合A={2i│i=0,1,2,...n }任两个元素差中全体非负数的集合等于{0,2,4,...2n}。
定理1:設P n 为第n 个奇素数,P N 为小于2P n 的最大素数,则集合E ={(P i +P j )│2≤i+j≤2Ν+2}⊇{6,8,10,...P N +7}。
⑴定理2:設P n 为第n 个奇素数,P N 为小于2P n 的最大素数,则集合F ={(P i -P j )│2≤i+j≤2Ν+2}⊇{0,2,4,...P n +3}。
证明:用翘翘板归纳法证明定理1,2。
一,当n=1时,P 1=3,2P 1=6,P N =5,Ν=2,2Ν+2=6;F ⊇{0,2,4,6},E ⊇{6,8,10,12};当n=2时,F ⊇{0,2,4,6,8},E ⊇{6,8,10,12,14};当n=3时,F ⊇{0,2,4,...10},E ⊇{6,8,10,...20}.∴n=1,2,3时,定理1,2都成立。
二,按照归纳法假设,当n=k(k>2)时,集合F k ={(P i -P j )│2≤i+j≤2Κ+2}⊇{0,2,4,...P k +3}。
由引理1F 十={(P 1i -P 0i )+(P 1j -P 0j )│2≤i+j≤2Κ+2}⊇F 0={0,2,4,...2P k +6}。
∵(P 1i -P 0i )+(P 1j -P 0j )=(P 1i +P 1J )-(P 0i +P 0j )(2≤i+j≤2Κ+2)。
哥德巴赫猜想证明(DOC)

哥德巴赫猜想证明什么是哥德巴赫猜想:“凡大于2的偶数都能表示两素数之和”。
素数既是质数,像2、5、7、11、13等等,像大于2的偶数10,有两素数5+5之和;3+7之和形式。
偶数20有两素数17+3,13+7形式,都能表示两素数之和,我们还可以看出像偶数10有1+9,2+8,3+7,4+6,5+5这些形式之和,其中必有一对两素数之和3+7,5+5,我们可画图表示出来:5为偶数10的中心点。
从图中可以看出在像偶数10这段各数中,从两头(1和9)向内对应两数相加其和等于10,其它偶数也是这规律。
所有的奇数能表示2n+1形式,如果两奇数(2n1+1)和(2n2+1)x相乘所得的数必是奇合数,这个数是:(2n1+1)×(2n2+1)=4n1n2+2n1+2n2+1=2(n1+2n1n2+n2)+1,因为1既不是质数也不是合数,所以n1,n2不能为0,当n1=1,n2=1时,其代入上式奇合数为9,当n1=1不变n2=2时,奇合数为15,当n1=1不变n2=3时,其奇合数为21,在奇合数为9的式子2(n1+2n1n2+n2)+1中的(n1+2n1n2+n2)的值为4 ,即在n1=1,n2=1时。
在奇合数为15的式子2(n1+2n1n2+n2)+1中的(n1+2n1n2+n2)的值为7,即在当n1=1不变n2=2时。
在奇合数为21的式子2(n1+2n1n2+n2)+1中的(n1+2n1n2+n2)的值为10,即在当n1=1不变n2=3时.那么再继续当n1=1,n2=5时式子(n1+2n1n2+n2)的值为13,当n1=1不变n2=5时(n1+2n1n2+n2)等于16,。
也就是说当n1=1值不变,n2的值从1一次增加1值时,其所得的奇合数式子2(n1+2n1n2+n2)+1中的(n1+2n1n2+n2)的值随着依次从4增加3个值。
像上面的举例4、7、10、13、16、-------它们依次差值为3。
哥德巴赫猜想证明最终版

⎡ ⎤ ⎢ n ⎥ m ⎢ ⎥ =1 1 + (− ) m ⎢ pi ⎥ ∏ ⎢ ⎣ i =1 ⎥ ⎦
当π
( n ) < m < π ( n ) 时,有容斥原理可以知道这个公式表示 n 减去 n 以内 m 个质数倍数
的个数也就是还剩有质数和 1。故
⎡ n ⎤ ⎡ n ⎤ ⎡n⎤ j ≥ n−∑⎢ ⎥ +∑⎢ ⎥− ∑ ⎢ ⎥+ i =1 ⎣ pi ⎦ i< j ⎣ ⎢ pi p j ⎦ ⎥ i< j <k ⎣ ⎢ pi p j pk ⎦ ⎥
