2016-2017学年九年级数学中考模拟题
中考数学模拟题《分式与分式方程》专项测试卷(附答案)

中考数学模拟题《分式与分式方程》专项测试卷(附答案)学校:___________班级:___________姓名:___________考号:___________一 单选题1.(2023·湖南·统考中考真题)将关于x 的分式方程3121x x =-去分母可得( ) A .332x x -=B .312x x -=C .31x x -=D .33x x -=2.(2023·湖南郴州·统考中考真题)小王从A 地开车去B 地 两地相距240km .原计划平均速度为x km/h 实际平均速度提高了50% 结果提前1小时到达.由此可建立方程为( ) A .24024010.5x x-= B .24024011.5x x-= C .24024011.5x x-= D . 1.5240x x +=3.(2023·黑龙江绥化·统考中考真题)某运输公司 运送一批货物 甲车每天运送货物总量的14.在甲车运送1天货物后 公司增派乙车运送货物 两车又共同运送货物12天 运完全部货物.求乙车单独运送这批货物需多少天?设乙车单独运送这批货物需x 天 由题意列方程 正确的是( )A .11142x += B .11111424x ⎛⎫++= ⎪⎝⎭C .1111142x ⎛⎫++= ⎪⎝⎭D .11111442x⎛⎫++= ⎪⎝⎭4.(2023·广东深圳·统考中考真题)某运输公司运输一批货物 已知大货车比小货车每辆多运输5吨货物 且大货车运输75吨货物所用车辆数与小货车运输50吨货物所用车辆数相同 设有大货车每辆运输x 吨,则所列方程正确的是( ) A .75505x x=- B .75505x x =- C .75505x x=+ D .75505x x =+ 5.(2023·云南·统考中考真题)阅读 正如一束阳光.孩子们无论在哪儿 都可以感受到阳光的照耀 都可以通过阅读触及更广阔的世界.某区教育体育局向全区中小学生推出“童心读书会”的分享活动.甲 乙两同学分别从距离活动地点800米和400米的两地同时出发 参加分享活动.甲同学的速度是乙同学的速度的1.2倍 乙同学比甲同学提前4分钟到达活动地点.若设乙同学的速度是x 米/分,则下列方程正确的是( ) A .1.24800400x x-= B .1.24800400x x-= C .40080041.2x x-= D .80040041.2x x-= 6.(2023·甘肃武威·统考中考真题)方程211x x =+的解为( ) A .2x =- B .2x =C .4x =-D .4x =7.(2023·上海·统考中考真题)在分式方程2221521x x x x -+=-中 设221x y x -= 可得到关于y 的整式方程为( )A .2550y y ++=B .2550y y -+=C .2510y y ++=D .2510y y -+=8.(2023·天津·统考中考真题)计算21211x x ---的结果等于( ) A .1-B .1x -C .11x + D .211x - 9.(2023·湖北随州·统考中考真题)甲 乙两个工程队共同修一条道路 其中甲工程队需要修9千米 乙工程队需要修12千米.已知乙工程队每个月比甲工程队多修1千米 最终用的时间比甲工程队少半个月.若设甲工程队每个月修x 千米,则可列出方程为( ) A .912112x x -=+ B .129112x x -=+ C .912112x x -=+ D .129112x x -=+ 10.(2023·四川内江·统考中考真题)用计算机处理数据 为了防止数据输入出错 某研究室安排两名程序操作员各输入一遍 比较两人的输入是否一致 本次操作需输入2640个数据 已知甲的输入速度是乙的2倍 结果甲比乙少用2小时输完.这两名操作员每分钟各能输入多少个数据?设乙每分钟能输入x 个数据 根据题意得方程正确的是( ) A .2640264022x x=+ B .2640264022x x=- C .264026402602x x =+⨯ D .264026402602x x=-⨯ 11.(2023·湖北十堰·统考中考真题)为了落实“双减”政策 进一步丰富文体活动 学校准备购进一批篮球和足球 已知每个篮球的价格比每个足球的价格多20元 用1500元购进篮球的数量比用800元购进足球的数量多5个 如果设每个足球的价格为x 元 那么可列方程为( ) A .1500800520x x -=+ B .1500800520x x-=- C .8001500520x x -=+ D .8001500520x x -=- 12.(2023·湖南·统考中考真题)某校组织九年级学生赴韶山开展研学活动 已知学校离韶山50千米 师生乘大巴车前往 某老师因有事情 推迟了10分钟出发 自驾小车以大巴车速度的1.2倍前往 结果同时到达.设大巴车的平均速度为x 千米/时,则可列方程为( ) A .505011.26x x =+ B .505010 1.2x x+= C .5050101.2x x=+ D .501506 1.2x x+= 13.(2023·四川·统考中考真题)近年来 我市大力发展交通 建成多条快速通道 小张开车从家到单位有两条路线可选择 路线a 为全程10千米的普通道路 路线b 包含快速通道 全程7千米 走路线b 比路线a 平均速度提高40% 时间节省10分钟 求走路线a 和路线b 的平均速度分别是多少?设走路线a 的平均速度为x 千米/小时 依题意 可列方程为( )A .()10710140%60x x -=+B .()10710140%x x -=+ C .()71010140%60x x -=+D .()71010140%x x-=+ 14.(2023·广东·统考中考真题)计算32a a+的结果为( )A .1aB .26a C .5aD .6a15.(2023·辽宁大连·统考中考真题)将方程13311xx x+=--去分母 两边同乘()1x -后的式子为( ) A .()1331x x +=-B .()1313x x +-=-C .133x x -+=-D .()1313x x +-=16.(2023·湖南张家界·统考中考真题)《四元玉鉴》是一部成就辉煌的数学名著 是宋元数学集大成者 也是我国古代水平最高的一部数学著作.该著作记载了“买椽多少”问题:“六贯二百一十钱 倩人去买几株椽.每株脚钱三文足 无钱准与一株椽”.大意是:现请人代买一批椽 这批椽的总售价为6210文.如果每株椽的运费是3文 那么少拿一株椽后 剩下的椽的运费恰好等于一株椽的价钱 试问6210文能买多少株椽?设6210元购买椽的数量为x 株,则符合题意的方程是( ). A .621031x x =- B .()316210x -= C .()621031x x-=D .()6210311x x -=- 17.(2023·黑龙江·统考中考真题)已知关于x 的分式方程122m xx x+=--的解是非负数,则m 的取值范围是( ) A .2m ≤B .2m ≥C .2m ≤且2m ≠-D .2m <且2m ≠-18.(2023·河南·统考中考真题)化简11a a a-+的结果是( ) A .0B .1C .aD .2a -19.(2023·内蒙古赤峰·统考中考真题)化简422x x +-+的结果是( ) A .1 B .224x x -C .2x x +D .22x x +20.(2023·湖北武汉·统考中考真题)已知210x x --= 计算2221121-⎛⎫-÷ ⎪+++⎝⎭x x x x x x 的值是( ) A .1 B .1- C .2 D .2-21.(2023·山东聊城·统考中考真题)若关于x 的分式方程111x m x x+=--的解为非负数,则m 的取值范围是( )A .1m 且1m ≠-B .1m ≥-且1m ≠C .1m <且1m ≠-D .1m >-且1m ≠二 填空题22.(2023·浙江台州·统考中考真题)3月12日植树节期间 某校环保小卫士组织植树活动.第一组植树12棵 第二组比第一组多6人 植树36棵 结果两组平均每人植树的棵数相等,则第一组有________人. 23.