【备战2013年】历届高考数学真题汇编专题2_简易逻辑最新模拟_理

合集下载

历年(2013)高考真题分类汇编(共14套)含答案精品打包下载

历年(2013)高考真题分类汇编(共14套)含答案精品打包下载

历年(2013)高考真题分类汇编(共14套)含答案精品打包下载.docA单元集合与常用逻辑用语A1集合及其运算-5<x<5,则1.A1[2013·新课标全国卷Ⅰ] 已知集合A={x|x2-2x>0},B=x} ()A.A∩B=B.A∪B=RC.B A D.A B1.B[解析] A={x|x<0或x>2},故A∪B=R.1.A1[2013·北京卷] 已知集合A={-1,0,1},B={x|-1≤x<1},则A∩B=() A.{0} B.{-1,0} C.{0,1} D.{-1,0,1}1.B[解析] ∵-1∈B,0∈B,1B,∴A∩B={-1,0},故选B.1.A1[2013·广东卷] 设集合M={x|x2+2x=0,x∈R},N={x|x2-2x=0,x∈R},则M∪N=()A.{0} B.{0,2}C .{-2,0}D .{-2,0,2}1.D [解析] ∵M ={-2,0},N ={0,2},∴M ∪N ={-2,0,2},故选D. 2.A1[2013·湖北卷] 已知全集为R ,集合A =x 错误!错误!x ≤1,B ={x|x 2-6x +8≤0},则A ∩(∁R B)=( )A .{x|x ≤0}B .{x|2≤x ≤4}C .{x|0≤x<2或x>4}D .{x|0<x ≤2或x ≥4}2.C [解析] A ={x|x ≥0},B ={x|2≤x ≤4},∁R B ={x|x<2或x>4},可得答案为C. 16.A1,A3,B6[2013·湖南卷] 设函数f(x)=a x +b x -c x ,其中c>a>0,c>b>0.(1)记集合M ={(a ,b ,c)|a ,b ,c 不能构成一个三角形的三条边长,且a =b},则(a ,b ,c)∈M 所对应的f(x)的零点的取值集合为________;(2)若a ,b ,c 是△ABC 的三条边长,则下列结论正确的是________.(写出所有正确结论的序号)①x ∈(-∞,1),f(x)>0;②x ∈R ,使a x ,b x ,c x 不能构成一个三角形的三条边长; ③若△ABC 为钝角三角形,则x ∈(1,2),使f(x)=0. 16.(1){x|0<x ≤1} (2)①②③ [解析] (1)因a =b ,所以函数f(x)=2a x -c x ,又因a ,b ,c 不能构成一个三角形,且c>a>0,c>b>0,故a +b =2a<c ,令f(x)=2a x -c x =0,即f(x)=c x⎣⎡⎦⎤2⎝⎛⎭⎫a c x-1=0,故可知⎝⎛⎭⎫a c x=12,又0<a c <12,结合指数函数性质可知0<x ≤1,即取值集合为{x|0<x ≤1}.(2)因f(x)=a x+b x-c x=c x⎣⎡⎦⎤⎝⎛⎭⎫a c x+⎝⎛⎭⎫b c x-1,因c>a>0,c>b>0,则0<a c <1,0<bc <1,当x ∈(-∞,1)时,有⎝⎛⎭⎫a c x >a c ,⎝⎛⎭⎫b c x >b c ,所以⎝⎛⎭⎫a c x +⎝⎛⎭⎫b c x>a c +b c ,又a ,b ,c 为三角形三边,则定有a +b>c ,故对x ∈(-∞,1),⎝⎛⎭⎫a c x+⎝⎛⎭⎫b c x-1>0,即f(x)=a x +b x -c x =c x ⎣⎡⎦⎤⎝⎛⎭⎫a c x+⎝⎛⎭⎫b c x-1>0,故①正确;取x =2,则⎝⎛⎭⎫a c 2+⎝⎛⎭⎫b c 2<a c +b c ,取x =3,则⎝⎛⎭⎫a c 3+⎝⎛⎭⎫b c 3<⎝⎛⎭⎫a c 2+⎝⎛⎭⎫b c 2,由此递推,必然存在x =n 时,有⎝⎛⎭⎫a c n+⎝⎛⎭⎫b c n<1,即a n +b n <c n,故②正确;对于③,因f(1)=a +b -c>0,f(2)=a 2+b 2-c 2<0(C 为钝角),根据零点存在性定理可知,x ∈(1,2),使f(x)=0,故③正确.故填①②③.4.A1[2013·江苏卷] 集合{-1,0,1}共有________个子集. 4.8 [解析] 集合{-1,0,1}共有3个元素,故子集的个数为8. 1.A1,L4[2013·江西卷] 已知集合M ={1,2,zi},i 为虚数单位,N ={3,4},M ∩N ={4},则复数z =( )A .-2iB .2iC .-4iD .4i1.C [解析] zi =4z =-4i ,故选C. 2.A1[2013·辽宁卷] 已知集合A ={}x|0<log 4x<1,B ={}x|x ≤2,则A ∩B =( ) A .(0,1) B .(0,2] C .(1,2) D .(1,2]2.D [解析] ∵A ={x|1<x<4},B ={x|x ≤2},∴A ∩B ={x|1<x ≤2},故选D. 1.A1[2013·全国卷] 设集合A ={1,2,3},B ={4,5},M ={x|x =a +b ,a ∈A ,b ∈B},则M 中元素的个数为( )A .3B .4C .5D .61.B [解析] 1,2,3与4,5分别相加可得5,6,6,7,7,8,根据集合中元素的互异性可得集合M 中有4个元素.2.A1[2013·山东卷] 已知集合A ={0,1,2},则集合B ={x -y|x ∈A ,y ∈A}中元素的个数是( )A .1B .3C .5D .92.C [解析] ∵x ,y ∈{}0,1,2,∴x -y 值只可能为-2,-1,0,1,2五种情况,∴集合B 中元素的个数是5.1.A1[2013·陕西卷] 设全集为R ,函数f(x)=1-x 2的定义域为M ,则∁R M 为( )A .[-1,1]B .(-1,1)C .(-∞,-1]∪[1,+∞)D .(-∞,-1)∪(1,+∞) 1.D [解析] 要使二次根式有意义,则M ={x ︱1-x 2≥0}=[-1,1],故∁R M =(-∞,-1)∪(1,+∞).1.A1[2013·四川卷] 设集合A ={x|x +2=0},集合B ={x|x 2-4=0},则A ∩B =( ) A .{-2} B .{2} C .{-2,2} D.1.A [解析] 由已知,A ={-2},B ={-2,2},故A ∩B ={-2}. 1.A1[2013·天津卷] 已知集合A ={x ∈R ||x|≤2},B ={x ∈R |x ≤1},则A ∩B =( ) A .(-∞,2] B .[1,2] C .[-2,2] D .[-2,1]1.D [解析] A ∩B ={x ∈R |-2≤x ≤2}∩{x ∈R |x ≤1}={x ∈R |-2≤x ≤1}. 1.A1[2013·新课标全国卷Ⅱ] 已知集合M ={x|(x -1)2<4,x ∈R },N ={-1,0,1,2,3},则M ∩N =( )A .{0,1,2}B .{-1,0,1,2}C .{-1,0,2,3}D .{0,1,2,3}1.A [解析] 集合M ={x|-1<x<3},则M ∩N ={0,1,2}. 2.A1[2013·浙江卷] 设集合S ={x|x>-2},T ={x|x 2+3x -4≤0},则(∁R S)∪T =( ) A .(-2,1] B .(-∞,-4] C .(-∞,1] D .[1,+∞)2.C [解析] ∁R S ={x|x ≤-2},T ={x|(x +4)(x -1)≤0}={x|-4≤x ≤1},所以(∁R S)∪T =(-∞,1].故选择C.22.A1、A2,J1[2013·重庆卷] 对正整数n ,记I n ={1,2,…,n},P n =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫m k⎪⎪⎪⎪ m ∈I n ,k ∈I n ). (1)求集合P 7中元素的个数;(2)若P n 的子集A 中任意两个元素之和不是..整数的平方,则称A 为“稀疏集”,求n 的最大值,使P n 能分成两个不相交的稀疏集的并.22.解:(1)当k =4时,⎩⎨⎧m km ∈I 7中有3个数与I 7中的3个数重复,因此P 7中元素的个数为7×7-3=46.(2)先证:当n ≥15时,P n 不能分成两个不相交的稀疏集的并.若不然,设A ,B 为不相交的稀疏集,使A ∪B =P n I n .不妨设1∈A ,则因1+3=22,故3A ,即3∈B.同理6∈A ,10∈B ,又推得15∈A ,但1+15=42,这与A 为稀疏集矛盾.再证P 14符合要求,当k =1时,⎩⎨⎧mk m ∈I 14=I 14可分成两个稀疏集之并,事实上,只要取A 1={1,2,4,6,9,11,13},B 1={3,5,7,8,10,12,14},则A 1,B 1为稀疏集,且A 1∪B 1=I 14.当k =4时,集⎩⎨⎧m km ∈I 14中除整数外剩下的数组成集⎩⎨⎧⎭⎬⎫12,32,52,…,132,可分解为下面两稀疏集的并:A 2=⎩⎨⎧⎭⎬⎫12,52,92,112,B 2=⎩⎨⎧⎭⎬⎫32,72,132.当k =9时,集⎩⎨⎧m km ∈I 14中除正整数外剩下的数组成集⎩⎨⎧⎭⎬⎫13,23,43,53,…,133,143,可分解为下面两稀疏集的并:A 3=⎩⎨⎧⎭⎬⎫13,43,53,103,133,B 3=⎩⎨⎧⎭⎬⎫23,73,83,113,143.最后,集C =⎩⎨⎧mkm ∈I 14,k ∈I 14,且k ≠1,4,9中的数的分母均为无理数,它与P 14中的任何其他数之和都不是整数,因此,令A =A 1∪A 2∪A 3∪C ,B =B 1∪B 2∪B 3,则A 和B 是不相交的稀疏集,且A ∪B =P 14.综上,所求n 的最大值为14.注:对P 14的分拆方法不是唯一的. 1.A1[2013·重庆卷] 已知全集U ={1,2,3,4},集合A ={1,2},B ={2,3},则∁U (A ∪B)=( )A .{1,3,4}B .{3,4}C .{3}D .{4}1.D [解析] 因为A ∪B ={1,2,3},所以∁U (A ∪B)={4},故选D.A2 命题及其关系、充分条件、必要条件4.A2、B5[2013·安徽卷] “a ≤0”是“函数f(x)=|(ax -1)x|在区间(0,+∞)内单调递增”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件4.C [解析] f(x)=|(ax -1)x|=|ax 2-x|,若a =0,则f(x)=|x|,此时f(x)在区间(0,+∞)上单调递增;若a<0,则二次函数y =ax 2-x 的对称轴x =12a <0,且x =0时y =0,此时y =ax 2-x 在区间(0,+∞)上单调递减且y<0恒成立,故f(x)=|ax 2-x|在区间(0,+∞)上单调递增,故a ≤0时,f(x)在区间(0,+∞)上单调递增,条件是充分的;反之若a>0,则二次函数y =ax 2-x 的对称轴x =12a >0,且在区间0,12a 上y<0,此时f(x)=|ax 2-x|在区间0,12a 上单调递增,在区间12a ,1a 上单调递减,故函数f(x)不可能在区间(0,+∞)上单调递增,条件是必要的.3.A2、C3[2013·北京卷] “φ=π”是“曲线y =sin(2x +φ)过坐标原点”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件3.A [解析] ∵曲线y =sin(2x +φ)过坐标原点, ∴sin φ=0,∴φ=k π,k ∈Z ,故选A. 2.A2[2013·福建卷] 已知集合A ={1,a},B ={1,2,3},则“a =3”是“A B ”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件2.A [解析] 当a =3时,A ={1,3},A B ;当A B 时,a =2或a =3,故选A. 3.F1,A2[2013·陕西卷] 设a ,b 为向量,则“|a·b|=|a||b|”是“a ∥b ”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件 3.C [解析] 由已知中|a·b|=|a|·|b|可得,a 与b 同向或反向,所以a ∥b .又因为由a ∥b ,可得|cos 〈a ,b 〉|=1,故|a·b|=|a|·|b ||cos 〈a ,b 〉|=|a|·|b |,故|a ·b |=|a |·|b |是a ∥b 的充分必要条件.4.D [解析] 注意到全称命题的否定为特称命题,故应选D.图1-44.A2[2013·天津卷] 已知下列三个命题:①若一个球的半径缩小到原来的12,则其体积缩小到原来的18;②若两组数据的平均数相等,则它们的标准差也相等; ③直线x +y +1=0与圆x 2+y 2=12相切.其中真命题的序号是( ) A .①②③ B .①② C .①③ D .②③4.C [解析] 由球的体积公式V =43πR 3知体积与半径是立方关系,①正确.平均数反映数据的所有信息,标准差反映数据的离散程度,②不正确.圆心到直线的距离为|0+0+1|1+1=22=r ,即直线与圆相切,③正确. 4.A2[2013·浙江卷] 已知函数f(x)=Acos (ωx +φ)(A>0,ω>0,φ∈R ),则“f(x)是奇函数”是“φ=π2”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件4.B [解析] f(x)=Acos (ωx +φ)是奇函数的充要条件是f(0)=0,即cos φ=0,φ=k π+π2,k ∈Z ,所以“f(x)是奇函数”是“φ=π2”的必要不充分条件,故选择B.22.A1、A2,J1[2013·重庆卷] 对正整数n ,记I n ={1,2,…,n},P n =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫m k⎪⎪⎪⎪ m ∈I n ,k ∈I n ). (1)求集合P 7中元素的个数;(2)若P n 的子集A 中任意两个元素之和不是..整数的平方,则称A 为“稀疏集”,求n 的最大值,使P n 能分成两个不相交的稀疏集的并.22.