【K12教育学习资料】[学习](全国通用版)2019高考数学二轮复习 12+4分项练9 直线与圆 文

合集下载

配套K12(全国通用版)2019版高考数学大二轮复习 考前强化练2 客观题综合练(B)理

配套K12(全国通用版)2019版高考数学大二轮复习 考前强化练2 客观题综合练(B)理

考前强化练2 客观题综合练(B)一、选择题1.复数z满足(1+i)z=i+2,则z的虚部为()A.B.C.-D.-i2.已知集合A={-2,-1,1,2},集合B={k∈A|y=kx在R上为增函数},则A∩B的子集个数为()A.1B.2C.3D.43.若随机变量X~N(μ,σ2)(σ>0),则有如下结论:P(|X-μ|<σ)=0.682 6,P(|X-μ|<2σ)=0.954 4,P(|X-μ|<3σ)=0.9974.高三(1)班有40名同学,一次数学考试的成绩服从正态分布,平均分为120,方差为100,理论上在130分以上人数约为()A.19B.12C.6D.54.执行如图所示的程序框图,则输出的S等于()A. B.C.D.5.(2018山东潍坊一模,理10)甲、乙、丙、丁四位同学参加一次数学智力竞赛,决出了第一名到第四名的四个名次.甲说:“我不是第一名”;乙说:“丁是第一名”;丙说:“乙是第一名”;丁说:“我不是第一名”.成绩公布后,发现这四位同学中只有一位说的是正确的,则获得第一名的同学为()A.甲B.乙C.丙D.丁6.已知双曲线的两个焦点为F1(-,0),F2(,0),M是此双曲线上的一点,且满足=0,||·||=2,则该双曲线的焦点到它的一条渐近线的距离为()A.3B.C.D.17.已知函数f(x)既是二次函数又是幂函数,函数g(x)是R上的奇函数,函数h(x)=+1,则h(2 018)+h(2 017)+h(2 016)+…+h(1)+h(0)+h(-1)+…+h(-2 016)+h(-2 017)+h(-2 018)=()A.0B.2 018C.4 036D.4 0378.今年“五一”期间,某公园举行免费游园活动,免费开放一天,早晨6时30分有2人进入公园,接下来的第一个30分钟内有4人进去1人出来,第二个30分钟内有8人进去2人出来,第三个30分钟内有16人进去3人出来,第四个30分钟内有32人进去4人出来…按照这种规律进行下去,到上午11时公园内的人数是()A.212-57B.211-47C.210-38D.29-309.(2018湖南衡阳二模,理8)在△ABC中,∠A=120°,=-3,点G是△ABC的重心,则||的最小值是()A. B. C. D.10.函数y=的图象大致为()11.已知e为自然对数的底数,设函数f(x)=x2-ax+b ln x存在极大值点x0,且对于a的任意可能取值,恒有极大值f(x0)<0,则下列结论中正确的是()A.存在x0=,使得f(x0)<-B.存在x0=,使得f(x0)>-e2C.b的最大值为e3D.b的最大值为2e2二、填空题12.(2018福建厦门外国语学校一模,理13)锐角△ABC中角A,B,C的对边分别是a,b,c,若a=4,b=3,且△ABC的面积为3,则c=.13.(2018山东潍坊三模,理14)若(3x-1)2 018=a0+a1x+a2x2+…+a2 018x2 018,则+…+=.14.设0<m≤1,在约束条件下,目标函数z=3x-2y的最小值为-5,则m的值为.15.(2018河北保定一模,理16)已知a,b,c分别为△ABC的三个内角A,B,C的对边,b=6,且a cosB=a2-b2+bc,O为△ABC内一点,且满足=0,∠BAO=30°,则||=.参考答案考前强化练2客观题综合练(B)1.C解析∵(1+i)z=i+2,∴(1-i)(1+i)z=(i+2)(1-i),∴2z=3-i,∴z=i.则z的虚部为-,故选C.2.D解析B={k∈A|y=kx在R上为增函数}={k|k>0,k∈{-2,-1,1,2}}={1,2},所以A∩B={1,2},其子集个数为22=4,选D.3.C解析μ=120,σ==10,∴P=0.682 6,∴P(R>130)=(1-P)=0.317 4=0.158 7,∴130分以上的人数约为40×0.158 7≈6.故选C.4.C解析模拟执行程序,可得S=600,i=1,执行循环体,S=600,i=2,不满足条件S<1,执行循环体,S=300,i=3,不满足条件S<1,执行循环体,S=100,i=4,不满足条件S<1,执行循环体,S=25,i=5,不满足条件S<1,执行循环体,S=5,i=6,不满足条件S<1,执行循环体,S=,i=7,满足条件S<1,退出循环,输出S的值为故选C.5.A解析当甲获得第一名时,甲、乙、丙说的都是错的,丁说的是对的,符合条件;当乙获得第一名时,甲、丙、丁说的都是对的,乙说的是错的,不符合条件;当丙获得第一名时,甲和丁说的都是对的,乙、丙说的是错的,不符合条件;当丁获得第一名时,甲和乙说的都是对的,丙、丁说的是错的,不符合条件,故选A.6.D解析=0,∴MF1⊥MF2.∴|MF1|2+|MF2|2=40,∴(|MF1|-|MF2|)2=|MF1|2-2|MF1|·|MF2|+|MF2|2=40-2×2=36,∴||MF1|-|MF2||=6=2a,a=3.又c=,∴b2=c2-a2=1,∴b=1,∴双曲线的渐近线方程为y=±x.∴双曲线的焦点到它的一条渐近线的距离为=1.故答案为D.7.D解析∵函数f(x)既是二次函数又是幂函数,∴f(x)=x2,h(x)=+1,因此h(x)+h(-x)=+1++1=2,h(0)=+1=1,因此h(2 018)+h(2 017)+h(2 016)+…+h(1)+h(0)+h(-1)+…+h(-2 016)+h(-2 017)+h(-2 018)=2 018×2+1=4 037,选D.8.B解析设每个30分钟进去的人数构成数列{a n},则a1=2=2-0,a2=4-1,a3=8-2,a4=16-3,a5=32-4,…,所以a n=2n-(n-1),设数列{a n}的前n项和为S n,依题意,S10=(2-0)+(22-1)+(23-2)+…+(210-9)=(2+22+23+…+210)-(1+2+…+9)=211-47,故选B. 9.B解析设△ABC中的内角A,B,C的对边分别为a,b,c.=-3,∴-bc=-3,bc=6),∴||2=)2=(b2+c2-6)(2bc-6)=,∴||10.D解析函数y=的定义域为(-∞,0)∪(0,+∞),且f(-x)==-=-f(x),故函数为奇函数,图象关于原点对称,故A错误.由于分子中cos 3x的符号呈周期性变化,故函数的符号也呈周期性变化,故C错误;当x时,f(x)>0,故B错误,故选D.11.C解析函数的定义域为(0,+∞),f'(x)=x-a+,∵函数存在极大值点x0,∴f'(x)=0有解,即x2-ax+b=0有两个不等的正根,解得a>2,b>0.由f'(x)=0,得x1=,x2=,分析易得函数f(x)的极大值点x0=x1.∵a>2,b>0,∴x0=x1=(0,).则f(x)max=f(x0)=-ax0+b ln x0,∵x2-ax+b=0,∴ax=x2+b.∴f(x)max=-+b ln x0-b,令g(x)=b ln x-x2-b,x∈(0,),∵g'(x)=-x=>0,∴g(x)在(0,)上单调递增,故g(x)<g()=b ln b≤0,得b ln b,即b≤e3,故b的最大值为e3,故选C.12解析由题意得3ab sin C,故sin C=又△ABC是锐角三角形,所以C=,由余弦定理得c2=a2+b2-2ab cos C=25-12=13,c=13.-1解析由(3x-1)2 018=a0+a1x+a2x2+…+a2 018x2 018,取x=0,可得a0=1,取x=,可得0=a0++…+,+…+=-a0=-1.14.1解析作出不等式组对应的平面区域如图所示,由z=3x-2y,得y=x-z,∵0<m≤1,直线x+2y≤m是斜率为-的一组平行线,由图可知当直线y=x-z经过点A时,直线的截距最大,此时z的最小值为-5,即3x-2y=-5.由解得即A,∵点A在直线3x-2y=-5上,∴3-2=-5,解得m=1.15.3解析∵a cos B=a2-b2+bc,(a2+c2-b2)=a2-b2+bc.∴b2+c2-a2=bc.∴cos A=,∴sin A=因为=0,所以O为三角形ABC重心.设AC中点为M,则B,O,M三点共线,由面积关系得AO=3.即||=1.。

