信号与系统大作业

合集下载

信号与系统作业作业1(第二章)答案

信号与系统作业作业1(第二章)答案

第二章 作业答案2–1 已知描述某LTI 连续系统的微分方程和系统的初始状态如下,试求此系统的零输入响应。

(1))()(2)(2)(3)(t e t e t y t y t y +'=+'+'' 2)0(=-y ,1)0(-='-y解:根据微分方程,可知特征方程为:0)2)(1(0232=++⇒=++λλλλ所以,其特征根为: 1,221-=-=λλ所以,零输入响应可设为:0)(221≥+=--t e C e C t y ttzi又因为 ⎩⎨⎧=-=⇒⎩⎨⎧-=--='=+=--3112)0(2)0(212121C C C C y C C y 所以,03)(2≥-=--t ee t y tt zi(2))(2)()(6)(5)(t e t e t y t y t y -'=+'+'' 1)0()0(=='--y y 。

解:根据微分方程,可知特征方程为:0)3)(2(0652=++⇒=++λλλλ所以,其特征根为: 3,221-=-=λλ所以,零输入响应可设为:0)(3221≥+=--t e C eC t y ttzi又因为 ⎩⎨⎧-==⇒⎩⎨⎧=--='=+=--34132)0(1)0(212121C C C C y C C y 所以,034)(32≥-=--t ee t y tt zi2–2 某LTI 连续系统的微分方程为)(3)()(2)(3)(t e t e t y t y t y +'=+'+'' 已知1)0(=-y ,2)0(='-y ,试求: (1) 系统的零输入响应)(t y zi ;(2) 输入)()(t t e ε=时,系统的零状态响应)(t y zs 和全响应)(t y 。

解:(1)根据微分方程,可知特征方程为:0)2)(1(0232=++⇒=++λλλλ所以,其特征根为: 1,221-=-=λλ所以,零输入响应可设为:0)(221≥+=--t e C e C t y ttzi又因为 ⎩⎨⎧=-=⇒⎩⎨⎧=--='=+=--4322)0(1)0(212121C C C C y C C y所以,034)(2≥-=--t e et y ttzi(2) 可设零状态响应为:0)(221>++=--t pe C eC t y t x tx zs其中p 为特解,由激励信号和系统方程确定.因为)()(t t e ε= 所以,p 为常数,根据系统方程可知,23=p . 于是,零状态响应可设为为:023)(221>++=--t e C e C t y t x t x zs将上式代入原方程中,比较方程两边的系数,可得到⎪⎩⎪⎨⎧-==22121C C 所以,023221)(2>+-=--t e e t y t tzs全响应为 )()()(t y t y t y zs zi +=0)23221()34()(22>+-+-=----t e e e e t y t t t t zs0)23252()(2>+-=--t e e t y t t zs2–3 试求下列各LTI 系统的冲激响应和阶跃响应. (1))(2)()(3)(4)(t e t e t y t y t y +'=+'+'' 解:根据 在激励信号为)(t δ的条件下,求解系统的零状态响应可得())(21)(3t e e t h t tε⋅+=-- 因为,单位阶跃响应⎰-⋅=td h t g 0)()(ττ所以,()⎰-⋅+=--td e e t g 0321)(τττ0),1(61)1(2161216030>-+-=--=------t e e e e t t t t ττ0,6121326>--=--t e e tt(2))(2)(2)()(2)(3)("t e t e t e t y t y t y +'+''=+'+ 解:可先求系统 )()(2)(3)("t e t y t y t y =+'+ 的冲激励响应)(0t h ,则,原系统的冲激响应为)(2)(2)()(0'0"0t h t h t h t h ++=。

