(完整)人教版八年级数学上全等三角形课时练习及答案.docx
八年级数学上册《第十二章全等三角形》练习题-带答案(人教版)

八年级数学上册《第十二章全等三角形》练习题-带答案(人教版)姓名班级学号成绩一、选择题:1.如图,小明书上的三角形被墨水污染了,他根据所学知识画出了完全一样的一个三角形,他的依据是()A.SAS B.ASA C.SSS D.AAS 2.小明同学在学习了全等三角形的相关知识后发现,只用两把完全相同的长方形直尺就可以作出一个角的平分线.如图:一把直尺压住射线OB,另一把直尺压住射线OA并且与第一把直尺交于点P,小明说:“射线OP就是∠BOA的角平分线.”他这样做的依据是( )A.角的内部到角的两边的距离相等的点在角的平分线上B.角平分线上的点到这个角两边的距离相等C.三角形三条角平分线的交点到三条边的距离相等D.以上均错误3.如图,△ABD≌△CDB,下面四个结论中,不正确的是( )A.△ABD和△CDB的面积相等B.△ABD和△CDB的周长相等C.∠A+∠ABD=∠C+∠CBD D.AD∥BC,且AD=BC4.如图,AC是△ABC和△ADC的公共边,要判定△ABC≌△ADC,还需要补充的条件不能是()A.AB=AD,∠1=∠2,B.AB=AD,∠3=∠4C .∠1=∠2,∠3=∠4D .∠1=∠2, ∠B=∠D5.如图,AD 是ABC 的中线,//CE AB 交AD 的延长于点E ,AB=5,AC=7,则AD 的取值可能是( )A .3B .6C .8D .126.如图,D 是AB 上一点,DF 交AC 于点E ,DE=FE ,FC||AB ,AB=5,BD=1,则CF 的长度为( )A .2B .2.5C .4D .57.如图,在△ABC 中,AB=AC ,AB >BC ,点D 在BC 边上,BD=12DC ,∠BED=∠CFD=∠BAC ,若S △ABC =30,则阴影部分的面积为( )A .5B .10C .15D .208.如图,在△ABC 中,点D 为BC 的中点,△AEF 的边EF 过点C ,且AE=EF ,AB ∥EF ,AD 平分∠BAE ,CE=3,AB=13,则CF=( )A .10B .8C .7D .6二、填空题: 9.如图,在 ACB 中 ACB 90︒∠= , AC BC = 点 C 的坐标为 ()2,0- ,点 A 的坐标为 ()8,3- ,点 B 的坐标是 .10.如图,在ABC 中45ABC ∠=︒,F 是高AD 和BE 的交点8AC =cm ,则线段BF 的长度为 .11.如图,D 为Rt △ABC 中斜边BC 上的一点,且BD=AB ,过D 作BC 的垂线,交AC 于E ,若AE=12cm ,则DE 的长为 cm .12.如图,在△ABC 中,点M 、N 是∠ABC 与∠ACB 三等分线的交点,若∠A=60°,则∠BMN 的度数是 .三、解答题:13.已知,如图,∠C =∠D =90°,E 是CD 的中点,AE 平分∠DAB.求证:BE 平分∠ABC.14.如图,要测量池塘两岸相对的两点A,B 的距离,可以在池塘外取AB 的垂线BF 上的两点C,D,使BC=CD,再画出BF 的垂线DE,使E 与A,C 在一条直线上,这时测得DE 的长就是AB 的长。
人教版八年级数学(上册)12.2三角形全等的判定(第1课时) 课时习题(附参考答案)

12.2三角形全等的判定
(第1课时)
1.如图所示,已知∠ABC,求作:∠A‘B’C‘,使得∠A‘B’C‘=∠ABC.
2.如图所示,AB=CD,AD=CB,求证:△ABD≌△CDB.
3.已知△ABC,求作△A‘B‘C’,使得△A‘B‘C’≌△ABC.
4. 已知如图所示,EF=BC,ED=BA,FA=CD.
求证:①△EDF≌△BAC.
②EF∥BC.
③DE∥AB.
5.已知如图所示,AB=AC,BD=CD.
求证:∠BAD=∠CAD.
6.如图所示,AB=AC,AE=AD,BD=CE.找出图中的全等三角形,并给予证明.
参考答案
1.略
2. 在△ABD 与△CDB 中,
因为:⎪⎩
⎪⎨⎧===CB AD BD BD CD AB ,
所以△ABD ≌△CDB.
3.略;
4. ①因为FA=CD ,
所以FA+AD=CD+AD ,即FD=AC
在△EDF 与△BAC 中.
⎪⎩
⎪⎨⎧===AC FD AB ED BC EF
∴△EDF ≌△BAC.(SSS )
②∵△EDF ≌△BAC
∴∠F=∠C (全等三角形对应角相等) ∴EF ∥BC.(内错角相等,两直线平行) ③∵△EDF ≌△BAC
∴∠EDF=∠BAC (全等三角形对应角相等) ∴ED ∥BA.
(内错角相等,两直线平行)
5. 在△ABD 与△ACD 中,
因为:⎪⎩
⎪⎨⎧===AD AD CD BD AC AB ,
所以△ABD ≌△ACD.(SSS )
∠BAD=∠CAD (全等三角形对应角相等)
6.①△ABD ≌△ACE.
②△ABE ≌△ACD。
八年级初二上册数学人教版课时练《 三角形全等的判定》03(含答案)

《12.2 三角形全等的判定》课时练一、选择题(本大题共12道小题)1.如图,已知AB=AD,若利用SSS证明△ABC≌△ADC,则需要添加的条件是()A.AC=ACB.∠B=∠DC.BC=DCD.AB=CD2.如图所示,∠C=∠D=90°,若要用“HL”判定Rt△ABC与Rt△ABD全等,则可添加的条件是()A.AC=AD B.AB=ABC.∠ABC=∠ABD D.∠BAC=∠BAD3.如图,点B,E,C,F在同一直线上,AB∥DE,∠A=∠D,那么添加下列一个条件后,仍无法判定△ABC≌△DEF的是()A.BE=CF B.∠ACB=∠FC.AC=DF D.AB=DE4.如图所示,某同学把一块三角形的玻璃不小心打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带哪一块去()A.①B.②C.③D.①和②5.如图,在正方形ABCD中,连接BD,点O是BD的中点.若M、N是边AD上的两点,连接MO、NO,并分别延长交边BC于两点M′、N′,则图中的全等三角形共有()A.2对B.3对C.4对D.5对6.如图,点B,E在线段CD上,若∠C=∠D,则添加下列条件,不一定能使△ABC≌△EFD的是()A.BC=FD,AC=ED B.∠A=∠DEF,AC=EDC.AC=ED,AB=EF D.∠A=∠DEF,BC=FD7.如图,已知∠ABC=∠DCB,添加以下条件,不能判定△ABC≌△DCB的是()A.∠A=∠DB.∠ACB=∠DBCC.AC=DBD.AB=DC8.如图,AB=AC,AD=AE,BE=CD,∠2=110°,∠BAE=60°,则下列结论错误的是()A.△ABE≌△ACD B.△ABD≌△ACEC.∠C=30°D.∠1=70°9.如图,点A,E,B,F在同一直线上,在△ABC和△FED中,AC=FD,BC=ED,当利用“SSS”来判定△ABC和△FED全等时,下面的4个条件中:①AE=FB;②AB=FE;③AE =BE;④BF=BE,可利用的是()A.①或②B.②或③C.①或③D.①或④10.如图,在等腰直角△ABC中,∠C=90°,点O是AB的中点,且AB=6,将一块直角三角板的直角顶点放在点O处,始终保持该直角三角板的两直角边分别与AC、BC相交,交点分别为D、E,则CD+CE等于()A. 2 B. 3 C.2 D.611.现已知线段a,b(a<b),∠MON=90°,求作Rt△ABO,使得∠O=90°,OA=a,AB=b.