【K12教育学习资料】[学习]2019版高考数学大二轮复习 板块二 练透基础送分小考点 第2讲 不等

【K12教育学习资料】[学习]2019版高考数学大二轮复习 板块二 练透基础送分小考点 第2讲 不等

第2讲 不等式与推理证明[考情考向分析] 1.利用不等式性质比较大小,利用基本不等式求最值及线性规划问题是高考的热点.2.一元二次不等式常与函数、数列结合考查一元二次不等式的解法和参数的取值范围.3.利用不等式解决实际问题.4.以数表、数阵、图形为背景与数列、周期性等知识相结合考查归纳推理和类比推理,多以小题形式出现.5.直接证明和间接证明的考查主要作为证明和推理数学命题的方法,常与函数、数列及不等式等综合命题.1.(2018·天津)设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≤5,2x -y ≤4,-x +y ≤1,y ≥0,则目标函数z =3x +5y 的最大值为( ) A .6B .19C .21D .45 答案 C解析 画出可行域如图阴影部分所示(含边界),由z =3x +5y ,得y =-35x +z5.设直线l 0为y =-35x ,平移直线l 0,当直线y =-35x +z5过点P (2,3)时,z 取得最大值,z max=3×2+5×3=21. 故选C.2.对于使f (x )≤M 恒成立的所有常数M 中,我们把M 的最小值叫做f (x )的上确界,若a >0,b >0且a +b =1,则-12a -2b的上确界为( )A.92B .-92C.14D .-4 答案 B解析 -12a -2b =-⎝ ⎛⎭⎪⎫12a +2b (a +b )=-⎝ ⎛⎭⎪⎫52+b 2a +2a b ≤-⎝ ⎛⎭⎪⎫52+2b 2a ×2a b =-92,当且仅当b 2a =2a b ,即b =2a =23时取等,所以原式的上确界为-92,故选B.3.(2018·绵阳三诊)甲、乙、丙三人各买了一辆不同品牌的新汽车,汽车的品牌为奇瑞、传祺、吉利.甲、乙、丙让丁猜他们三人各买的什么品牌的车,丁说:“甲买的是奇瑞,乙买的不是奇瑞,丙买的不是吉利.”若丁的猜测只对了一个,则甲、乙所买汽车的品牌分别是( ) A .吉利,奇瑞 B .吉利,传祺 C .奇瑞,吉利 D .奇瑞,传祺答案 A解析 因为丁的猜测只对了一个,所以“甲买的是奇瑞,乙买的不是奇瑞”这两个都是错误的.否则“甲买的不是奇瑞,乙买的不是奇瑞”或“甲买的是奇瑞,乙买的是奇瑞”是正确的,这与三人各买了一辆不同品牌的新汽车矛盾,“丙买的不是吉利”是正确的,所以乙买的是奇瑞,甲买的是吉利.4.(2018·佛山质检)已知a >0,设x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +a ≥0,x +y -1≥0,x ≤3,且z =2x -y 的最小值为-4,则a 等于( ) A .1B .2C .3D .4 答案 C解析 作出可行域,如图△ABC 内部(包括边界),并作直线l :2x -y =0,当直线l 向上平移时,z 减小, 可见,当l 过点A ⎝⎛⎭⎪⎫1-a 2,1+a 2时,z 取得最小值,∴2×1-a 2-1+a2=-4,解得a =3.5.(2018·四平模拟)设x >0,y >0,若x lg2,lg 2,y lg2成等差数列,则1x +9y的最小值为( )A .8B .9C .12D .16 答案 D解析 ∵x lg2,lg 2,y lg2成等差数列, ∴2lg 2=(x +y )lg2,∴x +y =1. ∴1x +9y=(x +y )⎝ ⎛⎭⎪⎫1x +9y ≥10+2y x ·9xy=10+6=16,当且仅当x =14,y =34时取等号,故1x +9y的最小值为16.6.(2018·河北省衡水金卷调研卷)下面推理过程中使用了类比推理方法,其中推理正确的个数是( )①“数轴内两点间距离公式为|AB |=(x 2-x 1)2,平面内两点间距离公式为|AB |=(x 2-x 1)2+(y 2-y 1)2”,类比推出“空间内两点间的距离公式为|AB |=(x 2-x 1)2+(y 2-y 1)2+(z 2-z 1)2”;②“代数运算中的完全平方公式(a +b )2=a 2+2ab +b 2”类比推出“向量中的运算(a +b )2=a 2+2a ·b +b 2仍成立”;③“平面内两不重合的直线不平行就相交”类比推出“空间内两不重合的直线不平行就相交”也成立;④“圆x 2+y 2=1上点P (x 0,y 0)处的切线方程为x 0x +y 0y =1”类比推出“椭圆x 2a 2+y 2b2=1(a >b >0)上点P (x 0,y 0)处的切线方程为x 0x a 2+y 0yb 2=1”. A .1B .2C .3D .4 答案 C解析 对于①,根据空间内两点间距离公式可知,类比正确;对于②,(a +b )2=(a +b )·(a +b )=a 2+a ·b +b ·a +b 2=a 2+2a ·b +b 2,类比正确;对于③,在空间内不平行的两直线,有相交和异面两种情况,类比错误;对于④,椭圆x 2a 2+y 2b2=1(a >b >0)上点P (x 0,y 0)处的切线方程为x 0x a 2+y 0yb 2=1为真命题,综上所述,可知正确个数为3. 7.(2018·安徽省“皖南八校”联考)已知函数f (x )=ln 1-x 1+x ,若x ,y 满足f (x )+f ⎝ ⎛⎭⎪⎫-12y≥0,则yx +3的取值范围是( )A.⎣⎢⎡⎦⎥⎤-1,12B.⎝ ⎛⎭⎪⎫-1,12 C .(-1,1) D .[-1,1]答案 C解析 根据题中所给的函数解析式,可知函数f (x )是定义在(-1,1)上的奇函数,从而f (x )+f ⎝ ⎛⎭⎪⎫-12y ≥0可以转化为f (x )≥f ⎝ ⎛⎭⎪⎫12y ,并且f (x )=ln ⎝ ⎛⎭⎪⎫2x +1-1,可以判断出函数f (x )在定义域上是减函数,从而有⎩⎪⎨⎪⎧-1<x <1,-1<12y <1,x ≤12y ,根据约束条件,画出对应的可行域如图所示,根据目标函数的几何意义可知,yx +3表示可行域中的点(x ,y )与C (-3,0)连线的斜率,可知在点A (-1,-2)处取得最小值,在点B (-1,2)处取得最大值,而边界值取不到,故答案是(-1,1).8.(2018·河北省衡水金卷模拟)已知点E ,F 分别在正方形ABCD 的边BC ,CD 上运动,且AB →=(2,2),设|CE |=x ,|CF |=y ,若|AF →-AE →|=|AB →|,则x +y 的最大值为( ) A .2B .4C .22D .4 2 答案 C解析 ∵|AB →|=2+2=2,|AF →-AE →|=|AB →|, 又∵|AF →-AE →|=|EF →|=x 2+y 2=2, ∴x 2+y 2=4.∵(x +y )2=x 2+y 2+2xy ≤2(x 2+y 2)=8, 当且仅当x =y 时取等号,∴x +y ≤22, 即x +y 的最大值为2 2.9.(2018·嘉兴模拟)已知x +y =1x +4y+8(x >0,y >0),则x +y 的最小值为( )A .53B .9C .4+26D .10 答案 B解析 由x +y =1x +4y +8,得x +y -8=1x +4y,两边同时乘以“x +y ”,得(x +y -8)(x +y )=⎝ ⎛⎭⎪⎫1x +4y (x +y ),所以(x +y -8)(x +y )=⎝⎛⎭⎪⎫5+y x+4x y ≥9,当且仅当y =2x 时等号成立,令t =x +y , 所以(t -8)·t ≥9,解得t ≤-1或t ≥9, 因为x >0,y >0,所以x +y ≥9,即(x +y )min =9.10.(2018·湖南省长沙市雅礼中学、河南省实验中学联考)如图,将平面直角坐标系的格点(横、纵坐标均为整数的点)按如下规则标上数字标签:原点处标0,点(1,0)处标1,点(1,-1)处标2,点(0,-1)处标3,点(-1,-1)处标4,点(-1,0)处标5,点(-1,1)处标6,点(0,1)处标7,以此类推,则标签20172的格点的坐标为()A .(2017,2016)B .(2016,2015)C .(1009,1008)D .(1008,1007)答案 C解析 由图形规律可知,由0(记为第0圈)开始,第n 圈的正方形右上角标签为(2n +1)2-1,坐标为(n ,n ), 所以标签为20172的数字是标签为20172-1的右边一格, 标签为20172-1的坐标为(1008,1008), 所以标签为20172的坐标为(1009,1008).11.(2018·衡水金卷信息卷)已知不等式组⎩⎪⎨⎪⎧x -2y ≥0,x +2y ≤4,y ≥0,x +y ≤m表示的平面区域为M ,若m是整数,且平面区域M 内的整点(x ,y )恰有3个(其中整点是指横、纵坐标都是整数的点),则m 的值是( ) A .1B .2C .3D .4 答案 B解析 根据题意可知m >0,又m 是整数,所以当m =1时,平面区域M 为⎩⎪⎨⎪⎧x -2y ≥0,x +2y ≤4,y ≥0,x +y ≤1,此时平面区域M 内只有整点(0,0),(1,0),共2个, 不符合题意;当m =2时,平面区域M 为⎩⎪⎨⎪⎧ x -2y ≥0,x +2y ≤4,y ≥0,x +y ≤2,此时平面区域M 内只有整点(0,0),(1,0),(2,0), 共3个,符合题意;当m =3时,平面区域M 为⎩⎪⎨⎪⎧x -2y ≥0,x +2y ≤4,y ≥0,x +y ≤3,此时平面区域M 内只有整点(0,0),(1,0),(2,0),(2,1),(3,0),共5个,不符合题意; 依次类推,当m >3时,平面区域M 内的整点一定大于3个,不符合题意. 综上,整数m 的值为2.12.(2018·上海普陀区模拟)已知k ∈N *,x ,y ,z 都是正实数,若k (xy +yz +zx )>5(x 2+y 2+z 2),则对此不等式描述正确的是( )A .若k =5,则至少存在一个以x ,y ,z 为边长的等边三角形B .若k =6,则对任意满足不等式的x ,y ,z 都存在以x ,y ,z 为边长的三角形C .若k =7,则对任意满足不等式的x ,y ,z 都存在以x ,y ,z 为边长的三角形D .若k =8,则对满足不等式的x ,y ,z 不存在以x ,y ,z 为边长的直角三角形 答案 B解析 本题可用排除法,由x 2+y 2+z 2=x 2+y 22+y 2+z 22+z 2+x 22≥xy +yz +zx ,对于A ,若k =5,可得xy +yz +zx >x 2+y 2+z 2,故不存在这样的x ,y ,z ,A 错误,排除A ;对于C ,当x =1,y =1,z =2时,7(xy +yz +zx )>5(x 2+y 2+z 2)成立,而以x ,y ,z 为边的三角形不存在,C 错误,排除C ;对于D ,当x =1,y =1,z =2时,8(xy +yz +zx )>5(x 2+y 2+z 2)成立,存在以x ,y ,z 为边的三角形为直角三角形,故D 错误,排除D ,故选B. 13.(2018·荆州质检)已知x ,y 满足不等式组⎩⎪⎨⎪⎧2y -x ≥0,x +y -3≤0,2x -y +3≥0,若不等式ax +y ≤7恒成立,则实数a 的取值范围是________. 答案 [-4,3]解析 画出不等式组表示的可行域如图中阴影部分所示,由题意可得点A ,B 的坐标为A (-2,-1),B (2,1).又直线ax +y -7=0过定点M (0,7), 故得k MA =4,k MB =-3.由图形得,若不等式ax +y ≤7恒成立,则⎩⎪⎨⎪⎧-a ≤4,-a ≥-3,解得-4≤a ≤3.故实数a 的取值范围是[-4,3].14.(2018·衡水金卷调研卷)观察三角形数组,可以推测:该数组第八行的和为________.答案 1296解析 第一行的和为12,第二行的和为32=(1+2)2, 第三行的和为62=(1+2+3)2, 第四行的和为(1+2+3+4)2=102,…,第八行的和为(1+2+3+4+5+6+7+8)2=1296.15.(2018·河北省衡水金卷模拟)已知实数x ,y 满足不等式组⎩⎪⎨⎪⎧y ≥-1,4x +y -4≤0,2x -y -1≥0,则目标函数z =4x 2+y 2的最大值与最小值之和为________. 答案314解析 令t =2x ,则x =t2,原可行域等价于⎩⎪⎨⎪⎧y ≥-1,2t +y -4≤0,t -y -1≥0,作出可行域如图(阴影部分含边界)所示,经计算得C ⎝ ⎛⎭⎪⎫52,-1.z =4x 2+y 2=t 2+y 2的几何意义是点P (t ,y )到原点O 的距离d 的平方,由图可知,当点P 与点C 重合时,d 取最大值;d 的最小值为点O 到直线AB :t -y -1=0的距离,故z max =254+1=294,z min =⎝ ⎛⎭⎪⎫112+122=12,所以z =4x 2+y 2的最大值与最小值之和为314. 16.(2018·滨海新区七所重点学校联考)若正实数x ,y 满足x +2y =5,则x 2-3x +1+2y 2-1y的最大值是________. 答案 83解析 x 2-3x +1+2y 2-1y =(x +1)2-2(x +1)-2x +1+2y -1y=x +1-2+2y -⎝⎛⎭⎪⎫2x +1+1y=x +2y -1-16⎝ ⎛⎭⎪⎫2x +1+1y (x +1+2y ) =4-16⎝ ⎛⎭⎪⎫2+2+4y x +1+x +1y ≤4-16⎝⎛⎭⎪⎫4+24y x +1·x +1y=4-16(4+24)=83.当且仅当4y x +1=x +1y,x +2y =5, 即x =2,y =32时,等号成立.。