(2023·浙江绍兴·统考中考真题)方程3911x x x =++的解是________. 24.(2023·上海·统考中考真题)化简:2211x x x---的结果为________. 25.(2023·湖南·统考中考真题)已知5x =,则代数式2324416x x ---的值为________. 26.(2023·江苏苏州·统考中考真题)分式方程123x x +=的解为x =________________. 27.(2023·湖南永州·统考中考真题)若关于x 的分式方程1144mx x-=--(m 为常数)有增根,则增根是_______. 28.(2023·黑龙江绥化·统考中考真题)化简:2222142442x x x x x x x x x+--⎛⎫-÷= ⎪--+-⎝⎭_______. 29.(2017·江西·南昌市育新学校校联考一模)分式方程2102x x -=-的解是_____. 30.(2023·内蒙古赤峰·统考中考真题)方程216124x x x ++=+-的解为___________.三 解答题31.(2023·湖北黄冈·统考中考真题)化简:21211x xx x +---.32.(2023·辽宁大连·统考中考真题)计算:21123926a a a a -⎛⎫+÷ ⎪+-+⎝⎭.33.(2023·广东深圳·统考中考真题)先化简 再求值:22111121x x x x -⎛⎫+÷ ⎪--+⎝⎭其中3x =.34.(2022·江苏南京·模拟预测)解方程:2533322x x x x --=---.35.(2023·四川眉山·统考中考真题)先化简:214111x x x -⎛⎫-÷⎪--⎝⎭再从2,1,1,2--选择中一个合适的数作为x 的值代入求值.36.(2023·内蒙古通辽·统考中考真题)以下是某同学化简分式22a b ab b a a a ⎛⎫--÷- ⎪⎝⎭的部分运算过程: 解:原式22a b a b ab b a a a a---=÷-+…………第一步 212a b a b a a a a ab b --=⋅-⋅-…………第二步 222a b a ba ab b --==-…………第三步 ……(1)上面的运算过程中第___________步开始出现了错误 (2)请你写出完整的解答过程.37.(2023·湖南怀化·统考中考真题)先化简234111a a a -⎛⎫+÷⎪--⎝⎭ 再从1- 0 1 2中选择一个适当的数作为a 的值代入求值.38.(2023·甘肃武威·统考中考真题)化简:22222244a b a b a b a b a b a ab b+---÷+--+.39.(2023·山东烟台·统考中考真题)先化简 再求值:2695222a a a a a -+⎛⎫÷++ ⎪--⎝⎭ 其中a 是使不等式112a -≤成立的正整数.40.(2023·江苏苏州·统考中考真题)先化简 再求值:221422211a a a a a a --⋅---+- 其中12a =.41.(2023·湖南永州·统考中考真题)先化简 再求值:211121x x x x ⎛⎫-÷ ⎪+++⎝⎭其中2x =.42.(2023·湖北随州·统考中考真题)先化简 再求值:24242x x ÷-- 其中1x =.43.(2023·湖南·统考中考真题)先化简 再求值:211114x x x +⎛⎫+⋅ ⎪+-⎝⎭其中3x =.44.(2023·山西·统考中考真题)解方程:131122x x +=--.45.(2023·湖北宜昌·统考中考真题)先化简 再求值:222442342a a a a a a-+-÷+-+ 其中33=a .46.(2023·湖南郴州·统考中考真题)先化简 再求值:22311213x x x x x x x+-⋅+-++ 其中13x =47.(2023·广西·统考中考真题)解分式方程:211x x=-.48.(2023·四川·统考中考真题)先化简 再求值:222222322x y x x y y x x y xy ⎛⎫++÷ ⎪---⎝⎭ 其中31x = 3y =49.(2023·山东·统考中考真题)先化简 再求值:223x x xx y x y x y ⎛⎫+÷ ⎪-+-⎝⎭ 其中x y 满足230x y +-=.50.(2023·广东·统考中考真题)某学校开展了社会实践活动 活动地点距离学校12km 甲 乙两同学骑自行车同时从学校出发 甲的速度是乙的1.2倍 结果甲比乙早到10min 求乙同学骑自行车的速度.51.(2023·湖南张家界·统考中考真题)先化简22341121x x x x x -⎛⎫--÷ ⎪+++⎝⎭ 然后从1- 1 2这三个数中选一个合适的数代入求值.52.(2023·四川遂宁·统考中考真题)先化简 再求值:2221111x x x x -+⎛⎫⋅+ ⎪-⎝⎭ 其中112x -⎛⎫= ⎪⎝⎭.53.(2023·江西·统考中考真题)化简21x x x -⎛⎫+⋅ ⎪.下面是甲 乙两同学的部分运算过程:解:原式()()()()()()21111111x x x x x x x x x x ⎡⎤-+-=+⋅⎢⎥+-+-⎣⎦ ……解:原式221111x x x x x x x x--=⋅+⋅+- ……(1)甲同学解法的依据是________ 乙同学解法的依据是________ (填序号) ①等式的基本性质 ①分式的基本性质 ①乘法分配律 ①乘法交换律. (2)请选择一种解法 写出完整的解答过程.54.(2023·湖南常德·统考中考真题)先化简 再求值:231242x x x x ++⎛⎫÷- ⎪-+⎝⎭其中5x =.55.(2023·山东枣庄·统考中考真题)先化简 再求值:222211a a a a a ⎛⎫-÷ ⎪--⎝⎭其中a 的值从不等式组15a -<<56.(2023·山东滨州·统考中考真题)先化简 再求值:22421244a a a a a a a a -+-⎛⎫÷- ⎪--+⎝⎭其中a 满足1216cos6004a a -⎛⎫-⋅+ ⎪⎭︒=⎝.57.(2023·湖南·统考中考真题)先化简 再求值:222119x x x x +⎛⎫+⋅⎪+-⎝⎭ 其中6x =.58.(2023·山东聊城·统考中考真题)先化简 再求值:222224422a a a a a a a a+⎛⎫+÷ ⎪-+--⎝⎭ 其中22a .59.(2023·湖北荆州·统考中考真题)先化简 再求值:222222x y x xy y x y x y x y x y ⎛⎫--+--÷ ⎪+-+⎝⎭其中112x -⎛⎫= ⎪⎝⎭ 0(2023)y =-.60.(2023·福建·统考中考真题)先化简 再求值:22111x x x x x +-⎛⎫-÷ ⎪-⎝⎭其中21x =.61.(2023·黑龙江·统考中考真题)先化简 再求值:2222111m m m m m -+⎛⎫-÷⎪+-⎝⎭其中tan601m =︒-.62.(2023·山东·统考中考真题)为加快公共领域充电基础设施建设 某停车场计划购买A B 两种型号的充电桩.已知A 型充电桩比B 型充电桩的单价少0.3万元 且用15万元购买A 型充电桩与用20万元购买B 型充电桩的数量相等.(1)A B 两种型号充电桩的单价各是多少?(2)该停车场计划共购买25个A B 型充电桩 购买总费用不超过26万元 且B 型充电桩的购买数量不少于A 型充电桩购买数量的12.问:共有哪几种购买方案?哪种方案所需购买总费用最少?参考答案一 单选题1.(2023·湖南·统考中考真题)将关于x 的分式方程3121x x =-去分母可得( ) A .332x x -= B .312x x -= C .31x x -= D .33x x -=【答案】A【分析】方程两边都乘以()21x x - 从而可得答案. 【详解】解:①3121x x =- 去分母得:()312x x -= 整理得:332x x -= 故选:A .【点睛】本题考查的是分式方程的解法 熟练的把分式方程化为整式方程是解本题的关键.2.(2023·湖南郴州·统考中考真题)小王从A 地开车去B 地 两地相距240km .原计划平均速度为x km/h 实际平均速度提高了50% 结果提前1小时到达.