小惠和小雷的作法分别如下:小惠:①以点O为圆心、线段a的长为半径画弧,交射线ON于点A;②以点A为圆心、线段b的长为半径画弧,交射线OM于点B,连接AB,△ABO即为所求.小雷:①以点O为圆心、线段a的长为半径画弧,交射线ON于点A;②以点O为圆心、线段b的长为半径画弧,交射线OM于点B,连接AB,△ABO即为所求.则下列说法中正确的是()A.小惠的作法正确,小雷的作法错误B.小雷的作法正确,小惠的作法错误C.两人的作法都正确D.两人的作法都错误12.如图,∠AOB=120°,OP平分∠AOB,且OP=2.若点M,N分别在OA,OB上,且△PMN为等边三角形,则满足上述条件的△PMN有()A.1个B.2个C.3个D.3个以上二、填空题(本大题共6道小题)13.如图,在△ABC中,AD⊥BC于点D,要使△ABD≌△ACD,若根据“HL”判定,还需要添加条件:____________.14.如图,已知CD=CA,∠1=∠2,要使△ECD≌△BCA,需添加的条件是__________(只需写出一个条件).15.如图,在四边形ABCD 中,∠B =∠D =90°,AB =AD ,∠BAC =65°,则∠ACD 的度数为________.16.如图,在△ABC 中,∠C =90°,AC =BC ,AD 是∠BAC 的平分线,DE ⊥AB ,垂足为E .若△DBE 的周长为20,则AB =________.17.如图,在Rt ABC △中,90C ∠=︒,以顶点B 为圆心,适当长度为半径画弧,分别交AB BC ,于点M N ,,再分别以点M N ,为圆心,大于12MN 的长为半径画弧,两弧交于点P ,作射线BP 交AC 于点D .若30A ∠=︒,则BCDABDS S =△△__________.18.如图,∠C =90°,AC =10,BC =5,AX ⊥AC ,点P 和点Q 是线段AC 与射线AX 上的两个动点,且AB =PQ ,当AP =________时,△ABC 与△APQ 全等.三、解答题(本大题共3道小题)19.如图,BD ,CE 是△ABC 的高,且BE =CD .求证:Rt △BEC ≌Rt △CDB .20. 如图,AD ∥BC ,AB ⊥BC 于点B ,连接AC ,过点D 作DE ⊥AC 于点E ,过点B 作BF ⊥AC 于点F .(1)若∠ABF =63°,求∠ADE 的度数; (2)若AB =AD ,求证:DE =BF +EF .21.如图,ABC △中,点E 在BC 边上,AE AB =,将线段AC 绕点A 旋转到AF 的位置,使得CAF BAE ∠=∠,连接EF ,EF 与AC 交于点G . (1)求证:EF BC =;(2)若65ABC ∠=︒,28ACB ∠=︒,求FGC ∠的度数.参考答案一、选择题1.C 2.A 3.B 4.C 5.C 6.C 7.C 8.C 9.A 10.B11.A12.D二、填空题 13.AB =AC14.答案不唯一,如CE =CB 15.25° 16.20 17.1218.5或10 三、解答题19.证明:∵BD ,CE 是△ABC 的高, ∴∠BEC =∠CDB =90°. 在Rt △BEC 和Rt △CDB 中,⎩⎪⎨⎪⎧BC =CB ,BE =CD ,∴Rt △BEC ≌Rt △CDB(HL).20.解:(1)∵AD ∥BC ,AB ⊥BC , ∴∠ABC =∠BAD =90°. ∵DE ⊥AC ,BF ⊥AC , ∴∠BFA =∠AED =90°.∴∠ABF +∠BAF =∠BAF +∠DAE =90°. ∴∠DAE =∠ABF =63°.∴∠ADE =27°.(2)证明:由(1)得∠DAE =∠ABF ,∠AED =∠BFA =90°. 在△DAE 和△ABF 中,⎩⎪⎨⎪⎧∠DAE =∠ABF ,∠AED =∠BFA ,AD =BA ,∴△DAE ≌△ABF(AAS). ∴AE =BF ,DE =AF .∴DE =AF =AE +EF =BF +EF .21.(1)∵CAF BAE ∠=∠, ∴BAC EAF ∠=∠,∵AE AB AC AF ==,, ∴BAC EAF △≌△, ∴EF BC =.(2)∵65AB AE ABC =∠=︒,, ∴18065250BAE ∠=︒-︒⨯=︒, ∴50FAG ∠=︒, ∵BAC EAF △≌△, ∴28F C ∠=∠=︒, ∴502878FGC ∠=︒+︒=︒.。
2021年人教版数学八年级上册12.1《全等三角形》课时练习(含答案)

人教版数学八年级上册12.1《全等三角形》课时练习一、选择题1.下列说法不正确的是()A.如果两个图形全等,那么它们的形状和大小一定相同。
B.图形全等,只与形状、大小有关,而与它们的位置无关。
C.全等图形的面积相等,面积相等的两个图形是全等形。
D.全等三角形的对应边相等,对应角相等。
2.如图,若△ABC≌△DEF,则∠E等于()A.30°B. 50°C.60°D.100°3.边长都为整数的△ABC≌△DEF,AB与DE是对应边,AB=2,BC=4,若△DEF的周长为偶数,则 DF的取值为()A.3B.4C.5D.3或4或54.如图所示,在△ABC中,D、E分别是边AC、BC上的点,若△ADB≌△EDB≌△EDC,则∠C的度数为()A.15°B.20°C.25°D.30°5.如下图,△ABC≌△ADE,∠B=70°,∠C=26°,∠DAC=20°,则∠EAC=( )A.20°B.64°C.30°D.65°6.已知△ABC≌△DEF,BC=EF=6cm,△ABC的面积为18 cm2,则EF边上的高的长是( ).A.3cmB.4cmC.5cmD.6cm7.如图已知△ABE≌△ACD, AB=AC, BE=CD,∠B=40°,∠AEC=120°则∠DAC的度数为()A.80°B.70°C.60°D.50°8.已知图中的两个三角形全等,则∠1等于()A.50°B.58°C.60°D.72°9.如图(1),已知两个全等三角形的直角顶点及一条直角边重合.将△ACB绕点C按顺时针方向旋转到△A′CB′的位置,其中A′C交直线AD于点E,A′B′分别交直线AD、AC于点F、G,则在图(2)中,全等三角形共有()A.5对 B.4对 C.3对 D.2对10.如图,△ABE、△ADC和△ABC分别是关于AB,AC边所在直线的轴对称图形,若∠1:∠2:∠3=7:2:1,则∠α的度数为( )A.90°B.108°C.110°D.126°二、填空题11.如图所示,△AOB≌△COD,∠AOB=∠COD,∠A=∠C,则∠D的对应角是__________,图中相等的线段有__________.12.如图,△ABC≌△DEF,请根据图中提供的信息,写出x=________13.如图所示,已知△ABC≌△DEF,AB=4cm,BC=6cm,AC=5cm,CF=2cm,∠A=70°,∠B=65°,则∠D=__________,∠F=__________,DE=__________,BE=__________.14.如图,△ABC中,点A的坐标为(0,1),点C的坐标为(4,3),如果要使△ABD与△ABC 全等,那么点D的坐标是.三、作图题15.如图,把大小为4×4的正方形方格图形分别分割成两个全等图形,例如图①,请在下图中,沿着虚线画出四种不同的分法,把4×4的正方形分割成两个全等图形.四、解答题16.如图,已知△EAB≌△DCE,AB、EC分别是两个三角形的最长边,∠A=∠C=35°,∠CDE=100°,∠DEB=10°,求∠AEC的度数.17.△ACF≌△DBE,∠E=∠F,若AD=11,BC=7,求线段AB的长.18.