【配套K12】[学习](全国通用版)2019版高考数学大一轮复习 第十二章 推理与证明、算法、复数

【配套K12】[学习](全国通用版)2019版高考数学大一轮复习 第十二章 推理与证明、算法、复数

第1节 合情推理与演绎推理最新考纲 1.了解合情推理的含义,能利用归纳和类比等进行简单的推理,了解合情推理在数学发现中的作用;2.了解演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理;3.了解合情推理和演绎推理之间的联系和差异.知 识 梳 理1.合情推理2.演绎推理(1) 定义:由概念的定义或一些真命题,依照一定的逻辑规则得到正确结论的过程,通常叫做演绎推理.简言之,演绎推理是由一般到特殊的推理. (2)“三段论”是演绎推理的一般模式,包括: ①大前提——已知的一般原理; ②小前提——所研究的特殊情况;③结论——根据一般原理,对特殊情况作出的判断.诊 断 自 测1.思考辨析(在括号内打“√”或“×”)(1)归纳推理得到的结论不一定正确,类比推理得到的结论一定正确.( ) (2)由平面三角形的性质推测空间四面体的性质,这是一种合情推理.( ) (3)在类比时,平面中的三角形与空间中的平行六面体作为类比对象较为合适.( ) (4)在演绎推理中,只要符合演绎推理的形式,结论就一定正确.( ) 解析 (1)类比推理的结论不一定正确.(3)平面中的三角形与空间中的四面体作为类比对象较为合适.(4)演绎推理是在大前提、小前提和推理形式都正确时,得到的结论一定正确. 答案 (1)× (2)√ (3)× (4)×2.数列2,5,11,20,x ,47,…中的x 等于( ) A.28 B.32 C.33D.27解析 5-2=3,11-5=6,20-11=9, 推出x -20=12,所以x =32. 答案 B3.正弦函数是奇函数,f (x )=sin(x 2+1)是正弦函数,因此f (x )=sin(x 2+1)是奇函数,以上推理( ) A.结论正确B.大前提不正确C.小前提不正确D.全不正确解析 f (x )=sin(x 2+1)不是正弦函数,所以小前提不正确. 答案 C4.(2018·咸阳模拟)观察下列式子:1×2<2,1×2+2×3<92,1×2+2×3+3×4<8,1×2+2×3+3×4+4×5<252,…,根据以上规律,第n (n ∈N +)个不等式是______________________.解析 根据所给不等式可得第n 个不等式是1×2+2×3+…+n ·(n +1)<(n +1)22.答案1×2+2×3+…+n ·(n +1)<(n +1)225.(教材习题改编)在等差数列{a n }中,若a 10=0,则有a 1+a 2+…+a n =a 1+a 2+…+a 19-n (n <19,n ∈N +)成立,类比上述性质,在等比数列{b n }中,若b 9=1,则b 1b 2b 3…b n =________. 答案 b 1b 2b 3…b 17-n (n <17,n ∈N +)考点一 归纳推理【例1】 (1)(2018·烟台一模)所有真约数(除本身之外的正约数)的和等于它本身的正整数叫做完全数(也称为完备数、完美数),如6=1+2+3;28=1+2+4+7+14;496=1+2+4+8+16+31+62+124+248,…,此外,它们都可以表示为2的一些连续正整数次幂之和,如6=21+22,28=22+23+24,…,按此规律,8 128可表示为__________. (2)(2018·济宁模拟)已知a i >0(i =1,2,3,…,n ),观察下列不等式:a 1+a 22≥a 1a 2;a 1+a 2+a 33≥3a 1a 2a 3;a 1+a 2+a 3+a 44≥4a 1a 2a 3a 4;……照此规律,当n ∈N +,n ≥2时,a 1+a 2+…+a nn≥________.解析 (1)由题意,如果2n-1是质数,则2n -1(2n -1)是完全数,例如:6=21+22=21(22-1),28=22+23+24=22(23-1),…;若2n -1(2n-1)=8 128,解得n =7,所以8 128可表示为26(27-1)=26+27+…+212.(2)根据题意有a 1+a 2+…a n n≥na 1a 2…a n (n ∈N +,n ≥2). 答案 (1)26+27+…+212(2)na 1a 2…a n 规律方法 归纳推理问题的常见类型及解题策略(1)与数字有关的等式的推理.观察数字特点,找出等式左右两侧的规律及符号可解. (2)与不等式有关的推理.观察每个不等式的特点,注意是纵向看,找到规律后可解. (3)与数列有关的推理.通常是先求出几个特殊现象,采用不完全归纳法,找出数列的项与项数的关系,列出即可.(4)与图形变化有关的推理.合理利用特殊图形归纳推理得出结论,并用赋值检验法验证其真伪性.【训练1】 (1)(2018·郑州一模)古希腊人常用小石子在沙滩上摆成各种形状来研究数,例如:他们研究过图中的1,3,6,10,…,由于这些数能够表示成三角形,故将其称为三角形数,由以上规律,知这些三角形数从小到大形成一个数列{a n },那么a 10的值为( ) A.45B.55C.65D.66(2)古希腊毕达哥拉斯学派的数学家研究过各种多边形数,如三角形数1,3,6,10,…,第n 个三角形数为n (n +1)2=12n 2+12n ,记第n 个k 边形数为N (n ,k )(k ≥3),以下列出了部分k 边形数中第n 个数的表达式: 三角形数 N (n ,3)=12n 2+12n ,正方形数 N (n ,4)=n 2, 五边形数 N (n ,5)=32n 2-12n ,六边形数 N (n ,6)=2n 2-n ……可以推测N (n ,k )的表达式,由此计算N (10,24)=____________. 解析 (1)第1个图中,小石子有1个, 第2个图中,小石子有3=1+2个, 第3个图中,小石子有6=1+2+3个, 第4个图中,小石子有10=1+2+3+4个, ……故第10个图中,小石子有1+2+3+…+10=10×112=55个,即a 10=55.(2)三角形数 N (n ,3)=12n 2+12n =n 2+n2,正方形数 N (n ,4)=n 2=2n 2-0·n2,五边形数 N (n ,5)=32n 2-12n =3n 2-n2,六边形数 N (n ,6)=2n 2-n =4n 2-2n2,k 边形数 N (n ,k )=(k -2)n 2-(k -4)n2,所以N (10,24)=22×102-20×102=2 200-2002=1 000.答案 (1)B (2)1 000 考点二 类比推理【例2】 (1)(一题多解)若数列{a n }是等差数列,则数列{b n }⎝⎛⎭⎪⎫b n =a 1+a 2+…+a n n 也为等差数列.类比这一性质可知,若正项数列{c n }是等比数列,且{d n }也是等比数列,则d n 的表达式应为( ) A.d n =c 1+c 2+…+c nnB.d n =c 1·c 2·…·c nnC.d n =n c n 1+c n 2+…+c n nnD.d n =nc 1·c 2·…·c n(2)(2018·湖北八校联考)祖暅是我国南北朝时代的数学家,是祖冲之的儿子.他提出了一条原理:“幂势既同,则积不容异.”这里的“幂”指水平截面的面积,“势”指高.这句话的意思是:两个等高的几何体若在所有等高处的水平截面的面积相等,则这两个几何体体积相等.设由椭圆y 2a 2+x 2b2=1(a >b >0)所围成的平面图形绕y 轴旋转一周后,得一橄榄状的几何体(称为椭球体)(如图),课本中介绍了应用祖暅原理求球体体积公式的方法,请类比此法,求出椭球体体积,其体积等于________.解析 (1)法一 从商类比开方,从和类比积,则算术平均数可以类比几何平均数,故d n 的表达式为d n =nc 1·c 2·…·c n .法二 若{a n }是等差数列,则a 1+a 2+…+a n =na 1+n (n -1)2d ,∴b n =a 1+(n -1)2d =d2n+a 1-d2,即{b n }为等差数列;若{c n }是等比数列,则c 1·c 2·…·c n =c n1·q1+2+…+(n -1)=c n 1·qn (n -1)2,∴d n =n c 1·c 2·…·c n =c 1·q n -12,即{d n }为等比数列,故选D. (2)椭圆的长半轴长为a ,短半轴长为b ,现构造两个底面半径为b ,高为a 的圆柱,然后在圆柱内挖去一个以圆柱下底面圆心为顶点,圆柱上底面为底面的圆锥,根据祖暅原理得出椭球体的体积V =2(V 圆柱-V 圆锥)=2⎝ ⎛⎭⎪⎫π×b 2×a -13π×b 2a =43πb 2a .答案 (1)D (2)43πb 2a规律方法 1.进行类比推理,应从具体问题出发,通过观察、分析、联想进行类比,提出猜想.其中找到合适的类比对象是解题的关键.2.类比推理常见的情形有平面与空间类比;低维的与高维的类比;等差数列与等比数列类比;数的运算与向量的运算类比;圆锥曲线间的类比等.【训练2】 (1)(2017·安徽江南十校联考)我国古代数学名著《九章算术》中割圆术有:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣.”其体现的是一种无限与有限的转化过程,比如在2+2+2+…中“…”即代表无限次重复,但原式却是个定值x ,这可以通过方程2+x =x 确定出来x =2,类似地不难得到1+11+11+…=( ) A.-5-12B.5-12C.1+52D.1-52(2)如图(1)所示,点O 是△ABC 内任意一点,连接AO ,BO ,CO ,并延长交对边于A 1,B 1,C 1,则OA 1AA 1+OB 1BB 1+OC 1CC 1=1,类比猜想:点O 是空间四面体VBCD 内的任意一点,如图(2)所示,连接VO ,BO ,CO ,DO 并延长分别交面BCD ,VCD ,VBD ,VBC 于点V 1,B 1,C 1,D 1,则有________________.解析 (1)令1+11+11+…=x (x >0),即1+1x =x ,即x 2-x -1=0,解得x =1+52(x =1-52舍),故1+11+11+…=1+52,故选C.(2)利用类比推理,猜想应有OV 1VV 1+OB 1BB 1+OC 1CC 1+OD 1DD 1=1. 用“体积法”证明如下:OV 1VV 1+OB 1BB 1+OC 1CC 1+OD 1DD 1=V O -BCD V V -BCD +V O -VCD V B -VCD +V O -VBD V C -VBD +V O -VBC V D -VBC =V V -BCDV V -BCD=1. 答案 (1)C (2)OV 1VV 1+OB 1BB 1+OC 1CC 1+OD 1DD 1=1 考点三 演绎推理【例3】 数列{a n }的前n 项和记为S n ,已知a 1=1,a n +1=n +2nS n (n ∈N +).证明: (1)数列⎩⎨⎧⎭⎬⎫S n n 是等比数列;(2)S n +1=4a n .证明 (1)∵a n +1=S n +1-S n ,a n +1=n +2nS n , ∴(n +2)S n =n (S n +1-S n ),即nS n +1=2(n +1)S n . ∴S n +1n +1=2·S n n ,又S 11=1≠0,(小前提) 故⎩⎨⎧⎭⎬⎫S n n 是以1为首项,2为公比的等比数列.(结论) (大前提是等比数列的定义,这里省略了) (2)由(1)可知S n +1n +1=4·S n -1n -1(n ≥2), ∴S n +1=4(n +1)·S n -1n -1=4·n -1+2n -1·S n -1 =4a n (n ≥2),(小前提)又a 2=3S 1=3,S 2=a 1+a 2=1+3=4=4a 1,(小前提) ∴对于任意正整数n ,都有S n +1=4a n .(结论)(第(2)问的大前提是第(1)问的结论以及题中的已知条件)规律方法 演绎推理是从一般到特殊的推理;其一般形式是三段论,应用三段论解决问题时,应当首先明确什么是大前提和小前提,如果前提是显然的,则可以省略.【训练3】 (2017·全国Ⅱ卷)甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则( ) A.乙可以知道四人的成绩 B.丁可以知道四人的成绩 C.乙、丁可以知道对方的成绩 D.乙、丁可以知道自己的成绩解析 由甲说:“我还是不知道我的成绩”可推知甲看到乙、丙的成绩为“1个优秀,1个良好”.乙看丙的成绩,结合甲的说法,丙为“优秀”时,乙为“良好”;丙为“良好”时,乙为“优秀”,可得乙可以知道自己的成绩、丁看甲的成绩,结合甲的说法,甲为“优秀”时,丁为“良好”;甲为“良好”时,丁为“优秀”,可得丁可以知道自己的成绩.答案 D基础巩固题组(建议用时:30分钟)一、选择题1.观察一列算式:1⊗1,1⊗2,2⊗1,1⊗3,2⊗2,3⊗1,1⊗4,2⊗3,3⊗2,4⊗1,…,则式子3⊗5是第( )A.22项B.23项C.24项D.25项解析两数和为2的有1个,和为3的有2个,和为4的有3个,和为5的有4个,和为6的有5个,和为7的有6个,前面共有21个,3⊗5为和为8的第3项,所以为第24项,故选C.答案 C2.命题“有些有理数是无限循环小数,整数是有理数,所以整数是无限循环小数”是假命题,推理错误的原因是( )A.使用了归纳推理B.使用了类比推理C.使用了“三段论”,但推理形式错误D.使用了“三段论”,但小前提错误解析由“三段论”的推理方式可知,该推理的错误原因是推理形式错误.答案 C3.观察(x2)′=2x,(x4)′=4x3,(cos x)′=-sin x,由归纳推理得:若定义在R上的函数f(x)满足f(-x)=f(x),记g(x)为f(x)的导函数,则g(-x)=( )A.f(x)B.-f(x)C.g(x)D.-g(x)解析由已知得偶函数的导函数为奇函数,故g(-x)=-g(x).答案 D4.观察下列各式:a+b=1,a2+b2=3,a3+b3=4,a4+b4=7,a5+b5=11,…,则a10+b10等于( ) A.28B.76C.123D.199解析 观察规律,归纳推理.从给出的式子特点观察可推知,等式右端的值,从第三项开始,后一个式子的右端值等于它前面两个式子右端值的和,照此规律,则a 10+b 10=123. 答案 C5.老师带甲、乙、丙、丁四名学生去参加自主招生考试,考试结束后老师向四名学生了解考试情况,四名学生回答如下: 甲说:“我们四人都没考好”; 乙说:“我们四人中有人考的好”; 丙说:“乙和丁至少有一人没考好”; 丁说:“我没考好”.结果,四名学生中有两人说对了,则四名学生中说对的两人是( ) A.甲,丙B.乙,丁C.丙,丁D.乙,丙解析 甲与乙的关系是对立事件,二人说话矛盾,必有一对一错,如果丁正确,则丙也是对的,所以丁错误,可得丙正确,此时乙正确. 答案 D6.(2018·郑州调研)平面内凸四边形有2条对角线,凸五边形有5条对角线,凸六边形有9条对角线,以此类推,凸13边形对角线的条数为( ) A.42B.65C.143D.169解析 可以通过列表归纳分析得到.∴凸13边形有2+3+4+…+11=13×102=65条对角线.答案 B7.(2018·青岛模拟)如图所示,椭圆中心在坐标原点,F 为左焦点,当FB →⊥AB →时,其离心率为5-12,此类椭圆被称为“黄金椭圆”.类比“黄金椭圆”,可推算出“黄金双曲线”的离心率e 等于( )A.5+12B.5-12C.5-1D.5+1解析 设“黄金双曲线”方程为x 2a 2-y 2b2=1,则B (0,b ),F (-c ,0),A (a ,0). 在“黄金双曲线”中,因为FB →⊥AB →, 所以FB →·AB →=0.又FB →=(c ,b ),AB →=(-a ,b ). 所以b 2=ac . 又b 2=c 2-a 2, 所以c 2-a 2=ac .在等号两边同除以a 2,得e =5+12. 答案 A8.如图,有一个六边形的点阵,它的中心是1个点(算第1层),第2层每边有2个点,第3层每边有3个点,…,依此类推,如果一个六边形点阵共有169个点,那么它的层数为( ) A.6B.7C.8D.9解析 由题意知,第1层的点数为1,第2层的点数为6,第3层的点数为2×6,第4层的点数为3×6,第5层的点数为4×6,…,第n (n ≥2,n ∈N +)层的点数为6(n -1).设一个点阵有n (n ≥2,n ∈N +)层,则共有的点数为1+6+6×2+…+6(n -1)=1+6+6(n -1)2×(n -1)=3n 2-3n +1,由题意得3n 2-3n +1=169,即(n +7)·(n -8)=0, 所以n =8,故共有8层. 答案 C 二、填空题9.仔细观察下面○和●的排列规律:○ ● ○○ ● ○○○ ● ○○○○ ● ○○○○○ ● ○○○○○○ ●…,若依此规律继续下去,得到一系列的○和●,那么在前120个○和●中,●的个数是________. 解析 进行分组○●|○○●|○○○●|○○○○●|○○○○○●|○○○○○○●|…,则前n 组两种圈的总数是f (n )=2+3+4+…+(n +1)=n (n +3)2,易知f (14)=119,f (15)=135,故n =14.答案 14 10.观察下列等式:13=12,13+23=32,13+23+33=62,13+23+33+43=102,…,根据上述规律,第n 个等式为________. 解析 观察所给等式左右两边的构成易得第n 个等式为13+23+…+n 3=⎣⎢⎡⎦⎥⎤n (n +1)22=n 2(n +1)24. 答案 13+23+…+n 3=n 2(n +1)2411.(2018·重庆模拟)在等差数列{a n }中,若公差为d ,且a 1=d ,那么有a m +a n = a m +n ,类比上述性质,写出在等比数列{a n }中类似的性质:____________________________________________________________________.解析 等差数列中两项之和类比等比数列中两项之积,故在等比数列中,类似的性质是“在等比数列{a n }中,若公比为q ,且a 1=q ,则a m ·a n =a m +n .”答案 在等比数列{a n }中,若公比为q ,且a 1=q ,则a m ·a n =a m +n12.已知点A (x 1,ax 1),B (x 2,ax 2)是函数y =a x(a >1)的图象上任意不同两点,依据图象可知,线段AB 总是位于A ,B 两点之间函数图象的上方,因此有结论ax 1+ax 22>a x 1+x 22成立.运用类比思想方法可知,若点A (x 1,sin x 1),B (x 2,sin x 2)是函数y =sin x (x ∈(0,π))的图象上任意不同两点,则类似地有________成立.解析 对于函数y =a x(a >1)的图象上任意不同两点A , B ,依据图象可知,线段AB 总是位于A ,B 两点之间函数图象的上方,因此有结论ax 1+ax 22>a x 1+x 22成立;对于函数y =sin x (x ∈(0,π))的图象上任意不同的两点A (x 1,sin x 1),B (x 2,sin x 2),线段AB 总是位于A ,B 两点之间函数图象的下方,类比可知应有sin x 1+sin x 22<sin x 1+x 22成立. 答案 sin x 1+sin x 22<sin x 1+x 22能力提升题组(建议用时:15分钟)13.(2018·包头调研)设等比数列{a n }的公比为q ,其前n 项和为S n ,前n 项之积为T n ,并且满足条件:a 1>1,a 2 016a 2 017>1,a 2 016-1a 2 017-1<0,下列结论中正确的是( ) A.q <0B.a 2 016a 2 018-1>0C.T 2 016是数列{T n }中的最大项D.S 2 016>S 2 017解析 由a 1>1,a 2 016a 2 017>1得q >0,由a 2 016-1a 2 017-1<0,a 1>1得a 2 016>1,a 2 017<1,0<q <1,故数列{a n }的前2 016项都大于1,从第2 017项起都小于1,因此T 2 016是数列{T n }中的最大项. 答案 C14.(2018·郑州模拟)如图所示,一回形图,其回形通道的宽和OB1的长均为1,且各回形线之间或相互平行、或相互垂直.设回形线与射线OA 交于A 1,A 2,A 3,…,从点O 到点A 1的回形线为第1圈(长为7),从点A 1到点A 2的回形线为第2圈,从点A 2到点A 3的回形线为第3圈…,依此类推,第8圈的长为________.解析 第1圈的长为2(1+2)+1=7,第2圈的长为2(3+4)+1=15,第3圈的长为2(5+6)+1=23,则第n 圈的长为2[(2n -1)+2n ]+1=8n -1,当n =8时,第8圈的长度为8×8-1=63.答案 6315.若P 0(x 0,y 0)在椭圆x 2a 2+y 2b 2=1(a >b >0)外,过P 0作椭圆的两条切线的切点为P 1,P 2,则切点弦P 1P 2所在的直线方程是x 0x a 2+y 0y b 2=1,那么对于双曲线则有如下命题:若P 0(x 0,y 0)在双曲线x 2a 2-y 2b 2=1(a >0,b >0)外,过P 0作双曲线的两条切线,切点为P 1,P 2,则切点弦P 1P 2所在直线的方程是________.解析 设P 1(x 1,y 1),P 2(x 2,y 2),则P 1,P 2的切线方程分别是x 1x a 2-y 1y b 2=1,x 2x a 2-y 2yb 2=1. 因为P 0(x 0,y 0)在这两条切线上,故有x 1x 0a 2-y 1y 0b 2=1,x 2x 0a 2-y 2y 0b 2=1, 这说明P 1(x 1,y 1),P 2(x 2,y 2)在直线x 0x a 2-y 0y b 2=1上, 故切点弦P 1P 2所在的直线方程是x 0x a 2-y 0y b 2=1. 答案 x 0x a 2-y 0y b 2=1 16.(2017·北京卷)某学习小组由学生和教师组成,人员构成同时满足以下三个条件:(1)男学生人数多于女学生人数;(2)女学生人数多于教师人数;(3)教师人数的两倍多于男学生人数.①若教师人数为4,则女学生人数的最大值为________.②该小组人数的最小值为________.解析 设男学生人数为x ,女学生人数为y ,教师人数为z ,由已知得⎩⎪⎨⎪⎧x >y ,y >z ,2z >x ,且x ,y ,z 均为正整数.①当z =4时,8>x >y >4,∴x 的最大值为7,y 的最大值为6,故女学生人数的最大值为6.②x >y >z >x 2,当x =3时,条件不成立,当x =4时,条件不成立,当x =5时,5>y >z >52,此时z =3,y =4.∴该小组人数的最小值为12.答案 ①6 ②12。

