相遇和追及问题

合集下载

相遇追及问题详解

相遇追及问题详解

必背知识点:速度×时间=路程路程÷速度和=相遇时间追及路程÷速度差=追及时间一、相遇问题例1. 甲、乙二人同时从学校出发到少年宫去,已知学校到少年宫的距离是2400米,甲到少年宫后立即返回学校,在距离少年宫300米处遇到乙,此时他们离开学校已30分钟。

甲每分钟走多少米?乙每分钟走多少米?例2. 甲、乙两车分别从相距240千米的A、B两城同时出发,相向而行,已知甲车到达B城需4小时,乙车到达A城需6小时,问:两车出发后多长时间相遇?例3. 东西两地间有一条公路长217.5千米,甲车以每小时25千米的速度从东到西地,1.5小时后,乙车从西地出发,再经过3小时两车还相距15千米。

乙车每小时行多少千米?例4. 两城市相距328千米,甲、乙两人骑自行车同时从两城出发,相向而行。

甲每小时行28千米,乙每小时行22千米,乙在中途修车耽误1小时,然后继续行驶,与甲相遇,求出发到相遇经过多少时间?例5. AB两城间有一条公路长240千米,甲乙两车同时从A、B两城出发,甲以每小时45千米的速度从A城到B城,乙以每小时35千米的速度从B城到A城,各自到达对方城市后立即以原速沿原路返回,几小时后,两车在途中第二次相遇?相遇地点离A 城多少千米?例6. 甲、乙两车同时从A、B两地出发相向而行,两车在离B地64千米处第一次相遇.相遇后两车仍以原速继续行驶,并且在到达对方出发点后,立即沿原路返回,途中两车在距A地48千米处第二次相遇,问两次相遇点相距多少千米?随堂小试1. 甲、乙两辆汽车从A、B两地同时相向开出,出发后2小时,两车相距141千米:出发后5小时,两车相遇.A、B两地相距多少千米.2. 快车和慢车同时从甲乙两地相对开出,已知快车每小时行40千米,经过3小时快车已过中点12千米与慢车相遇,慢车每小时行多少千米?3. 兄妹二人同时从家里出发到学校去,家与学校相距1400米。

哥哥骑自行车每分钟行200米,妹妹每分钟走80米。

追及与相遇问题

追及与相遇问题
相撞?
见全品练习册,20页的13题
方法一:设:经过时间t,人与车速度相等,

人追不上车。人车间的最小距离为
方法二:设:经过时间t,人与车相距S,
则S= S0+S车 - S人=25 + 0.5 t2 - 6 t 令S=0,既假设人能追上车,0.5 t2 - 6 t+25=0 因b2-4ac = (-6)2 -4×0.5×25=-14<0,方程无 解,故人追不上车 当t=人车间的最小距离为 s =25 + 0.5×62 - 6× 6=7m 时,s有最小值
追及与相遇问题
一、追及问题:二者速度相等时相距最远 (或者最近) 1、后面加速,前面匀速,二者相距x 。一定 能追上,二者速度相等时相距最远 。
2、后面匀速,前面从静止加速,二者相距x 。 不一定能追上,二者速度相等时相距最远近。
2 例6、车从静止开始以1m/s 的加
速度前进,车后相距s0为25m处, 某人同时开始以6m/s的速度匀速 追车,能否追上?若追不上,求 人、车间的最小距离。