如图,△ABC≌△ADE,且∠CAD=10°,∠B=∠D=25°,∠EAB=120°,求∠DFB和∠DGB的度数.参考答案1.C2.D3.B4.D5.B6.D7.A8.B9.B10.B11.答案为:∠OBA,OA=OC、OB=OD、AB=CD12.答案为:2013.答案为:70° 45° 4cm 2cm14.答案为:(4,﹣1)或(﹣1,3)或(﹣1,﹣1)15.解:如图所示:16.解:因为AB、EC是对应边,所以∠AEB=∠CDE=100°,又因为∠C=35°,所以∠CED=180°-35°-100°=45°,又因为∠DEB=10°,所以∠BEC=45°-10°=35°,所以∠AEC=∠AEB-∠BEC=100°-35°=65°.17.解:∵△ACF≌△DBE,∴AC=BD,∴AC-BC=BO-BC,即AB=CD,∴2AB+BC=AO,∴2AB+7=11,∴AB=218.解:∵△ABC≌△ADE,∴∠DAE=∠BAC=(∠EAB﹣∠CAD)=. ∴∠DFB=∠FAB+∠B=∠FAC+∠CAB+∠B=10°+55°+25°=90°∠DGB=∠DFB﹣∠D=90°﹣25°=65°.综上所述:∠DFB=90°,∠DGB=65°.。
人教版八年级数学上册《12.2三角形全等的判定》练习题(附答案)

人教版八年级数学上册《12.2三角形全等的判定》练习题(附答案)一选择题1.下列条件不能判定两个直角三角形全等的是( )A. 斜边和一直角边对应相等B. 两个锐角对应相等C. 一锐角和斜边对应相等D. 两条直角边对应相等2.一块三角形玻璃被打碎后店员带着如图所示的一片碎玻璃去重新配一块与原来全等的三角形玻璃能够全等的依据是( )A. ASAB. AASC. SASD. SSS3.如图OD⊥AB于点D OP⊥AC于点P且OD=OP则△AOD与△AOP全等的理由是( )A. SSSB. ASAC. SSAD. HL4.如图为6个边长相等的正方形的组合图形则∠1+∠2+∠3的度数为( )A. 90°B. 135°C. 150°D. 180°5.如图AC是△ABC和△ADC的公共边下列条件中不能判定△ABC≌△ADC的是( )A. AB=AD,∠2=∠1B. AB=AD,∠3=∠4C. ∠2=∠1,∠3=∠4D. ∠2=∠16.如图已知点B、E、C、F在同一直线上且BE=CF,∠ABC=∠DEF那么添加一个条件后.仍无法判定△ABC≌△DEF的是( )A. AC=DFB. AB=DEC. AC//DFD. ∠A=∠D7.如图点C D在AB同侧∠CAB=∠DBA下列条件中不能判定△ABD≌△BAC的是( )A. ∠D=∠CB. BD=ACC. AD=BCD. ∠CAD=∠DBC8.如图D是AB上一点DF交AC于点E,DE=FE,FC//AB若AB=4,CF=3则BD的长是( )A. 0.5B. 1C. 1.5D. 29.如图△ABC中AB=AC,AD是角平分线BE=CF则下列说法中正确的有( )①AD平分∠EDF;②△EBD≌△FCD;③BD=CD;④AD⊥BC.A. 1个B. 2个C. 3个D. 4个10.两组邻边分别相等的四边形叫做“筝形”如图四边形ABCD是一个筝形其中AD=CD AB=CB 在探究筝形的性质时得到如下结论:③四边形ABCD的面积其中正确的结论有.( )A. 0个B. 1个C. 2个D. 3个二填空题11.如图在3×3的正方形网格中∠1+∠2=_______度.12.如图已知AB=AC,EB=EC,AE的延长线交BC于D则图中全等的三角形共有______对.13.如图所示的网格是正方形网格点A,B,C,D均落在格点上则∠BAC+∠ACD=____°.14.如图∠A=∠E,AC⊥BE,AB=EF,BE=10,CF=4则AC=______.15.如图在△ABC和△DEF中点B,F,C,E在同一直线上BF=CE,AB//DE请添加一个条件使△ABC≌△DEF这个添加的条件可以是______(只需写一个不添加辅助线).16.如图在△ABC中高AD和BE交于点H且DH=DC则∠ABC=°.17.如图在四边形ABCD中AB=AD,∠BAD=∠BCD=90∘连接AC若AC=6则四边形ABCD的面积为.18.如图∠C=90°,AC=20,BC=10,AX⊥AC点P和点Q同时从点A出发分别在线段AC和射线AX上运动且AB=PQ当AP=______时以点A,P,Q为顶点的三角形与△ABC全等.19.如图△ABC中AB=AC,AD⊥BC于D点DE⊥AB于点E BF⊥AC于点F,DE=3cm则BF=cm.20.如图所示∠E=∠F=90∘,∠B=∠C,AE=AF结论:①EM=FN②AF//EB③∠FAN=∠EAM④△ACN≌△ABM.其中正确的有______ .三解答题21.如图点A,D,C,F在同一条直线上AD=CF,AB=DE,AB//DE.求证:BC=EF.22.如图点C、F、E、B在一条直线上∠CFD=∠BEA,CE=BF,DF=AE写出CD与AB之间的关系并证明你的结论.23.如图B、C、E三点在同一条直线上AC//DE,AC=CE,∠ACD=∠B.求证:△ABC≌△CDE24.已知:如图在△ABC中BE⊥AC垂足为点E,CD⊥AB垂足为点D且BD=CE.求证:∠ABC=∠ACB.25.如图在△ABC中AB=CB,∠ABC=90°,D为AB延长线上一点点E在BC边上且BE=BD 连接AE,DE,DC.(1)求证:△ABE≌△CBD;(2)若∠CAE=30°求∠BDC的度数.答案和解析1.【答案】B【解析】直角三角形全等的判定方法:HL,SAS,ASA,SSS,AAS做题时要结合已知条件与全等的判定方法逐一验证.【解答】解:A.符合判定HL故本选项正确不符合题意;B.全等三角形的判定必须有边的参与故本选项错误符合题意;C.符合判定AAS故本选项正确不符合题意;D.符合判定SAS故本选项正确不符合题意.故选B.2.【答案】A【解析】本题考查了全等三角形的判定:全等三角形的判定方法中选用哪一种方法取决于题目中的已知条件若已知两边对应相等则找它们的夹角或第三边;若已知两角对应相等则必须再找一组对边对应相等若已知一边一角则找另一组角或找这个角的另一组对应邻边.利用全等三角形判定方法进行判断.【解答】解:这片碎玻璃的两个角和这两个角所夹的边确定从而可根据“ASA”重新配一块与原来全等的三角形玻璃.故选:A.3.【答案】D【解析】本题考查了直角三角形全等的判定的知识点解题关键点是熟练掌握直角三角形全等的判定方法HL.根据直角三角形全等的判别方法HL可证△AOD≌△AOP.【解答】解:∵OD⊥AB且OP⊥AC∴△AOD和△AOP是直角三角形又∵OD=OP且AO=AO∴△AOD≌△AOP(HL).故选D.4.【答案】B【解析】本题考查了全等图形准确识图并判断出全等的三角形是解题的关键标注字母利用“边角边”证明△ABC和△DEA全等根据全等三角形对应角相等可得∠1=∠4从而求出∠1+∠3=90°再判断出∠2=45°进而计算即可得解.【解答】解:如图在△ABC和△DEA中{AB=DE∠ABC=∠DEA=90°BC=EA,∴△ABC≌△DEA(SAS)∴∠1=∠4∵∠3+∠4=90°∴∠1+∠3=90°又∵∠2=45°∴∠1+∠2+∠3=90°+45°=135°.故选B.5.【答案】A【解析】本题考查三角形全等的判定方法判定两个三角形全等的一般方法有:SSS SAS ASA AAS等.利用全等三角形的判定定理:SSS SAS ASA AAS等逐项进行分析即可.判定两个三角形全等时必须有边的参与若有两边一角对应相等时这个角必须是两边的夹角.