解:(1)当k =4时,⎩⎨⎧mk m ∈I 7中有3个数与I 7中的3个数重复,因此P 7中元素的个数为7×7-3=46.(2)先证:当n ≥15时,P n 不能分成两个不相交的稀疏集的并.若不然,设A ,B 为不相交的稀疏集,使A ∪B =P n I n .不妨设1∈A ,则因1+3=22,故3A ,即3∈B.同理6∈A ,10∈B ,又推得15∈A ,但1+15=42,这与A 为稀疏集矛盾.再证P 14符合要求,当k =1时,⎩⎨⎧mk m ∈I 14=I 14可分成两个稀疏集之并,事实上,只要取A 1={1,2,4,6,9,11,13},B 1={3,5,7,8,10,12,14},则A 1,B 1为稀疏集,且A 1∪B 1=I 14.当k =4时,集⎩⎨⎧m km ∈I 14中除整数外剩下的数组成集⎩⎨⎧⎭⎬⎫12,32,52,…,132,可分解为下面两稀疏集的并:A 2=⎩⎨⎧⎭⎬⎫12,52,92,112,B 2=⎩⎨⎧⎭⎬⎫32,72,132.当k =9时,集⎩⎨⎧m k m ∈I 14中除正整数外剩下的数组成集⎩⎨⎧⎭⎬⎫13,23,43,53,…,133,143,可分解为下面两稀疏集的并:A 3=⎩⎨⎧⎭⎬⎫13,43,53,103,133,B 3=⎩⎨⎧⎭⎬⎫23,73,83,113,143.最后,集C =⎩⎨⎧mkm ∈I 14,k ∈I 14,且k ≠1,4,9中的数的分母均为无理数,它与P 14中的任何其他数之和都不是整数,因此,令A =A 1∪A 2∪A 3∪C ,B =B 1∪B 2∪B 3,则A 和B 是不相交的稀疏集,且A ∪B =P 14.综上,所求n 的最大值为14.注:对P 14的分拆方法不是唯一的.A3 基本逻辑联结词及量词16.A1,A3,B6[2013·湖南卷] 设函数f(x)=a x +b x -c x ,其中c>a>0,c>b>0.(1)记集合M ={(a ,b ,c)|a ,b ,c 不能构成一个三角形的三条边长,且a =b},则(a ,b ,c)∈M 所对应的f(x)的零点的取值集合为________;(2)若a ,b ,c 是△ABC 的三条边长,则下列结论正确的是________.(写出所有正确结论的序号)①x ∈(-∞,1),f(x)>0;②x ∈R ,使a x ,b x ,c x 不能构成一个三角形的三条边长; ③若△ABC 为钝角三角形,则x ∈(1,2),使f(x)=0. 16.(1){x|0<x ≤1} (2)①②③ [解析] (1)因a =b ,所以函数f(x)=2a x -c x ,又因a ,b ,c 不能构成一个三角形,且c>a>0,c>b>0,故a +b =2a<c ,令f(x)=2a x -c x =0,即f(x)=c x⎣⎡⎦⎤2⎝⎛⎭⎫a c x-1=0,故可知⎝⎛⎭⎫a c x=12,又0<a c <12,结合指数函数性质可知0<x ≤1,即取值集合为{x|0<x ≤1}.(2)因f(x)=a x+b x-c x=c x⎣⎡⎦⎤⎝⎛⎭⎫a c x+⎝⎛⎭⎫b c x-1,因c>a>0,c>b>0,则0<a c <1,0<bc <1,当x ∈(-∞,1)时,有⎝⎛⎭⎫a c x >a c ,⎝⎛⎭⎫b c x >b c ,所以⎝⎛⎭⎫a c x +⎝⎛⎭⎫b c x>a c +b c ,又a ,b ,c 为三角形三边,则定有a +b>c ,故对x ∈(-∞,1),⎝⎛⎭⎫a c x+⎝⎛⎭⎫b c x-1>0,即f(x)=a x +b x -c x =c x ⎣⎡⎦⎤⎝⎛⎭⎫a c x+⎝⎛⎭⎫b c x-1>0,故①正确;取x =2,则⎝⎛⎭⎫a c 2+⎝⎛⎭⎫b c 2<a c +b c ,取x =3,则⎝⎛⎭⎫a c 3+⎝⎛⎭⎫b c 3<⎝⎛⎭⎫a c 2+⎝⎛⎭⎫b c 2,由此递推,必然存在x =n 时,有⎝⎛⎭⎫a c n+⎝⎛⎭⎫b c n<1,即a n +b n <c n,故②正确;对于③,因f(1)=a +b -c>0,f(2)=a 2+b 2-c 2<0(C 为钝角),根据零点存在性定理可知,x ∈(1,2),使f(x)=0,故③正确.故填①②③.2.A3[2013·重庆卷] 命题“对任意x ∈R ,都有x 2≥0”的否定为( ) A .对任意x ∈R ,都有x 2<0 B .不存在x ∈R ,使得x 2<0C .存在x 0∈R ,使得x 20≥0 D .存在x 0∈R ,使得x 20<02.D [解析] 根据定义可知命题的否定为:存在x 0∈R ,使得x 20<0,故选D.A4 单元综合10.A4,B14[2013·福建卷] 设S ,T 是R 的两个非空子集,如果存在一个从S 到T 的函数y =f(x)满足:(1)T ={f(x)|x ∈S};(2)对任意x 1,x 2∈S ,当x 1<x 2时,恒有f(x 1)<f(x 2),那么称这两个集合“保序同构”.以下集合对不是“保序同构”的是( )A .A =N *,B =NB .A ={x|-1≤x ≤3},B ={x|x =-8或0<x ≤10}C .A ={x|0<x<1},B =RD .A =Z ,B =Q10.D [解析] 函数f(x)为定义域S 上的增函数,值域为T.构造函数f(x)=x -1,x ∈N ,如图①,则f(x)值域为N ,且为增函数,A 选项正确;构造函数f(x)=⎩⎪⎨⎪⎧-8,x =-1,52(x +1),-1<x ≤3,如图②,满足题设条件,B 选项正确;构造函数f(x)=tanx -错误!π,0<x<1,如图③,满足题设条件,C 选项正确;假设存在函数f(x),f(x)在定义域Z 上是增函数,值域为Q ,则存在a<b 且a 、b ∈Z ,使得f(a)=0,f(b)=1,因为区间(a ,b)内的整数至多有有限个,而区间(0,1)内的有理数有无数多个,所以必存在有理数m ∈(0,1),方程f(x)=m 在区间(a ,b)内无整数解,这与f(x)的值域为Q 矛盾,因此满足题设条件的函数f(x)不存在,D 选项错误,故选D.B 单元 函数与导数B1 函数及其表示21.B1,B12[2013·江西卷] 已知函数f(x)=a ⎝⎛⎭⎫1-2⎪⎪⎪⎪x -12,a 为常数且a>0. (1)证明:函数f(x)的图像关于直线x =12对称;(2)若x 0满足f(f(x 0))=x 0,但f(x 0)≠x 0,则称x 0为函数f(x)的二阶周期点.如果f(x)有两个二阶周期点x 1,x 2,试确定a 的取值范围;(3)对于(2)中的x 1,x 2和a ,设x 3为函数 f(f(x))的最大值点,A(x 1,f(f(x 1))),B(x 2,f(f(x 2))),C(x 3,0).记△ABC 的面积为S(a),讨论S(a)的单调性.解:(1)证明:因为f ⎝⎛⎭⎫12+x =a(1-2|x|), f ⎝⎛⎭⎫12-x =a(1-2|x|), 有f ⎝⎛⎭⎫12+x =f ⎝⎛⎭⎫12-x ,所以函数f(x)的图像关于直线x =12对称.(2)当0<a<12时,有f(f(x))=⎩⎨⎧4a 2x ,x ≤12,4a 2(1-x ),x>12.所以f(f(x))=x 只有一个解x =0,又f(0)=0,故0不是二阶周期点.当a =12时,有f(f(x))=⎩⎨⎧x ,x ≤12,1-x ,x>12.所以f(f(x))=x 有解集x 错误!x ≤错误!,又当x ≤错误!时f(x)=x ,故x 错误!)x ≤错误!中的所有点都不是二阶周期点.当a>12时,有f(f(x))=⎩⎪⎪⎨⎪⎪⎧4a 2x ,x ≤14a,2a -4a 2x ,14a <x ≤12,2a (1-2a )+4a 2x ,12<x ≤4a -14a,4a 2-4a 2x ,x>4a -14a.所以f(f(x))=x 有四个解0,2a1+4a 2,2a1+2a ,4a 21+4a2,又f(0)=0,f ⎝ ⎛⎭⎪⎫2a 1+2a =2a1+2a , f ⎝ ⎛⎭⎪⎫2a 1+4a 2≠2a 1+4a 2,f ⎝ ⎛⎭⎪⎫4a 21+4a 2≠4a 21+4a 2,故只有2a 1+4a 2,4a 21+4a 2是f(x)的二阶周期点. 综上所述,所求a 的取值范围为a>12.(3)由(2)得x 1=2a1+4a 2,x 2=4a 21+4a 2,因为x 3为函数f(f(x))的最大值点,所以x 3=14a ,或x 3=4a -14a.当x 3=14a 时,S(a)=2a -14(1+4a 2),求导得:S′(a)=-2⎝ ⎛⎭⎪⎫a -1+22⎝ ⎛⎭⎪⎫a -1-22(1+4a 2)2. 所以当a ∈⎝ ⎛⎭⎪⎫12,1+22时,S(a)单调递增,当a ∈⎝ ⎛⎭⎪⎫1+22,+∞时S(a)单调递减; 当x 3=4a -14a 时,S(a)=8a 2-6a +14(1+4a 2),求导得:S′(a)=12a 2+4a -32(1+4a 2)2;因a>12,从而有S′(a)=12a 2+4a -32(1+4a 2)2>0, 所以当a ∈⎝⎛⎭⎫12,+∞时S(a)单调递增.13.B1,B11[2013·江西卷] 设函数f(x)在(0,+∞)内可导,且f(e x )=x +e x ,则f′(1)=________.13.2 [解析] f(e x )=x +e x ,利用换元法可得f(x)=ln x +x ,f ′(x)=1x +1,所以f′(1)=2.10.B1,B8[2013·江西卷] 如图1-3所示,半径为1的半圆O 与等边三角形ABC 夹在两平行线l 1,l 2之间,l ∥l 1,l 与半圆相交于F ,G 两点,与三角形ABC 两边相交于E ,D 两点.设弧FG 的长为x(0<x<π),y =EB +BC +CD ,若l 从l 1平行移动到l 2,则函数y =f(x)的图像大致是( )图1-3图1-410.D [解析] 设l ,l 2距离为t ,cos x =2t 2-1,得t =cos x +12.△ABC 的边长为23,BE 23=1-t 1,得BE =23(1-t),则y =2BE +BC =2×23(1-t)+23=23-433cos x +12,当x ∈(0,π)时,非线性单调递增,排除A ,B ,求证x =π2的情况可知选D.2.B1[2013·江西卷] 函数y =xln(1-x)的定义域为( ) A .(0,1) B .[0,1) C .(0,1] D .[0,1]2.B [解析] x ≥0且1-x>0,得x ∈[0,1),故选B. 11.B1[2013·辽宁卷] 已知函数f(x)=x 2-2(a +2)x +a 2,g(x)=-x 2+2(a -2)x -a 2+8.设H 1(x)=max {}f (x ),g (x ),H 2(x)=min {}f (x ),g (x )(max {}p ,q 表示p ,q 中的较大值,min {}p ,q 表示p ,q 中的较小值).记H 1(x)的最小值为A ,H 2(x)的最大值为B ,则A -B =( ) A .16 B .-16C .a 2-2a -16D .a 2+2a -16 11.B [解析] 由题意知当f(x)=g(x)时,即x 2-2(a +2)x +a 2=-x 2+2(a -2)x -a 2+8, 整理得x 2-2ax +a 2-4=0,所以x =a +2或x =a -2,所以H 1(x)=max{f(x),g(x)}=⎩⎪⎨⎪⎧x 2-2(a +2)x +a 2(x ≤a -2),-x 2+2(a -2)x -a 2+8(a -2<x<a +2),x 2-2(a +2)x +a 2(x ≥a +2),H 2(x)=min{f(x),g(x)}=⎩⎪⎨⎪⎧-x 2+2(a -2)x -a 2+8(x ≤a -2),x 2-2(a +2)x +a 2(a -2<x<a +2),-x 2+2(a -2)x -a 2+8(x ≥a +2).由图形(图形略)可知,A =H 1(x)min =-4a -4,B =H 2(x)max =12-4a ,则A -B =-16. 故选B. 4.B1[2013·全国卷] 已知函数f(x)的定义域为(-1,0),则函数f(2x +1)的定义域为( )A .(-1,1) B.⎝⎛⎭⎫-1,-12 C .(-1,0) D.⎝⎛⎭⎫12,14.B [解析] 对于f(2x +1),-1<2x +1<0,解得-1<x<-12,即函数f(2x +1)的定义域为⎝⎛⎭⎫-1,-12. 8.B1,J3[2013·陕西卷] 设函数f(x)=⎩⎪⎨⎪⎧⎝⎛⎭⎫x -1x 6,x<0,-x ,x ≥0,则当x>0时,f[f(x)]表达式的展开式中常数项为( )A .-20B .20C .-15D .158.A [解析] 由已知表达式可得:f[f(x)]=1x -x 6,展开式的通项为T r +1=C r 61x 6-r(-x)r =C r6·(-1)r ·x r -3,令r -3=0,可得r =3,所以常数项为T 4=-C 36=-20.7.B1,B3,B12[2013·四川卷] 函数y =x 33x -1的图像大致是( )图1-57.C [解析] 函数的定义域是{x ∈R |x ≠0},排除选项A ;当x<0时,x 3<0,3x -1<0,故y>0,排除选项B ;当x →+∞时,y>0且y →0,故为选项C 中的图像. 19.B1,I2,K6[2013·新课标全国卷Ⅱ] 经销商经销某种农产品,在一个销售季度内,每售出1 t 该产品获利润500元,未售出的产品,每1 t 亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图1-4所示,经销商为下一个销售季度购进了130 t 该农产品,以X(单位:t ,100≤X ≤150)表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内经销该农产品的利润.(1)将T 表示为X 的函数;(2)根据直方图估计利润T 不少于57 000元的概率;(3)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,并以需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若需求量X ∈[100,110),则取X =105,且X =105的概率等于需求量落入[100,110)的频率),求T 的数学期望.图1-419.