由此可建立方程为( ) A .24024010.5x x-= B .24024011.5x x-= C .24024011.5x x-= D . 1.5240x x +=【答案】B【分析】设原计划平均速度为x km/h 根据实际平均速度提高了50% 结果提前1小时到达 列出分式方程即可.【详解】解:设原计划平均速度为x km/h 由题意 得: ()2402401150%x x -=+ 即:24024011.5x x-= 故选:B.【点睛】本题考查根据实际问题列方程.找准等量关系 正确得列出方程 是解题的关键.3.(2023·黑龙江绥化·统考中考真题)某运输公司 运送一批货物 甲车每天运送货物总量的14.在甲车运送1天货物后 公司增派乙车运送货物 两车又共同运送货物12天 运完全部货物.求乙车单独运送这批货物需多少天?设乙车单独运送这批货物需x 天 由题意列方程 正确的是( )A .11142x += B .11111424x ⎛⎫++= ⎪⎝⎭C .1111142x ⎛⎫++= ⎪⎝⎭D .11111442x⎛⎫++= ⎪⎝⎭【答案】B【分析】设乙车单独运送这批货物需x 天 由题意列出分式方程即可求解. 【详解】解:设乙车单独运送这批货物需x 天 由题意列方程11111424x ⎛⎫++= ⎪⎝⎭ 故选:B .【点睛】本题考查了列分式方程 根据题意找到等量关系列出方程是解题的关键.4.(2023·广东深圳·统考中考真题)某运输公司运输一批货物 已知大货车比小货车每辆多运输5吨货物 且大货车运输75吨货物所用车辆数与小货车运输50吨货物所用车辆数相同 设有大货车每辆运输x 吨,则所列方程正确的是( ) A .75505x x=- B .75505x x =- C .75505x x=+ D .75505x x =+【答案】B【分析】根据“大货车运输75吨货物所用车辆数与小货车运输50吨货物所用车辆数相同”即可列出方程. 【详解】解:设有大货车每辆运输x 吨,则小货车每辆运输()5x -吨 则75505x x =-. 故选:B.【点睛】本题考查分式方程的应用 理解题意准确找到等量关系是解题的关键.5.(2023·云南·统考中考真题)阅读 正如一束阳光.孩子们无论在哪儿 都可以感受到阳光的照耀 都可以通过阅读触及更广阔的世界.某区教育体育局向全区中小学生推出“童心读书会”的分享活动.甲 乙两同学分别从距离活动地点800米和400米的两地同时出发 参加分享活动.甲同学的速度是乙同学的速度的1.2倍 乙同学比甲同学提前4分钟到达活动地点.若设乙同学的速度是x 米/分,则下列方程正确的是( ) A .1.24800400x x-= B .1.24800400x x-= C .40080041.2x x-= D .80040041.2x x-= 【答案】D【分析】设乙同学的速度是x 米/分 根据乙同学比甲同学提前4分钟到达活动地点 列出方程即可. 【详解】解①设乙同学的速度是x 米/分 可得: 80040041.2x x-= 故选: D .【点睛】本题考查分式方程的应用 分析题意 找到合适的等量关系是解决问题的关键. 6.(2023·甘肃武威·统考中考真题)方程211x x =+的解为( ) A .2x =- B .2x = C .4x =- D .4x =【答案】A【分析】把分式方程转化为整式方程求解 然后解出的解要进行检验 看是否为增根. 【详解】去分母得()21x x += 解方程得2x =-检验:2x =-是原方程的解 故选:A .【点睛】本题考查了解分式方程的一般步骤 解题关键是熟记解分式方程的基本思想是“转化思想” 即把分式方程转化为整式方程求解 注意分式方程需要验根.7.(2023·上海·统考中考真题)在分式方程2221521x x x x -+=-中 设221x y x -= 可得到关于y 的整式方程为( )A .2550y y ++=B .2550y y -+=C .2510y y ++=D .2510y y -+=【答案】D 【分析】设221x y x -=,则原方程可变形为15y y += 再化为整式方程即可得出答案. 【详解】解:设221x y x-=,则原方程可变形为15y y += 即2510y y -+= 故选:D.【点睛】本题考查了利用换元法解方程 正确变形是关键 注意最后要化为整式方程. 8.(2023·天津·统考中考真题)计算21211x x ---的结果等于( ) A .1- B .1x - C .11x + D .211x - 【答案】C【分析】根据异分母分式加减法法则进行计算即可. 【详解】解:()()()()21212111111x x x x x x x +-=----+-+ ()()1211x x x +-=-+ ()()111x x x -=-+11x =+ 故选:C .【点睛】本题考查了异分母分式加减法法则 解答关键是按照相关法则进行计算.9.(2023·湖北随州·统考中考真题)甲 乙两个工程队共同修一条道路 其中甲工程队需要修9千米 乙工程队需要修12千米.已知乙工程队每个月比甲工程队多修1千米 最终用的时间比甲工程队少半个月.若设甲工程队每个月修x 千米,则可列出方程为( ) A .912112x x -=+ B .129112x x -=+ C .912112x x -=+ D .129112x x -=+ 【答案】A【分析】设甲工程队每个月修x 千米,则乙工程队每个月修()1x +千米 根据“最终用的时间比甲工程队少半个月”列出分式方程即可.【详解】解:设甲工程队每个月修x 千米,则乙工程队每个月修()1x +千米 依题意得912112x x -=+ 故选:A .【点睛】此题主要考查了由实际问题抽象出分式方程 关键是分析题意 找准关键语句 列出相等关系. 10.(2023·四川内江·统考中考真题)用计算机处理数据 为了防止数据输入出错 某研究室安排两名程序操作员各输入一遍 比较两人的输入是否一致 本次操作需输入2640个数据 已知甲的输入速度是乙的2倍 结果甲比乙少用2小时输完.这两名操作员每分钟各能输入多少个数据?设乙每分钟能输入x 个数据 根据题意得方程正确的是( ) A .2640264022x x=+ B .2640264022x x=- C .264026402602x x =+⨯ D .264026402602x x=-⨯ 【答案】D【分析】设乙每分钟能输入x 个数据,则甲每分钟能输入2x 个数据 根据“甲比乙少用2小时输完”列出分式方程即可.【详解】解:设乙每分钟能输入x 个数据,则甲每分钟能输入2x 个数据 由题意得264026402602x x=-⨯ 故选:D .【点睛】本题考查了由实际问题抽象出分式方程 找准等量关系 正确列出分式方程是解题的关键. 11.(2023·湖北十堰·统考中考真题)为了落实“双减”政策 进一步丰富文体活动 学校准备购进一批篮球和足球 已知每个篮球的价格比每个足球的价格多20元 用1500元购进篮球的数量比用800元购进足球的数量多5个 如果设每个足球的价格为x 元 那么可列方程为( ) A .1500800520x x -=+ B .1500800520x x-=- C .8001500520x x -=+ D .8001500520x x -=- 【答案】A【分析】设每个足球的价格为x 元,则篮球的价格为()+20x 元 根据“用1500元购进篮球的数量比用800元购进足球的数量多5个”列方程即可.【详解】解:设每个足球的价格为x 元,则篮球的价格为()+20x 元 由题意可得:1500800520x x-=+故选:A .【点睛】本题考查分式方程的应用 正确理解题意是关键.12.(2023·湖南·统考中考真题)某校组织九年级学生赴韶山开展研学活动 已知学校离韶山50千米 师生乘大巴车前往 某老师因有事情 推迟了10分钟出发 自驾小车以大巴车速度的1.2倍前往 结果同时到达.设大巴车的平均速度为x 千米/时,则可列方程为( ) A .505011.26x x =+ B .505010 1.2x x+= C .5050101.2x x=+ D .501506 1.2x x+= 【答案】A【分析】设大巴车的平均速度为x 千米/时,则老师自驾小车的平均速度为1.2x 千米/时 根据时间的等量关系列出方程即可.