【解答】解:A.AB=AD∠2=∠1再加上公共边AC=AC不能判定△ABC≌△ADC故此选项符合题意;B.AB=AD∠3=∠4再加上公共边AC=AC可利用SAS判定△ABC≌△ADC故此选项不合题意;C.∠2=∠1∠3=∠4再加上公共边AC=AC可利用ASA判定△ABC≌△ADC故此选项不合题意;D.∠2=∠1∠B=∠D再加上公共边AC=AC可利用AAS判定△ABC≌△ADC故此选项不合题意;故选A.6.【答案】A【解析】解:∵BE=CF∴BE+EC=EC+CF即BC=EF且∠ABC=∠DEF∴当AC=DF时满足SSA无法判定△ABC≌△DEF故A不能;当AB=DE时满足SAS可以判定△ABC≌△DEF故B可以;当AC//DF时可得∠ACB=∠F满足ASA可以判定△ABC≌△DEF故C可以;当∠A=∠D时满足AAS可以判定△ABC≌△DEF故D可以;故选:A.根据全等三角形的判定方法逐项判断即可.本题主要考查全等三角形的判定方法 掌握全等三角形的判定方法是解题的关键 即SSS SAS ASA AAS 和HL .7.【答案】C【解析】本题考查了全等三角形的判定定理的应用 能熟记全等三角形的判定定理是解此题的关键 注意:全等三角形的判定定理有SAS ASA AAS SSS 符合SSA 和AAA 不能推出两三角形全等. 根据图形知道隐含条件BC =BC 根据全等三角形的判定定理逐个判断即可.【解答】解:A 添加条件∠D =∠C 还有已知条件∠CAB =∠DBA BC =BC 符合全等三角形的判定定理AAS 能推出△ABD ≌△BAC 故本选项错误;B 添加条件BD =AC 还有已知条件∠CAB =∠DBA BC =BC 符合全等三角形的判定定理SAS 能推出△ABD ≌△BAC 故本选项错误;C 添加条件AD =BC 还有已知条件∠CAB =∠DBA BC =BC 不符合全等三角形的判定定理 不能推出△ABD ≌△BAC 故本选项正确;D ∵∠CAB =∠DBA ∠CAD =∠DBC∴∠DAB =∠CBA 还有已知条件∠CAB =∠DBA BC =BC 符合全等三角形的判定定理ASA 能推出△ABD ≌△BAC 故本选项错误;故选C .8.【答案】B【解析】解:∵CF//AB∴∠A =∠FCE ∠ADE =∠F∴在△ADE 和△CFE 中{∠A =∠FCE∠ADE =∠F DE =FE∴△ADE ≌△CFE(AAS)∴AD =CF =3∵AB =4∴DB =AB −AD =4−3=1.故选B .根据平行线的性质 得出∠A =∠FCE ∠ADE =∠F 再根据全等三角形的判定证明△ADE ≌△CFE得出AD=CF根据AB=4CF=3即可求线段DB的长.本题考查了全等三角形的性质和判定平行线的性质的应用能判定△ADE≌△FCE是解此题的关键解题时注意运用全等三角形的对应边相等对应角相等.9.【答案】C【解析】解:∵AB=AC AD平分∠BAC∴BD=DC AD⊥BC故③④正确在RT△BDE和RT△CDF中{BE=CFBD=CD∴RT△BDE≌RT△CDF故②正确∵AD⊥BC∴∠ADC=∠CDF=90°∴BC平分∠EDF.故①错误.故选:C.根据等腰三角形的三线合一可以判断③④正确根据HL可以证明RT△BDE≌RT△CDF可以判断②正确由BC平分∠EDF得出①错误故不难得到结论.本题考查全等三角形的判定和性质等腰三角形的性质角平分线的定义等知识解题的关键是等腰三角形三线合一的性质的应用属于中考常考题型.10.【答案】C【解析】此题考查全等三角形的判定和性质关键是根据SSS证明△ABD与全等和利用SAS证明与全等.【解答】解:如图在△ABD与中故①正确;∴∠ADB=∠CDB在与中∴∠AOD=∠COD=90°∴AC⊥DB故②正确;故③错误.故选C.11.【答案】90【解析】本题考查了全等三角形的判定和性质能看懂图形是解题的关键.首先判定两个三角形全等然后根据全等三角形的性质及直角三角形的性质即可判断得出结论.【解答】解:如图所示:∵∠ACB=∠DCE=90°AC=DC BC=EC∴Rt△ACB≌Rt△DCE∴∠2=∠EDC在Rt△DCE中∠1+∠EDC=90°∴∠1+∠2=90°.12.【答案】3【解析】解:①△ABE≌△ACE∵AB=AC EB=EC∴△ABE≌△ACE;②△EBD≌△ECD∵△ABE≌△ACE∴∠ABE=∠ACE∴∠EBD=∠ECD∵EB=EC∴△EBD≌△ECD;③△ABD≌△ACD∵△ABE≌△ACE△EBD≌△ECD∴∠BAD=∠CAD∵∠ABC=∠ABE+∠BED∴∠ABC=∠ACB∵AB=AC∴△ABD≌△ACD∴图中全等的三角形共有3对.在线段AD的两旁猜想所有全等三角形再利用全等三角形的判断方法进行判定三对全等三角形是△ABE≌△ACE△EBD≌△ECD△ABD≌△ACD.本题考查学生观察猜想全等三角形的能力同时也要求会运用全等三角形的几种判断方法进行判断.13.【答案】90【解析】【解答】解:在△DCE和△ABD中∵{CE=BD=1∠E=∠ADB=90°DE=AD=3∴△DCE≌△ABD(SAS)∴∠CDE =∠DAB∵∠CDE +∠ADC =∠ADC +∠DAB =90°∴∠AFD =90°∴∠BAC +∠ACD =90°故【答案】90.【分析】本题网格型问题 考查了三角形全等的性质和判定及直角三角形各角的关系 本题构建全等三角形是关键.证明△DCE ≌△ABD(SAS) 得∠CDE =∠DAB 根据同角的余角相等和三角形的内角和可得结论. 14.【答案】6【解析】本题考查了全等三角形的判定与性质有关知识 由AAS 证明△ABC ≌△EFC 得出对应边相等AC =EC BC =CF =4 求出EC 即可得出AC 的长.【解答】解:∵AC ⊥BE∴∠ACB =∠ECF =90°在△ABC 和△EFC 中{∠ACB =∠ECF ∠A =∠E AB =EF∴△ABC ≌△EFC(AAS)∴AC =EC BC =CF =4∵EC =BE −BC =10−4=6∴AC =EC =6;故答案为6. 15.【答案】AB =ED【解析】解:添加AB =ED∵BF =CE∴BF +FC =CE +FC即BC =EF∵AB//DE∴∠B =∠E在△ABC 和△DEF 中{AB =ED∠B =∠E CB =FE,∴△ABC ≌△DEF(SAS)故【答案】AB =ED .根据等式的性质可得BC =EF 根据平行线的性质可得∠B =∠E 再添加AB =ED 可利用SAS 判定△ABC ≌△DEF .本题考查三角形全等的判定方法 判定两个三角形全等的一般方法有:SSS SAS ASA AAS HL .注意:AAA SSA 不能判定两个三角形全等 判定两个三角形全等时 必须有边的参与 若有两边一角对应相等时 角必须是两边的夹角.16.【答案】45【解析】本题考查了全等三角形的判定与性质 余角的性质 等腰直角三角形 由三角形的高得到∠ADB =∠ADC =∠BEC =90° 结合余角的性质得到∠HBD =∠CAD 易证△HBD ≌△CAD 得到AD =BD 根据等腰直角三角形得到∠ABD =45° 即可得出结论.【解答】解:∵AD ⊥BC BE ⊥AC∴∠ADB =∠ADC =∠BEC =90°∴∠HBD +∠C =∠CAD +∠C =90°∴∠HBD =∠CAD∵在△HBD 和△CAD 中{∠HBD =∠CAD,HDB =∠CDA,DH =DC,∴△HBD ≌△CAD(AAS)∴AD =BD∵∠ADB =90°∴△ABD 为等腰直角三角形∴∠ABD =45° 即∠ABC =45°故答案为45.17.