2019届高考数学二轮复习(理科)8.1高考客观题第12题专项练课件(17张)(全国通用)

2019届高考数学二轮复习(理科)8.1高考客观题第12题专项练课件(17张)(全国通用)

关闭
函1y=4数.3定f2f(义(xx))域+=2为|1blg-f((Rx-12���)���+的)���|���,1���函,������有���<数≥600,f个(,x作)不=出同1它-的的12零图���点��� 象,������,则≥实0,数若关b 的于取x 值的范函围数是(
)
如A.图(-2所,-示3:)
立,其中e为自然对数的底数,则实数a的取值范围是( )
A.(-∞,0)
C.(-∞,0)∪
1 2e
,
+

B. 0, 1
2e
D.
1 2e
,
+

由题意得
-21������ =
1
+
������ ������
-2e
ln
1 + ������
������
=(t-2e)ln t
������ = ������
������

������1������2
=
������ 3
,
������0
=
3������ 2 -������ 1 2
,
代入上式可得 g(x)=
解析 答案
-14-
12.若存在m,使得关于x的方程x+a(2x+2m-4ex)[ln(x+m)-ln x]=0成
当A.(t≥-∞0,-1时]∪,-t[20≤,22 恒2-成1] 立,
∴B.t[≥-10,2. 2-1]
∴C.不(-∞等,-式1]∪f(t()0≤,32] 的解为 t≥-2,即 g(a)≥-2.
当D.[x->10,3时] ,-x<0,g(-x)=x2+2x-5,

【K12教育学习资料】[学习](新课标)天津市2019年高考数学二轮复习 思想方法训练3 数形结合思

【K12教育学习资料】[学习](新课标)天津市2019年高考数学二轮复习 思想方法训练3 数形结合思

思想方法训练3 数形结合思想一、能力突破训练1.若i为虚数单位,图中网格纸的小正方形的边长是1,复平面内点Z表示复数z,则复数对应的点位于复平面内的()A.第一象限B.第二象限C.第三象限D.第四象限2.方程sin x的实数解的个数是()A.2B.3C.4D.以上均不对3.若x∈{x|log2x=2-x},则()A.x2>x>1B.x2>1>xC.1>x2>xD.x>1>x24.若函数f(x)=(a-x)|x-3a|(a>0)在区间(-∞,b]上取得最小值3-4a时所对应的x的值恰有两个,则实数b的值等于()A.2±B.2-或6-3C.6±3D.2+或6+35.已知函数f(x)=若a,b,c互不相等,且f(a)=f(b)=f(c),则abc的取值范围是()A.(1,10)B.(5,6)C.(10,12)D.(20,24)6.已知函数f(x)=与g(x)=x3+t,若f(x)与g(x)图象的交点在直线y=x的两侧,则实数t的取值范围是()A.(-6,0]B.(-6,6)C.(4,+∞)D.(-4,4)7.“a≤0”是“函数f(x)=|(ax-1)x|在区间(0,+∞)上单调递增”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件8.在平面直角坐标系xOy中,若直线y=2a与函数y=|x-a|-1的图象只有一个交点,则a的值为.9.函数f(x)=2sin x sin-x2的零点个数为.10.若不等式≤k(x+2)-的解集为区间[a,b],且b-a=2,则k= .11.(2018浙江,15)已知λ∈R,函数f(x)=当λ=2时,不等式f(x)<0的解集是.若函数f(x)恰有2个零点,则λ的取值范围是.12.已知函数f(x)=A sin(ωx+φ)的部分图象如图所示.(1)求f(x)的解析式;(2)设g(x)=,求函数g(x)在x∈上的最大值,并确定此时x的值.二、思维提升训练13.已知函数f(x)=函数g(x)=b-f(2-x),其中b∈R,若函数y=f(x)-g(x)恰有4个零点,则b的取值范围是()A.B.C.D.14.设函数f(x)=e x(2x-1)-ax+a,其中a<1,若存在唯一的整数x0使得f(x0)<0,则a的取值范围是()A.B.C.D.15.在平面上,过点P作直线l的垂线所得的垂足称为点P在直线l上的投影,由区域中的点在直线x+y-2=0上的投影构成的线段记为AB,则|AB|=()A.2B.4C.3D.616.三名工人加工同一种零件,他们在一天中的工作情况如图所示,其中点A i的横、纵坐标分别为第i名工人上午的工作时间和加工的零件数,点B i的横、纵坐标分别为第i名工人下午的工作时间和加工的零件数,i=1,2,3.(1)记Q i为第i名工人在这一天中加工的零件总数,则Q1,Q2,Q3中最大的是;(2)记p i为第i名工人在这一天中平均每小时加工的零件数,则p1,p2,p3中最大的是.17.设函数f(x)=ax3-3ax,g(x)=bx2-ln x(a,b∈R),已知它们的图象在x=1处的切线互相平行. (1)求b的值;(2)若函数F(x)=且方程F(x)=a2有且仅有四个解,求实数a的取值范围.思想方法训练3数形结合思想一、能力突破训练1.D解析由题图知,z=2+i,则i,则对应的点位于复平面内的第四象限.故选D.2.B解析在同一坐标系内作出y=sin与y=x的图象,如图,可知它们有3个不同的交点.3.A解析设y1=log2x,y2=2-x,在同一坐标系中作出其图象,如图,由图知,交点的横坐标x>1,则有x2>x>1.4.D解析结合函数f(x)的图象(图略)知,3-4a=-a2,即a=1或a=3.当a=1时,-b2+4b-3=-1(b>3),解得b=2+;当a=3时,-b2+12b-27=-9(b>9),解得b=6+3,故选D.5.C解析作出f(x)的大致图象.由图象知,要使f(a)=f(b)=f(c),不妨设a<b<c,则-lg a=lg b=-c+6.∴lg a+lg b=0,∴ab=1,∴abc=c.由图知10<c<12,∴abc∈(10,12).6.B解析如图,由题知,若f(x)=与g(x)=x3+t图象的交点位于y=x两侧,则有解得-6<t<6.7.C解析当a=0时,f(x)=|x|在区间(0,+∞)上单调递增;当a<0,x>0时,f(x)=(-ax+1)x=-a x,结合二次函数的图象可知f(x)=|(ax-1)x|在区间(0,+∞)上单调递增;当a>0时,函数f(x)=|(ax-1)x|的图象大致如图.函数f(x)在区间(0,+∞)上有增有减,从而“a≤0”是“函数f(x)=|(ax-1)x|在区间(0,+∞)上单调递增”的充要条件,故选C.8.-解析在同一坐标系中画出y=2a和y=|x-a|-1的图象如图.由图可知,要使两函数的图象只有一个交点,则2a=-1,a=-9.2解析f(x)=2sin x sin-x2=2sin x cos x-x2=sin 2x-x2.如图,在同一平面直角坐标系中作出y=sin 2x与y=x2的图象,当x≥0时,两图象有2个交点,当x<0时,两图象无交点,综上,两图象有2个交点,即函数的零点个数为2.10解析令y1=,y2=k(x+2)-,在同一个坐标系中作出其图象,如图.k(x+2)-的解集为[a,b],且b-a=2,结合图象知b=3,a=1,即直线与圆的交点坐标为(1,2),∴k= 11.(1,4)(1,3]∪(4,+∞)解析当λ=2时,f(x)=当x≥2时,f(x)=x-4<0,解得x<4,∴2≤x<4.当x<2时,f(x)=x2-4x+3<0,解得1<x<3,∴1<x<2.综上可知,1<x<4,即f(x)≤0的解集为(1,4).分别画出y1=x-4和y2=x2-4x+3的图象如图,由函数f(x)恰有2个零点,结合图象可知1<λ≤3或λ>4.故λ的取值范围为(1,3]∪(4,+∞).12.解 (1)由题图知A=2,,则=4,得ω=又f=2sin=2sin=0,∴sin=0.∵0<φ<,-<φ-,∴φ-=0,即φ=,∴f(x)的解析式为f(x)=2sin(2)由(1)可得f=2sin=2sin,g(x)==4=2-2cos∵x,∴-3x+,∴当3x+=π,即x=时,g(x)max=4.二、思维提升训练13.D解析由f(x)=得f(x)=f(2-x)=所以f(x)+f(2-x)=因为函数y=f(x)-g(x)=f(x)+f(2-x)-b恰有4个零点,所以函数y=b与y=f(x)+f(2-x)的图象有4个不同的交点.画出函数y=f(x)+f(2-x)的图象,如图.由图可知,当b时,函数y=b与y=f(x)+f(2-x)的图象有4个不同的交点.故选D.14.D解析设g(x)=e x(2x-1),h(x)=a(x-1),则不等式f(x)<0即为g(x)<h(x).因为g'(x)=e x(2x-1)+2e x=e x(2x+1),当x<-时,g'(x)<0,函数g(x)单调递减;当x>-时,g'(x)>0,函数g(x)单调递增.所以g(x)的最小值为g而函数h(x)=a(x-1)表示经过点P(1,0),斜率为a的直线.如图,分别作出函数g(x)=e x(2x-1)与h(x)=a(x-1)的大致图象.显然,当a≤0时,满足不等式g(x)<h(x)的整数有无数多个.函数g(x)=e x(2x-1)的图象与y轴的交点为A(0,-1),与x轴的交点为D取点C由图可知,不等式g(x)<h(x)只有一个整数解时,须满足k PC≤a<k PA.而k PC=,k PA==1,所以a<1.故选D.15.C解析画出不等式组表示的平面区域如图阴影部分所示.作出直线x+y-2=0.设直线x-3y+4=0与x+y=0的交点为C,直线x=2与直线x+y=0的交点为D.过C作CA⊥直线x+y-2=0于点A,过D作DB⊥直线x+y-2=0于点B,则区域中的点在直线x+y-2=0上的投影为AB.∵直线x+y-2=0与直线x+y=0平行,∴|CD|=|AB|.由C点坐标为(-1,1).由D点坐标为(2,-2).∴|CD|==3,即|AB|=3故选C.16.(1)Q1(2)p2解析(1)连接A1B1,A2B2,A3B3,分别取线段A1B1,A2B2,A3B3的中点C1,C2,C3,显然C i的纵坐标即为第i名工人一天平均加工的零件数,由图可得点C1最高,故Q1,Q2,Q3中最大的是Q1.(2)设某工人上午、下午加工的零件数分别为y1,y2,工作时间分别为x1,x2,则该工人这一天中平均每小时加工的零件数为p==k OC(C为点(x1,y1)和(x2,y2)的中点),由图可得,故p1,p2,p3中最大的是p2.17.解函数g(x)=bx2-ln x的定义域为(0,+∞).(1)f'(x)=3ax2-3a⇒f'(1)=0,g'(x)=2bx-g'(1)=2b-1,依题意2b-1=0,得b=(2)当x∈(0,1)时,g'(x)=x-<0,当x∈(1,+∞)时,g'(x)=x->0.所以当x=1时,g(x)取得极小值g(1)=当a=0时,方程F(x)=a2不可能有且仅有四个解.当a<0,x∈(-∞,-1)时,f'(x)<0,当x∈(-1,0)时,f'(x)>0,所以当x=-1时,f(x)取得极小值f(-1)=2a,又f(0)=0,所以F(x)的图象如图①所示.从图象可以看出F(x)=a2不可能有四个解.当a>0,x∈(-∞,-1)时,f'(x)>0,当x∈(-1,0)时,f'(x)<0,所以当x=-1时,f(x)取得极大值f(-1)=2a.又f(0)=0,所以F(x)的图象如图②所示.从图象看出方程F(x)=a2有四个解,则<a2<2a,所以实数a的取值范围是图①图②。