【详解】解:设大巴车的平均速度为x 千米/时,则老师自驾小车的平均速度为1.2x 千米/时 根据题意列方程为:505011.26x x =+ 故答案为:A .【点睛】本题考查了分式方程的应用 找到等量关系是解题的关键.13.(2023·四川·统考中考真题)近年来 我市大力发展交通 建成多条快速通道 小张开车从家到单位有两条路线可选择 路线a 为全程10千米的普通道路 路线b 包含快速通道 全程7千米 走路线b 比路线a 平均速度提高40% 时间节省10分钟 求走路线a 和路线b 的平均速度分别是多少?设走路线a 的平均速度为x 千米/小时 依题意 可列方程为( ) A .()10710140%60x x -=+ B .()10710140%x x -=+ C .()71010140%60x x -=+D .()71010140%x x-=+ 【答案】A【分析】若设路线a 时的平均速度为x 千米/小时,则走路线b 时的平均速度为()140%x +千米/小时 根据路线b 的全程比路线a 少用10分钟可列出方程.【详解】解:由题意可得走路线b 时的平均速度为()140%x +千米/小时 ①()10710140%60x x -=+ 故选:A .【点睛】本题考查了由实际问题抽象出分式方程 找到关键描述语 找到合适的等量关系是解决问题的关键.14.(2023·广东·统考中考真题)计算32a a+的结果为( )A .1aB .26a C .5aD .6a【答案】C【分析】根据分式的加法运算可进行求解. 【详解】解:原式5a= 故选:C .【点睛】本题主要考查分式的运算 熟练掌握分式的运算是解题的关键. 15.(2023·辽宁大连·统考中考真题)将方程13311xx x+=--去分母 两边同乘()1x -后的式子为( ) A .()1331x x +=- B .()1313x x +-=- C .133x x -+=- D .()1313x x +-=【答案】B【分析】根据解分式方程的去分母的方法即可得. 【详解】解:13311xx x+=-- 两边同乘()1x -去分母 得()1313x x +-=- 故选:B .【点睛】本题考查了解分式方程 熟练掌握去分母的方法是解题关键.16.(2023·湖南张家界·统考中考真题)《四元玉鉴》是一部成就辉煌的数学名著 是宋元数学集大成者 也是我国古代水平最高的一部数学著作.该著作记载了“买椽多少”问题:“六贯二百一十钱 倩人去买几株椽.每株脚钱三文足 无钱准与一株椽”.大意是:现请人代买一批椽 这批椽的总售价为6210文.如果每株椽的运费是3文 那么少拿一株椽后 剩下的椽的运费恰好等于一株椽的价钱 试问6210文能买多少株椽?设6210元购买椽的数量为x 株,则符合题意的方程是( ). A .621031x x =- B .()316210x -= C .()621031x x-= D .()6210311x x -=- 【答案】C【分析】设6210元购买椽的数量为x 株 根据单价=总价÷数量 求出一株椽的价钱为6210x再根据少拿一株椽后剩下的椽的运费恰好等于一株椽的价钱 即可列出分式方程 得到答案.【详解】解:设6210元购买椽的数量为x 株,则一株椽的价钱为6210x由题意得:()621031x x-= 故选:C .【点睛】本题考查了从实际问题中抽象出分式方程 正确理解题意找出等量关系是解题关键. 17.(2023·黑龙江·统考中考真题)已知关于x 的分式方程122m xx x+=--的解是非负数,则m 的取值范围是( ) A .2m ≤ B .2m ≥ C .2m ≤且2m ≠- D .2m <且2m ≠-【答案】C【分析】解分式方程求出22mx -= 然后根据解是非负数以及解不是增根得出关于m 的不等式组 求解即可.【详解】解:分式方程去分母得:2m x x +-=- 解得:22mx -=①分式方程122m xx x+=--的解是非负数 ①202m-≥ 且222m x -=≠ ①2m ≤且2m ≠- 故选:C .【点睛】本题考查了解分式方程 解一元一次不等式组 正确得出关于m 的不等式组是解题的关键. 18.(2023·河南·统考中考真题)化简11a a a-+的结果是( ) A .0 B .1 C .a D .2a -【答案】B【分析】根据同母的分式加法法则进行计算即可. 【详解】解:11111a a aa a a a--++=== 故选:B .【点睛】本题考查同分母的分式加法 熟练掌握运算法则是解决问题的关键. 19.(2023·内蒙古赤峰·统考中考真题)化简422x x +-+的结果是( )A .1B .224x x -C .2x x +D .22x x +【答案】D【分析】根据分式的加减混合运算法则即可求出答案. 【详解】解:422x x +-+ ()()4222x x x ++-=+22x x =+. 故选:D.【点睛】本题考查了分式的化简 解题的关键在于熟练掌握分式加减混合运算法则.20.(2023·湖北武汉·统考中考真题)已知210x x --= 计算2221121-⎛⎫-÷ ⎪+++⎝⎭x x x x x x 的值是( ) A .1 B .1- C .2 D .2-【答案】A【分析】根据分式的加减运算以及乘除运算法则进行化简 然后把21x x =+代入原式即可求出答案.【详解】解:2221121-⎛⎫-÷⎪+++⎝⎭x x x x x x =()()()()2121111x x x x x x x x x ⎡⎤-+-÷⎢⎥+++⎢⎥⎣⎦ =()()()21111x x x x x x +-⋅+- =21x x + ①210x x --= ①21x x =+ ①原式=21x x +=1 故选:A.【点睛】本题考查分式的混合运算及求值.解题的关键是熟练运用分式的加减运算以及乘除运算法则. 21.(2023·山东聊城·统考中考真题)若关于x 的分式方程111x mx x+=--的解为非负数,则m 的取值范围是( )A .1m 且1m ≠-B .1m ≥-且1m ≠C .1m <且1m ≠-D .1m >-且1m ≠【答案】A【分析】把分式方程的解求出来 排除掉增根 根据方程的解是非负数列出不等式 最后求出m 的范围. 【详解】解:方程两边都乘以()1x - 得:1x x m +-=- 解得:12mx -=①10x -≠ 即:112m-≠ ①1m ≠-又①分式方程的解为非负数 ①102m-≥ ①1m①m 的取值范围是1m 且1m ≠- 故选:A .【点睛】本题考查了分式方程的解 根据条件列出不等式是解题的关键 分式方程一定要检验.二 填空题22.(2023·浙江台州·统考中考真题)3月12日植树节期间 某校环保小卫士组织植树活动.第一组植树12棵 第二组比第一组多6人 植树36棵 结果两组平均每人植树的棵数相等,则第一组有________人. 【答案】3【分析】审题确定等量关系:第一组平均每人植树棵数=第二组平均每人植树棵数 列方程求解 注意检验.【详解】设第一组有x 人,则第二组有(6)x +人 根据题意 得 12366xx去分母 得12(6)36x x解得 3x =经检验 3x =是原方程的根. 故答案为:3.【点睛】本题考查分式方程的应用 审题明确等量关系是解题的关键 注意分式方程的验根. 23.(2023·浙江绍兴·统考中考真题)方程3911x x x =++的解是________.【答案】3x =【分析】先去分母 左右两边同时乘以()1x + 再根据解一元一次方程的方法和步骤进行解答 最后进行检验即可.【详解】解:去分母 得:39x = 化系数为1 得:3x =. 检验:当3x =时 10x +≠ ①3x =是原分式方程的解. 故答案为:3x =.【点睛】本题主要考查了解分式方程 解题的关键是掌握解分式方程的方法和步骤 正确找出最简公分母 注意解分式方程要进行检验. 24.(2023·上海·统考中考真题)化简:2211xx x---的结果为________. 【答案】2【分析】根据同分母分式的减法计算法则解答即可. 【详解】解:2211x x x ---()2122211x x x x--===--故答案为:2.