(完整版)信号与系统练习及答案

(完整版)信号与系统练习及答案

信号与系统练习及答案一、单项选择题1.已知信号f (t )的波形如题1图所示,则f (t )的表达式为( )A .tu(t)B .(t-1)u(t-1)C .tu(t-1)D .2(t-1)u(t-1)2.积分式⎰-δ+δ++4422)]dt -(t 2(t))[23(t t 的积分结果是( ) A .14 B .24 C .26 D .283.已知f(t)的波形如题3(a )图所示,则f (5-2t)的波形为( )4.周期矩形脉冲的谱线间隔与( )A .脉冲幅度有关B .脉冲宽度有关C .脉冲周期有关D .周期和脉冲宽度有关 5.若矩形脉冲信号的宽度加宽,则它的频谱带宽( ) A .不变 B .变窄 C .变宽D .与脉冲宽度无关 6.如果两个信号分别通过系统函数为H (j ω)的系统后,得到相同的响应,那么这两个信号()A .一定相同 B .一定不同 C .只能为零 D .可以不同7.f(t)=)(t u e t 的拉氏变换为F (s )=11-s ,且收敛域为( ) A .Re[s]>0B .Re[s]<0C .Re[s]>1D .Re[s]<1 8.函数⎰-∞-δ=2t dx )x ()t (f 的单边拉氏变换F (s )等于( ) A .1 B .s 1 C .e -2s D .s1e -2s 9.单边拉氏变换F (s )=22++-s e )s (的原函数f(t)等于( ) A .e -2t u(t-1) B .e -2(t-1)u(t-1) C .e -2t u(t-2)D .e -2(t-2)u(t-2)答案: BCCCBDCDA二.填空题1.如果一线性时不变系统的单位冲激响应为h(t),则该系统的阶跃响应g(t)为_________。

2.已知x(t)的傅里叶变换为X (j ω),那么x (t-t 0)的傅里叶变换为_________________。

3.如果一线性时不变系统的输入为f(t),零状态响应为y f (t )=2f (t-t 0),则该系统的单位冲激响应h(t)为_________________。

工程信号与系统大作业文字

工程信号与系统大作业文字

欢迎共阅工程信号与系统大作业——音频信号频谱分析比较学院:电子工程学院班级:1402018姓名:杨宁学号:14020181051 一、大作业要求:以下的内容,给出过程描述,原理分析,数据图表及分析。

1录制自己一段语音,分析其频谱特点。

2录制一段自己唱的歌曲,并与歌星唱的相同歌曲作频谱分析的比较(背景唱的去除)。

二、Matlab处理音频信号及歌曲背景音乐的去除1.设计方案:语音波形图是语音信号的时域分析,将语音信号记录成时域波形。

语音信号首先是一个时间序列,进行语音分析时,最直观的就是它的时域波形。

通过计算机的采样的量化,直接将语音波形显示出来。

利用MATLAB中的wavread命令来读入(采集)语音信号,将它赋值给某一向量。

再将该向量看作一个普通的信号,对其进行FFT变换实现频谱分析。

利用matlab简单的函数可以完成对自己声音的录制,保存,利用第二个任务用到的程序可以完成对其频谱图的绘制。

对于歌手所唱歌曲背景音乐的去除,用Adobe Audition 软件来实现。

具体步骤如下:【第一步】打开AA,切换到多轨模式,选择“插入”栏下的“提取视频中的音频”,或者直接右键单击轨道,选择“插入”→“提取音频”,选择你要消声的音频片段。

【第二步】切换到单轨模式。

【第三步】选中一段没有人声的纯背景音乐部分,然后点击工具栏中的“效果”→“修复”→“降噪器(进程)。

【第四步】选择降噪器界面内的“获取特性”,就会自动获取噪音特性,然后就会出现这个界面【第五步】取消选定特定区域,或者全部选中你要消除背景音乐的区域,再通过点击“效果”→“修复”→“降噪器(进程)”,此时又会出现降噪器界面了,这时候要注意界面内的“降噪级别”这一栏。

【第六步】全部调整好了之后,你就可以把它另存为了。

2.自己声音信号的获取:利用录音机录下自己一段话音,并用格式工厂转化成wav格式音频,放入目标文件夹方便调用。

3.音频信号读入和播放可支持两种格式的输入输出:NeST/SUN(后缀为“.au”)和Microsoft WAV文件(后缀为“.wav”)。

信号与系统大作业模板

信号与系统大作业模板

《信号与系统分析》大作业报告题目:基于Matlab的信号与系统分析仿真学号:课号:指导教师:2020 年12月26日一、设计思路:1.编写程序(函数),利用Matlab画出波形,并利用自变量替换方式实现信号的尺度变换、翻转和平移等运算;2.利用Matlab的impluse函数和step函数分别求解连续系统的冲激响应和阶跃响应,绘图并与理论值比较,利用卷积和函数conv计算连续时间信号的卷积,并绘图表示;3.利用函数quad和quadl求傅里叶变换,画出对应频谱,进行比较,验证尺度变换、时移、频移、卷积定理、对称性等性质;4.画出波形,利用quad函数或quadv函数求波形傅里叶级数,绘制单边幅度谱和单边相位谱,然后合成波形。