【答案】18【解析】本题考查全等三角形的判定和性质和三角形的面积.过点A 作AE ⊥AC 交CD 的延长线于点E.做出辅助线是解答本题的关键.过点A 作AE ⊥AC 交CD 的延长线于点E 证明△AED ≌△ACB 将四边形ABCD 的面积转化为△ACE 的面积 利用三角形面积公式求解即可.【解答】解:过点A 作AE ⊥AC 交CD 的延长线于点E∵∠EAC =∠BAD =90°∴∠EAD =∠CAB∵∠BAD =∠BCD =90∘∴∠ADC +∠ABC =360°−(∠BAD +∠BCD)=180°又∵∠ADE +∠ADC =180∘∴∠ADE =∠ABC在△AED 与△ACB 中{∠EAD =∠CABAD =AB ∠ADE =∠ABC∴△AED ≌△ACB(ASA)∴AE =AC =6 四边形ABCD 的面积等于△ACE 的面积故S 四边形ABCD =12AC ⋅AE =12×6×6=18.故答案为18. 18.【答案】10或20【解析】解:∵AX ⊥AC∴∠PAQ =90°∴∠C=∠PAQ=90°分两种情况:①当AP=BC=10时在Rt△ABC和Rt△QPA中{AB=PQBC=AP∴Rt△ABC≌Rt△QPA(HL);②当AP=CA=20时在△ABC和△PQA中{AB=PQAP=AC∴Rt△ABC≌Rt△PQA(HL);综上所述:当点P运动到AP=10或20时△ABC与△APQ全等;故【答案】10或20.分两种情况:①当AP=BC=10时;②当AP=CA=20时;由HL证明Rt△ABC≌Rt△PQA(HL);即可得出结果.本题考查了直角三角形全等的判定方法;熟练掌握直角三角形全等的判定方法本题需要分类讨论难度适中.19.【答案】6【解析】本题考查了全等三角形的判定与性质三角形的面积利用面积公式得出等式是解题的关键.先利用HL证明Rt△ADB≌Rt△ADC得出S△ABC=2S△ABD=2×12AB⋅DE=AB⋅DE=3AB又S△ABC=12AC⋅BF将AC=AB代入即可求出BF.【解答】解:在Rt△ADB与Rt△ADC中{AB=ACAD=AD ∴Rt△ADB≌Rt△ADC∴S△ABC=2S△ABD=2×12AB⋅DE=AB⋅DE=3AB∵S△ABC=12AC⋅BF∴12AC⋅BF=3AB ∵AC=AB∴12BF=3cm∴BF=6cm.故【答案】6.20.【答案】①③④【解析】此题考查了全等三角形的性质与判别考查了学生根据图形分析问题解决问题的能力.其中全等三角形的判别方法有:SSS SAS ASA AAS及HL.学生应根据图形及已知的条件选择合适的证明全等的方法.由∠E=∠F=90°∠B=∠C AE=AF利用“AAS”得到△ABE与△ACF全等根据全等三角形的对应边相等且对应角相等即可得到∠EAB与∠FAC相等AE与AF相等AB与AC相等然后在等式∠EAB=∠FAC两边都减去∠MAN得到∠EAM与∠FAN相等然后再由∠E=∠F=90°AE=AF∠EAM=∠FAN利用“ASA”得到△AEM与△AFN全等利用全等三角形的对应边相等对应角相等得到选项①和③正确;然后再∠C=∠B AC=AB∠CAN=∠BAM利用“ASA”得到△ACN与△ABM全等故选项④正确;若选项②正确得到∠F与∠BDN相等且都为90°而∠BDN不一定为90°故②错误.【解答】解:在△ABE和△ACF中∠E=∠F=90°AE=AF∠B=∠C∴△ABE≌△ACF(AAS)∴∠EAB=∠FAC AE=AF AB=AC∴∠EAB−∠MAN=∠FAC−∠NAM即∠EAM=∠FAN在△AEM和△AFN中∠E=∠F=90°AE=AF∠EAM=∠FAN∴△AEM≌△AFN(ASA)∴EM=FN∠FAN=∠EAM故选项①和③正确;在△ACN和△ABM中∠C=∠B∠CAN=∠BAM AC=AB∴△ACN≌△ABM(ASA)故选项④正确;若AF//EB∠F=∠BDN=90°而∠BDN不一定为90°故②错误则正确的选项有:①③④.21.【答案】解:∵AB//DE∴∠A =∠EDF∵AC =AD +DC DF =DC +CF 且AD =CF∴AC =DF在△ABC 和△DEF 中{AB =DE∠A =∠EDF AC =DF∴△ABC ≌△DEF(SAS)∴BC =EF .【解析】先证明AC =DF 再根据SAS 推出△ABC ≌△DEF 便可得结论.本题考查了全等三角形的判定和性质的应用 证明三角形的边相等 往往转化证明三角形的全等. 22.【答案】解:CD//AB CD =AB理由是:∵CE =BF∴CE −EF =BF −EF∴CF =BE在△CFD 和△BEA 中{CF =BE∠CFD =∠BEA DF =AE∴△CFD ≌△BEA(SAS)∴CD =AB ∠C =∠B∴CD//AB .【解析】本题考查了平行线的判定和全等三角形的性质和判定的应用.全等三角形的判定是结合全等三角形的性质证明线段和角对应相等的重要工具.在判定三角形全等时 关键是选择恰当的判定条件. 求出CF =BE 根据SAS 证△CFD ≌△BEA 推出CD =AB ∠C =∠B 根据平行线的判定推出CD//AB .23.【答案】证明:∵AC//DE∴∠ACB =∠E ∠ACD =∠D∵∠ACD =∠B∴∠D =∠B在△ABC 和△EDC 中{∠B =∠D∠ACB =∠E AC =CE∴△ABC ≌△CDE(AAS).【解析】此题主要考查了全等三角形的判定 平行线的性质.首先根据AC//DE 利用平行线的性质可得:∠ACB =∠E ∠ACD =∠D 再根据∠ACD =∠B 证出∠D =∠B 然后根据全等三角形的判定定理AAS 证出△ABC ≌△CDE 即可.24.【答案】证明:∵BE ⊥AC CD ⊥AB∴∠BDC =∠CEB =90°在Rt △BCD 和Rt △CBE 中{BC =CB BD =CE∴Rt △BCD ≌Rt △CBE(HL)∴∠DBC =∠ECB即∠ABC =∠ACB .【解析】本题考查了全等三角形的判定与性质;证明三角形全等是解题的关键.证明Rt △BCD ≌Rt △CBE(HL) 即可得出结论.25.【答案】(1)证明:∵∠ABC =90°∴∠DBC =90°在△ABE 和△CBD 中{AB =CB∠ABE =∠CBD BE =BD∴△ABE ≌△CBD(SAS);(2)解:∵AB =CB ∠ABC =90°∴∠BCA =45°∴∠AEB =∠CAE +∠BCA =30°+45°=75°∵△ABE ≌△CBD∴∠BDC =∠AEB =75°.【解析】(1)由条件可利用SAS证得结论;(2)由等腰直角三角形的性质可先求得∠BCA利用三角形外角的性质可求得∠AEB再利用全等三角形的性质可求得∠BDC.本题主要考查全等三角形的判定和性质掌握全等三角形的判定方法(即SSS SAS ASA AAS和HL)和全等三角形的性质(即全等三角形的对应边相等对应角相等)是解题的关键.。
人教版八年级数学(上册)12.1 全等三角形 课时习题(附参考答案)

12.1 全等三角形
1. 判断题:
①全等三角形的对应边相等,对应角相等。
()
②全等三角形的周长相等,面积也相等。
()
③面积相等的三角形是全等三角形。
()
④周长相等的三角形是全等三角形。
()
1.请指出下列全等三角形的对应边和对应角:
①△ ABE ≌△ ACF
对应角是:
对应边是:
②△ BCE ≌△ CBF
对应角是:
对应边是:
③△ BOF ≌△ COE
对应角是:
对应边是:
D
C A B
O
3.如图,△OCA ≌△OBD ,C 和B ,A 和D 是对应顶点,•说出这两个三角形中相等的边和角.