解:(1)当X ∈[100,130)时,T =500X -300(130-X)=800X -39 000. 当X ∈[130,150]时,T =500×130=65 000.所以T =⎩⎪⎨⎪⎧800X -39 000,100≤X<130,65 000,130≤X ≤150.(2)由(1)知利润T 不少于57 000元,当且仅当120≤X ≤150.由直方图知需求量X ∈[120,150]的频率为0.7,所以下一个销售季度内的利润T 不少于57 000元的概率的估计值为0.7.(3)依题意可得T 的分布列为所以E(T)=59 400.B2 反函数5.B2[2013·全国卷] 函数f(x)=log 2⎝⎛⎭⎫1+1x (x>0)的反函数f -1(x)=( ) A.12x -1(x>0) B.12x -1(x ≠0) C .2x -1(x ∈R ) D .2x -1(x>0)5.A [解析] 令y =log 2⎝⎛⎭⎫1+1x ,则y>0,且1+1x =2y ,解得x =12y -1,交换x ,y 得f -1(x)=12x -1(x>0).B3 函数的单调性与最值21.B3,B9,B12[2013·四川卷] 已知函数f(x)=⎩⎪⎨⎪⎧x 2+2x +a ,x<0,lnx ,x>0,其中a 是实数.设A(x 1,f(x 1)),B(x 2,f(x 2))为该函数图像上的两点,且x 1<x 2. (1)指出函数f(x)的单调区间;(2)若函数f(x)的图像在点A ,B 处的切线互相垂直,且x 2<0,求x 2-x 1的最小值;(3)若函数f(x)的图像在点A ,B 处的切线重合,求a 的取值范围.21.解:(1)函数f(x)的单调递减区间为(-∞,-1),单调递增区间为[-1,0),(0,+∞).(2)由导数的几何意义可知,点A 处的切线斜率为f ′(x 1),点B 处的切线斜率为f′(x 2),故当点A 处的切线与点B 处的切线垂直时,有f′(x 1)f′(x 2)=-1.当x<0时,对函数f(x)求导,得f′(x)=2x +2. 因为x 1<x 2<0,所以,(2x 1+2)(2x 2+2)=-1, 所以2x 1+2<0,2x 2+2>0.因此x 2-x 1=12[-(2x 1+2)+2x 2+2]≥[-(2x 1+2)](2x 2+2)=1,当且仅当-(2x 1+2)=2x 2+2=1,即x 1=-32且x 2=-12时等号成立.所以,函数f(x)的图像在点A ,B 处的切线互相垂直时,x 2-x 1的最小值为1.(3)当x 1<x 2<0或x 2>x 1>0时,f′(x 1)≠f′(x 2),故x 1<0<x 2. 当x 1<0时,函数f(x)的图像在点(x 1,f(x 1))处的切线方程为 y -(x 21+2x 1+a)=(2x 1+2)(x -x 1), 即y =(2x 1+2)x -x 21+a.当x 2>0时,函数f(x)的图像在点(x 2,f(x 2))处的切线方程为 y -ln x 2=1x 2(x -x 2),即y =1x 2·x +ln x 2-1.两切线重合的充要条件是 ⎩⎪⎨⎪⎧1x 2=2x 1+2,①ln x 2-1=-x 21+a.②由①及x 1<0<x 2,知-1<x 1<0.由①②得,a =x 21+ln 12x 1+2-1=x 21-ln(2x 1+2)-1.设h(x 1)=x 21-ln(2x 1+2)-1(-1<x 1<0), 则h′(x 1)=2x 1-1x 1+1<0.所以,h(x 1)(-1<x 1<0)是减函数. 则h(x 1)>h(0)=-ln 2-1, 所以a>-ln 2-1.又当x 1∈(-1,0)且趋近于-1时,h(x 1)无限增大, 所以a 的取值范围是(-ln 2-1,+∞).故当函数f(x)的图像在点A ,B 处的切线重合时,a 的取值范围是(-ln 2-1,+∞). 10.B3,B12[2013·四川卷] 设函数f(x)=e x +x -a(a ∈R ,e 为自然对数的底数).若曲线y =sinx 上存在(x 0,y 0)使得f(f(y 0))=y 0,则a 的取值范围是( )A .[1,e]B .[e -1-1,1]C .[1,e +1]D .[e -1-1,e +1]10.A [解析] 因为y 0=sin x 0∈[-1,1],且f(x)在[-1,1]上(有意义时)是增函数,对于y 0∈[-1,1],如果f(y 0)=c >y 0,则f(f(y 0))=f(c)>f(y 0)=c >y 0,不可能有f(f(y 0))=y 0.同理,当f(y 0)=d <y 0时,则f(f(y 0))=f(d)<f(y 0)=d <y 0,也不可能有f(f(y 0))=y 0,因此必有f(y 0)=y 0,即方程f(x)=x 在[-1,1]上有解,即e x +x -a =x 在[-1,1]上有解.显然,当x <0时,方程无解,即需要e x +x -a =x 在[0,1]上有解.当x ≥0时,两边平方得e x +x -a =x 2,故a =e x -x 2+x.记g(x)=e x -x 2+x ,则g ′(x)=e x -2x +1.当x ∈⎣⎡⎦⎤0,12时,e x >0,-2x +1≥0,故g′(x)>0, 当x ∈⎝⎛⎦⎤12,1时,e x >e >1,0>-2x +1≥-1, 故g′(x)>0.综上,g′(x)在x ∈[0,1]上恒大于0,所以g(x)在[0,1]上为增函数,值域为[1,e],从而a 的取值范围是[1,e].7.B1,B3,B12[2013·四川卷] 函数y =x 33x -1的图像大致是( )图1-57.C [解析] 函数的定义域是{x ∈R |x ≠0},排除选项A ;当x<0时,x 3<0,3x -1<0,故y>0,排除选项B ;当x →+∞时,y>0且y →0,故为选项C 中的图像. 10.B3,B5,B8,B12[2013·新课标全国卷Ⅱ] 已知函数f(x)=x 3+ax 2+bx +c ,下列结论中错误的是( )A .x 0∈R ,f(x 0)=0B .函数y =f(x)的图像是中心对称图形C .若x 0是f(x)的极小值点,则f(x)在区间(-∞,x 0)单调递减D .若x 0是f(x)的极值点,则f′(x 0)=010.C [解析] x →-∞ 时,f(x)<0 ,x →+∞ 时,f(x)>0,f(x) 连续,x 0∈R ,f(x 0)=0,A 正确;通过平移变换,函数可以化为f(x)=x 3+c ,从而函数y =f(x)的图像是中心对称图形,B 正确; 若x 0是f(x)的极小值点,可能还有极大值点x 1 ,则f(x)在区间(x 1 ,x 0)单调递减.C 错误.D 正确.故答案为C.B4 函数的奇偶性与周期性2.B4[2013·广东卷] 定义域为R 的四个函数y =x 3,y =2x ,y =x 2+1,y =2 sin x 中,奇函数的个数是( )A .4B .3C .2D .12.C [解析] 函数y =x 3,y =2sin x 是奇函数.11.B4[2013·江苏卷] 已知f(x)是定义在R 上的奇函数.当x>0时,f(x)=x 2-4x ,则不等式f(x)>x 的解集用区间表示为________.11.(-5,0)∪(5,+∞) [解析] 设x<0,则-x>0.因为f(x)是奇函数,所以f(x)=-f(-x)=-(x 2+4x).又f(0)=0,于是不等式f(x)>x 等价于⎩⎪⎨⎪⎧x ≥0,x 2-4x>x 或⎩⎪⎨⎪⎧x<0,-(x 2+4x )>x.解得x>5或-5<x<0,故不等式的解集为(-5,0)∪(5,+∞).3.B4[2013·山东卷] 已知函数f(x)为奇函数,且当x>0时,f(x)=x 2+1x ,则f(-1)=( )A .-2B .0C .1D .23.A [解析] ∵f ()x 为奇函数,∴f ()-1=-f(1)=-⎝⎛⎭⎫12+11=-2.14.B4,E3[2013·四川卷] 已知f(x)是定义域为R 的偶函数,当x ≥0时,f(x)=x 2-4x ,那么,不等式f(x +2)<5的解集是________.14.(-7,3) [解析] 当x +2≥0时,f(x +2)=(x +2)2-4(x +2)=x 2-4,由f(x +2)<5,得x 2-4<5,即x 2<9,解得-3<x <3,又x +2≥0,故-2≤x <3为所求.又因为f(x)为偶函数,故f(x +2)的图像关于直线x =-2对称,于是-7<x <-2也满足不等式.(注:本题还可以借助函数的图像及平移变换求解)B5 二次函数4.A2、B5[2013·安徽卷] “a ≤0”是“函数f(x)=|(ax -1)x|在区间(0,+∞)内单调递增”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件4.C [解析] f(x)=|(ax -1)x|=|ax 2-x|,若a =0,则f(x)=|x|,此时f(x)在区间(0,+∞)上单调递增;若a<0,则二次函数y =ax 2-x 的对称轴x =12a <0,且x =0时y =0,此时y =ax 2-x 在区间(0,+∞)上单调递减且y<0恒成立,故f(x)=|ax 2-x|在区间(0,+∞)上单调递增,故a ≤0时,f(x)在区间(0,+∞)上单调递增,条件是充分的;反之若a>0,则二次函数y =ax 2-x 的对称轴x =12a >0,且在区间0,12a 上y<0,此时f(x)=|ax 2-x|在区间0,12a 上单调递增,在区间12a ,1a 上单调递减,故函数f(x)不可能在区间(0,+∞)上单调递增,条件是必要的.5.B5,B9[2013·湖南卷] 函数f(x)=2ln x 的图像与函数g(x)=x 2-4x +5的图像的交点个数为( )A .3B .2C .1D .05.B [解析] 法一:作出函数f(x)=2ln x ,g(x)=x 2-4x +5的图像如图:可知,其交点个数为2,选B. 法二:也可以采用数值法:10.B3,B5,B8,B12[2013·新课标全国卷Ⅱ] 已知函数f(x)=x 3+ax 2+bx +c ,下列结论中错误的是( )A .x 0∈R ,f(x 0)=0B .函数y =f(x)的图像是中心对称图形C .若x 0是f(x)的极小值点,则f(x)在区间(-∞,x 0)单调递减D .若x 0是f(x)的极值点,则f′(x 0)=010.C [解析] x →-∞ 时,f(x)<0 ,x →+∞ 时,f(x)>0,f(x) 连续,x 0∈R ,f(x 0)=0,A 正确;通过平移变换,函数可以化为f(x)=x 3+c ,从而函数y =f(x)的图像是中心对称图形,B 正确; 若x 0是f(x)的极小值点,可能还有极大值点x 1 ,则f(x)在区间(x 1 ,x 0)单调递减.C 错误.D 正确.故答案为C.B6 指数与指数函数6.E3、B6、B7[2013·安徽卷] 已知一元二次不等式f(x)<0的解集为x⎪⎪⎪⎪)x<-1或x>12,则f(10x )>0的解集为( ) A .{x|x<-1或x>-lg 2} B .{x|-1<x<-lg 2} C .{x|x>-lg 2} D .{x|x<-lg 2}6.D [解析] 根据已知可得不等式f(x)>0的解是-1<x<12,故-1<10x <12,解得x<-lg2.16.A1,A3,B6[2013·湖南卷] 设函数f(x)=a x +b x -c x ,其中c>a>0,c>b>0.(1)记集合M ={(a ,b ,c)|a ,b ,c 不能构成一个三角形的三条边长,且a =b},则(a ,b ,c)∈M 所对应的f(x)的零点的取值集合为________;(2)若a ,b ,c 是△ABC 的三条边长,则下列结论正确的是________.(写出所有正确结论的序号)①x ∈(-∞,1),f(x)>0;②x ∈R ,使a x ,b x ,c x 不能构成一个三角形的三条边长; ③若△ABC 为钝角三角形,则x ∈(1,2),使f(x)=0. 16.(1){x|0<x ≤1} (2)①②③ [解析] (1)因a =b ,所以函数f(x)=2a x -c x ,又因a ,b ,c 不能构成一个三角形,且c>a>0,c>b>0,故a +b =2a<c ,令f(x)=2a x -c x =0,即f(x)=c x⎣⎡⎦⎤2⎝⎛⎭⎫a c x-1=0,故可知⎝⎛⎭⎫a c x=12,又0<a c <12,结合指数函数性质可知0<x ≤1,即取值集合为{x|0<x ≤1}.(2)因f(x)=a x+b x-c x=c x⎣⎡⎦⎤⎝⎛⎭⎫a c x+⎝⎛⎭⎫b c x-1,因c>a>0,c>b>0,则0<a c <1,0<bc <1,当x ∈(-∞,1)时,有⎝⎛⎭⎫a c x >a c ,⎝⎛⎭⎫b c x >b c ,所以⎝⎛⎭⎫a c x +⎝⎛⎭⎫b c x>a c +b c ,又a ,b ,c 为三角形三边,则定有a +b>c ,故对x ∈(-∞,1),⎝⎛⎭⎫a c x+⎝⎛⎭⎫b c x-1>0,即f(x)=a x +b x -c x =c x ⎣⎡⎦⎤⎝⎛⎭⎫a c x+⎝⎛⎭⎫b c x-1>0,故①正确;取x =2,则⎝⎛⎭⎫a c 2+⎝⎛⎭⎫b c 2<a c +b c ,取x =3,则⎝⎛⎭⎫a c 3+⎝⎛⎭⎫b c 3<⎝⎛⎭⎫a c 2+⎝⎛⎭⎫b c 2,由此递推,必然存在x =n 时,有⎝⎛⎭⎫a c n+⎝⎛⎭⎫b c n<1,即a n +b n <c n,故②正确;对于③,因f(1)=a +b -c>0,f(2)=a 2+b 2-c 2<0(C 为钝角),根据零点存在性定理可知,x ∈(1,2),使f(x)=0,故③正确.故填①②③.3.B6,B7[2013·浙江卷] 已知x ,y 为正实数,则( )A .2lg x +lg y =2lg x +2lg yB .2lg(x +y)=2lg x ·2lg yC .2lg x ·lg y =2lg x +2lg y D .2lg(xy)=2lg x ·2lg y3.D [解析] ∵lg(xy)=lg x +lg y ,∴2lg(xy)=2lg x +lg y =2lgx 2lgy ,故选择D.B7 对数与指数函数6.E3、B6、B7[2013·安徽卷] 已知一元二次不等式f(x)<0的解集为x⎪⎪⎪⎪)x<-1或x>12,则f(10x )>0的解集为( ) A .