二、项目实现:1.信号的运算(1)编写程序(函数),画出图(a)所示波形f(t)(2)利用(1)中建立的函数,通过自变量替换的方式依次画出图(b)、(c)、(d)即f(2t)、f(-t)、f(t+5)的波形。

源代码:% Program ch1_1% f(t)t=-4:0.01:4;y=tripuls(t,6,0.8);subplot(211);plot(t,y);title('f(t)');xlabel('(a)');box off;% f(2t)y1=tripuls(2*t,6,0.8);subplot(234);plot(t,y1);title('f(2t)');xlabel('(b)');box off;% f(-t)t1=-t;y2=tripuls(-1*t1,6,0.8);subplot(235);plot(t1,y2);title('f(-t)');xlabel('(c)');box off;% f(t+5)t2=t-5;y3=tripuls(5+t2,6,0.8);subplot(236);plot(t2,y3);title('f(t+5)');xlabel('(d)');box off ;由图可知,Matlab 计算结果与理论值一致2.系统分析(1)已知一个因果LTI 系统的微分方程为y ”(t)+3y ’(t)+2y(t)=f(t),求系统的冲激响应和阶跃响应,绘图并与理论值比较。

信号与系统大作业

信号与系统大作业

大作业第一章基本题计算卷积积分:s(t)=f1 (t)*f2(t)f1(t)=sinπt[u(t)-u(t-1)],f2(t)=(t-1)+δ(t+2)解:s(t)=sin(t-1)[u(t-1)-u(t-2)]+sin(t+2)[u(t+2)-u(t+1)]= f1(t-1)+f1(t+2)综合题已知f(t)和h(t)波形如下图所示,请计算卷积f(t)*h(t),并画出f(t)*h(t)波形。

详细步骤如下:第二章基本题描述某系统的微分方程为 y”(t) + 4y’(t) + 3y(t) = f(t) 求当f(t) = 2e-2t,t≥0;y(0)=2,y’(0)= -1时的解解: (1) 特征方程为λ2 + 4λ+ 3 = 0 其特征根λ1=–1,λ2=–2。

齐次解为y h(t) = C1e -t + C2e -3t当f(t) = 2e–2 t时,其特解可设为y p(t) = Pe -2t将其代入微分方程得P*4*e -2t + 4(–2Pe-2t)+3Pe-t =2e-2t解得 P=2于是特解为 y p(t) =2e-t全解为: y(t) = y h(t) + y p(t) = C1e-t+ C2e-3t + 2e-2t其中待定常数C1,C2由初始条件确定。

y(0) = C1+C2+ 2 = 2,y’(0) =–2C1–3C2–1=–1解得 C1 =1.5,C2 =–1.5最后得全解y(t)=1.5e – t –1.5e – 3t +2 e –2 t ,t ≥0 综合题如图系统,已知)()(),1()(21t t h t t h εδ=-=试求系统的冲激响应h ( t )。

解 由图关系,有)1()()1()()()()()()(1--=-*-=*-=t t t t t t h t f t f t x δδδδδ所以冲激响应)1()()()]1()([)()()()(2--=*--=*==t t t t t t h t x t y t h εεεδδ即该系统输出一个方波。

华南理工大学信号与系统大作业

华南理工大学信号与系统大作业

Signal&System Works 五山禅院ID:W ORKORK11系统识别基本题ArrayN=n=x=y=title(title(H=Y./X;%频率响应h=ifft(H);%逆变换subplot(3,1,1);stem(n,h);title('h[n]');subplot(3,1,2);plot(k,abs(H));title('|H(e^j^w)|');subplot(3,1,3)plot(k,angle(H));title('angle of H(e^j^w)');解析法:ωj e −−21∴][)21(][n u n h n =title('|Y(e^j^w)|');xlabel('w');(2)比较卷积输出与理论输出H=Y./X;plot(w,abs(fftshift(H)));title('|H(e^j^w)|');h1=ifft(H);y1=conv(h1,x);subplot(2,1,1);stem(n,y);title('y');subplot(2,1,2);stem([0:length(y1)-1],y1);title('y1');y1=h1*x;发现失真相当严重,原因是x只截取了0:64的值,此时用fft计算出来的为X1(e^jw),与实际的X(e^jw)存在误差。