4.如图,已知△ABC ≌△ADE,∠C=∠E,BC=DE,
其它的对应边有:
对应角有:
想一想: ∠BAD=∠CAE 吗?为什么?
5.如图,△ABC ≌△DEF ,AC 与DF 是对应边,∠A 与∠D 是对应角,则AC//FD 成立吗?请说明理由.
参考答案
1.对对错错
2.略
3.略
4.答:相等.理由如下:
∵△ABC≌△ADE(已知)
∴∠BAC=∠DAE
(全等三角形对应角相等)
∴∠BAC-∠DAC=∠DAE-∠DAC
(等式性质)
即∠BAC=∠DAE
5.平行,内错角相等,两直线平行.。
八年级上册数学人教版课时练《12.2 三角形全等的判定》03(含答案解析)

答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!《12.2三角形全等的判定》课时练一、选择题(本大题共12道小题)1.如图,已知AB=AD,若利用SSS证明△ABC≌△ADC,则需要添加的条件是()A.AC=ACB.∠B=∠DC.BC=DCD.AB=CD2.如图所示,∠C=∠D=90°,若要用“HL”判定Rt△ABC与Rt△ABD全等,则可添加的条件是()A.AC=AD B.AB=ABC.∠ABC=∠ABD D.∠BAC=∠BAD3.如图,点B,E,C,F在同一直线上,AB∥DE,∠A=∠D,那么添加下列一个条件后,仍无法判定△ABC≌△DEF的是()A.BE=CF B.∠ACB=∠FC.AC=DF D.AB=DE4.如图所示,某同学把一块三角形的玻璃不小心打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带哪一块去()A.①B.②C.③D.①和②5.如图,在正方形ABCD中,连接BD,点O是BD的中点.若M、N是边AD上的两点,连接MO、NO,并分别延长交边BC于两点M′、N′,则图中的全等三角形共有()A.2对B.3对C.4对D.5对6.如图,点B,E在线段CD上,若∠C=∠D,则添加下列条件,不一定能使△ABC≌△EFD的是()A.BC=FD,AC=ED B.∠A=∠DEF,AC=EDC.AC=ED,AB=EF D.∠A=∠DEF,BC=FD7.如图,已知∠ABC=∠DCB,添加以下条件,不能判定△ABC≌△DCB的是()A.∠A=∠DB.∠ACB=∠DBCC.AC=DBD.AB=DC8.如图,AB=AC,AD=AE,BE=CD,∠2=110°,∠BAE=60°,则下列结论错误的是()A.△ABE≌△ACD B.△ABD≌△ACEC.∠C=30°D.∠1=70°9.如图,点A,E,B,F在同一直线上,在△ABC和△FED中,AC=FD,BC=ED,当利用“SSS”来判定△ABC和△FED全等时,下面的4个条件中:①AE=FB;②AB=FE;③AE =BE;④BF=BE,可利用的是()A.①或②B.②或③C.①或③D.①或④10.如图,在等腰直角△ABC中,∠C=90°,点O是AB的中点,且AB=6,将一块直角三角板的直角顶点放在点O处,始终保持该直角三角板的两直角边分别与AC、BC相交,交点分别为D、E,则CD+CE等于()A.2B.3C.2D.611.现已知线段a,b(a<b),∠MON=90°,求作Rt△ABO,使得∠O=90°,OA=a,AB=b.小惠和小雷的作法分别如下:小惠:①以点O为圆心、线段a的长为半径画弧,交射线ON于点A;②以点A为圆心、线段b的长为半径画弧,交射线OM于点B,连接AB,△ABO即为所求.小雷:①以点O为圆心、线段a的长为半径画弧,交射线ON于点A;②以点O为圆心、线段b的长为半径画弧,交射线OM于点B,连接AB,△ABO即为所求.则下列说法中正确的是()A.小惠的作法正确,小雷的作法错误B.小雷的作法正确,小惠的作法错误C.两人的作法都正确D.两人的作法都错误12.如图,∠AOB=120°,OP平分∠AOB,且OP=2.若点M,N分别在OA,OB上,且△PMN为等边三角形,则满足上述条件的△PMN有()A.1个B.2个C.3个D.3个以上二、填空题(本大题共6道小题)13.如图,在△ABC中,AD⊥BC于点D,要使△ABD≌△ACD,若根据“HL”判定,还需要添加条件:____________.14.如图,已知CD=CA,∠1=∠2,要使△ECD≌△BCA,需添加的条件是__________(只需写出一个条件).15.如图,在四边形ABCD 中,∠B =∠D =90°,AB =AD ,∠BAC =65°,则∠ACD 的度数为________.16.如图,在△ABC 中,∠C =90°,AC =BC ,AD 是∠BAC 的平分线,DE ⊥AB ,垂足为E .若△DBE 的周长为20,则AB =________.17.如图,在Rt ABC △中,90C Ð=°,以顶点B 为圆心,适当长度为半径画弧,分别交AB BC ,于点M N ,,再分别以点M N ,为圆心,大于12MN 的长为半径画弧,两弧交于点P ,作射线BP 交AC 于点D .若30A Ð=°,则BCD ABDS S =△△__________.18.如图,∠C =90°,AC =10,BC =5,AX ⊥AC ,点P 和点Q 是线段AC 与射线AX 上的两个动点,且AB =PQ ,当AP =________时,△ABC 与△APQ全等.三、解答题(本大题共3道小题)19.如图,BD ,CE 是△ABC 的高,且BE =CD .求证:Rt △BEC ≌Rt △CDB .20.如图,AD ∥BC ,AB ⊥BC 于点B ,连接AC ,过点D 作DE ⊥AC 于点E ,过点B 作BF ⊥AC 于点F .(1)若∠ABF =63°,求∠ADE 的度数;(2)若AB =AD ,求证:DE =BF +EF .21.如图,ABC △中,点E 在BC 边上,AE AB =,将线段AC 绕点A 旋转到AF 的位置,使得CAF BAE Ð=Ð,连接EF ,EF 与AC 交于点G .(1)求证:EF BC =;(2)若65ABC Ð=°,28ACB Ð=°,求FGC Ð的度数.参考答案一、选择题1.C2.A3.B4.C5.C6.C7.C8.C9.A10.B 11.A12.D二、填空题13.AB=AC14.答案不唯一,如CE=CB15.25°16.2017.1 218.5或10三、解答题19.证明:∵BD,CE是△ABC的高,∴∠BEC=∠CDB=90°.