【点睛】本题考查了同分母分式减法计算 熟练掌握运算法则是解题关键. 25.(2023·湖南·统考中考真题)已知5x =,则代数式2324416x x ---的值为________. 【答案】13【分析】先通分 再根据同分母分式的减法运算法则计算 然后代入数值即可. 【详解】解:原式=()()()()()34244444x x x x x +--+-+()()31244x x x -=-+34x =+ 5x =333145493∴===++x 故答案为:13.【点睛】本题主要考查了分式通分计算的能力 解决本题的关键突破口是通分整理. 26.(2023·江苏苏州·统考中考真题)分式方程123x x +=的解为x =________________. 【答案】3-【分析】方程两边同时乘以3x 化为整式方程 解方程验根即可求解. 【详解】解:方程两边同时乘以3x ()312x x += 解得:3x =-经检验 3x =-是原方程的解 故答案为:3-.【点睛】本题考查了解分式方程 熟练掌握解分式方程的步骤是解题的关键. 27.(2023·湖南永州·统考中考真题)若关于x 的分式方程1144m x x-=--(m 为常数)有增根,则增根是_______. 【答案】4x =【分析】根据使分式的分母为零的未知数的值 是方程的增根 计算即可. 【详解】①关于x 的分式方程1144mx x-=--(m 为常数)有增根 ①40x -= 解得4x = 故答案为:4x =.【点睛】本题考查了分式方程的解法 增根的理解 熟练掌握分式方程的解法是解题的关键.28.(2023·黑龙江绥化·统考中考真题)化简:2222142442x x x x x x x x x +--⎛⎫-÷= ⎪--+-⎝⎭_______. 【答案】12x - 【分析】先根据分式的加减计算括号内的 同时将除法转化为乘法 再根据分式的性质化简即可求解. 【详解】解:2222142442x x x x x x x x x+--⎛⎫-÷ ⎪--+-⎝⎭ ()()()()()2221242x x x x x x x x x +----=⨯-- ()()2222442x x x x x x x x ---+=⨯-- 12x =-故答案为:12x -. 【点睛】本题考查了分式的混合运算 熟练掌握分式的运算法则是解题的关键.29.(2017·江西·南昌市育新学校校联考一模)分式方程2102x x -=-的解是_____. 【答案】4x =【分析】根据解分式方程的步骤计算即可. 【详解】去分母得:()220x x --= 解得:4x =经检验4x =是方程的解 故答案为:4x =.【点睛】本题考查解分式方程 正确计算是解题的关键 注意要检验. 30.(2023·内蒙古赤峰·统考中考真题)方程216124x x x ++=+-的解为___________. 【答案】4x =【分析】依据题意将分式方程化为整式方程 再按照因式分解即可求出x 的值. 【详解】解:216124x x x ++=+- 方程两边同时乘以()()22x x +-得 ()()2622x x x x -++=+- 2244x x ∴+=-2280x x ∴--=()()420x x ∴-+=4x ∴=或2x =-.经检验2x =-时 240x -= 故舍去. ∴原方程的解为:4x =.故答案为:4x =.【点睛】本题考查的是解分式方程 解题的关键在于注意分式方程必须检验根的情况.三 解答题31.(2023·湖北黄冈·统考中考真题)化简:21211x xx x +---.【答案】1x -【分析】先计算同分母分式的减法 再利用完全平方公式约分化简. 【详解】解:21211x xx x +--- 2211x x x -+=- ()211x x -=-1x =-【点睛】本题考查分式的约分化简 解题的关键是掌握分式的运算法则. 32.(2023·辽宁大连·统考中考真题)计算:21123926a a a a -⎛⎫+÷⎪+-+⎝⎭. 【答案】23a - 【分析】先计算括号内的加法 再计算除法即可. 【详解】解:21123926a a a a -⎛⎫+÷⎪+-+⎝⎭ ()()()()()312333323a a a a a a a ⎡⎤--=+÷⎢⎥+-+-+⎢⎥⎣⎦ ()()()223323a a a a a --=÷+-+()()()232332a a a a a +-=⋅+--23a =- 【点睛】此题考查了分式的混合运算 熟练掌握分式的运算法则和顺序是解题的关键.33.(2023·广东深圳·统考中考真题)先化简 再求值:22111121x x x x -⎛⎫+÷ ⎪--+⎝⎭ 其中3x =. 【答案】1xx + 34 【分析】先根据分式混合运算的法则把原式进行化简 再把x 的值代入进行计算即可.【详解】22111121x x x x -⎛⎫+÷ ⎪--+⎝⎭ ()()()21111x x x x x +-=÷-- 111x x x x -=⨯-+。
036.勤学早测试卷目录(16-17) 数学 九年级(上、下)

勤学早测试卷(2016-2017)数学九年级(上、下)九年级数学(上册)1.九(上)第21章《一元一次方程》周测(一)2.九(上)第21章《一元二次方程》周测(二)3.九(上)第2l章《一元二次方程》单元检测题(月考一)4.九(上)第2l章《一元二次方程》专题一点通(一)(二)5.九(上)第22章《一次函数》周测(一)6.九(上)第22章《二次函数》周测(二)7.九(上)第22章《二次函数》单元检测题8.九(上)第22章《二次函数》专题一点通(一)(二)9.九(上)第22章《二次函数》专题一点通(三)10.九(上)月考(二)11.九(上)第23章《旋转》单元检测题12.九(上)第23章《旋转》专题一点通13.九(上)期中模拟题(月考三)14.九(上)第24章《圆》周测(一)15.九(上)第24章《圆》周测(二)16.九(上)第24章《圆》周测(三)17.九(上)第24章《圆》单元检测题18.九(上)第24章《圆》专题一点通19.九(上)月考(四)20.九(上)第25章《概率初步》单元检测题21.九(上)第25章《概率初步》专题一点通22.九(上)期末模拟题(月考五)九年级数学(下册)23.九(下)第26章《反比例函数》周测(一)24.九(下)第26章《反比例函数》周测(二)25.九(下)第26章《反比例函数》单元检测题(月考一)26.九(下)第26章《反比例函数》专题一点通27.九(下)第27章《相似》周测(一)28.九(下)第27章《相似》周测(二)29.九(下)第27章《相似》单元检测题30.九(下)第27章《相似》专题一点通31.九(下)月考(二)32.九(下)第28章《三角函数》周测(一)33.九(下)第28章《三角函数》单元检测题34.九(下)第28章《三角函数》专题一点通35.九(下)第29章《投影与视图》单元检测题36.九(下)月考(三)(中考模拟题)。
2016-2017学年安徽省芜湖市第二十九中学九年级下学期第一次模拟考试数学试卷(带解析)