{x|x<-1或x>-lg 2} B .{x|-1<x<-lg 2} C .{x|x>-lg 2} D .{x|x<-lg 2}6.D [解析] 根据已知可得不等式f(x)>0的解是-1<x<12,故-1<10x <12,解得x<-lg2.16.B7、M1[2013·山东卷] 定义“正对数”:ln +x =⎩⎪⎨⎪⎧0,0<x<1,ln x ,x ≥1.现有四个命题:①若a>0,b>0,则ln +(a b )=bln +a ;②若a>0,b>0,则ln +(ab)=ln +a +ln +b ;③若a>0,b>0,则ln +⎝⎛⎭⎫a b ≥ln +a -ln +b ; ④若a>0,b>0,则ln +(a +b)≤ln +a +ln +b +ln 2. 其中的真命题有________.(写出所有真命题的编号)16.①③④ [解析] ①中,当a b ≥1时,∵b>0,∴a ≥1,ln +(a b )=ln a b =bln a =bln +a ;当0<a b <1时,∵b>0,∴0<a<1,ln +(a b )=bln +a =0,∴①正确;②中,当0<ab<1,且a>1时,左边=ln +(ab)=0,右边=ln +a +ln +b =ln a +0=ln a>0,∴②不成立;③中,当a b ≤1,即a ≤b 时,左边=0,右边=ln +a -ln +b ≤0,左边≥右边成立;当a b >1时,左边=ln ab =ln a -ln b>0,若a>b>1时,右边=ln a -ln b ,左边≥右边成立;若0<b<a<1时,右边=0, 左边≥右边成立;若a>1>b>0,左边=ln ab =ln a -ln b>ln a ,右边=ln a ,左边≥右边成立,∴③正确;④中,若0<a +b<1,左边=ln+()a +b =0,右边=ln +a +ln +b +ln 2=ln 2>0,左边≤右边;若a +b ≥1,ln+()a +b -ln 2=ln ()a +b -ln 2=ln a +b2,又∵a +b 2≤a 或a +b 2≤b ,a ,b 至少有1个大于1,∴ln a +b 2≤ln a 或ln a +b 2≤ln b ,即有ln+()a +b -ln 2=ln ()a +b -ln 2=ln a +b 2≤ln +a +ln +b ,∴④正确.8.B7,E1[2013·新课标全国卷Ⅱ] 设a =log 36,b =log 510,c =log 714,则( ) A .c >b >a B .b >c >a C .a >c >b D .a >b >c8.D [解析] a -b =log 36-log 510=(1+log 32)-(1+log 52)=log 32-log 52>0, b -c =log 510-log 714=(1+log 52)-(1+log 72)=log 52-log 72>0, 所以a>b>c ,选D. 3.B6,B7[2013·浙江卷] 已知x ,y 为正实数,则( )A .2lg x +lg y =2lg x +2lg yB .2lg(x +y)=2lg x ·2lg yC .2lg x ·lg y =2lg x +2lg y D .2lg(xy)=2lg x ·2lg y3.D [解析] ∵lg(xy)=lg x +lg y ,∴2lg(xy)=2lg x +lg y =2lgx 2lgy ,故选择D.B8 幂函数与函数的图像5.B8[2013·北京卷] 函数f(x)的图像向右平移1个单位长度,所得图像与曲线y =e x 关于y 轴对称,则f(x)=( )A .e x +1B .e x -1C .e -x +1D .e -x -15.D [解析] 依题意,f(x)向右平移一个单位长度得到f(x -1)的图像,又y =e x 的图像关于y 轴对称的图像的解析式为y =e -x ,所以f(x -1)=e -x ,所以f(x)=e -x -1.10.B1,B8[2013·江西卷] 如图1-3所示,半径为1的半圆O 与等边三角形ABC 夹在两平行线l 1,l 2之间,l ∥l 1,l 与半圆相交于F ,G 两点,与三角形ABC 两边相交于E ,D 两点.设弧FG 的长为x(0<x<π),y =EB +BC +CD ,若l 从l 1平行移动到l 2,则函数y =f(x)的图像大致是( )1-31-410.D [解析] 设l ,l 2距离为t ,cos x =2t 2-1,得t =cos x +12.△ABC 的边长为23,BE 23=1-t 1,得BE =23(1-t),则y =2BE +BC =2×23(1-t)+23=23-433cos x +12,当x ∈(0,π)时,非线性单调递增,排除A ,B ,求证x =π2的情况可知选D.10.B3,B5,B8,B12[2013·新课标全国卷Ⅱ] 已知函数f(x)=x 3+ax 2+bx +c ,下列结论中错误的是( )A .x 0∈R ,f(x 0)=0B .函数y =f(x)的图像是中心对称图形C .若x 0是f(x)的极小值点,则f(x)在区间(-∞,x 0)单调递减D .若x 0是f(x)的极值点,则f′(x 0)=010.C [解析] x →-∞ 时,f(x)<0 ,x →+∞ 时,f(x)>0,f(x) 连续,x 0∈R ,f(x 0)=0,A 正确;通过平移变换,函数可以化为f(x)=x 3+c ,从而函数y =f(x)的图像是中心对称图形,B 正确; 若x 0是f(x)的极小值点,可能还有极大值点x 1 ,则f(x)在区间(x 1 ,x 0)单调递减.C 错误.D 正确.故答案为C.B9 函数与方程11.B9,B11[2013·新课标全国卷Ⅰ] 已知函数f(x)=⎩⎪⎨⎪⎧-x 2+2x ,x ≤0,ln (x +1),x >0.若|f(x)|≥ax ,则a 的取值范围是( )A .(-∞,0]B .(-∞,1]C .[-2,1]D .[-2,0]11.D [解析] 方法一:若x ≤0,|f(x)|=|-x 2+2x|=x 2-2x ,x =0时,不等式恒成立,x<0时,不等式可变为a ≥x -2,而x -2<-2,可得a ≥-2;若x>0,|f(x)|=|ln(x +1)|=ln(x +1),由ln(x +1)≥ax ,可得a ≤ln (x +1)x 恒成立,令h(x)=ln (x +1)x ,则h′(x)=xx +1-ln (x +1)x 2,再令g(x)=xx +1-ln(x +1),则 g ′(x)=-x(x +1)2<0,故g(x)在(0,+∞)上单调递减,所以g(x)<g(0)=0,可得h′(x)=xx +1-ln (x +1)x 2<0,故h(x)在(0,+∞)上单调递减,x →+∞时,h(x)→0,所以h(x)>0,a ≤0.综上可知,-2≤a ≤0,故选D.方法二:数形结合:画出函数|f(x)|=⎩⎪⎨⎪⎧x 2-2x ,x ≤0,ln (x +1),x>0与直线y =ax 的图像,如下图,要使|f(x)|≥ax 恒成立,只要使直线y =ax 的斜率最小时与函数y =x 2-2x ,x ≤0在原点处的切线斜率相等即可,最大时与x 轴的斜率相等即可,因为y′=2x -2,所以y′|x =0=-2,所以-2≤a ≤0.10.B9,B12[2013·安徽卷] 若函数f(x)=x 3+ax 2+bx +c 有极值点x 1,x 2,且f(x 1)=x 1,则关于x 的方程3(f(x))2+2af(x)+b =0的不同实根个数是( )A .3B .4C .5D .610.A [解析] 因为f′(x)=3x 2+2ax +b ,3(f(x))2+2af(x)+b =0且3x 2+2ax +b =0的两根分别为x 1,x 2,所以f(x)=x 1或f(x)=x 2,当x 1是极大值点时,f(x 1)=x 1,x 2为极小值点,且x 2>x 1,如图(1)所示,可知方程f(x)=x 1有两个实根,f(x)=x 2有一个实根,故方程3(f(x))2+2af(x)+b =0共有3个不同实根;当x 1是极小值点时,f(x 1)=x 1,x 2为极大值点,且x 2<x 1,如图(2)所示,可知方程f(x)=x 1有两个实根,f(x)=x 2有一个实根,故方程3(f(x))2+2af(x)+b =0共有3个不同实根;综合以上可知,方程3(f(x))2+2af(x)+b =0共有3个不同实根.8.B9[2013·安徽卷] 函数y =f(x)的图像如图1-2所示,在区间[a ,b]上可找到n(n ≥2)个不同的数x 1,x 2,…,x n ,使得f (x 1)x 1=f (x 2)x 2=…=f (x n )x n,则n 的取值范围是( )图1-2A .{3,4}B .{2,3,4}C .{3,4,5}D .{2,3}8.B [解析] 问题等价于直线y =kx 与函数y =f(x)图像的交点个数,从图中可以看出交点个数可以为2,3,4,故n 的取值范围是{2,3,4}.5.B5,B9[2013·湖南卷] 函数f(x)=2ln x 的图像与函数g(x)=x 2-4x +5的图像的交点个数为( )A .3B .2C .1D .05.B [解析] 法一:作出函数f(x)=2ln x ,g(x)=x 2-4x +5的图像如图:可知,其交点个数为2,选B. 法二:也可以采用数值法:可知它们有2个交点,选B.21.B9、B12[2013·山东卷] 设函数f(x)=xe 2x +c(e =2.718 28…是自然对数的底数,c ∈R ).(1)求f(x)的单调区间、最大值;(2)讨论关于x 的方程|ln x|=f(x)根的个数.21.解:(1)f′(x)=(1-2x)e -2x . 由f′(x)=0,解得x =12,当x<12时,f′(x)>0,f(x)单调递增;当x>12时,f′(x)<0,f(x)单调递减.所以,函数f(x)的单调递增区间是-∞,12,单调递减区间是12,+∞,最大值为f ⎝⎛⎭⎫12=12e -1+c. (2)令g(x)=|lnx|-f(x)=|lnx|-xe-2x-c ,x ∈(0,+∞).①当x ∈(1,+∞)时,lnx>0,则g(x)=lnx -xe -2x-c ,所以g′(x)=e-2xe 2xx+2x -1.因为2x -1>0,e 2xx>0,所以g′(x)>0.因此g(x)在(1,+∞)上单调递增.②当x ∈(0,1)时,lnx<0,则g(x)=-lnx -xe -2x -c , 所以g′(x)=e-2x-e 2xx+2x -1. 因为e 2x∈(1,e 2),e 2x>1>x>0,所以-e 2xx<-1.又2x -1<1,所以-e 2xx+2x -1<0,即g′(x)<0.因此g(x)在(0,1)上单调递减.综合①②可知,当x ∈(0,+∞)时,g(x)≥g(1)=-e -2-c.当g(1)=-e -2-c>0,即c<-e -2时,g(x)没有零点,故关于x 的方程|lnx|=f(x)根的个数为0;当g(1)=-e -2-c =0,即c =-e -2时,g(x)只有一个零点,故关于x 的方程|lnx|=f(x)根的个数为1;当g(1)=-e -2-c<0,即c>-e -2时,(ⅰ)当x ∈(1,+∞)时,由(1)知g(x)=lnx -xe-2x-c ≥lnx -12e -1+c>lnx -1-c ,要使g(x)>0,只需使lnx -1-c>0,即x ∈(e 1+c ,+∞); (ⅱ)当x ∈(0,1)时,由(1)知g(x)=-lnx -xe -2x-c ≥-lnx -12e -1+c>-lnx -1-c ,要使g(x)>0,只需-lnx -1-c>0,即x ∈(0,e-1-c);所以c>-e -2时,g(x)有两个零点,故关于x 的方程|lnx|=f(x)根的个数为2. 综上所述,当c<-e -2时,关于x 的方程|lnx|=f(x)根的个数为0;当c =-e -2时,关于x 的方程|lnx|=f(x)根的个数为1;当c>-e -2时,关于x 的方程|lnx|=f(x)根的个数为2.21.B3,B9,B12[2013·四川卷] 已知函数f(x)=⎩⎪⎨⎪⎧x 2+2x +a ,x<0,lnx ,x>0,其中a 是实数.设A(x 1,f(x 1)),B(x 2,f(x 2))为该函数图像上的两点,且x 1<x 2. (1)指出函数f(x)的单调区间;(2)若函数f(x)的图像在点A ,B 处的切线互相垂直,且x 2<0,求x 2-x 1的最小值; (3)若函数f(x)的图像在点A ,B 处的切线重合,求a 的取值范围.21.解:(1)函数f(x)的单调递减区间为(-∞,-1),单调递增区间为[-1,0),(0,+∞).(2)由导数的几何意义可知,点A 处的切线斜率为f ′(x 1),点B 处的切线斜率为f′(x 2),故当点A 处的切线与点B 处的切线垂直时,有f′(x 1)f′(x 2)=-1.当x<0时,对函数f(x)求导,得f′(x)=2x +2. 因为x 1<x 2<0,所以,(2x 1+2)(2x 2+2)=-1, 所以2x 1+2<0,2x 2+2>0.因此x 2-x 1=12[-(2x 1+2)+2x 2+2]≥[-(2x 1+2)](2x 2+2)=1,当且仅当-(2x 1+2)=2x 2+2=1,即x 1=-32且x 2=-12时等号成立.所以,函数f(x)的图像在点A ,B 处的切线互相垂直时,x 2-x 1的最小值为1.(3)当x 1<x 2<0或x 2>x 1>0时,f′(x 1)≠f′(x 2),故x 1<0<x 2. 当x 1<0时,函数f(x)的图像在点(x 1,f(x 1))处的切线方程为 y -(x 21+2x 1+a)=(2x 1+2)(x -x 1), 即y =(2x 1+2)x -x 21+a.当x 2>0时,函数f(x)的图像在点(x 2,f(x 2))处的切线方程为 y -ln x 2=1x 2(x -x 2),即y =1x 2·x +ln x 2-1.两切线重合的充要条件是 ⎩⎪⎨⎪⎧1x 2=2x 1+2,①ln x 2-1=-x 21+a.②由①及x 1<0<x 2,知-1<x 1<0.由①②得,a =x 21+ln 12x 1+2-1=x 21-ln(2x 1+2)-1.设h(x 1)=x 21-ln(2x 1+2)-1(-1<x 1<0),。