K12推荐学习(全国通用版)2019版高考数学大二轮复习 考前强化练3 客观题综合练(C)理

K12推荐学习(全国通用版)2019版高考数学大二轮复习 考前强化练3 客观题综合练(C)理

考前强化练3 客观题综合练(C)一、选择题1.(2018浙江卷,1)已知全集U={1,2,3,4,5},A={1,3},则∁U A=()A.⌀B.{1,3}C.{2,4,5}D.{1,2,3,4,5}2.(2018宁夏银川一中一模,理1)已知复数z=-2i(其中i为虚数单位),则|z|=()A.3B.3C.2D.23.(2018河北唐山二模,理3)设m∈R,则“m=1”是“f(x)=m·2x+2-x为偶函数”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.已知数列{a n}为等差数列,a10=10,其前10项和S10=60,则其公差d=()A.-B.C.-D.5.2019年高考考前第二次适应性训练考试结束后,市教育局对全市的英语成绩进行统计,发现英语成绩的频率分布直方图形状与正态分布N(95,82)的密度曲线非常拟合.据此估计:在全市随机抽取的4名高三同学中,恰有2名同学的英语成绩超过95分的概率是()A. B. C. D.6.(2018山东济南二模,理7)记不等式组的解集为D,若∀(x,y)∈D,不等式a≤2x+y 恒成立,则a的取值范围是()A.(-∞,3]B.[3,+∞)C.(-∞,6]D.(-∞,8]7.(2018河南濮阳二模,理8)设{a n}是公比为q的等比数列,|q|>1,令b n=a n+1,若数列{b n}有连续四项在集合{-53,-23,19,37,82}中,则q的值为()A.-B.-C.-2D.-8.执行如图所示的程序框图,若输入的x=-10,则输出的y=()A.0B.1C.8D.279.(2018河北唐山三模,理11)抛物线C:y2=4x的焦点为F,N为准线上一点,M为y轴上一点,∠MNF 为直角,若线段MF的中点E在抛物线C上,则△MNF的面积为()A. B.C. D.310.(2018全国高考必刷模拟一,理12)Rt△AOB内接于抛物线y2=2px(p>0),O为抛物线的顶点,OA⊥OB,△AOB的面积是16,抛物线的焦点为F,若M是抛物线上的动点,则的最大值为()A. B.C. D.11.已知函数f(x)=x2-2x cos x,则下列关于f(x)的表述正确的是()A.f(x)的图象关于y轴对称B.f(x)的最小值为-1C.f(x)有4个零点D.f(x)有无数个极值点12.(2018晋豫名校第四次调研,理12)已知f'(x)是函数f(x)的导函数,且对任意的实数x都有f'(x)=e x(2x+3)+f(x)(e是自然对数的底数),f(0)=1,若不等式f(x)-k<0的解集中恰有两个整数,则实数k的取值范围是()A.-,0B.-,0C.-,0D.-,0二、填空题13.(2018湖南长郡中学一模,理13)n(a>0)的展开式中,若第三项为28x2,则此展开式中的第六项为.14.(2018山东济南二模,理15)已知△ABC中,AB=4,AC=5,点O为△ABC所在平面内一点,满足||=||=||,则=.15.在四棱锥S-ABCD中,底面ABCD是边长为4的正方形,侧面SAD是以SD为斜边的等腰直角三角形,若4≤SC≤4,则四棱锥S-ABCD体积的取值范围为.参考答案考前强化练3客观题综合练(C)1.C解析∵A={1,3},U={1,2,3,4,5},∴∁U A={2,4,5},故选C.2.B解析z=-2i=-2i=3-i-2i=3-3i,则|z|=3,故选B.3.C解析如果f(x)=m·2x+2-x为偶函数,则f(-x)=f(x),∴m·2-x+2x=m·2x+2-x,∴m(2-x-2x)=2-x-2x,∴(m-1)(2-x-2x)=0.∴m=1.所以“m=1”是“f(x)=m·2x+2-x为偶函数”的充要条件.故选C.4.D解析∵数列{a n}为等差数列,a10=10,其前10项和S10=60,解得故选D.5.D解析由题意,英语成绩超过95分的概率是,∴在全市随机抽取的4名高三同学中,恰有2名同学的英语成绩超过95分的概率是,故选D.6.C解析若∀(x,y)∈D,不等式a≤2x+y恒成立,即求z=2x+y的最小值,作出不等式组对应的可行域,如图所示:当y=-2x+z经过点A(1,4)时,截距最小,此时z=2×1+4=6,∴a≤6,故选C.7.B解析∵数列{b n}有连续四项在集合{-53,-23,19,37,82}中,且a n=b n-1,∴数列{a n}有连续四项在集合{-54,-24,18,36,81}中.∵{a n}是等比数列,等比数列中有负数项,则q<0,且负数项为相隔两项,∴等比数列各项的绝对值递增或递减,按绝对值的顺序排列上述数值{18,-24,36,-54,81}, 相邻两项相除=-=-=-=-,则可得-24,36,-54,81是{a n}中连续的四项,q=-或q=-(|q|>1,故负值应舍去).∴q=-8.C解析模拟程序的运行,可得x=-10,满足条件x≤0,x=-7,满足条件x≤0,x=-4,满足条件x≤0,x=-1,满足条件x≤0,x=2,不满足条件x≤0,不满足条件x>3,y=23=8.输出y的值为8.故选C.9.C解析抛物线的准线方程为x=-1,焦点F(1,0),不妨设N在第三象限,∵∠MNF为直角,E是MF的中点,∴NE=MF=EF,∴NE∥x轴,又∵E为MF的中点,E在抛物线y2=4x上,∴E,-,∴N(-1,-),M(0,-2),∴NF=,MN=,∴S△MNF=MN·NF=10.C解析因抛物线y2=2px(p>0)关于x轴对称,由题意点A,B关于x轴对称,S△AOB=OA2=16,∴OA=4,点A的坐标为(4,4),代入抛物线方程得p=2,焦点F(1,0),设M(m,n),则n2=4m,m>0,设M到准线x=-1的距离等于d,则令m+1=t,t>1,则(当且仅当t=3时,等号成立).故的最大值为11.D解析对于A,f(-x)≠f(x),故A错误;对于B,问题转化为x2+1=2x cos x有解,即x+=2cos x有解,x+min=2,当x=1时,2cos 1<2,故方程无解,故B错误;对于C,问题等价于x=2cos x有三个解,画出y=x,y=2cos x的图象,两图象只有一个交点,故C错;对于D,f'(x)=2x-2(cos x-x sinx)=2x(1+sin x)-2cos x,结合题意2x(1+sin x)-2cos x=0,即x=,而=tan,∴f(x)有无数个极值点,故选D.12.C解析当k=0时,即解f(x)<0,构造函数g(x)=,g'(x)==2x+3,可令g(x)=x2+3x+c,∴f(x)=(x2+3x+c)e x,由f(0)=c=1,得f(x)=(x2+3x+1)e x,由f(x)<0,得x2+3x+1<0,解得<x<,其中恰有两个整数-2和-1,∴k=0时成立,排除A、D.当k=-时,f(x)=(x2+3x+1)e x<-,令h(x)=(x2+3x+1)e x+2<-1,h'(x)=e x+2(x2+5x+4),得函数在(-4,-1)上递减,在(-∞,-4),(-1,+∞)上递增,此时(x2+3x+1)e x+2<-1的解至少有-4,-2,-3和-1,不合题意,∴k≠-,排除B,故选C.13解析二项式的展开式的通项为T k+1=a k,第三项是当k=2时,项为28x2,故n-2=2,解得n=8.又a2=28,故a=1.所以展开式中的第六项为14解析∵||=||=||,∴点O为△ABC的外心,设D为AC的中点,则OD⊥AC,如图,,==|2=,同理|2=8,()=-8=15.解析如图,由题意得AD⊥SA,AD⊥AB,∴平面SAB⊥平面ABCD,当SC=4时,过S作SO⊥AB,垂足为O,连接AC,OC,设OA=x,在△OAC中,由余弦定理,得OC2=x2+(4)2-2×4x=x2-8x+32,在Rt△SOA中,OS2=SA2-x2=16-x2,在Rt△SOC中,OS2+OC2=SC2,即16-x2+x2-8x+32=32,解得x=2.∴OS==2,此时(V S-ABCD)min=16×2;当SC=4时,∵SA2+AC2=SC2,可知SA⊥AC,结合SA⊥AD,可得SA⊥平面ABCD,则(V S-ABCD)max=16×4=四棱锥S-ABCD的体积的取值范围为.。