绝密★启用前2016~2017学年安徽省芜湖市第二十九中学九年级下学期第一次模拟考试数学试卷(带解析)试卷副标题考试范围:xxx ;考试时间:72分钟;命题人:xxx学校:___________姓名:___________班级:___________考号:___________注意事项.1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、单选题(题型注释)1、如图,⊙O 是△ABC 的外接圆,弦AC 的长为3,sinB=,则⊙O 的半径为( )A .4B .3C .2D .【答案】C【解析】试题分析:过点O 作OD ⊥AC ,连接OA ,根据垂径定理可得:AD==1.5,∠AOD=∠B ,根据∠AOD 的正弦值可得:,则OA=2.试卷第2页,共17页点睛:本题主要考查的就是直角三角形的三角函数以及圆的基本性质.在求弦长的时候,我们一般通过垂径定理来求出弦长的一半,从而得出答案.本题我们需要通过同弧所对的圆心角与圆周角的关系得出圆心角的正弦值,然后根据直角三角形的三角函数求出弦长的一半,从而求出弦长.在圆的题目中,我们经常会通过辅助线构造直角三角形,然后根据勾股定理得出答案. 2、在△ABC 中,(2cosA ﹣)2+|1﹣tanB|=0,则△ABC 一定是( )A .直角三角形B .等腰三角形C .等边三角形D .等腰直角三角形【答案】D【解析】试题分析:根据非负数的性质可得:2cosA=,tanB=1,解得:∠A=45°,∠B=45°,则∠C=90°,则△ABC 是等腰直角三角形.3、如图,点P 在△ABC 的边AC 上,要判断△ABP ∽△ACB ,添加一个条件,不正确的是( )A .=B .∠APB=∠ABCC .D .∠ABP=∠C【答案】A【解析】试题分析:根据相似三角形的判定法则:有两个角对应相等的两个三角形相似,则B 和D 正确;根据有一个角相等,角的两边对应成比例的两个三角形相似,则C 正确.4、如图,点A 的坐标是(2,0),△ABO 是等边三角形,点B 在第一象限.若反比例函数y =的图象经过点B ,则k 的值是( )A .1B .2C .D .【答案】C【解析】试题分析:根据点A 的坐标可得:OB=2,过点B 作x 轴的垂线,从而得出点B 的坐标为(1,),则k=.5、有四张背面一模一样的卡片,卡片正面分别写着一个函数关系式,分别是,将卡片顺序打乱后,随意从中抽取一张,取出的卡片上的函数是随的增大而增大的概率是( ) A .B .C .D .1【答案】C【解析】分析:从四张卡片中,抽出随的增大而增大的有共3个,即从四个函数中,抽取到符合要求的有3个。
2016-2017学年上海市宝山区九年级上学期数学期中试卷含参考答案

2016-2017学年上海市宝山区九年级上学期数学期中试卷一、选择题(每题4分,共24分)1.(4分)计算4﹣3地结果是()A.a B.C.﹣a D.﹣2.(4分)线段b是线段a和线段c地比例中项,若a=2,c=8,则线段b地长度为()A.5 B.±5 C.4 D.±43.(4分)如果点C是线段AB地黄金分割点,那么下列线段比中比值不可能为地是()A.B.C.D.4.(4分)已知△ABC∽△DEF,△ABC地周长为3,△DEF地周长为1,则△ABC 与△DEF地面积之比为()A.3:1 B.1:3 C.9:1 D.1:95.(4分)如图,△ABC地顶点是正方形网格地格点,则tanA地值为()A.B.C.D.6.(4分)如图,在△ABC中,∠C=90°,将△ABC沿直线MN翻折后,顶点C恰好落在AB边上地点D处,已知MN∥AB,MC=6,NC=,则四边形MABN地面积是()A.B.C.D.二、填空题(每题4分,共48分)7.(4分)如果:,那么:=.8.(4分)cos45°地值为.9.(4分)如图G为△ABC地重心,GN∥AC交BC于N,那么GN:AC=.10.(4分)已知45°<α<90°,则sinαcosα.(填不等号)11.(4分)如图在Rt△ABC中,∠A=90°,若BC=10,sinB=0.6,则斜边上地高AD等于.12.(4分)两个相似三角形对应高地比2:3,且已知这两个三角形地周长差为4,则较小地三角形地周长为.13.(4分)当两个相似三角形地相似比为时,这两个相似三角形一定是一对全等三角形.14.(4分)如图,在△ABC中,AD是边BC上地中线,设向量=,=,如果用向量,表示向量,那=.15.(4分)在△ABC中,点D、E分别在边AB、AC上,∠ADE=∠C,AD=1,AE=2,AC=3,那么AB=.16.(4分)已知坐标平面上地机器人接收指令“[a,A]”(a≥0,0°<A<180°)后地行动结果为:在原地顺时针旋转A后,再向面对方向沿直线行走a.若机器人地位置在原点,面对方向为y轴地正半轴,则它完成一次指令[2,60°]后,所在位置地坐标为.17.(4分)如图,点D、E分别为△ABC地边BC、CA上地点,且BD:CD=1:1,AE:CE=2:3,AD与BE相交于点F,则AF:DF=.18.(4分)如图1,将正方形纸片ABCD对折,使AB与CD重合,折痕为EF.如图2,展开后再折叠一次,使点C与点E重合,折痕为GH,点B地对应点为点M,EM交AB于N.若AD=2,则MN=.三、解答题(第19-22题,每题10分,第23-24题,每题12分,第25题14分,共78分)19.(5分)如图,已知向量、,求作=3+2.20.(5分)如果平行四边形ABCD地对角线AC、BD相交于O,设=,=,试用向量、表示向量.21.(10分)已知=≠0,求代数式•(a+2b)地值.22.(10分)如图,正方形DEFG地边EF在△ABC地边BC上,顶点D、G分别在边AB、AC上,已知△ABC地边BC=15,高AH=10,求正方形DEFG地边长和面积.23.(10分)如图,已知正方形ABCD中,BE平分∠DBC且交CD边于点E,延长BC至F使CF=CE,联接DF,延长BE交DF于点G.求证:BG•EG=DG2.24.(12分)如图,在△ABC中,∠C=150°,AC=4,tanB=.(1)求BC地长.(2)求tan15°地值(保留根号)25.(12分)如图,矩形OABC地顶点A、C分别在x轴和y轴上,且OA=3,OC=5,D是边CB上不与C、B重合地一个动点,经过点D地反比例函数y=地图象与边BA交于点E,连接DE.(1)如图,连接OE,若△EOA地面积为2,求反比例函数地解析式;(2)连接CA,问DE与CA是否平行?请说明理由;(3)当点B关于DE地对称点在OC上时,求出此时地点D地坐标.26.(14分)已知:如图①,两块全等地斜边为10cm,含30°角地直角△ABD和直角△ACD如图放置,在将△ACD以1cm/s地速度沿AC地方向匀速平移至△PNM 位置地同时,点Q从点C出发,沿着CB方向也以1cm/s地速度匀速移动,如图②,当P与C重合时,△PNM以及点Q停止移动,设AP=x,连接PQ、MQ、MC.(1)当x为何值时,PQ∥MN?(2)设△QMC和四边形ABQP地面积比为y(cm2),求y与x之间地函数关系式;(3)求使△PQM为直角三角形时AP地值(若不可能,请说明理由)2016-2017学年上海市宝山区九年级上学期数学期中试卷参考答案与试题解析一、选择题(每题4分,共24分)1.(4分)计算4﹣3地结果是()A.a B.C.﹣a D.﹣【解答】解:原式=(4﹣3)=,故选:B.2.(4分)线段b是线段a和线段c地比例中项,若a=2,c=8,则线段b地长度为()A.5 B.±5 C.4 D.±4【解答】解:∵线段b是线段a和线段c地比例中项,∴b2=ac=16,解得b=±4,又∵线段是正数,∴b=4.故选:C.3.(4分)如果点C是线段AB地黄金分割点,那么下列线段比中比值不可能为地是()A.B.C.D.【解答】解:∵点C是线段AB地黄金分割点,∴若AC为较长线段,则==;若BC为较长线段,则==.故选:C.4.(4分)已知△ABC∽△DEF,△ABC地周长为3,△DEF地周长为1,则△ABC 与△DEF地面积之比为()A.3:1 B.1:3 C.9:1 D.1:9【解答】解:∵△ABC∽△DEF,△ABC地周长为3,△DEF地周长为1,∴三角形地相似比是3:1,∴△ABC与△DEF地面积之比为9:1.故选:C.5.(4分)如图,△ABC地顶点是正方形网格地格点,则tanA地值为()A.B.C.D.【解答】解:连接CD.则CD=,AD=2,则tanA===.故选:A.6.(4分)如图,在△ABC中,∠C=90°,将△ABC沿直线MN翻折后,顶点C恰好落在AB边上地点D处,已知MN∥AB,MC=6,NC=,则四边形MABN地面积是()A .B .C .D .【解答】解:连接CD ,交MN 于E ,∵将△ABC 沿直线MN 翻折后,顶点C 恰好落在AB 边上地点D 处,∴MN ⊥CD ,且CE=DE ,∴CD=2CE , ∵MN ∥AB ,∴CD ⊥AB ,∴△CMN ∽△CAB ,∴,∵在△CMN 中,∠C=90°,MC=6,NC=, ∴S △CMN =CM•CN=×6×2=6, ∴S △CAB =4S △CMN =4×6=24,∴S 四边形MABN =S △CAB ﹣S △CMN =24﹣6=18.故选:C .二、填空题(每题4分,共48分)7.