【备战2013年】历届高考数学真题汇编专题6_不等式_理(2000-2006)

【备战2013年】历届高考数学真题汇编专题6_不等式_理(2000-2006)

【2006高考试题】一、选择题(共15题) 1.(安徽卷)不等式112x <的解集是( ) A .(,2)-∞ B .(2,)+∞ C .(0,2) D .(,2)-∞⋃(2,)+∞ 解:由112x <得:112022x x x--=<,即(2)0x x -<,故选D 。

2.(江苏卷)设a 、b 、c 是互不相等的正数,则下列等式中不恒成立....的是 (A )||||||c b c a b a -+-≤- (B )aa a a 1122+≥+ (C )21||≥-+-ba b a (D )a a a a -+≤+-+213 解:运用排除法,C 选项21≥-+-ba b a ,当a-b<0时不成立。

3.(江西卷)若a >0,b >0,则不等式-b <1x<a 等价于( )A .1b -<x <0或0<x <1a B.-1a <x <1b C.x <-1a 或x >1b D.x <1b -或x >1a4.(山东卷)设f (x )= 1232,2,log (1),2,x e x x x -⎧<⎪⎨-≥⎪⎩ 则不等式f (x )>2的解集为 (A)(1,2)⋃(3,+∞) (B)(10,+∞) (C)(1,2)⋃ (10 ,+∞) (D)(1,2) 解:令12x e ->2(x <2),解得1<x <2。

令23log (1)x ->2(x ≥2)解得x ∈(10,+∞)选C5.(陕西卷)已知不等式(x+y)(1x + ay)≥9对任意正实数x,y 恒成立,则正实数a 的最小值为( )A.2B.4C.6D.86.(陕西卷)已知函数f(x)=ax 2+2ax+4(0<a<3),若x 1<x 2,x 1+x 2=1-a,则( )A.f(x 1)<f(x 2)B.f(x 1)=f(x 2)C.f(x 1)>f(x 2)D.f(x 1)与f(x 2)的大小不能确定 解析:函数f (x )=ax 2+2ax +4(0<a <3),二次函数的图象开口向上,对称轴为1x =-,0<a <3,∴ x 1+x 2=1-a ∈(-2,1),x 1与x 2的中点在(-1,21)之间,x 1<x 2,∴ x 2到对称轴的距离大于x 1到对称轴的距离,∴ f (x 1)<f (x 2) ,选A .7.(陕西卷)已知函数f(x)=ax 2+2ax+4(a>0),若x 1<x 2 , x 1+x 2=0 , 则( )A.f(x 1)<f(x 2)B.f(x 1)=f(x 2)C.f(x 1)>f(x 2)D.f(x 1)与f(x 2)的大小不能确定8.(陕西卷)设x,y 为正数, 则(x+y)(1x + 4y)的最小值为( )A. 6B.9C.12D.15 解析:x ,y 为正数,(x +y )(14x y+)≥414y x x y +++≥9,选B .9.(上海卷)若关于x 的不等式x k )1(2+≤4k +4的解集是M ,则对任意实常数k ,总有( )(A )2∈M,0∈M; (B )2∉M ,0∉M ; (C )2∈M,0∉M ; (D )2∉M ,0∈M. 解:选(A )方法1:代入判断法,将2,0x x ==分别代入不等式中,判断关于k 的不等式解集是否为R ;方法2:求出不等式的解集:xk )1(2+≤4k +4422min455(1)2[(1)2]2111k x k x k k k k +⇒≤=++-⇒≤++-=+++;10.(上海卷)如果0,0a b <>,那么,下列不等式中正确的是( )(A )11a b< (B <(C )22a b < (D )||||a b > 解:如果0,0a b <>,那么110,0a b <>,∴ 11a b<,选A.11.(浙江卷)“a >b >c ”是“ab<222b a +”的(A)充分而不必要条件 (B)必要而不充分条件 (C)充分必要条件 (D)既不允分也不必要条件12.(浙江卷)“a >0,b >0”是“ab>0”的(A)充分而不必要条件 (B)必要而不充分条件 (C)充分必要条件 (D)既不允分也不必要条件 解:由“a >0,b >0”可推出“ab>0”,反之不一定成立,选A13.(重庆卷)若a ,b ,c >0且a (a +b +c )+bc =4-23,则2a +b +c 的最小值为 (A )3-1 (B) 3+1 (C) 23+2 (D) 23-214.(重庆卷)若,,0a b c >且222412a ab ac bc +++=,则a b c ++的最小值是(A )(B )3 (C )2 (D 解:(a +b +c )2=a 2+b 2+c 2+2ab +2ac +2bc =12+(b -c )2≥12,当且仅当b =c 时取等号,故选A15.(上海春)若b a c b a >∈,R 、、,则下列不等式成立的是( ) (A )ba 11<. (B )22b a >. (C )1122+>+c b c a .(D )||||c b c a >.二、填空题(共6题)16.(江苏卷)不等式3)61(log 2≤++xx 的解集为17.(上海卷)三个同学对问题“关于x 的不等式2x +25+|3x -52x |≥ax 在[1,12]上恒成立,求实数a 的取值范围”提出各自的解题思路.甲说:“只须不等式左边的最小值不小于右边的最大值”.乙说:“把不等式变形为左边含变量x 的函数,右边仅含常数,求函数的最值”. 丙说:“把不等式两边看成关于x 的函数,作出函数图像”.参考上述解题思路,你认为他们所讨论的问题的正确结论,即a 的取值范围是 . 解:由2x +25+|3x -52x |≥225,112|5|ax x a x x x x≤≤⇒≤++-,而252510x x x+≥=,等号当且仅当5[1,12]x =∈时成立;且2|5|0x x -≥,等号当且仅当5[1,12]x =∈时成立;所以,2min 25[|5|]10a x x x x≤++-=,等号当且仅当5[1,12]x =∈时成立;故(,10]a ∈-∞;18.(天津卷)某公司一年购买某种货物400吨,每次都购买x 吨,运费为4万元/次,一年的总存储费用为4x 万元,要使一年的总运费与总存储费用之和最小,则x =_______吨.解:某公司一年购买某种货物400吨,每次都购买x 吨,则需要购买400x次,运费为4万元/次,一年的总存储费用为4x 万元,一年的总运费与总存储费用之和为40044x x⋅+万元,40044x x ⋅+≥160,当16004x x=即x =20吨时,一年的总运费与总存储费用之和最小。

2013年浙江高考数学模拟卷理2

2013年浙江高考数学模拟卷理2

秘密★启用前2013年普通高等学校招生全国统一考试(浙江卷)模拟卷二 数学(理科)本试题卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分,考试时间120分钟. 参考公式:如果事件A 、B 互斥,那么()()()P A B P A P B +=+如果事件A 、B 相互独立,那么()()()P A B P A P B ⋅=⋅如果事件A 在一次试验中发生的概率是P ,那么n 次独立重复试验中恰好发生k 次的概率(1)k kn k n n P C P P -=-(k=0,1,2,…,n )球的表面积公式24R S π=,球的体积公式334R V π=,其中R 表示球的半径棱柱的体积公式V Sh =,其中S 表示棱柱的底面积,h 表示棱柱的高 棱锥的体积公式13V Sh=,其中S 表示棱锥的底面积,h 表示棱锥的高棱台的体积公式11221()3V h S S S S =++,其中12,S S 分别表示棱台的上、下底面积,h 表示棱台的高 第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.请在答题卡指定区域内作答1.设集合A={x|1≤|x -1|≤2},集合B ={x|0322≤-+x x }, 则C R A ∩(C R B )=() A .(2,3)B .[-3,3]C .(]3,-∞-∪[)+∞,3D .(-∞,-3)∪(3,+∞)2.已知i 是虚数单位,ai i-+131的共轭复数是-3i ,则实数a=() A .3 B .-3 C .31 D .-313.设a ∈R ,则“a =-415”是“直线l :ax+2y -1=0与圆C :x 2+(y -a )2=4相切”的()A . 充分不必要条件B . 必要不充分条件C . 充分必要条件D . 既不充分也不必要条件 4.把函数y=cos (2x -1)的图象向左平移21,再横向伸长2倍后可得函数()A .y=cos (x+2π)B .y=sin (x+2π)C .y=sinx D .y=cos (x+23π)5.设a ,b 是两个非零向量, ①.若|a +b |=|a |+|b |,则a ∥b ②.若a ∥b ,则|a +b |=|a |+|b |③若|a +b |=|a |+|b |,则存在实数λ,使得b =λa ④若存在实数λ,使得b =λa ,则|a +b |=|a |+|b |则正确命题是()A .①② B.①③ C.②③ D.②④6.从1,2,3,…,9这9个整数中同时取4个不同的数,其积为偶数,则不同的取法共有()A .65B .66C .121D .917.若正数x ,y ,a 满足x+3y=axy ,且3x+4y 的最小值为25,则a 为() A .1 B .2 C .3 D .48.F 1,F 2分别是双曲线C :22a x -22by =1(a ,b >0)的左、右焦点,B 是虚轴的端点,直线F 1B 与C 的两条渐近线分别交于P ,Q 两点,线段PQ 的垂直平分线与x 轴交于点M ,若△OBM 的面积为△OBF 1的面积的三倍,则C 的离心率是() A.23 B .6C .2D .3 9.设实数a>1,b>1,①若lna+2a=lnb+3b ,则a >b ②若lna+2a=lnb+3b ,则a <b ③若lna -2a=lnb -3b ,则a >b ④若lna -2a=lnb -3b 则a <b 则下列命题成立的是()A .①②B .②③C .③④D .①③10.已知矩形ABCD ,AB=1,BC=2,将△ABD 沿矩形的对角线BD 所在的直线进行翻折,在翻折过程中()A.存在某个位置,使得直线AC 与平面ABD 垂直.B.存在某个位置,使得直线AB 与平面ACD 垂直.C.存在某个位置,使得直线AD 与平面ABC 垂直.D.对任意位置,三对直线与平面“AC 与平面ABD ”,“AB 与平面ACD ”,“AD 与平面ABC ”均不垂直第Ⅱ卷(非选择题 共100分)二、填空题 :本大题共7小题,每小题4分,共28分,请在答题卡指定区域内作答(第13题图)11.直角三角形△ABC 两直角边为AB=3和AC=2,△ABC 围绕AC 所在直线旋转到某一位置△AB 1C ,构成一个三棱锥C —ABB 1(单位:cm ),则该三棱锥的体积的最大值为________cm 3. 12.设公差为d 的等差数列{a n }的前n 项和为S n , 若S 2=3a 2+2,S 4=3a 4+2,则d=_______13.如右上图,如果执行它的程序框图,输入正整数48==m n 、,那么输出的p 等于14.若将函数f (x )=x 5表示为f (x )=a 0+a 1(1+x )+a 2(1+x )2+……+a 5(1+x )5,其中a 0,a 1,a 2,…a 5为实数,则a 1+a 5=_________15.实数x ,y 满足平面区域⎪⎩⎪⎨⎧≥≥≤-+≥+-0,00201y x y x y x ,则覆盖此平面区域的最小圆的方程是______16.设函数f (x )是定义在R 上的周期为2的偶函数,当x∈[0,1]时,f (x )=x +1,则 f (0.5)+f (1.5)+f (2.5)+…+f (2013.5)=_____17.如图,AB 为单位圆的直径,E ,F 为半圆上点,弧BE 是弧的三分之一,若AB ·AF=1,则·的值是三、解答题 :本大题共5小题,共72分,解答应写出文字说明、证明过程或演算过程,请在答题卡指定区域内作答 18.(本小题满分14分)已知函数f (x )=2asin 2x+2sinxcosx -a (a 为常数)在x=83π处取得最大值 (1)求a 值;(2)求函数f (x )的最小正周期和单调递增区间; (3)若f (θ)=51,0<θ<83π,求cos θ 19. (本小题满分14分)单位正方体ABCD —A 1B 1C 1D 1中,E ,F 分别是BC ,CD 中点,平面A 1EF 交BB 1于M ,交DD 1于N(1)画出几何体A 1MEFN —ABEFD 的直观图与三视图; (2)设AC 中点为O ,在CC 上存在一点G ,使CG =λ1CC ,且OG ⊥平面A 1EF ,求λ;(3)求A 1C 与平面A 1EF 所成角的正弦值20. (本小题满分14分) 设单调递增等比数列{a n }满足a 1+a 2+a 3=7,且a 3是a 1,a 2+5的等差中项,(1)求数列{a n }的首项; (2)数列{c n }满足:对任意正整数n ,11a c +22a c +…+n n a c =22+12112--n n 均成立,求数列{c n }的通项FEADBC 1B1D 1A1BOEF21.(本小题满分15分) 已知椭圆C 的方程是12222=+by a x )0(>>b a .(1)如果椭圆C 左焦点为(-2,0),且经过点)2,2(--,求椭圆C 的方程(2)设斜率为k 的直线l ,交椭圆C 于A B 、两点,AB 的中点为M. 证明:当直线l 平行移动时,动点M 在一条过原点的定直线上; 22.(本小题满分15分) 已知函数f(x)=21(x -1)2+lnx ,g(x)=kx -k . (1)若23=k ,求函数F(x)=f(x)-g(x)的极值; (2)若对任意的)3,1(∈x ,都有f(x)>g(x)成立,求k 的取值范围.感谢您的阅读,祝您生活愉快。