相遇与追及问题

相遇与追及问题
⑴ 两个运动物体一般同地不同时(或同时不同地)出发作同向运动,在后面的,行进速度要快些,在前面的,行进速度要慢些.
⑵ 在一定时间内,后面的追上前面的.
共同点:⑴ 是否同时出发
⑵ 是否同地出发
⑶ 方向:同向、背向、相向
⑷ 方法:画图
3.简单的相遇与追及问题各自解题时的入手点及需要注意的地方
1.相遇问题:与速度和、路程和有关
【巩固】甲、乙两车同时从A,B两地相向而行,它们相遇时距A,B两地中心处8千米,已知甲车速度是乙车的1.2倍,求A,B两地的距离。
【巩固】甲乙二人同时分别自A、B两地出发相向而行,相遇之地距A、B中点300米,已知甲每分钟行100米,乙每分钟行70米,求A地至B地的距离.
4.行程间的倍比关系
【例 8】甲、乙两车分别同时从 、 两地相对开出,第一次在离 地95千米处相遇.相遇后继续前进到达目的地后又立刻返回,第二次在离 地25千米处相遇.求 、 两地间的距离.
5.王新从教室去图书馆还书,如果每分钟走70米,能在图书馆闭馆前2分钟到达,如果每分钟走50米,就要超过闭馆时间2分钟,求教室到图书馆的路程有多远?
6.甲、乙两车分别同时从 、 两地相对开出,第一次在离 地 千米处相遇.相遇后继续前进到达目的地后又立刻返回,第二次在离 地 千米处相遇.求 、 两地间的距离?
⑴ 是否同时出发
⑵ 是否有返回条件
⑶ 是否和中点有关:判断相遇点位置
⑷ 是否是多次返回:按倍数关系走。
⑸ 一般条件下,入手点从"和"入手,但当条件与"差"有关时,就从差入手,再分析出时间,由此再得所需结果
2.追及问题:与速度差、路程差有关
⑴ 速度差与路程差的本质含义
⑵ 是否同时出发,是否同地出发。

追及和相遇问题

追及和相遇问题

例3:一辆轿车违章超车,以108km/h的速度驶入 左侧逆行道时,猛然发现正前方80m处一辆卡车 正以72km/h的速度迎面驶来,两车司机同时刹 车,刹车加速度大小都是10m/s2,两司机的的反 应时间(即司机发现险情到实施刹车所经历的时 间)都是△t,试问△t是何数值 ,才能保证两车不相 撞?
例 4:一辆轿车的最大速度为30m/s,要想从静止开 始用4分钟追上前面1000m处以25m/s匀速同向 行驶的货车,轿车至少要以多大的加速度起速运动的物体甲追 赶同方向匀加速运动的物体乙。(v甲﹥ v0乙)
v甲 S0 v0乙 a
A、当v乙= v甲时:S甲=S0+S乙,甲恰好追上乙 B、当v乙= v甲时: S甲<S0+S乙,甲永远追不上乙, 此时两者有最小间距⊿Smin C、当v乙< v甲时: S甲>S0+S乙,甲追上了乙,由 乙作匀加速运动,以后v乙> v甲,则乙还有一次 追 上甲的机会,其间两者速度相等时两者距离 v 有一个较大值。 v
追及和相遇问题
追及问题:追和被追的两物体同向运动,往 往当两者速度相等是能否追上或者两者距离有最 大值、最小值的临界条件。追及问题常见情形有 三种: ①同时同地出发:初速为零的匀加速直线运动物体 甲追匀速运动的物体乙:一定能追上,当v甲= v乙 时,两者之间有△xmax v(m/s) v0甲=0 v0乙 a o 甲
(2)相遇问题:相遇问题分为追及相遇和相向相 遇问题,上面三种常见问题属于追及相遇问题, 至于相向相遇问题,我们通过例题来进行说明, 本节课重点解决追及相遇问题。 对于追及相遇问题我们解题过程中要弄清 物体的运动过程,挖掘题中隐含的临界条件,在 解题方法上常常用到解析法、数学法、图象法、 相对运动法等等。
例1:火车以速度v1匀速行驶,司机发现前方同轨 道上相距S处有另一火车沿同方向以速度v2(对 地,且v1> v2)做匀速运动,司机立即以加速度 大小为a紧急刹车,要使两车不相撞, a应满足 什么条件?