N=200时,发现误差有了相当大的改善,所以推测正确!(3)频率响应H=Y./X;plot(w,abs(fftshift(H)));title('|H(e^j^w)|');当X很小时,H=Y/X会产生尖峰,因此必须把尖峰平滑掉。

After smooth:简单平滑,只是将尖峰点置零H2=H;for i=1:64if(X(i)<0.01)H2(i)=0;endendplot(w,abs(fftshift(H2)));title('|H2(e^j^w)|');测试输出:h2=ifft(H2);y2=conv(h2,x);subplot(2,1,1);stem(n,y);title('y');y2=y2(1:64);%截取y2的一半subplot(2,1,2);stem([0:length(y2)-1],y2);title('y2');That’’s perfect!I love it. Oh!!That终极smooth:H2(1)=0.5721;Before:简单平滑,只是将尖峰点置零subplot(2,1,1)plot(w,abs(fftshift(H2)));title('|H2(e^j^w)|');subplot(2,1,2)plot(w,angle(fftshift(H2)));title('angle of H2(e^j^w)');After:终极平滑,把尖峰点置成与邻近点相同H2=H;for i=1:64if(X(i)<0.01)for j=i:64%将最近的不等0的wk赋给等于0的w0 if(X(j)>0.01)H2(i)=H(j);endendendendsubplot(2,1,1)plot(w,abs(fftshift(H2)));title('|H2(e^j^w)|');subplot(2,1,2)plot(w,angle(fftshift(H2)));title('angle of H2(e^j^w)');(4)测试平滑后的输出,与理论输出对比h2=ifft(H2);y2=conv(h2,x);subplot(2,1,1);stem(n,y);title('y');y2=y2(1:64);%截取y2的一半subplot(2,1,2);stem([0:length(y2)-1],y2);title('y2');由图可知,效果颇佳!WORK3Hilbert Transform(a)根据频率响应计算得出nn n h ππcos 1][−=所以,h[n]关于原点对称(c)时移(d)n =n1=n2=a =ha =ha =Ha =k =w =title(plot(w,Haangle);α(g)输入:)8sin(n π卷积:)(*)8sin(n h n απ理论输出:]8/)20cos[(π−−n n =0:128;n1=0:19;n2=21:128;a =20;ha =(1-cos(pi*(n1-a)))./pi./(n1-a);ha =[ha,0,(1-cos(pi*(n2-a)))./pi./(n2-a)];x =sin(n*pi/8);subplot(3,1,1);stem(n,x);title('sin(pi*n/8)')xh =conv(x,ha);xh =xh(1:128);%cutsubplot(3,1,2);stem(0:length(xh)-1,xh);title('x[n]*ha[n]')xr =-cos((n-20)*pi/8);subplot(3,1,3);stem(n,xr);title('Theoretical result:-cos((n-20)*pi/8)');(h)输入:卷积:截取20~148,即可得到:)(*)8sin(n h n π理论输出:8cos πn −n =0:128;n1=0:19;n2=21:128;a =20;ha =(1-cos(pi*(n1-a)))./pi./(n1-a);ha =[ha,0,(1-cos(pi*(n2-a)))./pi./(n2-a)];x =sin(n*pi/8);subplot(3,1,1);stem(n,x);title('sin(pi*n/8)')xh =conv(x,ha);xh =xh(21:148);%cut ,截取20-148subplot(3,1,2);stem(0:length(xh)-1,xh);title('x[n]*h[n]')xr =-cos(n*pi/8);%理论输出subplot(3,1,3);stem(n,xr);title('Theoretical result:-cos(n*pi/8)');WORK4SSB-Modulation输入:4/)32()4/)32(sin(][−−=n n n x ππ640≤≤n codeN =64;n =0:N-1;wc =pi/2;x =(sin(pi*(n-32)/4))./(pi*(n-32)/4);x(33)=1;%由洛必达法则得X =fft(x,256);subplot(3,2,1);stem(n,x);title('x');xlabel('n')subplot(3,2,3);w =2*pi*((0:(length(X)-1))-128)/256;%输出移至零频plot(w,abs(fftshift(X)));title('|X|');xlabel('w');x1=x.*cos(wc*n);%x1X1=fft(x1,256);subplot(3,2,2);w =2*pi*((0:(length(X1)-1))-128)/256;%输出移至零频plot(w,abs(fftshift(X1)));title('|X1|');xlabel('w');%hilbert funtiona =20;ha =(1-cos(pi*(n-a)))./pi./(n -a);ha(21)=0;%xh =conv(ha,x);xh =xh(21:84);XH =fft(xh,256);x2=xh.*sin(wc*n);X2=fft(x2,256);w =2*pi*((0:(length(X2)-1))-128)/256;%输出移至零频subplot(3,2,4);plot(w,abs(fftshift(X2)));title('|X2|');xlabel('w');y =x1+x2;Y =fft(y,256);w =2*pi*((0:(length(X2)-1))-128)/256;%输出移至零频subplot(3,2,6);plot(w,abs(fftshift(Y)));title('|Y|');xlabel('w');分析:由上图可看出,][1n x 的频谱是][n x 的频谱向左右搬移2π,同时幅度减小为一半。