2013年高考真题理科数学解析分类汇编1-集合与简易逻辑.

2013年高考真题理科数学解析分类汇编1-集合与简易逻辑.

2013年高考真题理科数学解析分类汇编 1集合与简 易逻辑一选择题1.陕西1.设全集为R,函数f (x )_ —X2的定义域为M,则C R M 为(A) [ - 1,1](B) (- 1,1)(C )(W -1] [1, ::)(D)(2, _1) 一 (1,::)【答案】D【解析】... 1-x 2_0, _1沁叮即M 二[-1,1]心=(」:,-1)(1,::)所以选D2.(新课标I) 1、已知集合 A= {x | x 2- 2x >0}, B= {x | —护 v x v 半},贝U ()A 、A n B=.B 、A U B=RC 、B?AD A? B【解析】A=(-二,0) U (2,+ :: ), ••• A U B=R,故选 B.3•[新课标町1、已知集合 M 」x|(x -1)2 ::4),x R ,N - —,0,1,23,则 M"N =(B) {— 1,0 , 1,2 } ( C ) {— 1,0 , 2,3 }(D ){ 0,1 ,2,3 } 【答案】A【解析】因为 M =「x| -1 :: x ::: 3,N —-1,0,1,2,3》所以 M n N 二「0,1,2?,选 A(A )充分不必要条件 (C) 充分必要条件 【答案】C【解析】当a=0时,(A ){ 0,1 , 2}4•安徽理(4)七辽0""是函数f (x)= (ax-1)x 在区间 (0+od)内单调递增的(B )必要不充分条件(D )既不充分也不必要条件f(x)=|x|: y = f(x)在(0, •::)上单调递增;当a 0且x 时,f(x) = (-ax 1)x,y二f(x)在(0, •::)上单调递增所以a乞0是y二f (x)在(0,=)上单调递增的充分条件相反,当y二f(x)在(0,^ :)上单调递增=a乞0,=a乞0是y二f (x)在(0,=)上单调递增的必要条件.故前者是后者的充分必要条件。

高考数学模拟试题分类汇编:集合与简易逻辑

高考数学模拟试题分类汇编:集合与简易逻辑

高考数学模拟试题分类汇编:集合与简易逻辑一、选择题1、(某某省某某执信中学、某某纪念中学、某某外国语学校三校期末联考)设全集U=R ,A={x∈N ︱1≤x ≤10},B={ x ∈R ︱x 2+ x -6=0},则下图中阴影表示的集合为( ) A .{2} B .{3} C .{-3,2}D .{-2,3} 答案:A 2、(某某省启东中学2008年高三综合测试一)当x ∈R ,下列四个集合中是空集的是( ) A. {x|x 2-3x+2=0} B. {x|x 2<x} C. {x|x 2-2x+3=0} C. {x|sinx+cosx=65} 答案:C3、(某某省启东中学2008年高三综合测试一)若命题“p 或q ”是真命题,“p 且q ”是假命题,则( )A.命题p 和命题q 都是假命题B.命题p 和命题q 都是真命题C.命题p 和命题“非q ”的真值不同D. 命题p 和命题q 的真值不同 答案:D4、(某某省启东中学2008年高三综合测试一)设M ,P 是两个非空集合,定义M 与P 的差集为M-P={x|x ∈M 且x ∉p},则M-(M-P )等于( ) A. P B. M P C. MP D. M答案:B5、(某某省启东中学高三综合测试二)定义集合A*B ={x |x ∈A,且x ∉B },若A ={1,3,5,7},B ={2,3,5},则A*B 的子集个数为A.1B.2C.3D.4 答案:D6、(某某省启东中学高三综合测试二)已知集合{}4,3,2,1=A ,集合{}2,1-=B ,设映射B A f →:,如果集合B 中的元素都是A 中元素的f 下的象,那么这样的映射f 有A .16个B .14个C .12个D .8个答案:B7、(某某省启东中学高三综合测试二)若A.、B 均是非空集合,则A ∩B ≠φ是A ⊆B 的 A.充分不必要条件 B.必要不充分条件C.充要条件D.即不充分也不必要条件 答案:B8、(某某省启东中学高三综合测试三)已知0<a<1,集合A={x||x -a|<1}, B={x|log a x>1},若A ∩B=A .(a -1,a)B .(a,a+1)C .(0,a)D .(0,a+1)答案:C 9、(某某省启东中学高三综合测试四)已知集合}4,3,2,1{=I , }1{=A ,}4,2{=B , 则A ( I B )=()A .}1{B .}3,1{C .}3{D .}3,2,1{ 答案:B10、(某某省皖南八校2008届高三第一次联考)已知条件p :2|1|>+x ,条件q :a x >,且p ⌝是q ⌝的充分不必要条件,则a 的取值X 围可以是()A .1≥a ;B .1≤a ;C .1-≥a ;D .3-≤a ;答案:A11、(某某省巴蜀联盟2008届高三年级第二次联考)已知集合A={x|x-m<0},B={y|y=x 2+2x ,x ∈N},若A∩B=Φ,则实数m 的X 围为A .m≤-1B .m<-1C .m≤0D .m<0答案:C12、(某某长安二中2008届高三第一学期第二次月考)已知集合M =},23|{2R a a a x x ∈+-=,N =},|{2R b b b x x ∈-=,则N M ,的关系是A .M ≠⊆NB .M ≠⊇NC .M =ND .不确定答案:C13、(某某省某某市新都一中高2008级一诊适应性测试)设集合M ={θ|θ=k π4,k ∈Z },N ={x |c os2x =0,x ∈R },P ={α|si n 2α=1,α∈R },则下列关系式中成立的是( )A .P ≠⊂N ≠⊂MB .P =N ≠⊂MC .P ≠⊂N =MD .P =N =M 答案:A14、(某某省某某市一诊)已知集合P ={a,b,c},Q ={-1,0,1},映射f:P →Q 中满足f(b)=0的映射个数共有 A 、2个B 、4个C 、6个D 、9个答案:D a 的象有C 31种,c 的象有C 31种,满足f(b)=0的映射个数为C 31C 31=9.选D 15、(某某省某某市新都一中高2008级12月月考)集合{|1}P x y x ==-,集合{|1}Q y y x ==-,则P 与Q 的关系是( )A 、P =QB 、PQC 、P ≠⊂QD 、P ∩Q =∅本题主要考查集合的基本概念和运算解析:P ={x|x ≥1},Q ={y|y ≥0},故P 是Q 的真子集. 答案:C16、(某某省某某市2008届高三第一次模拟考试)已知集合P={x |5x -a ≤0},Q={x |6x -b >0},a ,b ∈N, 且A ∩B ∩N={2,3,4},则整数对(a , b )的个数为( ) A. 20B. 30C. 42D. 56 答案:B17、(某某省某某市2008届高三第二次教学质量检测)设全集U R =,集合2{2}M x x x x R ==-∈,,{12}N x x x R =+∈,,则()U M N 等于( )A.{2}B.{|1223}x x x -<<<≤,或C.{|1223}x x x -≤<<≤,或D.{|321}x x x x ≤≠≠-,且, 答案:C18、(市某某区2008年高三数学一模)已知集合2M x x,103x N x x ⎧+⎫=<⎨⎬-⎩⎭,则集合N M 等于A .{}2-<x x B .{}3>x xC .{}21<<-x xD .{}32<<x x答案:C19、(市某某区2008年高三数学一模)已知aR 且0a ,则“11<a”是 “a >1的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 答案:B20、(市崇文区2008年高三统一练习一)如果全集U=R ,A=⋂=≤<A B x x 则},4,3{},42|{(U B )( ) A .(2,3)∪(3,4) B .(2,4) C .(2,3)∪(3,4]D .(2,4]答案:A21、(市东城区2008年高三综合练习二)设命题42:2>>x x p 是的充要条件,命题b a cbc a q >>则若,:22,则 ( ) A .“p 或q ”为真B .“p 且q ”为真C .p 真q 假D .p ,q 均为假命题答案:A22、(市丰台区2008年4月高三统一练习一)设集合{}25, log (3)A a =+,集合{, }B a b =,若{2}AB =, 则A B 等于(A ){}1,2,5 (B ){}1,2,5- (C ){}2,5,7 (D ){}7,2,5- 答案:A23、(市丰台区2008年4月高三统一练习一)设集合{} 0 1 2 3 4 5, , , , , S A A A A A A =,在S 上定义运算“⊕”为:i j k A A A ⊕=,其中k 为i + j 被4除的余数 , ,0,1,2,3,4,5i j =.则满足关系式20()x x A A ⊕⊕=的 ()x x S ∈的个数为 (A )1 (B )2 (C )3 (D )4 答案:C24、(市海淀区2008年高三统一练习一)若集合{}21,A m =,集合{}2,4B =,则“2m =”是“{}4AB =”的()(A )充分不必要条件 (B )必要不充分条件 (C )充分必要条件(D )既不充分也不必要条件答案:A25、(市十一学校2008届高三数学练习题)已知A 、B 、C 分别为ΔABC 的三个内角,那么“sin cos A B >”是“ΔABC 为锐角三角形”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件答案:B26、(市西城区2008年4月高三抽样测试)若集合2{|540}A x x x =-+<,{|||1}B x x a =-<,则“(23)a ∈,”是“B A ⊆”的( )A. 充分但不必要条件B. 必要但不充分条件C. 充要条件D. 既不充分又不必要条件 答案:A27、(市西城区2008年5月高三抽样测试)设A ,B 是全集I 的两个子集,且A B ⊆,则下列结论一定正确的是( )A .I AB = B .I A B =C .()I B A =D .()II A B =答案:C28、(某某省博兴二中高三第三次月考)若集合()()1,,,2,A B =+∞=-∞全集,U R =则()UA B 是A .(,1)(2,)-∞+∞B .(,1)[2,)-∞+∞C .(,1][2,)-∞+∞D .(,1](2,)-∞+∞ 答案:C29、(某某省某某市高2008届毕业班摸底测试)已知集合U={1,2,3,4,5,6},集合A={2,3},集合B={3,5},则A ∩(U B) =( ) A .{2} B .{2,3,5} C .{1,4,6}D .{5}答案:A30、东北区三省四市2008年第一次联合考试)设集合{}{}1,12>=>=x x P x x M ,则下列关系中正确的是A .M =PB .P P M =C .M P M =D .P P M =答案:B31、(东北三校2008年高三第一次联考)若,,R y x ∈则“()324log 2=-+y x xy ”是“0258622=++-+y x y x ”成立的 ( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件答案:B32、(东北师大附中高2008届第四次摸底考试)已知命题p :1≤∈x cos R x ,有对任意,则( )A .1≥∈⌝x cos R x p ,使:存在B .1≥∈⌝x cos R x p ,有:对任意C .1>∈⌝x cos R x p ,使:存在D .1>∈⌝x cos R x p ,有:对任意 答案:C33、(某某省某某一中2007~2008学年上学期期末考试卷)设M 为非空的数集,M ≠⊂{1,2,3},且M 中至少含有一个奇数元素,则这样的集合M 共有( ) A .6个B .5个C .4个D .3个答案:B34、(某某省某某一中高2008届第一次模拟检测)集合{}{}2160,2,P x x Q x x n n Z =-<==∈,则P Q =( )A .{}2,2-B .{}2,2,4,4--C .{}2,0,2-D .{}2,2,0,4,4--答案:C35、(某某省某某一中高2008届第一次模拟检测)已知a ﹑b 均为非零向量,:p 0,a b ⋅>:q a b p q 与的夹角为锐角,则是成立的( )A.充要条件B.充分而不必要的条件 C.必要而不充分的条件D.既不充分也不必要的条件答案:C36、(某某省师大附中2008年高三上期期末考试)已知命题p : :对任意的,sin 1x R x ∈≤有,则p ⌝是( )A .存在,sin 1x R x ∈≥有B .对任意的,sin 1x R x ∈≥有C .存在,sin 1x R x ∈>有D .对任意的,sin 1x R x ∈>有 答案:C37、(某某省仙游一中2008届高三第二次高考模拟测试)设2:x x f →是集合A 到B 的映射,如果B={1,2},则A ∩B 只可能是( ) A.φ或{1} B.{1} C.φ或{2} D.φ或{1}或{2} 答案:A38、(某某省仙游一中2008届高三第二次高考模拟测试)已知α、β是不同的两个平面,直线α⊂a ,直线β⊂b ,命题p :a 与b 没有公共点;命题q :βα//,则p 是q 的( )A.充分不必要的条件B.必要不充分的条件C.充要条件D.既不充分也不必要的条件B 答案:B39、(某某省某某一中2008年上期期末考试)已知命题p :不等式12x x m -++>的解集为R ;命题q :(52)()log m f x x -=为减函数. 则p 是q 成立的 A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件答案:B40、(某某省河西五市2008年高三第一次联考)已知集合M ={x|x <3},N ={x |122x>},则M ∩N 等于( )A ∅B {x |-1<x <3}C {x |0<x <3}D {x |1<x <3}答案:B41、(某某省河西五市2008年高三第一次联考)在ABC ∆中,“0>⋅AC AB ”是“ABC ∆为锐角三角形”的( ) A 充分不必要条件B 必要不充分条件C 充要条件D 既非充分又非必要条件答案:B42、(某某省某某一中2008届高三上期期末考试)已知集合},3sin|{Z n n x x A ∈==π,则集合A 的真子集的个数为( )A .3B .7C .15D .31答案:B43、(某某省某某一中2008届高三上期期末考试)"0102""0)1)(2(">->->--x x x x 或是的( ) A .充要条件B .充分非必要条件C .必要非充分条件D .非充分非必要条件答案:D44、(某某省2008届六校第二次联考)已知{}{}2230,A x x x B x x a =--<=<, 若A ⊆/B ,则实数a 的取值X 围是( )A. (1,)-+∞B. [3,)+∞C. (3,)+∞D. (,3]-∞ 答案:B45、(某某省2008届六校第二次联考)命题“ax 2-2ax + 3 > 0恒成立”是假命题, 则实数a 的取值X 围是( )A. a < 0或a ≥3B. a ≤0或a ≥3C. a < 0或a >3D. 0<a <3答案:A46、(某某省某某市2008年高三教学质量检测一)已知I 为实数集,2{|20},{|1}M x x x N x y x =-<==-,则I ()M N = ( ). A .{|01}x x <<B .{|02}x x <<C .{|1}x x <D .∅ 答案:A 47、(某某省某某市2008年高三教学质量检测一)“2a =”是“函数()f x x a =-在区间[2,)+∞上为增函数”的( ).A .充分条件不必要B .必要不充分条件C .充要条件D .既不充分也不必要条件 答案:A48、(某某省某某市2008届高三第三次调研考试)设集合{1,2}A =,则满足{1,2,3}A B ⋃=的集合B 的个数是( ).A .1B .3C .4D .8解析:{1,2}A =,{1,2,3}A B ⋃=,则集合B 中必含有元素3,即此题可转化为求集合{1,2}A =的子集个数问题,所以满足题目条件的集合B 共有224=个。