相遇追及问题

相遇追及问题

相遇、追及问题一、相遇问题两个物体从不同地点做面对面的运动,即相向运动,相向运动能使两运动物体在途中相遇,它是研究速度和、相遇时间、总距离(总路程)之间的关系,解答相遇问题的关键是要求出两物体在同一时间的速度之和,又称速度和。

例题1:两辆汽车从A、B两地相向开出,甲车每小时行55千米,乙车每小时行45千米,经过3小时两车相遇,A、B两地相距多少千米?EX1:两列火车同时从两地相对开出,甲列火车每小时行86千米,乙列火车每小时行102千米,经过5小时两车在途中相遇,求两地相距多少千米?EX2:甲乙两列火车分别从A、B两地同时出发相向而行,甲车每小时行驶75千米,乙车每小时行驶69千米,经过18小时两车途中相遇,两地间的铁路长多少千米?相遇问题中存在的数量关系:速度和× 相遇时间= 路程和路程和÷相遇时间= 速度和路程和÷速度和= 相遇时间例题2:北京到沈阳的铁路长830千米,两辆火车同时相向开出10小时相遇,已知甲车每小时行41千米,乙车每小时行多少千米?EX1:甲、乙两人分别从相距20千米的两地同时出发相向而行,甲每小时走6千米,经过2小时后两人相遇,问乙每小时行多少千米?例题3:姐妹两人在周长为30米的圆形水池边玩,她们约好从同一地点同时背向绕水池行走,姐姐每秒走1.3米,妹妹每秒走1.2米。

多长时间她们能相遇?例题4:甲、乙两辆汽车同时从两地相向而行,甲车每小时行60千米,乙车每小时行48千米,两车离两地中点30千米处相遇,求这两地间的距离是多少?EX1:甲地到乙地快车每小时行32千米,慢车每小时行18千米,如果两车同时从甲乙两地相对开出,可在距中点35千米的地方相遇,甲乙两地相距是多少千米??★例题5:明明和亮亮同时从相距3000米的家里相向出发,明明每分钟行70米,一只狗与他同时出发,每分钟跑320米,亮亮每分钟走80米,狗遇到亮亮后立即朝明明跑去,遇到明明后又朝亮亮跑去,直到两人相遇,这只狗一共跑了多少米?EX1:王明和妹妹两人从相距2000米的两地相向而行,王明每分钟行110米,妹妹每分钟行90米,如果一只狗与王明同时同向而行,每分钟行500米,遇到妹妹后,立即回头向王明跑去,遇到王明再向妹妹跑去,这样不断来回,直到王明和妹妹相遇为止。

追及相遇问题

追及相遇问题
追及和相遇问题
1.追及问题 “追及”的主要条件是两个物体在追 赶过程中处在同一位置,常见的情形有 三种: (1)初速度为零的匀加速直线运动的 物体甲追赶同方向的匀速运动的物体乙 时,一定能追上,在追上之前两者有最 大距离的条件是两物体的速度相等,即 v甲=v乙.
(2)匀速运动的物体甲追赶同方向做匀
3.相遇问题 (1)相遇的特点:在同一时刻两物 体处于同一位置. (2)相遇的条件:同向运动的物体 追及即相遇;相向运动的物体,各自 发生的位移的绝对值之和等于开始时 两物体之间的距离时即相遇.
类型一 追及相遇问题的求解方法
例1 一小汽车从静止开始以3 m/s2的 加速度行驶,恰有一自行车以6 m/s的 速度从车边匀速驶过.
加速运动的物体乙时,恰好追上或恰好
追不上的临界条件是两物体速度相等,
即v甲=v乙. 判断此种追赶情形能否追上的方法是:
假定在追赶过程中两者在同一位置,比
较此时的速度大小,若v甲>v乙,则能追上; v甲<v乙,则追不上,如果始终追不上,当 两物体速度相等即v甲=v乙时,两物体的 间距最小.
(3)速度大者减速(如匀减速直线运动)追速 度小者(如匀速运动)
(1)汽车从开动后在追上自行车之 前,要经多长时间两者相距最远?最 远距离是多少?
(2)什么时候追上自行车,此时汽 车的速度是多少?
(2)由图知,t=2 s以后,若两车位移相等, 即v-t图象与时间轴所夹的“面积”相等.
由几何关系知,相遇时间为t′=4 s,此 时v汽=2v自=12 m/s.
解析:汽车和自行车运动草图如下:
六、追及和相遇问题 1.追及问题 “追及”的主要条件是两个物体在追 赶过程中处在同一位置,常见的情形有 三种: (1)初速度为零的匀加速直线运动的 物体甲追赶同方向的匀速运动的物体乙 时,一定能追上,在追上之前两者有最 大距离的条件是两物体的速度相等,即 v甲=v乙.