北京交通大学信号与系统大作业

北京交通大学信号与系统大作业

信号与系统大作业学院:电气工程学院班级:电气0909班姓名:熊飞学号:09292024指导教师:邱瑞昌老师用MATLAB 验证时域抽样定理目的:通过MATLAB 编程实现对时域抽样定理的验证,加深抽样定理的理解。

同时训练应用计算机分析问题的能力。

任务:连续信号f(t)=cos(8*pi*t)+2*sin(40*pi*t)+cos(24*pi*t),经过理想抽样后得到抽样信号fs(t),通过理想低通滤波器后重构信号f(t)。

可得信号的傅里叶变换为:()[(8)(8)]2[(40)(40)][(24)(24)]f X t w w j w w w w πδπδππδπδππδπδπ←−→++-++--+++-所以X (t )的最高频率是40π,所以Niquist 采样间隔为Tn=0.025S ,理想低通滤波器为了能够完整恢复波形,选择Wc=1.1Wsam 即可。

程序设计:主程序:wm=40*pi;确定信号最大角频率wc=1.1*wm;确定低通滤波器的通带宽度 Ts=0.02; 确定采样时间间隔n=-200:200;nTs=n*Ts; 制造周期采样脉冲序列fs=(cos(8*pi*nTs)+2*sin(40*pi*nTs)+cos(24*pi*nTs));进行信号采样t=-0.3:0.0001:0.3;ft=fs*Ts*wc/pi*sinc((wc/pi)*(ones(length(nTs),1)*t-nTs'*ones(1,length(t))));确定重构信号的时间范围。

t1=-0.3:0.0001:0.3;f1=cos(8*pi*t1)+2*sin(40*pi*t1)+cos(24*pi*t1); 制造原连续信号画出原信号与采样信号:figure(1) 确定图像标号plot(t1,f1,'r-','linewidth',1),hold on 画出原信号,并保留原信号曲线。

(完整版)信号与系统专题练习题及答案

(完整版)信号与系统专题练习题及答案

(完整版)信号与系统专题练习题及答案信号与系统专题练习题一、选择题1.设当t<3时,x(t)=0,则使)2()1(t x t x -+-=0的t 值为 C 。

A t>-2或t>-1B t=1和t=2C t>-1D t>-22.设当t<3时,x(t)=0,则使)2()1(t x t x -?-=0的t 值为 D 。

A t>2或t>-1B t=1和t=2C t>-1D t>-23.设当t<3时,x(t)=0,则使x(t/3)=0的t 值为 C 。

A t>3 B t=0 C t<9 D t=34.信号)3/4cos(3)(π+=t t x 的周期是 C 。

A π2 B π C 2/π D π/25.下列各表达式中正确的是B A. )()2(t t δδ= B.)(21)2(t t δδ= C. )(2)2(t t δδ= D. )2(21)(2t t δδ=6. 已知系统的激励e(t)与响应r(t)的关系为:)1()(t e t r -= 则该系统为 B 。

A 线性时不变系统 B 线性时变系统 C 非线性时不变系统 D 非线性时变系统7. 已知系统的激励e(t)与响应r(t)的关系为:)()(2t e t r = 则该系统为 C 。

A 线性时不变系统B 线性时变系统C 非线性时不变系统D 非线性时变系统 8. ?∞-=td ττττδ2sin )( A 。

A 2u(t) B )(4t δ C 4 D 4u(t)10.dt t t )2(2cos 33+??-δπ等于 B 。

A 0 B -1 C 2 D -211.线性时不变系统输出中的自由响应的形式由 A 决定A 系统函数极点的位置;B 激励信号的形式;C 系统起始状态;D 以上均不对。