【备战2013年】历届高考数学真题汇编专题2_简易逻辑最新模拟_理

【备战2013年】历届高考数学真题汇编专题2_简易逻辑最新模拟_理
【备战2013年】历届高考数学真题汇编专题2简易逻辑最新模
拟理
1.【南京实验中学2012届高三模拟】在△ABC中,设命题p:
题q:△ABC是等边三角形,那么命题p是命题q的要条件
abc,命sinBsinCsinAA.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分又不必
ababa,b2.【2012宁波一中模(A)充分不必要条件(B)必要不充分条件
(C)充要条件
【答案】B(D)既不充分也不必要条件
ababababa,b【解析】若一正一负,则得不到2,但若2,必有ab,故
选B。
23.【2012金华十校高三模拟】已知aR,则“a2”是“a2a”成立的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件
用心爱心专心-1-

【备考2014】2013高考数学 (真题 模拟新题分类汇编) 推理与证明 理

【备考2014】2013高考数学 (真题 模拟新题分类汇编) 推理与证明 理

推理与证明M1 合情推理与演绎推理15.B13,J3,M1[2013·福建卷] 当x∈R ,|x|<1时,有如下表达式: 1+x +x 2+…+x n+…=11-x.两边同时积分得:∫1201dx +∫120xdx +∫120x 2dx +…+∫120x n dx +…=∫12011-x dx ,从而得到如下等式:1×12+12×⎝ ⎛⎭⎪⎫122+13×⎝ ⎛⎭⎪⎫123+…+1n +1×⎝ ⎛⎭⎪⎫12n +1+…=ln 2.请根据以上材料所蕴含的数学思想方法,计算:C 0n×12+12C 1n ×122+13C 2n ×123+…+1n +1C n n ×⎝ ⎛⎭⎪⎫12n +1=__________.15.1n +1⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫32n +1-1 [解析] (1+x)n =C 0n +C 1n x +C 2n x 2+…+C n n x n, 两边同时积分得C 0n ∫1201dx +C 1n ∫120xdx +C 2n ∫120x 2dx +…+C n n ∫120x n dx =∫120(1+x)ndx ,得C 0n ×12+12C 1n ×122+13C 2n ×123+…+1n +1C n n ×12n +1=1n +132n +1-1.14.M1[2013·湖北卷] 古希腊毕达哥拉斯学派的数学家研究过各种多边形数,如三角形数1,3,6,10,…,第n 个三角形数为n (n +1)2=12n 2+12n ,记第n 个k 边形数为N(n ,k)(k≥3),以下列出了部分k 边形数中第n 个数的表达式:三角形数 N(n ,3)=12n 2+12n ,正方形数 N(n ,4)=n 2, 五边形数 N(n ,5)=32n 2-12n ,六边形数 N(n ,6)=2n 2-n ,……可以推测N(n ,k)的表达式,由此计算N(10,24)=________.14.1 000 [解析] 观察得k 每增加1,n 2项系数增加12,n 项系数减少12,N(n ,k)=k -22n 2+(4-k)n 2,故N(10,24)=1 000.16.B7、M1[2013·山东卷] 定义“正对数”:ln +x =⎩⎪⎨⎪⎧0,0<x<1,ln x ,x≥1.现有四个命题:①若a>0,b>0,则ln +(a b )=bln +a ;②若a>0,b>0,则ln +(ab)=ln +a +ln +b ;③若a>0,b>0,则ln +⎝ ⎛⎭⎪⎫a b ≥ln +a -ln +b ;④若a>0,b>0,则ln +(a +b)≤ln +a +ln +b +ln 2. 其中的真命题有________.(写出所有真命题的编号)16.①③④ [解析] ①中,当a b ≥1时,∵b>0,∴a≥1,ln +(a b )=ln a b=bln a =bln +a ;当0<a b <1时,∵b>0,∴0<a<1,ln +(a b )=bln +a =0,∴①正确;②中,当0<ab<1,且a>1时,左边=ln +(ab)=0,右边=ln +a +ln +b =ln a +0=ln a>0,∴②不成立;③中,当a b ≤1,即a≤b 时,左边=0,右边=ln +a -ln +b ≤0,左边≥右边成立;当a b >1时,左边=ln ab =ln a -ln b>0,若a>b>1时,右边=ln a -ln b ,左边≥右边成立;若0<b<a<1时,右边=0, 左边≥右边成立;若a>1>b>0,左边=ln ab =ln a -ln b>ln a ,右边=ln a ,左边≥右边成立,∴③正确;④中,若0<a +b<1,左边=ln +()a +b =0,右边=ln +a +ln +b +ln 2=ln 2>0,左边≤右边;若a +b≥1,ln+()a +b -ln 2=ln ()a +b -ln 2=lna +b2, 又∵a +b 2≤a 或a +b 2≤b ,a ,b 至少有1个大于1,∴ln a +b 2≤ln a 或ln a +b 2≤ln b ,即有ln+()a +b -ln 2=ln ()a +b -ln 2=lna +b 2≤ln +a +ln +b ,∴④正确. 14.M1[2013·陕西卷] 观察下列等式: 12=1 12-22=-3 12-22+32=6 12-22+32-42=-10 ……照此规律,第n 个等式可为________. 14.12-22+32-42+…+(-1)n +1n 2=(-1)n +1n (n +1)2[解析] 结合已知所给几项的特点,可知式子左边共n 项,且正负交错,奇数项为正,偶数项为负,右边的绝对值为左边底数的和,系数和最后一项正负保持一致,故表达式为12-22+32-42+…+(-1)n +1n 2=(-1)n+1n (n +1)2.M2 直接证明与间接证明20.M2,D2,D3,D5[2013·北京卷] 已知{a n }是由非负整数组成的无穷数列,该数列前n 项的最大值记为A n ,第n 项之后各项a n +1,a n +2,…的最小值记为B n ,d n =A n -B n .(1)若{a n}为2,1,4,3,2,1,4,3,…,是一个周期为4的数列(即对任意n∈N*,a n +4=a n),写出d1,d2,d3,d4的值;(2)设d是非负整数,证明:d n=-d(n=1,2,3,…)的充分必要条件为{a n}是公差为d 的等差数列;(3)证明:若a1=2,d n=1(n=1,2,3,…),则{a n}的项只能是1或者2,且有无穷多项为1.20.解:(1)d1=d2=1,d3=d4=3.(2)(充分性)因为{a n}是公差为d的等差数列,且d≥0,所以a1≤a2≤…≤a n≤….因此A n=a n,B n=a n+1,d n=a n-a n+1=-d(n=1,2,3,…).(必要性)因为d n=-d≤0(n=1,2,3,…).所以A n=B n+d n≤B n.又因为a n≤A n,a n+1≥B n,所以a n≤a n+1.于是,A n=a n,B n=a n+1.因此a n+1-a n=B n-A n=-d n=d,即{a n}是公差为d的等差数列.(3)因为a1=2,d1=1,所以A1=a1=2,B1=A1-d1=1.故对任意n≥1,a n≥B1=1.假设{a n}(n≥2)中存在大于2的项.设m为满足a m>2的最小正整数,则m≥2,并且对任意1≤k<m,a k≤2.又因为a1=2,所以A m-1=2,且A m=a m>2,于是,B m=A m-d m>2-1=1,B m-1=min{a m,B m}>1.故d m-1=A m-1-B m-1<2-1=1,与d m-1=1矛盾.所以对于任意n≥1,有a n≤2,即非负整数列{a n}的各项只能为1或2.因为对任意n≥1,a n≤2=a1,所以A n=2.故B n=A n-d n=2-1=1.因此对于任意正整数n ,存在m满足m>n,且a m=1,即数列{a n}有无穷多项为1.M3数学归纳法M4单元综合1.[2013·黄山质检] 已知n为正偶数,用数学归纳法证明1-12+13-14+…+1n+1=2(1n+2+1n+4+…+12n)时,若已假设n=k(k≥2为偶数)时命题为真,则还需要用归纳假设再证n=( )时等式成立( )A.k+1 B.k+2C.2k+2 D.2(k+2)1.B [解析] 根据数学归纳法的步骤可知,则n=k(k≥2为偶数)下一个偶数为k+2,故答案为B.2.[2013·石景山期末] 在整数集Z中,被5除所得余数为k的所有整数组成一个“类”,记为[k],即[k]={5n+k|n∈Z},k=0,1,2,3,4.给出如下四个结论:①2 013∈[3];②-2∈[2];③Z =[0]∪[1]∪[2]∪[3]∪[4];④整数a ,b 属于同一“类”的充要条件是a -b∈[0].其中,正确结论的个数为( )A .1B .2C .3D .42.C [解析] 因为 2 013=402×5+3,所以 2 013∈[3],①正确.-2=-1×5+3,-2∈[3],所以②不正确.因为整数集中的数被5除的余数可以且只可以分成五类,所以③正确.整数a ,b 属于同一“类”,则整数a ,b 被5除的余数相同,从而a -b 被5除的余数为0,反之也成立,故整数a ,b 属于同一“类”的充要条件是a -b∈[0],故④正确.所以正确的结论个数为3,选C.3.[2013·汕头期末] 已知2+23=2 23,3+38=3 38,4+415=4 415,若6+a t =6 at(a ,t 均为正实数),类比以上等式,可推测a ,t 的值,则a -t =________. 3.-29 [解析] 类比等式可推测a =6,t =35,则a -t =-29.4.[2013·福州期末] 已知点A(x 1,ax 1),B(x 2,ax 2)是函数y =a x(a>1)的图像上任意不同两点,依据图像可知,线段AB 总是位于A 、B 两点之间函数图像的上方,因此有结论ax 1+ax 22>a x 1+x 22成立.运用类比思想方法可知,若点A(x 1,sin x 1),B(x 2,sin x 2)是函数y =sin x (x∈(0,π))的图像上的不同两点,则类似地有________成立.4.sin x 1+sin x 22<sin x 1+x 22[解析] 函数y =sin x 在x ∈(0,π)的图像上任意不同两点A ,B ,依据图像可知,线段AB 总是位于A ,B 两点之间函数图像的下方,所以sin x 1+sin x 22<sin x 1+x 22.[规律解读] 类比推理中的结论要注意问题在变化之后的不同,要“求同存异”才能够正确解决问题.5.[2013·云南师大附中月考] 我们把平面内与直线垂直的非零向量称为直线的法向量,在平面直角坐标系中,利用求动点轨迹方程的方法,可以求出过点A(-3,4),且法向量为n =(1,-2)的直线(点法式)方程为1×(x+3)+(-2)×(y-4)=0,化简得x -2y +11=0.类比以上方法,在空间直角坐标系中,经过点A(1,2,3),且法向量为n =(-1,-2,1)的平面(点法式)方程为________.5.x +2y -z -2=0 [解析] 设B(x ,y ,z)为平面内的任一点,类比得平面的方程为(-1)×(x-1)+(-2)×(y-2)+1×(z-3)=0,即x +2y -z -2=0.6.[2013·黄山质检] 已知数列{a n }满足a 1=1,a n =log n (n +1)(n≥2,n ∈N *).定义:使乘积a 1·a 2·…·a k 为正整数的k(k∈N *)叫作“简易数”.则在[1,2 012]内所有“简易数”的和为________.6.2 036 [解析] ∵a n =log n (n +1)=lg (n +1)lg n,∴a 1·a 2·…·a k =1·lg 3lg 2·lg 4lg 3·…·lg (k +1)lg k =lg (k +1)lg 2=log 2(k +1),则“简易数”k 使log 2(k +1)为整数,即满足2n =k +1,所以k =2n-1,则在[1,2 012]内所有“简易数”的和为21-1+22-1+…+210-1=2(1-210)1-2-10=1 023×2-10=2 036.。