【配套K12】[学习](全国通用版)2019高考数学二轮复习(80分)12+4标准练2 理

【配套K12】[学习](全国通用版)2019高考数学二轮复习(80分)12+4标准练2 理

[80分] 12+4标准练21.复数z =a +i(a ∈R )的共轭复数为z ,满足|z |=1,则复数z 等于( ) A .2+i B .2-i C .1+i D .i 答案 D解析 根据题意可得,z =a -i , 所以|z |=a 2+1=1,解得a =0, 所以复数z =i.2.已知集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫θ∈(0,π)⎪⎪⎪12<sin θ≤1,B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫φ⎪⎪⎪π4<φ<1,则集合A ∩B 等于( )A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫θ⎪⎪⎪ π4<θ<π2 B.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫θ⎪⎪⎪ π6<θ<1 C.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫θ⎪⎪⎪π6<θ<π2 D.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫θ⎪⎪⎪π4<θ<1 答案 D解析 ∵A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫θ∈(0,π)⎪⎪⎪12<sin θ≤1=⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫θ⎪⎪⎪π6<θ<5π6, ∴A ∩B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫θ⎪⎪⎪π4<θ<1. 3.2018年3月7日《科学网》刊登“动物可以自我驯化”的文章表明:关于野生小鼠的最新研究,它们在几乎没有任何人类影响的情况下也能表现出进化的迹象——皮毛上白色的斑块以及短鼻子.为了观察野生小鼠的这种表征,从有2对不同表征的小鼠(白色斑块和短鼻子野生小鼠各一对)的实验箱中每次拿出一只,不放回地拿出2只,则拿出的野生小鼠不是同一表征的概率为( ) A.14 B.13 C.23 D.34 答案 C解析 分别设一对白色斑块的野生小鼠为A ,a ,另一对短鼻子野生小鼠为B ,b ,从2对野生小鼠中不放回地随机拿出2只,所求基本事件总数为4×3=12,拿出的野生小鼠是同一表征的事件为()A ,a ,()a ,A ,()B ,b ,()b ,B ,共4种, 所以拿出的野生小鼠不是同一表征的概率为 1-412=23. 4.已知函数f (x )=2sin(ωx +φ)的图象向左平移π6个单位长度后得到函数y =sin 2x +3cos 2x 的图象,则φ的可能值为( ) A .0 B.π6 C.π3 D.π12答案 A解析 将函数y =sin 2x +3cos 2x =2sin ⎝⎛⎭⎪⎫2x +π3的图象向右平移π6个单位长度,可得y =2sin ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x -π6+π3=2sin 2x 的图象,所以φ=0.5.在海昏侯墓中发掘出堆积如山的“汉五铢”铜钱.汉代串铜钱的丝绳或麻绳叫“缗”,后来演变为计量铜钱的单位,1 000枚铜钱用缗串起来,就叫一缗.假设把2 000余缗铜钱放在一起码成一堆,摆放规则如下:底部并排码放70缗,然后一层一层往上码,每层递减一缗,最上面一层为31缗,则这一堆铜钱共有( ) A .2×106枚 B .2.02×106枚 C .2.025×106枚 D .2.05×106枚答案 B解析 由题意可知,可构成一个首项为70,末项为31,项数为40,公差为1的等差数列,则和为S =40×()70+312=2 020,这一堆铜钱共有2 020×1 000=2.02×106(枚).6.一个几何体的三视图如图所示,则该几何体的体积为( )A .2+πB .1+πC .2+2πD .1+2π答案 A解析 根据三视图可得该几何体由一个长方体和半个圆柱组合而成, 则V =1×1×2+12×π×12×2=2+π.7.如图所示的程序框图,当输出y =15后,程序结束,则判断框内应该填( )A .x ≤1? B.x ≤2? C.x ≤3? D.x ≤4? 答案 C解析 当x =-3时,y =3;当x =-2时,y =0; 当x =-1时,y =-1;当x =0时,y =0; 当x =1时,y =3;当x =2时,y =8; 当x =3时,y =15,x =4,结束.所以y 的最大值为15,可知x ≤3?符合题意.8.已知某函数图象如图所示,则图象所对应的函数可能是( )A .y =x2|x |B .y =2|x |-2 C .y =e |x |-|x | D .y =2|x |-x 2答案 D解析 对于A ,函数y =x2|x |,当x >0时,y >0,当x <0时,y <0,不满足题意; 对于B ,当x ≥0时,y =f (x )单调递增,不满足题意; 对于C ,当x ≥0时,y >0,不满足题意.9.若双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线被抛物线y =4x 2所截得的弦长为32,则双曲线C 的离心率为( ) A.14 B .1 C .2 D .4 答案 C解析 不妨设双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的一条渐近线方程为bx +ay =0,与抛物线方程联立,得⎩⎪⎨⎪⎧bx +ay =0,y =4x 2,消去y ,得4ax 2+bx =0,Δ=b 2>0,设两交点的坐标分别为(x 1,y 1),(x 2,y 2),所以⎩⎪⎨⎪⎧x 1+x 2=-b 4a ,x 1x 2=0,所以x 1,x 2中有一个为0,一个为-b4a ,所以所截得的弦长为⎝ ⎛⎭⎪⎫1+b 2a 2×b 216a 2=32, 化简可得bc 4a 2=32,bc =23a 2,(c 2-a 2)c 2=12a 4,e 4-e 2-12=0,得e 2=4或-3(舍), 所以双曲线C 的离心率e =2.10.若x =2是函数f (x )=(x 2-2ax )e x的极值点,则函数f (x )的最小值为( ) A .(2+22)e -2B .0C .(2-22)e 2D .-e答案 C解析 ∵f (x )=(x 2-2ax )e x, ∴f ′(x )=(2x -2a )e x +(x 2-2ax )e x=[x 2+2(1-a )x -2a ]e x, 由已知得,f ′(2)=0,∴2+22-2a -22a =0,解得a =1, ∴f (x )=(x 2-2x )e x, ∴f ′(x )=(x 2-2)e x,∴令f ′(x )=(x 2-2)e x=0,得x =-2或x =2, 当x ∈(-2,2)时,f ′(x )<0, ∴函数f (x )在(-2,2)上是减函数,当x ∈()-∞,-2或x ∈()2,+∞时,f ′(x )>0, ∴函数f (x )在(-∞,-2),(2,+∞)上是增函数. 又当x ∈(-∞,0)∪(2,+∞)时,x 2-2x >0,f (x )>0, 当x ∈(0,2)时,x 2-2x <0,f (x )<0, ∴f (x )min 在x ∈(0,2)上,又当x ∈()0,2时,函数f (x )单调递减, 当x ∈()2,2时,函数f (x )单调递增, ∴f (x )min =f ()2=()2-22e2.11.点M (x ,y )在曲线C :x 2-4x +y 2-21=0上运动,t =x 2+y 2+12x -12y -150-a ,且t 的最大值为b ,若a ,b 为正实数,则1a +1+1b的最小值为( ) A .1 B .2 C .3 D .4 答案 A解析 曲线C :x 2-4x +y 2-21=0可化为(x -2)2+y 2=25,表示圆心为C (2,0),半径为5的圆,t =x 2+y 2+12x -12y -150-a =(x +6)2+(y -6)2-222-a ,(x +6)2+(y -6)2可以看作点M 到点N (-6,6)的距离的平方,圆C 上一点M 到N 的距离的最大值为|CN |+5,即点M 是直线CN 与圆C 距N 较远的交点,所以直线CN 的方程为y =-34(x -2),联立⎩⎪⎨⎪⎧y =-34(x -2),(x -2)2+y 2=25,解得⎩⎪⎨⎪⎧ x 1=6,y 1=-3或⎩⎪⎨⎪⎧x 2=-2,y 2=3(舍去),当⎩⎪⎨⎪⎧x =6,y =-3时,t 取得最大值,则t max =(6+6)2+(-3-6)2-222-a =b , 所以a +b =3, 所以(a +1)+b =4,1a +1+1b =14⎝ ⎛⎭⎪⎫1a +1+1b [](a +1)+b=14⎝ ⎛⎭⎪⎫b a +1+a +1b +2≥1, 当且仅当ba +1=a +1b ,即⎩⎪⎨⎪⎧a =1,b =2时取等号.12.已知y =f (x )是定义域为R 的奇函数,且在R 上单调递增,函数g (x )=f (x -5)+x ,数列{a n }为等差数列,且公差不为0,若g (a 1)+g (a 2)+…+g (a 9)=45,则a 1+a 2+…+a 9等于( )A .45B .15C .10D .0 答案 A解析 因为函数g (x )=f (x -5)+x , 所以g (x )-5=f (x -5)+x -5,当x =5时,g (5)-5=f (5-5)+5-5=f (0), 而y =f (x )是定义域为R 的奇函数, 所以f (0)=0,所以g (5)-5=0. 由g (a 1)+g (a 2)+…+g (a 9)=45,得[g (a 1)-5]+[g (a 2)-5]+…+[g (a 9)-5]=0, 由y =f (x )是定义域为R 的奇函数, 且在R 上单调递增,可知y =g (x )-5关于(5,0)对称, 且在R 上是单调递增函数, 由对称性猜想g (a 5)-5=0,下面用反证法证明g (a 5)-5=0. 假设g (a 5)-5<0,知a 5<5, 则a 1+a 9<10,a 2+a 8<10,…,由对称性可知[g (a 1)-5]+[g (a 9)-5]<0, [g (a 2)-5]+[g (a 8)-5]<0,…,则[g (a 1)-5]+[g (a 2)-5]+…+[g (a 9)-5]<0与题意不符, 故g (a 5)-5<0不成立; 同理g (a 5)-5>0也不成立, 所以g (a 5)-5=0,所以a 5=5,根据等差数列的性质,得a 1+a 2+…+a 9=9a 5=45. 13.已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧2x -y ≤0,x -3y +5≥0,x ≥0,则z =-2x -y 的最小值为________.答案 -4解析 根据约束条件画出可行域,如图阴影部分所示(含边界),直线z =-2x -y 过点A (1,2)时,z 取得最小值-4.14.已知α∈⎣⎢⎡⎦⎥⎤π4,π3,β∈⎣⎢⎡⎦⎥⎤π2,π,满足sin(α+β)-sin α=2sin αcos β,则sin 2αsin (β-α)的最大值为________.答案2解析 因为sin(α+β)-sin α=2sin αcos β,所以sin αcos β+cos αsin β-sin α=2sin αcos β, 所以cos αsin β-sin αcos β=sin α, 即sin(β-α)=sin α, 则sin 2αsin (β-α)=sin 2αsin α=2sin αcos αsin α=2cos α,因为α∈⎣⎢⎡⎦⎥⎤π4,π3,所以2cos α∈[]1,2,所以sin 2αsin (β-α)的最大值为 2.15.已知正方形ABCD 的边长为1,P 为平面ABCD 内一点,则(PA →+PB →)·(PC →+PD →)的最小值为________. 答案 -1解析 以B 为坐标原点,BC ,BA 所在直线为x 轴,y 轴,建立如图所示的平面直角坐标系,则A (0,1),B (0,0),C (1,0),D (1,1), 设P (x ,y ),则PA →=(-x,1-y ),PB →=(-x ,-y ), PC →=(1-x ,-y ),PD →=(1-x,1-y ),(PA →+PB →)·(PC →+PD →)=(-2x,1-2y )·(2(1-x ),1-2y )=(1-2y )2-4(1-x )x =(1-2y )2+(2x -1)2-1, 当x =12,y =12时,(PA →+PB →)·(PC →+PD →)取得最小值-1.16.如图,在四边形ABCD 中,△ABD 和△BCD 都是等腰直角三角形,AB =2,∠BAD =π2,∠CBD =π2,沿BD 把△ABD 翻折起来,形成二面角A -BD -C ,且二面角A -BD -C 为5π6,此时A ,B ,C ,D 在同一球面上,则此球的体积为________.答案2053π 解析 由题意可知BC =BD =2,△BCD ,△ABD 的外接圆圆心分别为CD ,BD 的中点E ,F ,分别过E ,F 作△BCD ,△ABD 所在平面的垂线,垂线的交点O 即为球心,连接AF ,EF ,由题意可知∠AFE 即为二面角A -BD -C 的平面角, 所以∠AFE =5π6.又∠OFA =π2,所以∠OFE =π3,EF =12BC =1,所以OE =EF ·tan π3=3,所以R =OC =OE 2+CE 2=5, 所以V =43πR 3=2053π.。