相遇问题、追及问题

相遇问题、追及问题

【解题思路和方法】 简单的题目直接利用公 式,复杂的题目变通后利用公式。
例1 好马每天走120千米,劣马每天走75千米, 劣马先走12天,好马几天能追上劣马? 解 (1)劣马先走12天能走多少千米? 75×12=900(千米) (2)好马几天追上劣马? 900÷(120- 75)=20(天) 列成综合算式 75×12÷(120-75)= 900÷45=20(天) 答:好马20天能追上劣马。
追及问题
【含义】两个运动物体在不同地点同时出发 (或者在同一地点而不是同时出发,或者 在不同地点又不是同时出发)作同向运动, 在后面的,行进速度要快些,在前面的, 行进速度较慢些,在一定时间之内,后面 的追上前面的物体。这类应用题就叫做追 及问题。 【数量关系】 追及时间=追及路程÷(快速 -慢速) 追及路程=(快速-慢速)×追及时间

例5 兄妹二人同时由家上学,哥哥每分钟走90米,妹 妹每分钟走60米。哥哥到校门口时发现忘记带课本, 立即沿原路回家去取,行至离校180米处和妹妹相遇。 问他们家离学校有多远? 解要求距离,速度已知,所以关键是求出相遇时间。 从题中可知,在相同时间(从出发到相遇)内哥 哥比妹妹多走(180×2)米,这是因为哥哥比妹 妹每分钟多走(90-60)米, 那么,二人从家出走到相遇所用时间为 180×2÷(90-60)=12(分钟) 家离学校的距离为 90×12-180=900(米) 答:家离学校有900米远。
例3 甲乙二人同时从两地骑自行车相向而行, 甲每小时行15千米,乙每小时行13千米,两 人在距中点3千米处相遇,求两地的距离。
解 “两人在距中点3千米处相遇”是正确理解本题 题意的关键。从题中可知甲骑得快,乙骑得慢, 甲过了中点3千米,乙距中点3千米,就是说甲比 乙多走的路程是(3×2)千米,因此, 相遇时间=(3×2)÷(15-13)=3(小时) 两地距离=(15+13)×3=84(千米) 答:两地距离是84千米。

追及和相遇问题

追及和相遇问题

追击和相遇问题两物体在同一直线上追及、相遇或避免碰撞问题中的条件是:两物体能否同时到达空间某位置。

因此应分别对两物体研究,列出位移方程,然后利用时间关系、速度关系、位移关系而解出。

一、追及问题1、追及问题中两者速度大小与两者距离变化的关系。

若甲2⑴⑵⑶3⑴⑴⑵例1以5m s的速度匀速驶过停车线与汽车同方向行驶,求:(1)什么时候它们相距最远?最远距离是多少?(2)在什么地方汽车追上自行车?追到时汽车的速度是多大?分析:分析过程,合理分段,画出示意图,并找出各段之间的连接点解题过程:例2、在某市区内,一辆小汽车在公路上以速度v 1向东行驶,一位观光游客正由南向北从斑马线上横过马路。