在Rt△BEC和Rt△CDB中,=CB,=CD,∴Rt△BEC≌Rt△CDB(HL).20.解:(1)∵AD∥BC,AB⊥BC,∴∠ABC=∠BAD=90°.∵DE⊥AC,BF⊥AC,∴∠BFA=∠AED=90°.∴∠ABF+∠BAF=∠BAF+∠DAE=90°.∴∠DAE=∠ABF=63°.∴∠ADE=27°.(2)证明:由(1)得∠DAE=∠ABF,∠AED=∠BFA=90°.在△DAE和△ABF DAE=∠ABF,AED=∠BFA,=BA,∴△DAE≌△ABF(AAS).∴AE=BF,DE=AF.∴DE=AF=AE+EF=BF+EF.21.(1)∵CAF BAE Ð=Ð,∴BAC EAF Ð=Ð,∵AE AB AC AF ==,,∴BAC EAF △≌△,∴EF BC =.(2)∵65AB AE ABC =Ð=°,,∴18065250BAE Ð=°-°´=°,∴50FAG Ð=°,∵BAC EAF △≌△,∴28F C Ð=Ð=°,∴502878FGC Ð=°+°=°.。
八年级初二上册数学人教版课时练《 全等三角形》03(含答案)

《12.1 全等三角形》课时练一、选择题1.如图,△ABD≌△CDB,下面四个结论中,不正确的是()A.∠ABD=∠CBD B.△ABD和△CDB的周长相等C.AD=BC D.△ABD和△CDB的面积相等2.如图所示,△ABC≌△DEC,∠ACB=60°,∠BCD=100°,点A恰好落在线段ED上,则∠B的度数为()A.50°B.60°C.55°D.65°3.已知:△ABC≌△DCB,若BC=10cm,AB=5cm,AC=7cm,则CD为()A.10cm B.7cm C.5cm D.5cm或7cm 4.如图,Rt△ABC≌Rt△CED,点B、C、E在同一直线上,则结论:①AC=CD,②AC ⊥CD,③BE=AB+DE,④AB∥ED,其中成立的有()A.仅①B.仅①③C.仅①③④D.①②③④5.已知图中的两个三角形全等,则∠α的度数为()A.105°B.75°C.60°D.45°6.下列说法不正确的是()A.全等三角形对应角平分线相等,对应边上的高、中线也分别相等B.全等三角形的周长和面积都相等C.全等三角形的对应角相等,对应边相等D.全等三角形是指周长和面积都相等的三角形7.如图,△ABC≌△DEF,BE=2,AE=1,则BD的长是()A.5B.4C.3D.28.已知:如图,△ABC≌△ADE,AB与AD是对应边,AC与AE是对应边,若∠B=31°,∠C=95°,∠EAB=20°,则∠BAD等于()A.77°B.74°C.47°D.44°9.已知△ABC与△DEF全等,BC=EF=4cm,△ABC的面积是12cm2,则EF边上的高是()A.3cm B.4cm C.6cm D.无法确定10.如图,已知△ABC≌△EDF,点F,A,D在同一条直线上,AD是∠BAC的平分线,∠EDA=20°,∠F=60°,则∠DAC的度数是()A.50°B.60°C.100°D.120°二.填空题11.如图,△ABC≌△DEF,∠A=35°,∠B=50°,则∠DFE=.12.已知:如图,△ABC≌△DEF,∠A=85°,∠B=60°,AB=8,EH=2.则∠F的度数;DH的长.13.已知△ABC≌△DEF,AB=DE=8cm,△DEF的面积为20cm2,则△ABC的边AB上的高为cm.14.如图,已知△ABC≌△DEF,AD=1cm,则BE的长为cm.15.如图,已知△ABC≌△DBE,如果∠CBD=96°,∠CBE=28°,那么∠ABC=.三.解答题16.如图,A,D,E三点在同一直线上,且△BAD≌△ACE.(1)求证:BD=DE+CE;(2)请你猜想△ABD满足什么条件时,BD∥CE.17.如图,已知△ABF≌△CDE.(1)若∠B=30°,∠DCF=40°,求∠EFC的度数;(2)求证:AE=CF.18.如图,△ACF≌△DBE,其中点A、B、C、D在同一条直线上.(1)若BE⊥AD,∠F=63°,求∠A的大小.(2)若AD=11cm,BC=5cm,求AB的长.19.已知:如图,△ABC≌△DEF,AM、DN分别是△ABC、△DEF的对应边上的高.求证:AM=DN.参考答案一、选择题1.A 2.A 3.C 4.D 5.B 6.D 7.A 8.B 9.C 10.A 二、填空题11.95°12.35° 6 13.5 14.1 15.68°三、解答题16.(1)证明:∵△BAD≌△ACE,∴AD=CE,BD=AE,∵A,D,E三点在同一直线上,∴AE=AD+DE,∴BD=CE+DE;(2)解:假如BD∥CE,则∠BDE=∠E,∵△BAD≌△ACE,∴∠ADB=∠E,∴∠ADB=∠BDE,又∵∠ADB+∠BDE=180°,∴∠ADB=∠BDE=90°,∴当∠ADB=∠E=90°时,BD∥CE.17.(1)解:∵△ABF≌△CDE,∴∠D=∠B=30°,∴∠EFC=∠D+∠DCF=70°;(2)证明:∵△ABF≌△CDE,∴∠AFB=∠CED,AF=CE,在△AFE和△CEF中,,∴△AFE≌△CEF(SAS),∴AE=CF.18.解:(1)∵BE⊥AD,∴∠EBD=90°,∵△ACF≌△DBE,∴∠FCA=∠EBD=90°,∴∠A=90°﹣∠F=27°;(2)∵△ACF≌△DBE,∴CA=BD,∴CA﹣CB=BD﹣BC,即AB=CD,∵AD=11cm,BC=5cm,∴AB+CD=11﹣5=6cm,∴AB=3cm.19.方法一:证明:∵△ABC≌△DEF,∴AB=DE,∠B=∠E,∵AM,DN分别是△ABC,△DEF的对应边上的高,即AM⊥BC,DN⊥EF,∴∠AMB=∠DNE=90°,在△ABM和△DEN中,∴△ABM≌△DEN(AAS),∴AM=DN.方法二:∵△ABC≌△DEF。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
D
B
AFC
6.如图,△ABC中,∠C=90°,AD是△ABC的角平分线,(1)求证:AC =BE;(2)求∠B的度数。
A
DE⊥AB于E,AD=BD.
C
D
EB
(第6题)
8
第页
第9课时
角平分线的性质
(2)
一、选择题
1.三角形中到三边距离相等的点是(
)
A.三条边的垂直平分线的交点
B.三条高的交点
C.三条中线的交点
A
E
F
B
D
C
(第5题)
6.如图,AD为△ABC的高,E为AC上一点,BE交AD于点F,且有BF=AC,FD=CD.