【K12教育学习资料】[学习]2019高考数学一轮复习 第十二章 推理与证明练习 文

【K12教育学习资料】[学习]2019高考数学一轮复习 第十二章 推理与证明练习 文

第十二章推理与证明考纲解读分析解读本部分是新课标内容,高考考查以下几个方面:1.归纳推理与类比推理以选择题、填空题的形式出现,考查学生的逻辑推理能力,而演绎推理多出现在立体几何的证明中;2.直接证明与间接证明作为证明和推理数学命题的方法,常以不等式、立体几何、解析几何、函数为载体,考查综合法、分析法及反证法.本节内容在高考中的分值分配:①归纳推理与类比推理分值为5分左右,属中档题;②证明问题以解答题形式出现,分值为12分左右,属中高档题.五年高考考点一合情推理与演绎推理1.(2016北京,8,5分)某学校运动会的立定跳远和30秒跳绳两个单项比赛分成预赛和决赛两个阶段.下表为10名学生的预赛成绩,其中有三个数据模糊.在这10名学生中,进入立定跳远决赛的有8人,同时进入立定跳远决赛和30秒跳绳决赛的有6人,则( )A.2号学生进入30秒跳绳决赛B.5号学生进入30秒跳绳决赛C.8号学生进入30秒跳绳决赛D.9号学生进入30秒跳绳决赛答案 B2.(2017北京,14,5分)某学习小组由学生和教师组成,人员构成同时满足以下三个条件:(i)男学生人数多于女学生人数;(ii)女学生人数多于教师人数;(iii)教师人数的两倍多于男学生人数.①若教师人数为4,则女学生人数的最大值为;②该小组人数的最小值为.答案①6②123.(2016课标全国Ⅱ,16,5分)有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是.答案1和34.(2016山东,12,5分)观察下列等式:+=×1×2;+++=×2×3;+++…+=×3×4;+++…+=×4×5;……照此规律,+++…+= .答案5.(2015陕西,16,5分)观察下列等式1-=1-+-=+1-+-+-=++……据此规律,第n个等式可为.答案1-+-+…+-=++…+6.(2014课标Ⅰ,14,5分)甲、乙、丙三位同学被问到是否去过A,B,C三个城市时,甲说:我去过的城市比乙多,但没去过B城市;乙说:我没去过C城市;丙说:我们三人去过同一城市.由此可判断乙去过的城市为.答案 A教师用书专用(7—11)7.(2014福建,16,4分)已知集合{a,b,c}={0,1,2},且下列三个关系:①a≠2;②b=2;③c≠0有且只有一个正确,则100a+10b+c等于.答案2018.(2013湖北,17,5分)在平面直角坐标系中,若点P(x,y)的坐标x,y均为整数,则称点P为格点.若一个多边形的顶点全是格点,则称该多边形为格点多边形.格点多边形的面积记为S,其内部的格点数记为N,边界上的格点数记为L.例如图中△ABC是格点三角形,对应的S=1,N=0,L=4.(1)图中格点四边形DEFG对应的S,N,L分别是;(2)已知格点多边形的面积可表示为S=aN+bL+c,其中a,b,c为常数.若某格点多边形对应的N=71,L=18,则S= (用数值作答).答案(1)3,1,6 (2)799.(2013陕西,13,5分)观察下列等式(1+1)=2×1(2+1)(2+2)=22×1×3(3+1)(3+2)(3+3)=23×1×3×5……照此规律,第n个等式可为.答案(n+1)(n+2)…(n+n)=2n×1×3×…×(2n-1)10.(2014江西,21,14分)将连续正整数1,2,…,n(n∈N*)从小到大排列构成一个数,F(n)为这个数的位数(如n=12时,此数为123 456 789 101 112,共有15个数字,F(12)=15),现从这个数中随机取一个数字,p(n)为恰好取到0的概率.(1)求p(100);(2)当n≤2 014时,求F(n)的表达式;(3)令g(n)为这个数中数字0的个数,f(n)为这个数中数字9的个数,h(n)=f(n)-g(n),S={n|h(n)=1,n≤100,n∈N*},求当n∈S时p(n)的最大值.解析(1)当n=100时,这个数中总共有192个数字,其中数字0的个数为11,所以恰好取到0的概率为p(100)=.(2)F(n)=,1n9,2-9,10n99,3-108,100n999,4-11?07,1?000n2?014. nnnn≤≤⎧⎪≤≤⎪⎨≤≤⎪⎪≤≤⎩(3)当n=b(1≤b≤9,b∈N*)时,g(n)=0;当n=10k+b(1≤k≤9,0≤b≤9,k∈N*,b∈N)时,g(n)=k;当n=100时,g(n)=11,即g(n)=同理有f(n)=由h(n)=f(n)-g(n)=1,可知n=9,19,29,39,49,59,69,79,89,90. 所以当n≤100时,S={9,19,29,39,49,59,69,79,89,90}.当n=9时,p(9)=0;当n=90时,p(90)===;当n=10k+9(1≤k≤8,k∈N*)时,p(n)===,由于y=关于k单调递增,故当n=10k+9(1≤k≤8,k∈N*)时,p(n)的最大值为p(89)=.又<,所以当n∈S时,p(n)的最大值为.11.(2013江西,21,14分)设函数f(x)=a为常数且a∈(0,1).(1)当a=时,求f;(2)若x0满足f(f(x0))=x0,但f(x0)≠x0,则称x0为f(x)的二阶周期点.证明函数f(x)有且仅有两个二阶周期点,并求二阶周期点x1,x2;(3)对于(2)中的x1,x2,设A(x1, f(f(x1))),B(x2, f(f(x2))),C(a2,0),记△ABC的面积为S(a),求S(a)在区间上的最大值和最小值.解析(1)当a=时, f=,f=f=2=.(2)f(f(x))=当0≤x≤a2时,由x=x解得x=0,因为f(0)=0,故x=0不是f(x)的二阶周期点;当a2<x≤a时,由(a-x)=x解得x=∈(a2,a),因f=·=≠,故x=为f(x)的二阶周期点;当a<x<a2-a+1时,由(x-a)=x解得x=∈(a,a2-a+1),因f=·=,故x=不是f(x)的二阶周期点;当a2-a+1≤x≤1时,由(1-x)=x解得x=∈(a2-a+1,1),因f=·=≠,故x=为f(x)的二阶周期点.因此,函数f(x)有且仅有两个二阶周期点,x1=,x2=.(3)由(2)得A,B,则S(a)=·,S'(a)=·,因为a∈,a2+a<1,所以S'(a)=·=·>0.或令g(a)=a3-2a2-2a+2,g'(a)=3a2-4a-2=3,因a∈(0,1),g'(a)<0,所以g(a)在区间上的最小值为g=>0,故对于任意a∈,g(a)=a3-2a2-2a+2>0,S'(a)=·>0.则S(a)在区间上单调递增,故S(a)在区间上的最小值为S=,最大值为S=.考点二直接证明与间接证明1.(2014山东,4,5分)用反证法证明命题“设a,b为实数,则方程x3+ax+b=0至少有一个实根”时,要做的假设是( )A.方程x3+ax+b=0没有实根B.方程x3+ax+b=0至多有一个实根C.方程x3+ax+b=0至多有两个实根D.方程x3+ax+b=0恰好有两个实根答案 A2.(2013四川,10,5分)设函数f(x)=(a∈R,e为自然对数的底数).若存在b∈[0,1]使f(f(b))=b成立,则a的取值范围是( )A.[1,e]B.[1,1+e]C.[e,1+e]D.[0,1]答案 A3.(2016江苏,20,16分)记U={1,2,…,100}.对数列{a n}(n∈N*)和U的子集T,若T=⌀,定义S T=0;若T={t1,t2,…,t k},定义S T=++…+.例如:T={1,3,66}时,S T=a1+a3+a66.现设{a n}(n∈N*)是公比为3的等比数列,且当T={2,4}时,S T=30.(1)求数列{a n}的通项公式;(2)对任意正整数k(1≤k≤100),若T⊆{1,2,…,k},求证:S T<a k+1;(3)设C⊆U,D⊆U,S C≥S D,求证:S C+S C∩D≥2S D.解析(1)由已知得a n=a1·3n-1,n∈N*.于是当T={2,4}时,S T=a2+a4=3a1+27a1=30a1.又S T=30,故30a1=30,即a1=1.所以数列{a n}的通项公式为a n=3n-1,n∈N*.(2)因为T⊆{1,2,…,k},a n=3n-1>0,n∈N*,所以S T≤a1+a2+…+a k=1+3+…+3k-1=(3k-1)<3k.因此,S T<a k+1.(3)下面分三种情况证明.①若D是C的子集,则S C+S C∩D=S C+S D≥S D+S D=2S D.②若C是D的子集,则S C+S C∩D=S C+S C=2S C≥2S D.③若D不是C的子集,且C不是D的子集.令E=C∩∁U D,F=D∩∁U C,则E≠⌀,F≠⌀,E∩F=⌀.于是S C=S E+S C∩D,S D=S F+S C∩D,进而由S C≥S D得S E≥S F.设k为E中的最大数,l为F中的最大数,则k≥1,l≥1,k≠l.由(2)知,S E<a k+1.于是3l-1=a l≤S F≤S E<a k+1=3k,所以l-1<k,即l≤k.又k≠l,故l≤k-1.从而S F≤a1+a2+…+a l=1+3+…+3l-1=≤=≤,故S E≥2S F+1,所以S C-S C∩D≥2(S D-S C∩D)+1,即S C+S C∩D≥2S D+1.综合①②③得,S C+S C∩D≥2S D.教师用书专用(4—5)4.(2014天津,20,14分)已知q和n均为给定的大于1的自然数.设集合M={0,1,2,…,q-1},集合A={x|x=x1+x2q+…+x n q n-1,x i∈M,i=1,2,…,n}.(1)当q=2,n=3时,用列举法表示集合A;(2)设s,t∈A,s=a1+a2q+…+a n q n-1,t=b1+b2q+…+b n q n-1,其中a i,b i∈M,i=1,2,…,n.证明:若a n<b n,则s<t.解析(1)当q=2,n=3时,M={0,1},A={x|x=x1+x2·2+x3·22,x i∈M,i=1,2,3}.可得,A={0,1,2,3,4,5,6,7}.(2)证明:由s,t∈A,s=a1+a2q+…+a n q n-1,t=b1+b2q+…+b n q n-1,a i,b i∈M,i=1,2,…,n及a n<b n,可得s-t=(a1-b1)+(a2-b2)q+…+(a n-1-b n-1)q n-2+(a n-b n)q n-1≤(q-1)+(q-1)q+…+(q-1)q n-2-q n-1=-q n-1=-1<0.所以,s<t.5.(2013湖北,20,13分)如图,某地质队自水平地面A,B,C三处垂直向地下钻探,自A点向下钻到A1处发现矿藏,再继续下钻到A2处后下面已无矿,从而得到在A处正下方的矿层厚度为A1A2=d1.同样可得在B,C处正下方的矿层厚度分别为B1B2=d2,C1C2=d3,且d1<d2<d3.过AB,AC的中点M,N且与直线AA2平行的平面截多面体A1B1C1-A2B2C2所得的截面DEFG为该多面体的一个中截面,其面积记为S中.(1)证明:中截面DEFG是梯形;(2)在△ABC中,记BC=a,BC边上的高为h,面积为S.在估测三角形ABC区域内正下方的矿藏储量(即多面体A1B1C1-A2B2C2的体积V)时,可用近似公式V估=S中·h来估算.已知V=(d1+d2+d3)S,试判断V估与V的大小关系,并加以证明.解析(1)依题意A1A2⊥平面ABC,B1B2⊥平面ABC,C1C2⊥平面ABC,所以A1A2∥B1B2∥C1C2.又A1A2=d1,B1B2=d2,C1C2=d3,且d1<d2<d3,因此四边形A1A2B2B1,四边形A1A2C2C1均是梯形.由AA2∥平面MEFN,AA2⊂平面AA2B2B,且平面AA2B2B∩平面MEFN=ME,可得AA2∥ME,即A1A2∥DE.同理可证A1A2∥FG,所以DE∥FG.又M,N分别为AB,AC的中点,则D,E,F,G分别为A1B1,A2B2,A2C2,A1C1的中点,即DE,FG分别为梯形A1A2B2B1,梯形A1A2C2C1的中位线.因此DE=(A1A2+B1B2)=(d1+d2),FG=(A1A2+C1C2)=(d1+d3),而d1<d2<d3,故DE<FG,所以中截面DEFG是梯形.(2)V估<V.证明如下:由A1A2⊥平面ABC,MN⊂平面ABC,可得A1A2⊥MN.而EM∥A1A2,所以EM⊥MN,同理可得FN⊥MN.由MN是△ABC的中位线,可得MN=BC=a,即为梯形DEFG的高,因此S中=S梯形DEFG=·=(2d1+d2+d3),即V估=S中·h=(2d1+d2+d3).又S=ah,所以V=(d1+d2+d3)S=(d1+d2+d3).于是V-V估=(d1+d2+d3)-(2d1+d2+d3)=[(d2-d1)+(d3-d1)].由d1<d2<d3,得d2-d1>0,d3-d1>0,故V估<V.三年模拟A组2016—2018年模拟·基础题组考点一合情推理与演绎推理1.(2018江西上饶一模,7)老师带甲、乙、丙、丁四名学生去参加自主招生考试,考试结束后老师向四名学生了解考试情况,四名学生的回答如下:甲说:“我们四人都没考好.”乙说:“我们四人中有人考得好.”丙说:“乙和丁至少有一人没考好.”丁说:“我没考好.”成绩出来后发现,四名学生中有且只有两人说对了,他们是( )A.甲、丙B.乙、丁C.丙、丁D.乙、丙答案 D2.(2018福建六校联考,16)图甲是应用分形几何学作出的一个分形规律图,按照图甲所示的分形规律可得图乙所示的一个树形图,我们采用“坐标”来表示图乙各行中的白圈、黑圈的个数(横坐标表示白圈的个数,纵坐标表示黑圈的个数),比如第1行记为(0,1),第2行记为(1,2),第3行记为(4,5),照此下去,第5行中白圈与黑圈的“坐标”为.答案(40,41)3.(2017河北邯郸质检,15)2016年6月23日15时前后,江苏盐城市阜宁、射阳等地突遭强冰雹、龙卷风双重灾害袭击,风力达12级.灾害发生后,有甲、乙、丙、丁4个轻型救援队从A,B,C,D四个不同的方向前往灾区.已知下面四种说法都是正确的:(1)甲轻型救援队所在方向不是C方向,也不是D方向;(2)乙轻型救援队所在方向不是A方向,也不是B方向;(3)丙轻型救援队所在方向不是A方向,也不是B方向;(4)丁轻型救援队所在方向不是A方向,也不是D方向.此外还可确定:如果丙所在方向不是D方向,那么甲所在方向就不是A方向,有下列判断:①甲所在方向是B方向;②乙所在方向是D方向;③丙所在方向是D方向;④丁所在方向是C方向.其中判断正确的序号是.答案③4.(2017广东七校第二次联考,15)如图是网络工作者经常用来解释网络运作的蛇形模型:数字1出现在第1行;数字2,3出现在第2行,数字6,5,4(从左至右)出现在第3行;数字7,8,9,10出现在第4行,……,依此类推,则第20行从左到右第4个数字为.答案1945.(人教A选1—2,二,1,例7,变式)证明函数f(x)=-x3+3x在(2,+∞)内是增函数.证明 f '(x)=-3x2+3=-3(x2-1)=-3(x+1)(x-1).当x>2时,(x+1)(x-1)>0,∴f '(x)=-3(x+1)(x-1)<0.∴f(x)=-x3+3x在(2,+∞)内是增函数.考点二直接证明与间接证明6.(2018吉林三校联考,4)用反证法证明“自然数a,b,c中至多有一个偶数”时,假设原命题不成立,等价于( )A.a,b,c中没有偶数B.a,b,c中恰好有一个偶数C.a,b,c中至少有一个偶数D.a,b,c中至少有两个偶数答案 D7.(2017山西大学附中第二次模拟,17)在等比数列{a n}中,a3=,S3=.(1)求数列{a n}的通项公式;(2)设b n=log2,且{b n}为递增数列,若c n=,求证:c1+c2+c3+…+c n<.解析(1)设{a n}的公比为q(q≠0).∵a3=,S3=,∴⇒或∴a n=或a n=6.(2)证明:由题意知b n=log2=log2=log222n=2n,∴c n===,∴c1+c2+c3+…+c n===-<.8.(2016河南南阳期中,18)已知数列{log2(a n-1)}(n∈N*)为等差数列,且a1=3,a3=9.(1)求数列{a n}的通项公式;(2)证明++…+<1.解析(1)设等差数列{log2(a n-1)}的公差为d.由a1=3,a3=9得2(log22+d)=log22+log28,故d=1.所以log2(a n-1)=1+(n-1)×1=n,即a n=2n+1.(2)证明:因为==,所以++…+=+++…+==1-<1,原不等式得证.B组2016—2018年模拟·提升题组(满分:30分时间:30分钟)一、选择题(每小题5分,共10分)1.(2018辽宁大连调研,5)如图,A,B,C三个开关控制着1,2,3,4号四盏灯.若开关A控制着2,3,4号灯(即按一下开关A,2,3,4号灯亮,再按一下开关A,2,3,4号灯熄灭),同样,开关B控制着1,3,4号灯,开关C控制着1,2,4号灯.开始时,四盏灯都亮着,那么下列说法正确的是( )A.只需要按开关A,C,可以将四盏灯全部熄灭B.只需要按开关B,C,可以将四盏灯全部熄灭C.按开关A,B,C,可以将四盏灯全部熄灭D.按开关A,B,C,无法将四盏灯全部熄灭答案 D2.(2017辽宁六校期中联考,10)已知整数对按如下规律排成一列:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1), (1,4),(2,3),(3,2),(4,1),……,则第60个数对是( )A.(10,1)B.(2,10)C.(5,7)D.(7,5)答案 C二、填空题(共5分)3.(2017山东济宁3月模拟,11)已知a i>0(i=1,2,3,…,n),观察下列不等式:≥;≥;≥;……照此规律,当n∈N*,n≥2时,≥.答案三、解答题(共15分)4.(2017湖北华中师大一附中期中模拟,21)已知函数f(x)=ln x+.(1)讨论函数f(x)的单调性;(2)当a=2时,函数f(x)满足f(x1)=f(x2)(x1≠x2),求证x1+x2>4.解析(1)∵f(x)=ln x+,∴f '(x)=-=,x>0,当a≤0时, f '(x)≥0总成立;当a>0时,令f '(x)=0,得x=a.当x∈(0,a)时, f '(x)<0;当x∈(a,+∞)时, f '(x)>0.综上所述,当a≤0时, f(x)在(0,+∞)上单调递增;当a>0时, f(x)在(0,a)上单调递减,在(a,+∞)上单调递增.(2)当a=2时, f(x)=ln x+.不妨令x1<x2,且x2>x1>0,要证明x1+x2>4,即证x2>4-x1.由(1)知f(x)在(0,2)上单调递减,在(2,+∞)上单调递增,则0<x1<2,x2>2,只需证f(x2)>f(4-x1),又f(x1)=f(x2),即证f(x1)>f(4-x1).设g(x)=f(x)-f(4-x)(0<x<2),则g(x)=ln x+-ln(4-x)-,则g'(x)=---=<0,所以g(x)在(0,2)内单调递减,所以g(x)>g(2)=0,所以f(x)>f(4-x)(0<x<2),故证得f(x2)>f(4-x1).所以x1+x2>4.C组2016—2018年模拟·方法题组方法1 合情推理与演绎推理1.(2018广东肇庆一模,14)观察下列不等式:1+<,1++<,1+++<,……,照此规律,第五个不等式为.答案1+++++<2.(2017上海浦东期中联考,12)在Rt△ABC中,两直角边长分别为a、b,设h为斜边上的高,则=+,由此类比:三棱锥P-ABC中的三条侧棱PA、PB、PC两两垂直,且长度分别为a、b、c,设棱锥底面△ABC上的高为h,则.答案=++方法2 直接证明的方法3.(2017皖南八校联考,17)已知等差数列{a n}的前n项和为S n,b n=,且a2·b2=,S5=.(1)求数列{a n},{b n}的通项公式;(2)求证:b1+b2+…+b n<.解析(1)设{a n}的公差为d.∵b n=,a2·b2=,S5=,∴解得∴a n=n+,S n=,∴b n=.(2)证明:b1+b2+…+b n=+++…+=1-+-+-+…+-+-=--<.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