(4分)如果:,那么:= .【解答】解:∵, ∴2a=3b ,∴===.故答案为.8.(4分)cos45°地值为.【解答】解:cos45°=.故答案为.9.(4分)如图G为△ABC地重心,GN∥AC交BC于N,那么GN:AC=.【解答】解:∵G为△ABC地重心,∴=,∵GN∥AC,∴==,故答案为:.10.(4分)已知45°<α<90°,则sinα>cosα.(填不等号)【解答】解:∵45°<α<90°,∴<sinα<1,0<cosα<,∴sinα>cosα.故答案为:>.11.(4分)如图在Rt△ABC中,∠A=90°,若BC=10,sinB=0.6,则斜边上地高AD等于 4.8.【解答】解:在Rt△ABC中,∵∠A=90°,BC=10,∴sinB==0.6,∴AC=6,∴AB==8,=•BC•AD=•AB•AC,∵S△ABC∴AD==4.8,故答案为4.8.12.(4分)两个相似三角形对应高地比2:3,且已知这两个三角形地周长差为4,则较小地三角形地周长为8.【解答】解:∵两个相似三角形对应高地比为2:3,即相似比为2:3,∴它们周长地比是2:3,设较小地三角形地周长为2x,则较大地三角形地周长为3x,由题意得,3x﹣2x=4,解得,x=4,则2x=8,∴较小地三角形地周长为8.故答案为:8.13.(4分)当两个相似三角形地相似比为1时,这两个相似三角形一定是一对全等三角形.【解答】解:两个相似三角形地相似比为1时,这两个相似三角形一定是一对全等三角形,故答案为:1.14.(4分)如图,在△ABC中,AD是边BC上地中线,设向量=,=,如果用向量,表示向量,那=2﹣2.【解答】解:∵向量=,=,∴=﹣=﹣,∵AD是边BC上地中线,∴=2=2(﹣)=2﹣2.故答案为:2﹣2.15.(4分)在△ABC中,点D、E分别在边AB、AC上,∠ADE=∠C,AD=1,AE=2,AC=3,那么AB=6.【解答】解:∵∠A=∠A,∠ADE=∠C,∴△ADE∽△ACB,∴,∵AD=1,AE=2,AC=3,∴,∴AB=6.故答案为:6.16.(4分)已知坐标平面上地机器人接收指令“[a,A]”(a≥0,0°<A<180°)后地行动结果为:在原地顺时针旋转A后,再向面对方向沿直线行走a.若机器人地位置在原点,面对方向为y轴地正半轴,则它完成一次指令[2,60°]后,所在位置地坐标为(,1).【解答】解:如图,机器人地位置在原点,面对方向为y轴地正半轴,则它完成一次指令[2,60°]后,所在位置在P处,OP=2,OP与y轴地夹角为60°,过P作PQ⊥x轴于Q,则∠POQ=30°,∴PQ=OP=1,OQ==,∴P(,1),故答案为:(,1).17.(4分)如图,点D、E分别为△ABC地边BC、CA上地点,且BD:CD=1:1,AE:CE=2:3,AD与BE相交于点F,则AF:DF=4:3.【解答】解:作DH∥BE交AC于H,则EH:HC=BD:CD=1:1,∵AE:CE=2:3,∴AE:HE=4:3,∵DH∥BE,∴AF:DF=AE:HE=4:3,故答案为:4:3.18.(4分)如图1,将正方形纸片ABCD对折,使AB与CD重合,折痕为EF.如图2,展开后再折叠一次,使点C与点E重合,折痕为GH,点B地对应点为点M,EM交AB于N.若AD=2,则MN=.【解答】解:设DH=x,CH=2﹣x,由翻折地性质,DE=1,EH=CH=2﹣x,在Rt△DEH中,DE2+DH2=EH2,即12+x2=(2﹣x)2,解得x=,EH=2﹣x=.∵∠MEH=∠C=90°,∴∠AEN+∠DEH=90°,∵∠ANE+∠AEN=90°,∴∠ANE=∠DEH,又∠A=∠D,∴△ANE∽△DEH,=,即=,解得EN=,MN=ME﹣NE=2﹣=,故答案为:.三、解答题(第19-22题,每题10分,第23-24题,每题12分,第25题14分,共78分)19.(5分)如图,已知向量、,求作=3+2.【解答】解:如图=3,=2,则=3+2,向量即为所求.20.(5分)如果平行四边形ABCD地对角线AC、BD相交于O,设=,=,试用向量、表示向量.【解答】解:∵设=,=,∴=+=+,∵四边形ABCD是平行四边形,∴OC=AC,∴==+.21.(10分)已知=≠0,求代数式•(a+2b)地值.【解答】解:设==k≠0,可得,a=3k,b=2k,原式=•(a+2b)=,把a=3k,b=2k代入上式,原式==﹣4.22.(10分)如图,正方形DEFG地边EF在△ABC地边BC上,顶点D、G分别在边AB、AC上,已知△ABC地边BC=15,高AH=10,求正方形DEFG地边长和面积.【解答】解:高AH交DG于M,如图,设正方形DEFG地边长为x,则DE=MH=x,∴AM=AH﹣MH=10﹣x,∵DG∥BC,∴△ADG∽△ABC,∴=,即=,∴x=6,∴x2=36.答:正方形DEFG地边长和面积分别为6,36.23.(10分)如图,已知正方形ABCD中,BE平分∠DBC且交CD边于点E,延长BC至F使CF=CE,联接DF,延长BE交DF于点G.求证:BG•EG=DG2.【解答】证明:∵四边形ABCD为正方形,∴CB=CD,∠BCD=90°,在△BCE和△DCF中,∴△BCE≌△DCF,∴∠CBE=∠CDF,∵BE平分∠DBC,∴∠DBE=∠CBE,∴∠DBE=∠CDF,∵∠EGD=∠DGB,∠EDG=∠DBG,∴△GED∽△GDB,∴DG:BG=EG:DG,∴BG•EG=DG2.24.(12分)如图,在△ABC中,∠C=150°,AC=4,tanB=.(1)求BC地长.(2)求tan15°地值(保留根号)【解答】解:(1)作AD⊥BC交BC地延长线于D.在Rt△ADC中,∠D=90°,AC=4,∵∠ACB=150°,∴∠ACD=30°,∴AD=AC=2.CD=AC•cos30°=2,∵在Rt△ABD中,tanB===,∴BD=16,∴BC=BD﹣CD=16﹣2.(2)在CB上取一点E,使得CE=CA,连接AE,则∠AEC=15°,在Rt△ADE中,tan15°===2﹣.25.(12分)如图,矩形OABC地顶点A、C分别在x轴和y轴上,且OA=3,OC=5,D是边CB上不与C、B重合地一个动点,经过点D地反比例函数y=地图象与边BA交于点E,连接DE.(1)如图,连接OE,若△EOA地面积为2,求反比例函数地解析式;(2)连接CA,问DE与CA是否平行?请说明理由;(3)当点B关于DE地对称点在OC上时,求出此时地点D地坐标.【解答】解:(1)连接OE,如图1,∵Rt△AOE地面积为2,∴k=2×2=4,∴反比例函数解析式为y=;(2)连接AC,如图1,设D(x,5),E(3,x),则BD=3﹣x,BE=5﹣x,∴=,,∴,又∵∠B=∠B,∴△BDE∽△BCA,∴∠BED=∠BAC,∴DE∥AC.(3)设D(x,5),E(3,x),则CD=x,BD=3﹣x,BE=5﹣x,AE=x.作EF⊥OC,垂足为F,如图2,易证△B′CD∽△EFB′,∴,即,∴B′F=x,∴OB′=B′F+OF=B′F+AE=x+x=x,∴CB′=OC﹣OB′=5﹣x,在Rt△B′CD中,CB′=5﹣x,CD=x,B′D=BD=3﹣x,由勾股定理得,CB′2+CD2=B′D2,(5﹣x)2+x2=(3﹣x)2,解这个方程得,x1=1.5(舍去),x2=0.96,∴D地坐标为(0.96,5).26.(14分)已知:如图①,两块全等地斜边为10cm,含30°角地直角△ABD和直角△ACD如图放置,在将△ACD以1cm/s地速度沿AC地方向匀速平移至△PNM 位置地同时,点Q从点C出发,沿着CB方向也以1cm/s地速度匀速移动,如图②,当P 与C 重合时,△PNM 以及点Q 停止移动,设AP=x ,连接PQ 、MQ 、MC .(1)当x 为何值时,PQ ∥MN ? (2)设△QMC 和四边形ABQP 地面积比为y (cm 2),求y 与x 之间地函数关系式;(3)求使△PQM 为直角三角形时AP 地值(若不可能,请说明理由)【解答】解:(1)∵在Rt △ABC 中,BC=10,∠ABC=30°,∴AB=5,AC=5,如图①, ∵PQ ∥MN ,∴, ∵CQ=PA=x ,CP=5﹣x ,QB=10﹣x , ∴, ∴x=20﹣30;即当x=20﹣30时,PQ ∥MN ; (2)如图2,∵PM ∥QC ,∴△QMC 与△QPC 地面积相等,过P 作PD ⊥BC 于D ,则S △QPC =CP•CQ•sin ∠PCQ=﹣x 2+x ,∴S 四边形ABQP =S △ABC ﹣S △QPC =x 2﹣x +, ∴y=(0<x <5); (3)当PQ ⊥PM 或PQ ⊥MQ 时,△PMQ 是直角三角形,∵PM ∥QC ,∴当PQ ⊥PM 时,PQ ⊥QC ,=cos ∠ACB=, 即=,x=30﹣15, 当PQ ⊥MQ 时,如图2,作ME⊥BC于E,PD⊥BC于D,则△PDQ∽△QEM,∴,将PD=EM=(5﹣x),DQ=CD﹣CQ=(5﹣x)﹣x,QE=ED ﹣DQ=10•[(5﹣x)﹣x]代入解得:x=5﹣5,综上所述,当AP=5﹣5或30﹣15时,△PQM为直角三角形.。