汽车司机发现游客途经经14.01.甲乙两个质点同时同地向同一方向做直线运动,它们的v —t 图象如图所示,则 ( )A.乙比甲运动的快B.2 s乙追上甲C.甲的平均速度大于乙的平均速度D.乙追上甲时距出发点40 m远2.汽车A在红绿灯前停住,绿灯亮起时起动,以0.4 m/s2的加速度做匀加速运动,经过30 s 后以该时刻的速度做匀速直线运动.设在绿灯亮的同时,汽车B以8 m/s的速度从A车旁边驶过,且一直以相同速度做匀速直线运动,运动方向与A车相同,则从绿灯亮时开始()A.A车在加速过程中与B车相遇B.A、B相遇时速度相同C.相遇时A车做匀速运动D.两车不可能再次相遇3.两辆完全相同的汽车,沿水平直路一前一后匀速行驶,速度均为V0,若前车突然以恒定的加速度刹车,在它刚停住时,后车以前车刹车时的加速度开始刹车.已知前车在刹车过程中所行的距离为s,若要保证两辆车在上述情况中不相撞,则两车在匀速行驶时保持的距离至少应为:()A.s B.2s C.3s D.4s4.A与B两个质点向同一方向运动,A做初速为零的匀加速直线运动,B做匀速直线运动.开始计时时,A、B位于同一位置,则当它们再次位于同位置时:A.两质点速度相等.B.A与B在这段时间内的平均速度相等.C.A的即时速度是B的2倍.D.A与B的位移相等.5.汽车甲沿平直公路以速度V做匀速直线运动,当它经过某处的另一辆静止的汽车乙时,乙开始做初速度为零的匀加速直线运动去追甲。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一辆摩托车能达到的最大速度为30 m/s,要想 在3 min 内由静止起沿一条平直公路追上在前 面1000 m 处正以20 m/s 的速度匀速行驶的 汽车,则摩托车必须以多大的加速度启动?
例题4.a、b两个物体从同一位置沿同一直线运动, 它们的速度图象如图所示,下列说法正确的是 A.a、b加速时,物体a的加速度大于物体b的加速 度 B.20s时,a、b两物体相距最远 C.60s时,物体a在物体b的前方 D.40s时,a、b两物体速度相等,相距200m
例题7.羚羊从静止开始奔跑,经过50m的距 离能加速到最大速度25m/s,并能维持一段较 长的时间。猎豹从静止开始奔跑,经过60m 的距离能加速到最大速度30m/s,以后只能维 持这速度4.0s。设猎豹距离羚羊x时开始攻击, 羚羊则在猎豹开始攻击后1.0s才开始奔跑, 假定羚羊和猎豹在加速阶段做匀加速运动, 且均沿同一直线奔跑,求:(1)猎豹要在从 最大速度减速前追到羚羊,x值应在什么范围? (2)猎豹要在其加速阶段追到羚羊,x值应 在什么范围?
第二章
匀变速直线运动的研究
相遇和追及问题
在一条狭窄的公路上,两车相向而行, 如何减速才能保证不致相撞呢?在跑道 上,如果我们想追赶前方的同学,加速 度至少应当多大? 相遇和追击问题是运 动学中的常见问题。这一讲我们通过一 些例题来讨论解决相遇和追及问题的方 法。
例题1、汽车A正以30m/s的速度在狭窄 公路上行驶,前方有一汽车B正以20m/s 的速度迎面匀速驶来,汽车A司机立即关 闭油门紧急刹车,加速度大小为6m/s2, 同时汽车B司机也采取紧急措施,以 5m/s2大小的加速度刹车,已知最后两车 没有相撞,则A、B车开始刹车时两车间 的距离至少为多少米?
例题5、小球1从高H处自由落下,同时小球2 从其下方以速度v0竖直上抛,两球可在空中 相遇,试就下列两种情况讨论v0的取值范围。 (1)在小球2上升过程两球在空中相遇; (2)在小来了方便,但 是因为在高速公路上行驶的车辆的速度大, 雾天往往出现十几辆车追尾连续相撞的车祸。 已知轿车在高速公路正常行驶速率为 120km/h。轿车刹车产生的最大加速度为 8m/s2,如果某天有雾,能见度(观察者与能 看见的最远目标间的距离)约为37m,设司 机的反应时间为0.6s,为安全行驶,轿车行 驶的最大速度是多少?
例题2.小轿车在十字路口等绿灯亮后,以 1m/s2的加速度启动,恰在此时,一辆大卡车 以7m/s的速度从旁超过,做同向匀速运动, 问(1)小轿车追上大卡车时已通过多少路程? (2)两车间的距离最大时为多少?
例题3.汽车正以10m/s的速度在平直公路上 前进,突然发现正前方s 处有一辆自行车以 4m/s的速度做同方向的匀速直线运动,汽车 立即关闭油门做匀减速运动,加速度大小为 6m/s2,若汽车恰好不碰上自行车,则s大小 为多少?
相关文档
最新文档