12+4分项练9 立体几何1.已知a,b为异面直线,下列结论不正确的是( )A.必存在平面α,使得a∥α,b∥αB.必存在平面α,使得a,b与α所成角相等C.必存在平面α,使得a⊂α,b⊥αD.必存在平面α,使得a,b与α的距离相等答案 C解析由a,b为异面直线知,在A中,在空间中任取一点O(不在a,b上),过点O分别作a,b的平行线,则由过点O的a,b的平行线确定一个平面α,使得a∥α,b∥α,故A正确;在B中,平移b至b′与a相交,因而确定一个平面α,在α上作a,b′夹角的平分线,明显可以作出两条.过角平分线且与平面α垂直的平面使得a,b′与该平面所成角相等,角平分线有两条,所以有两个平面都可以.故B正确;在C中,当a,b不垂直时,不存在平面α,使得a⊂α,b⊥α,故C错误;在D中,过异面直线a,b的公垂线的中点作与公垂线垂直的平面α,则平面α使得a,b与α的距离相等,故D正确.故选C. 2.(2018·泸州模拟)设a,b是空间中不同的直线,α,β是不同的平面,则下列说法正确的是( )A.a∥b,b⊂α,则a∥αB.a⊂α,b⊂β,α∥β,则a∥bC.a⊂α,b⊂α,a∥β,b∥β,则α∥βD.α∥β,a⊂α,则a∥β答案 D解析由a,b是空间中不同的直线,α,β是不同的平面知,在A中,a∥b,b⊂α,则a∥α或a⊂α,故A错误;在B中,a⊂α,b⊂β,α∥β,则a与b平行或异面,故B错误;在C中,a⊂α,b⊂α,a∥β,b∥β,则α与β相交或平行,故C错误;在D中,α∥β,a⊂α,则由面面平行的性质得a∥β,故D正确.3.(2018·福建省厦门外国语学校模拟)如图,在正方体ABCD—A1B1C1D1中,E为棱BB1的中点,用过点A,E,C1的平面截去该正方体的下半部分,则剩余几何体的正(主)视图是( )答案 A解析取DD1的中点F,连接AF,C1F,平面AFC1E为截面.如图所示,所以上半部分的正(主)视图,如A选项所示,故选A.4.(2018·昆明模拟)一个几何体挖去部分后的三视图如图所示,若其正(主)视图和侧(左)视图都是由三个边长为2的正三角形组成,则该几何体的表面积为( )A.13π B.12π C.11π D.23π答案 B解析 由三视图可知,该几何体是一个圆台,内部挖去一个圆锥.圆台的上底面半径为1,下底面半径为2,母线长为2,圆锥底面为圆台的上底面,顶点为圆台底面的圆心. 圆台侧面积为π(1+2)×2=6π, 下底面面积为π×22=4π, 圆锥的侧面积为π×1×2=2π.所以该几何体的表面积为6π+4π+2π=12π.5.(2018·洛阳统考)某几何体的三视图如图所示,则该几何体的体积为( )A.233B.152C.476 D .8 答案 A解析 根据题中所给的几何体的三视图,可以得到该几何体是由正方体切割而成的, 记正方体为ABCD -A 1B 1C 1D 1,取A 1D 1的中点M ,取D 1C 1的中点N , 该几何体就是正方体切去一个三棱锥D -MND 1之后剩余的部分, 故其体积为V =23-13×12×1×1×2=233.6.现有编号为①,②,③的三个三棱锥(底面水平放置),俯视图分别为图1、图2、图3,则至少存在一个侧面与此底面互相垂直的三棱锥的所有编号是( )A .①B .①②C .②③D .①②③答案 B解析 根据题意可得三个立体几何图形如图所示:由图一可得侧面ABD ,ADC 与底面垂直,由图二可得面ACE 垂直于底面,由图三可知,无侧面与底面垂直.7.(2018·漳州模拟)在直三棱柱A 1B 1C 1-ABC 中,A 1B 1=3,B 1C 1=4,A 1C 1=5,AA 1=2,则其外接球与内切球的表面积的比值为( ) A.294 B.192 C.292 D .29 答案 A解析 如图1,分别取AC ,A 1C 1的中点G ,H ,连接GH , 取GH 的中点O ,连接OA , 由题意,得A 1B 21+B 1C 21=A 1C 21, 即△A 1B 1C 1为直角三角形,则点O 为外接球的球心,OA 为半径, 则R =OA =1+254=292;如图2,作三棱柱的中截面,则中截面三角形的内心是该三棱柱的内切球的球心,中截面三角形的内切圆的半径r =3+4-52=1,也是内切球的半径,因为R ∶r =29∶2,则其外接球与内切球的表面积的比值为4πR 24πr 2=294.8.(2018·南昌模拟)已知E ,F ,H ,G 分别是四面体ABCD 棱AB ,BC ,CD ,DA 上的点,且AE =EB ,BF =FC ,CH =2HD ,AG =2GD ,则下列说法错误的是( ) A .AC ∥平面EFH B .BD ∥平面EFGC .直线EG ,FH ,BD 相交于同一点 D .FE ∥GH答案 B解析对于A,EA=EB,BF=FC,CH=2HD,AG=2GD,可得到GH∥AC,EF∥AC,又AC⊄平面EFH,故AC∥平面EFH,选项A正确.对于B,因为BD和FH不平行,而且两条直线在同一平面内,故得到两直线相交,可得到BD 与平面EFG是相交的关系.选项B不正确.对于C,由A选项,结合平行线的传递性得到GH∥EF,则E,F,G,H四点共面,且为梯形,延长EG和FH相交于点M,则点M在FH的延长线上,故在面BCD内,同理M点也在平面ABD 内,故M应该在两个平面的交线上,即在直线BD上,故得证.选项C正确.对于D,由选项A,C可知选项D正确.9.如图所示,四棱锥S-ABCD的底面为正方形,SD⊥底面ABCD,则下列结论中不正确的是( )A.AC⊥SBB.AB∥平面SCDC.SA与平面SBD所成的角等于SC与平面SBD所成的角D.AB与SC所成的角等于DC与SA所成的角答案 D解析对于选项A,由题意得SD⊥AC,AC⊥BD,SD∩BD=D,∴AC⊥平面SBD,故AC⊥SB,故A正确;对于选项B,∵AB∥CD,AB⊄平面SCD,∴AB∥平面SCD,故B正确;对于选项C,由对称性知SA与平面SBD所成的角与SC与平面SBD所成的角相等,故C正确.10.如图,在直三棱柱ABC-A1B1C1中,已知∠BCA=90°,∠BAC=60°,AC=4,E为AA1的中点,点F为BE的中点,点H在线段CA1上,且A1H=3HC,则线段FH的长为( )A.2 3 B.4C.13 D.3答案 C解析 由题意知,AB =8,过点F 作FD ∥AB 交AA 1于点D ,连接DH ,则D 为AE 中点,FD =12AB=4, 又A 1H HC =A 1DDA=3,所以DH ∥AC ,∠FDH =60°, DH =34AC =3,由余弦定理得FH =42+32-2×4×3×cos 60°=13,故选C.11.我国古代数学名著《九章算术》中“开立圆术”曰:置积尺数,以十六乘之,九而一,所得开立方除之,即立圆径.“开立圆术”相当于给出了已知球的体积V ,求其直径d 的一个近似公式d ≈3163V ,人们还用过一些类似的近似公式,根据π=3.141 59…判断,下列近似公式中最精确的一个是( )A .d ≈36031V B .d ≈32VC .d ≈3158V D .d ≈32111V 答案 D解析 根据球的体积公式V =43πR 3=43π⎝ ⎛⎭⎪⎫d 23,得d =36V π,设选项中的常数为a b ,则π=6ba, 选项A 代入得π=31×660=3.1,选项B 代入得π=62=3,选项C 代入得π=6×815=3.2,选项D 代入得π=11×621=3.142 857,D 选项更接近π的真实值,故选D.12.已知四边形ABCD 为边长等于5的正方形,PA ⊥平面ABCD ,QC ∥PA ,且异面直线QD 与PA 所成的角为30°,则四棱锥Q -ABCD 外接球的表面积等于( )A.12524π B .25π C.1256π D.1252π 答案 B解析 因为PA ⊥平面ABCD ,QC ∥PA ,所以QC ⊥平面ABCD ,且异面直线QD 与PA 所成的角即∠DQC , 所以∠DQC =30°, 又CD =5,所以QC =15. 由于CB ,CQ ,CD 两两垂直,所以四棱锥Q -ABCD 的外接球的直径就是以CB ,CQ ,CD 为棱的长方体的体对角线,设四棱锥Q -ABCD 外接球的半径为R ,则R =52,所以外接球的表面积为4π·⎝ ⎛⎭⎪⎫522=25π.13.如图所示,AB 是⊙O 的直径,PA ⊥⊙O 所在的平面,C 是圆上一点,且∠ABC =30°,PA =AB ,则直线PC 与平面ABC 所成角的正切值为________.答案 2解析 因为PA ⊥平面ABC ,所以AC 为斜线PC 在平面ABC 上的射影,所以∠PCA 即为PC 与平面ABC 所成的角.在Rt△PAC 中,AC =12AB =12PA ,所以tan∠PCA =PAAC=2.14.如图所示,在直三棱柱ABC -A 1B 1C 1中,侧棱AA 1⊥平面ABC .若AB =AC =AA 1=1,BC =2,则异面直线A 1C 与B 1C 1所成的角为________.答案 60°解析 因为几何体是棱柱,BC ∥B 1C 1,则∠A 1CB 就是异面直线A 1C 与B 1C 1所成的角,在直三棱柱ABC -A 1B 1C 1中,侧棱AA 1⊥平面ABC ,AB =AC =AA 1=1,BC =2,则BA 1=AA 21+AB 2=2,CA 1=AA 21+AC 2=2,所以△BCA 1是正三角形,故异面直线所成的角为60°.15.(2018·南昌模拟)已知正三棱台ABC -A 1B 1C 1的上、下底边长分别为33,43,高为7,若该正三棱台的六个顶点均在球O 的球面上,且球心O 在正三棱台ABC -A 1B 1C 1内,则球O 的表面积为________. 答案 100π解析 因为正三棱台ABC -A 1B 1C 1的上、下底边长分别为33,43, 取正三棱台的上、下底面的中心分别为E ,E 1, 则正三棱台的高为h =EE 1=7,在上下底面的等边三角形中, 可得AE =23AD =3,A 1E 1=23A 1D 1=4,则球心O 在直线EE 1上,且半径为R =OA =OA 1, 所以OE 2+32=OE 21+42,且OE +OE 1=7, 解得OE =4,所以R =OE 2+32=5, 所以球O 的表面积为S =4πR 2=100π.16.已知三棱锥O —ABC 中,A ,B ,C 三点均在球心为O 的球面上,且AB =BC =1,∠ABC =120°,若球O 的体积为256π3,则三棱锥O —ABC 的体积是________.答案54解析 三棱锥O —ABC 中,A ,B ,C 三点均在球心为O 的球面上,且AB =BC =1,∠ABC =120°,则AC =3,∴S △ABC =12×1×1×sin 120°=34,设球半径为R ,由球的体积V 1=43πR 3=256π3,解得R=4.设△ABC 外接圆的圆心为G ,∴外接圆的半径为GA =32sin 120°=1,∴OG =R 2-GA 2=42-12=15, ∴三棱锥O —ABC 的体积为V 2=13S △ABC ·OG =13×34×15=54.。

相关文档
最新文档