⎡ n ⎤ ⎥ ⎣ pm ⎦
p1 , p2 ,
m m
pm 表示正整数N的前部素数,m 为前部素数的个数。由容斥原理可知
m
∪ Ai = ∑ Ai − ∑ Ai ∩ Aj +
i =1 i =1 i< j
i< j <k
∑
m
Ai ∩ Aj ∩ Ak −
+ ( −1)
m −1
∩A
i =1
m
i
其中
∪A
i =1
m
i =1 i< j
m
m
i< j<k
∑
m
Ai ∩ Aj ∩ Ak +
+ ( −1)
m
∩A
i =1
m
i
−1
即:
⎡ n ⎤ m ⎡ n ⎤ ⎡n⎤ π ( n) = m + n − ∑ ⎢ ⎥ + ∑ ⎢ ⎥− ∑ ⎢ ⎥+ i =1 ⎣ pi ⎦ i< j ⎣ ⎢ pi p j ⎦ ⎥ i< j<k ⎣ ⎢ pi p j pk ⎦ ⎥
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
证明哥德巴赫猜想
作者:朱省超地址:宁波市镇海区庄市街道毓秀路25号Email:zhuxingchao362@ QQ675773030
摘要:偶数A若只能由2 整除(除它本身和1,下同),分为1、A-1都为素数;A-1(B)若只能由3整除,分为3、B-2
都为素数;B-2若只能由5整除,分为5、B-4都为素数……
直到找到某一组素数,因为偶数一定是某一素数的倍数,
所以一定可以找到一组素数。
然后我介绍我的方法。
关键词:哥德巴赫猜想,证明,方法解释
分类号:MR(2000) 00A07 11A07 11A41 11N05 00A05 00A30 11N80 11Y11 11Y05
中图分类号:O156.1
哥德巴赫猜想:任何一个大于2的偶数可以表示为两个素数之和。
以下是我的证明:
→任一偶数都是某一素数的倍数
→定义任一偶数为A
→只为2的倍数(除它本身和1,下同)
→分为1、A-1(B)
→成立
→否则
→若B只为3(和另一素数,下同)的倍数
→分为3、B-2
→成立
→否则
→若B-2只为5的倍数
→分为5、B-4
→成立
→否则
→若B-4只为7的倍数
→分为7、B-6
→成立
→否则
→若B-4只为11的倍数
→分为11、B-10
→成立
……
直到最终找到一组素数
证明结束
以下是方法的解释:
定义:某数对某一素数a是素数定义为不是a的倍数。
某数对某一素数a是非素数定义为是a的倍数。
→把偶数A分为1,B 它们对2是素数
→若B对3非素数
→分为3,B-2 它们对3是素数
→若B-2对5非素数
→分为5,B-4 它们对5是素数
→若B-4对7非素数
→分为7,B-6 它们对7是素数
→若B对11非素数
→分为11,B-10 它们对11是素数
……
直到两数对所有素数是素数
因为任一偶数必是某一素数的某一倍数,任一倍数又定可以分为素数的倍数,所以任一偶数必可以分为一对素数的和。
现在解释我用的方法:
我的方法:
1、支配度→试验
支配度→试验
……
直到出最终解决方案
2、最终解决方案是最好方案
3、支配是所有联系的客观方式
4、试验是所有方法的实现方式
5、支配度是一切方法的衡量标准
6、先试验后支配度
7、因果可以解释我的所有方法。
现在我对我的方法进行解释:
现在我解释我的证明方法出来:
偶数=素数+素数(试验)
违背因果(支配度→试验)(先试验后支配度)
改为素数+素数=偶数(试验)
但是所有偶数都是这样的吗?(支配度→试验)
任一偶数=奇数+奇数(试验)
奇数+奇数=素数+素数(试验)
证明这个(支配度→试验)
任一奇数+任一奇数=素数+素数(试验)
无从证明(支配度→试验)
极小到极大(试验)
数学规律:0→ (支配度→试验)
奇数+奇数→1+任一奇数(试验)
任一奇数再变成素数(支配度→试验)
从2开始依次证明
就有了我的证明。
/p/3378640067?pid=59544198839&cid=0#59544198839
朱省超
2014-10-29。