【备战2013年】历届高考数学真题汇编专题2_简易逻辑_理

【备战2013年】历届高考数学真题汇编专题2_简易逻辑_理

【2012年高考试题】1.【2012高考真题辽宁理4】已知命题p :∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≥0,则⌝p 是(A) ∃x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≤0 (B) ∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≤0 (C) ∃x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<0 (D) ∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<02.【2012高考真题江西理5】下列命题中,假命题为 A .存在四边相等的四边形不.是正方形 B .1212,,z z C z z ∈+为实数的充分必要条件是12,z z 为共轭复数 C .若,x y ∈R ,且2,x y +>则,x y 至少有一个大于1D .对于任意01,nn n n n N C C C ∈+++L 都是偶数3.【2012高考真题湖南理2】命题“若α=4π,则tanα=1”的逆否命题是 A.若α≠4π,则tanα≠1 B. 若α=4π,则tanα≠1 C. 若tanα≠1,则α≠4π D. 若tanα≠1,则α=4π【答案】C【解析】因为“若p ,则q ”的逆否命题为“若p ⌝,则q ⌝”,所以 “若α=4π,则tanα=1”的逆否命题是 “若tanα≠1,则α≠4π”.4.【2012高考真题湖北理2】命题“0x ∃∈R Q ð,30x ∈Q ”的否定是A .0x ∃∉R Q ð,30x ∈QB .0x ∃∈R Q ð,30x ∉QC .x ∀∉R Q ð,3x ∈QD .x ∀∈R Q ð,3x ∉Q【答案】D【解析】根据对命题的否定知,是把谓词取否定,然后把结论否定。

因此选D 5.【2012高考真题福建理3】下列命题中,真命题是 A. 0,00≤∈∃x eR xB. 22,x R x x >∈∀ C.a+b=0的充要条件是ab=-1 D.a>1,b>1是ab>1的充分条件6.【2012高考真题安徽理6】设平面α与平面β相交于直线m ,直线a 在平面α内,直线b 在平面β内,且b m ⊥,则“αβ⊥”是“a b ⊥”的( )()A 充分不必要条件 ()B 必要不充分条件 ()C 充要条件 ()D 即不充分不必要条件7.【2012高考真题陕西理18】(本小题满分12分)(1)如图,证明命题“a 是平面π内的一条直线,b 是π外的一条直线(b 不垂直于π),c 是直线b 在π上的投影,若a b ⊥,则a c ⊥”为真。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【备战2013年】历届高考数学真题汇编专题2 简易逻辑最新模拟 理1.【南京实验中学2012届高三模拟】在△ABC 中,设命题,sin sin sin :AcC b B a p ==命题q:△ABC 是等边三角形,那么命题p 是命题q 的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件2.【2012宁波一中模拟】已知∈b a ,R ,则“b a =”是“abba =+2”的( )(A)充分不必要条件 (B)必要不充分条件 (C)充要条件 (D)既不充分也不必要条件【答案】B【解析】若,a b 一正一负,则得不到ab b a =+2,但若abba =+2,必有b a =,故选B 。

3.【2012金华十校高三模拟】已知a R ∈,则“2a >”是“22a a >”成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.【2012昆明一中模拟】下列选项叙述错误的是A.命题“若1x ≠,则2320x x -+≠”的逆否命题是“若2320x x -+=,则1x =”B.若命题p :2,10x R x x ∀∈++≠,则p ⌝:2,10x R x x ∃∈++=C.若p q ∨为真命题,则p ,q 均为真命题D.“2x >”是“2320x x -+>”的充分不必要条件5、(2012德州一中一模)“p 且q 是真命题”是“非p 为假命题”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也木必要条件 答案:A解析:p 且q 是真命题,则p 、q 一定是真命题,从而非p 是假命题,因此充分性成立;当非p 是假命题时,p 一定是真命题,但p 有可能是假命题,则p 且q 就是假命题,所以,必要性不成立,选A 。

6、(2012济南一中三模)n S 是数列{}n a 的前n 项和,则“n S 是关于n 的二次函数”是“数列{}n a 为等差数列”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件7、(2012莱芜二中模拟)设,p q 是两个命题,1:0,:|21|1,x p q x p q x+≤+<则是(A)充分非必要条件 (B)必要非充分条件(C)充要条件(D)既非充分又非必要条件【答案】B 【解析】由01≤+xx ,解得01<≤-x ,由112<+x 得1121<+<-x ,即01<<-x ,所以p 是q 的必要不充分条件。

8、(2012哈尔滨一中模拟)下列说法中,正确的是 (A )命题“若b a >,则ba 11<”的逆命题是真命题 (B )命题“R x ∈∃0,0)020x x -”的否命题是“R x ∈∀,02≤-x x ”(C )命题“q p ∨”为真命题,则命题p 和命题q 均为真命题 (D )“2>a ”是“5>a ”的充分不必要条件9、(2012临沂一中二模)已知命题p :“2[1,2],0x x a ∀∈-≥”,命题q :“R x ∈∃,0222=-++a ax x ”。

若命题:“p 且q ”是真命题,则实数a 的取值范围是(A )21a a ≤-=或 (B )212a a ≤-≤≤或 (C )1a ≥ (D )21a -≤≤10、(2012青岛实验中学二模)“4a <”是“对任意的实数x ,a x x ≥++-3212成立”的A .充分必要条件B .充分不必要条件C .必要不充分条件D .既非充分也非必要条件【答案】B11、(2012石家庄市质检1)设βα、为两个不同的平面,m 、n 为两条不同的直线,且,m n αβ⊂⊂,有两个命题:p :若//m n ,则//αβ;q :若m β⊥,则αβ⊥;那么A .“p 或q ”是假命题B .“p 且q ”是真命题C .“非p 或q ” 是假命题D .“非p 且q ”是真命题 答案:D【解析】p 是假命题,q 是真命题,所以D 正确.12、(2012唐山一中模拟)已知直线α平面⊥l ,直线β平面⊂m ,则“βα//”是“m l ⊥”的(A )充要条件 (B )必要不充分条件(C )充分不必要条件 (D )既不充分也不必要条件13、(2012泰安一中一模)若a 、b 为实数,则“1<ab ”是“ba 10<<”的 A.充分而不必要条件 B.必要而不充分条件 C.充分条件D.既不充分也不必要条件【答案】B【解析】b a 10<<,所以⎪⎩⎪⎨⎧<>>100ab b a ,所以“1<ab ” 是“b a 10<<”的必要而不充分条件,选B.14、(2012威海一中二模)已知命题p :函数12+-=x a y 恒过(1,2)点;命题q :若函数)1(-x f 为偶函数,则()f x 的图像关于直线1x =对称,则下列命题为真命题的是A.p q ∧B.p q ⌝∧⌝C.p q ⌝∧D.p q ∧⌝15、(2012武汉一中二模)下列命题正确的是A.2000x R,x 2x 30∃∈++=B.3x N,x ∀∈>x2C.x >1是x 2>1的充分不必要条件 D.若a >b ,则a 2>b 216.【2012厦门市高三质检理】若x 、y ∈R ,则“x =y ”是“y x =”的A.充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】A【解析】本题主要考查充要条件. 属于基础知识、基本运算的考查.x =y 可以推出y x =,反之y x =不能推出x =y 。

“x =y ”是“y x =”的充分不必要条件17.【2012黄冈市高三模拟考试理】下列四种说法中,错误..的个数是 ( ) ①{0,1}A =的子集有3个;②“若22,am bm a b <<则”的逆命题为真;③“命题p q ∨为真”是“命题p q ∧为真”的必要不充分条件;④命题“x R ∀∈,均有2320x x --≥”的否定是:“,x R ∃∈使得2320x x --≤”A .0个B .1个C .2个D .3个18.【2012年西安市高三年级第三次质检理】设S 是整数集Z 的非空子集,如果,有,则称S 关于数的乘法是封闭的.若T ,V 是z 的两个不相交的非空子集,,且,有,有,则下列结论恒成立的是A. T ,V 中至少有一个关于乘法是封闭的B. T ,V 中至多有一个关于乘法是封闭的C. T ,V 中有且只有一个关于乘法是封闭的D. T ,V 中每一个关于乘法都是封闭的19.【2012山东青岛市模拟理】命题“∈∃x R,0123=+-x x ”的否定是( )A .∈∃x R,0123≠+-x xB .不存在∈x R, 0123≠+-x xC .∈∀x R,0123=+-x xD .∈∀x R, 0123≠+-x x20.【2012山东青岛市模拟理】关于命题p :A φφ= ,命题q :A A φ= ,则下列说法正确的是A .()p q ⌝∨为假B .()()p q ⌝∧⌝为真C .()()p q ⌝∨⌝为假D .()p q ⌝∧为真【答案】C【解析】因p 真,q 真,由逻辑关系可知,p ⌝假,q ⌝假,即()()p q ⌝∨⌝为假,选C 。

21.【2012吉林市第三次质检理】有下列四个命题: ①函数x y -=10和函数x y 10=的图象关于x 轴对称; ②所有幂函数的图象都经过点(1,1); ③若实数b a 、满足1=+b a ,则ba 41+的最小值为9;④若}{n a 是首项大于零.....的等比数列,则“21a a <”是“数列}{n a 是递增数列”的充要条件.其中真命题的个数有( ) A.1B.2C.3D.422.【2012广东佛山市质检理】“关于x 的不等式220x ax a -+>的解集为R ”是“01a ≤≤”A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件【答案】A【解析】x 的不等式220x ax a -+>的解集为R ,则2440a a ∆=-<,解得01a <<,由集合的包含关系可知选A 。

23.【2012广东韶关市调研理】对于∆ABC ,有如下四个命题: ①若sin 2sin 2A B = ,则∆ABC 为等腰三角形, ②若sin cos B A =,则∆ABC 是直角三角形③若222sin sin sin A B C +>,则∆ABC 是钝角三角形④若coscoscos222a b c A B C ==, 则∆ABC 是等边三角形其中正确的命题个数是( )A .1B .2C .3D .424.【2012武昌区高三年级调研理】“14a =”是“对任意的正数x ,均有1ax x+≥”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件25.【2012厦门质检理2】“φ=2π”是“函数y=sin(x +φ)为偶函数的” A.充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件 【答案】A 【解析】φ=2π时,y=sin(x +φ)=x cos 为偶函数;若y=sin(x +φ)为偶函数,则k =ϕZ k ∈+,2ππ;选A;26.【2012粤西北九校联考理3】下列命题错误..的是( ) A. 2"2""320"x x x >-+>是的充分不必要条件;B. 命题“2320,1x x x -+==若则”的逆否命题为“21,320若则x x x =-+≠”;C.对命题:“对"0,k >方程20x x k +-=有实根”的否定是:“ ∃k >0,方程20x x k +-=无实根”;D. 若命题:,p x A B p ∈⋃⌝则是x A x B ∉∉且;27.【2012衡水中学质检理】“0a ≥”是“2,10x R ax x ∃∈++≥为真命题”的( )A .充要条件B .必要但不充分条件C .充分但不必要条件D .既不充分也不必要条件28.【2012韶关第一次调研理3】下列命题正确的是( )A .2000,230x R x x ∃∈++= B .32,x N x x ∀∈>C .1x >是21x >的充分不必要条件D .若a b >,则22a b > 【答案】C【解析】2211;1x x x >⇒>>不能得1x >,因此是充分不必要条件。

相关文档
最新文档