求证:BE⊥AC.
A
E
F
BDC
(第6题)
6
第页
第7课时
三角形全等的条件(
6)
一、选择题
1.下列条件中,不一定能使两个三角形全等的是
(
)
A.三边对应相等
B.两角和其中一角的对边对应相等
C.两边和其中一边的对角对应相等
E
A
C
D
E
O
C
B
ADF
B
(第3题)
(第2
题)
三、解答题
4.已知:如图,AC=DF,BF=CE,AB⊥BF,DE⊥BE,
垂足分别为B,E.
A
D
5
第页
BFCE
求证:AB=DE
(第4题)
5.如图,△ABC中,D是BC边的中点, AD平分∠BAC,DE⊥AB于E,DF⊥AC于F.
求证:(1)DE= DF;(2)∠B =∠C.
)
A.2对
B.3对
C.4对
D.5对
9
第页
D
AEC
B
(第3题)
B
A
A
C
E
F
D
D
B
(第6题)
C
(第5
题)
4.在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于D,若BC=20,且BD︰DC=3︰2,则D到AB边的距离
是(
)
A.12
B.10
C.8
D.6
二、填空题
5.若△ABC≌△DEF,△ABC的周长为
一、选择题
1.不能说明两个三角形全等的条件是(
)
A.三边对应相等
B.两边及其夹角对应相等
C.二角和一边对应相等
D.两边和一角对应相等
2.已知 △ABC≌△DEF,∠A=50°,∠B=75°,则 ∠F的大小为(
)
A.50°
B.55°
C.65°
D.75°
3.如图,AB=AD,BC=DC,则图中全等三角形共有(
D.ASA
2.如图,OP平分∠AOB,
PD⊥OA,PE⊥OB,垂足分别为
D,E,
下列结论错误的是(
)
A.PD=PE
B.OD=OE
C. ∠DPO=∠EPO
D.PD=OD
B
A
E
P
O
D
A
C
D
B
二、填空题
(第2题)
(第3题)
3.如图,在 △ABC中,∠C=90°,AD是∠BAC的角平分线,若BC=5㎝,BD=3㎝,则点D到AB的距离
5.把 △ABC绕点A逆时针旋转,边
AB旋转到AD,得到△ADE,用符号“≌ ”表示图中与 △ABC全等的三角
形,并写出它们的对应边和对应角.
A
E
B
C
D
(第5题)
D
A
6.如图,把 △ABC沿BC方向平移,得到△DEF.
求证:AC∥DF。
B
E
C
F
A
(第6题)
7.如图, △ACF≌△ADE,AD=9,AE=4,求DF的长.
则BD=
.
三、解答题
=
AC,∠B=∠C,要说明△ABE≌ △ACD,只要再补充一个条件,
9.如图,点D,E在△ABC的BC边上,AB
问:应补充什么条件?(注意:仅限图中已有字母与线段,至少写出
4个)
(第9题)
10.如图,在 △ABC中,AB⊥AC,且AB=AC,点E在AC上,点D在BA的延长线上,AD=AE.求证:(1)
△ADC≌ △AEB;(2)BE=CD.
(第10题)
11.如图,CD⊥AB,垂足为D,BE⊥AC,垂足为E,BE,CD交于点O,且AO平分∠BAC.你能说明OB=OC吗?
(第11题)
12.一个风筝如图,两翼AB=AC,横骨BE⊥AC于E,CF⊥AB于F.问其中骨AD能平分∠BAC吗?为什么?
(第12题)
A
DE
B(第7题)C
2
第页
第3课时三角形全等的条件(2)
一、填空题
1.如图,AB=AC,如果根据“SAS使”△ABE≌ △ACD,那么需添加条件________________.
A
D
E
B
E
C
F
A
(第2题)
D
B
(第1题)C
2.如图,AB∥CD,BC∥AD,AB=CD,BE=DF,图中全等三角形有
_____________对.
A
D
D
E
O
A
B
C
B
(第4题)
C
(第1题)
二、填空题
3.已知 △ABC≌△DEF,∠A=50°,∠B=65°,DE=18㎝,则∠F=___°,AB=____㎝.
4.如图, △ABC绕点A旋转180°得到 △AED,则DE与BC的位置关系是
___________,数量关系是
___________.
三、解答题
人教版八年级数学上全等三角形课时练习及答案
第1课时
全等三角形
一、选择题
1.如图,已知 △ABC≌ △DCB,且AB=DC,则∠DBC等于(
)
A. ∠A
B. ∠DCB
C. ∠ABC
D. ∠ACB
2.已知 △ABC≌△DEF,AB=2,AC=4,△DEF的周长为偶数,则
EF的长为(
)
A.3
B.4
C.5
D.6
3.如 图 , 已 知∠A=∠C,BE∥DF, 若 要 用“AAS”证△ABE≌ △CDF, 则 还 需 添 加 的 一 个 条 件
是
.(只要填一个即可)
B
A
D
C
A
E
F
B
C
(第3题)
D
(第2
题)AΒιβλιοθήκη D三、解答题4.已知:如图,AB=CD,AC=BD,写出图中所有全等三角形,o并注明理由.
BC
(第4题)
10
第页
小结与思考(
2)
一、选择题
1.如图,△ABC≌ △BAD,点A与点B,点C与点D是对应顶点,若
AB=9,BD=8,AD=5,则BC的长
为(
)
A.9
B.8
C.6
D.5
2.两三角形若具有下列条件:①三边对应相等;②两边及其夹角对应相等;③三角对应相等;④两角和
E
F
CD
(第7题)
1
第页
第2课时
三角形全等的条件(
1)
一、选择题
1.如果△ABC的三边长分别为
3,5,7,△DEF的三边长分别为
3,3x-2,2x-1,若这两个三角形全等,
则x等于(
)
7
B.3
C.4
D.5
A.
3
二、填空题
2.如图,已知AC=DB,要使△ABC≌△DCB,还需知道的一个条件是
________.
D.4个
A
A
E
EFF
BC
BDCD
(第3题)
(第2题)
二、填空题
3.如图,在△ABC中,AD为∠BAC的平分线,DE⊥AB于E,DF⊥AC于F,△ABC面积是28 cm2,AB=20cm,
AC=8cm,则DE的长为_________ cm.
三、解答题
4.已知:如图,BD=CD,CF⊥AB于点F,BE⊥AC于点E.
C.一条边对应相等
D。一直角边和斜边对应相等
二、填空题
2.如图,BE和CF是△ABC的高,它们相交于点O,
且BE=CD,则图中有
对全等三角形,其中能根据“HL”来判定三角形全等的有
对.
3.如图,有两个长度相同的滑梯(即BC=EF),左边滑梯的高度
AC与右边滑梯水平方向的长度
DF相等,
则∠ABC+∠DFE=___________度.
求证:△ADC≌△CEB.
E
DB
C
A
(第4题)
5.如图,A,C,D,B在同一条直线上,
AE=BF,AD=BC,AE∥BF.
A
求证:FD∥EC.
C
E
F
D
B(第5题)
6.已知:如图,
AC⊥BD,BC=CE,AC=DC.
A
求证:∠B+∠D=90°;
E
BD
C
(第6题)
3
第页
第4课时三角形全等的条件(3)
一、选择题
100,AB=30,DF=25,则BC长为
.
6.若 △ABC≌ △A’B’,CAB’=3,∠A’=30°,则A’=B’
,∠A=
°.
7.如图, ∠B=∠D=90°,要使 △ABC≌ △ADC,还要添加条件
(只要写出一种情况) .
8.如图,D在AB上,AC,DF交于E,AB∥FC,DE=EF,AB=15,CF=8,