12.若系统的起始状态为0,在x (t)的激励下,所得的响应为 D 。

A 强迫响应;B 稳态响应;C 暂态响应;D 零状态响应。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中北大学
信号与系统综合性报告
学院:仪器与电子学院
专业:电子科学与技术
学号姓名:王鹏
学号姓名:张艺超
学号姓名:郭靖锋
学号姓名:蔡宪庆
学号姓名:
指导教师: 张晓明
2019年5 月13 日
1 设计题目时频域语音信号的分析与处理
2 设计目标对语音信号进行时频域分析和处理的基本方法
3 设计要求
1)分别录制一段男生和女生语音文件及相应有明显高频或低频干扰的语音文件*.wav,并将文件导入Matlab中;
2)分别分析各段语音的频谱,绘制其频谱图,分析语音信号和干扰信号的频段;
3)设计相应的滤波器,剔除含干扰的语音段的干扰信号,并分析滤波信号的频谱;
4)生成滤波后的语音文件,分析听觉效果。

4 理论分析
声音作为一种波,频率在20 Hz~20 kHz之间的声音是可以被人耳识别的
通过查阅资料显示,实际人声频率范围
男:低音82~392Hz,基准音区64~523Hz
男中音123~493Hz,男高音164~698Hz
女:低音82~392Hz,基准音区160~1200Hz
女低音123~493Hz,女高音220~1.1KHz
声音作为波的一种,频率和振幅就成了描述波的重要属性,频率的大小与我们通常所说的音高对应,而振幅影响声音的大小。

声音可以被分解为不同频率不同强度正弦波的叠加。

这种变换(或分解)的过程,称为傅立叶变换(Fourier Transform)。

傅里叶变换之后可以得到男女声的频谱,从而分析男女声的特点,观察男女声频率集中的区域,在声音中加入高频噪声,分析高频噪声频率的分布,从而设计巴特沃斯滤波器进行滤波。

5 实验内容及步骤
5.1 获取音频文件
5.1.1 通过手机录音可直接获取wav音频文件,对于噪声的添加,我们选择单独录制高频
件,读取音频数据,在时域领域上相加,便获取到含有高频噪声的音频
5.2 音频的时域处理
5.2.1 wav属于无损音乐格式的一种,其文件包含采样频率,左右声道数据,在处理时,
由于我们使用的是matlab2012a,且录制时只有一个声道,可使用函数wavread()读取到一个一维数组,使用plot函数即可获取其音频时域图像
5.3 音频的频域处理
5.3.1 对于音频数组,我们采用fft函数进行傅里叶变换,获取到的是对称的复数数组,数组的前一半即为其频域,同样使用plot将其画出。

5.3.2 观察频域图,分析男女声特点。

5.4 噪声的去除
5.4.1 分析高频噪声频谱,找到合适的截止频率,设计巴特沃斯滤波器对高频噪声进行过滤。

5.4.2 将去除噪声的数组转换成音频文件
6 实验数据及分析
男声时域图
频域图
女声时域图
频域图
噪声频谱
从图中可以看出男声频率大致在150-750之间,在2000和4000频段应该为录音时的噪声引起而女声的频段大概在500-1000;噪声频谱大致在3000到6000左右。

在低频端90也有噪声出现。

对此我们选择截止频率为2500,
滤波器的频谱图为
通过滤波器之后的频率图为
7 结论
通过男女声的频谱分析,可以很明显的看出男女声之间的区别,女声的频率更高,而男生的频率相对较低。

对于噪声的添加,我们选择了高频信号,通过滤波器后噪声可以很好的去除,但去除噪声后音频中的高频信号也随之去除,我们也可以感觉到音色的变化。

8 实验心得体会
通过这次的实验,我们了解到声音的产生,同时查阅资料明白了为什么人对于不同音频的声音会有不同的感受,同时对比男女声频谱发现了男女声频率的区别,以及男女声频率的分别情况,对于噪声的去除使我们学会了滤波器的使用。

9 组员分工情况及组内自我评价
信号与系统综合性报告验收评分表
+报告成绩A3 *60%
要求每个小组答辩前提交:综合性报告、验收评分表、答辩PPT、程序及数据文件电子版。

每个组员必须参加PPT讲述及答辩环节,计入各自的答辩成绩。

相关文档
最新文档