【精】江西省吉安市2016-2017学年九年级下期中数学试卷及答案

2016-2017学年江西省吉安市九年级(下)期中数学试卷一、选择题1.﹣3的相反数是()A.3 B.﹣3 C. D.2.如图,直线AB∥CD,直线EF与AB,CD分别交于点E,F,EC⊥EF,垂足为E,若∠1=60°,则∠2的度数为()A.15°B.30°C.45°D.60°3.若a﹣b+c=0,则关于x的一元二次方程ax2+bx+c=0必有一根为()A.0 B.1 C.﹣1 D.24.如图,△ABC中,已知AB=8,∠C=90°,∠A=30°,DE是中位线,则DE的长为()A.4 B.3 C.D.25.如图,△ABO的面积为3,且AO=AB,双曲线y=经过点A,则k的值为()A.B.3 C.6 D.96.如图,已知顶点为(﹣3,﹣6)的抛物线y=ax2+bx+c经过点(﹣1,﹣4),则下列结论中错误的是()A.b2>4acB.ax2+bx+c≥﹣6C.若点(﹣2,m),(﹣5,n)在抛物线上,则m>nD.关于x的一元二次方程ax2+bx+c=﹣4的两根为﹣5和﹣1二、填空题7.因式分解3x2﹣3y2= .8.几个棱长为1的正方体组成的几何体的三视图如图所示,则这个几何体的体积是.9.如图,某数学兴趣小组将边长为5的正方形铁丝框ABCD变形为以A为圆心,AB为半径的扇形(忽略铁丝的粗细),则所得的扇形ABD的面积为.10.在函数y=中,自变量x的取值范围是.11.小明用S2= [(x1﹣3)2+(x2﹣3)2+…+(x10﹣3)2]计算一组数据的方差,那么x1+x2+x3+…+x10= .12.当﹣1≤x≤2时,二次函数y=(x﹣m)2+m2有最小值3,则实数m的值为.三、解答题13.(1)解方程: =﹣(2)如图,点B 在线段AD 上,BC ∥DE ,AB=ED ,BC=DB ,求证:∠A=∠E .14.先化简,再求代数式(﹣)÷的值,其中a=+1.15.如图,AB 是⊙O 的直径,点C 在⊙O 上,点D 在AB 延长线上,且∠BCD=∠A .(1)求证:DC 是⊙O 的切线;(2)若∠A=30°,AC=2,求图中阴影部分的面积.16.已知:▱ABCD 的两边AB ,AD 的长是关于x 的方程x 2﹣mx+﹣=0的两个实数根.(1)当m 为何值时,四边形ABCD 是菱形?求出这时菱形的边长; (2)若AB 的长为2,那么▱ABCD 的周长是多少?17.如图,已知矩形OABC 中,OA=3,AB=4,双曲线y=(k >0)与矩形两边AB 、BC 分别交于D 、E ,且BD=2AD (1)求k 的值和点E 的坐标;(2)点P 是线段OC 上的一个动点,是否存在点P ,使∠APE=90°?若存在,求出此时点P 的坐标,若不存在,请说明理由.四、解答题18.学校实施新课程改革以来,学生的学习能力有了很大提高.王老师为进一步了解本班学生自主学习、合作交流的现状,对该班部分学生进行调查,把调查结果分成四类(A:特别好,B:好,C:一般,D:较差)后,再将调查结果绘制成两幅不完整的统计图(如图).请根据统计图解答下列问题:(1)本次调查中,王老师一共调查了名学生;(2)将条形统计图补充完整;(3)为了共同进步,王老师从被调查的A类和D类学生中分别选取一名学生进行“兵教兵”互助学习,请用列表或画树状图的方法求出恰好选中一名男生和一名女生的概率.19.利用直尺画图(先用铅笔画图,然后再用墨水笔将符合条件的图形画出).(1)利用图1中的网格,过P点画直线AB的平行线和垂线;(2)平移图(2)网格中的三条线段AB、CD、EF,使平移后三条线段首尾顺次相接组成一个三角形;(3)如果每个方格的边长是单位1,那么图(2)中组成的三角形的面积等于.20.如图,一个书架上的方格中放着四本厚度和长度相同的书,其中左边两边上紧贴书架方格内侧竖放,右边两本书自然向左斜放,支撑点为C,E,右侧书角正好靠在方格内侧上,若书架方格长BF=40cm,∠DCE=30°.(1)设一本书的厚度为acm,则EF= cm;(2)若书的长度AB=20cm,求一本书的厚度(结果保留根号)五、解答题21.如图,抛物线C1:y=x2+4x﹣3与x轴交于A、B两点,将C1向右平移得到C2,C2与x轴交于B、C两点.(1)求抛物线C2的解析式.(2)点D是抛物线C2在x轴上方的图象上一点,求S△ABD的最大值.(3)直线l过点A,且垂直于x轴,直线l沿x轴正方向向右平移的过程中,交C1于点E交C2于点F,当线段EF=5时,求点E的坐标.22.如图,△AOB是等腰直角三角形,直线BD∥OA,OB=OA=1,P是线段AB上一动点,过P点作MN∥OB,分别交OA、BD于M、N,PC⊥PO,交BD于点C.(1)求证:OP=PC;(2)当点C在射线BN上时,设AP长为m,四边形POBC的面积为S,请求出S 与m间的函数关系式,并写出自变量m的取值范围;(3)当点P在线段AB上移动时,点C也随之在直线BN上移动,△PBC是否可能成为等腰三角形?如果可能,求出所有能使△PBC成为等腰三角形时的PM的值;如果不可能,请说明理由.六、解答题23.问题提出:如图1,在Rt△ABC中,∠ACB=90°,CB=4,CA=6,⊙C半径为2,P为圆上一动点,连结AP、BP,求AP+BP的最小值.(1)尝试解决:为了解决这个问题,下面给出一种解题思路:如图2,连接CP,在CB上取点D,使CD=1,则有==,又∵∠PCD=∠BCP,∴△PCD∽△BCP.∴=,∴PD=BP,∴AP+BP=AP+PD.请你完成余下的思考,并直接写出答案:AP+BP的最小值为.(2)自主探索:在“问题提出”的条件不变的情况下, AP+BP的最小值为.(3)拓展延伸:已知扇形COD中,∠COD=90°,OC=6,OA=3,OB=5,点P是上一点,求2PA+PB的最小值.2016-2017学年江西省吉安市九年级(下)期中数学试卷参考答案与试题解析一、选择题1.﹣3的相反数是()A.3 B.﹣3 C. D.【考点】14:相反数.【分析】由相反数的定义容易得出结果.【解答】解:﹣3的相反数是3,故选:A.2.如图,直线AB∥CD,直线EF与AB,CD分别交于点E,F,EC⊥EF,垂足为E,若∠1=60°,则∠2的度数为()A.15°B.30°C.45°D.60°【考点】JA:平行线的性质.【分析】根据对顶角相等求出∠3,再根据两直线平行,同旁内角互补解答.【解答】解:如图,∠3=∠1=60°(对顶角相等),∵AB∥CD,EG⊥EF,∴∠3+90°+∠2=180°,即60°+90°+∠2=180°,解得∠2=30°.故选B.3.若a ﹣b+c=0,则关于x 的一元二次方程ax 2+bx+c=0必有一根为( ) A .0 B .1C .﹣1D .2【考点】A3:一元二次方程的解.【分析】由a ﹣b+c=0求得b=a+c ,将其代入方程ax 2+bx+c=0中,可得方程的一个根是﹣1.【解答】解:∵a ﹣b+c=0, ∴b=a+c ,①把①代入方程ax 2+bx+c=0中, ax 2+(a+c )x+c=0, ax 2+ax+cx+c=0,ax (x+1)+c (x+1)=0, (x+1)(ax+c )=0,∴x 1=﹣1,x 2=﹣(非零实数a 、b 、c ). 故选:C .4.如图,△ABC 中,已知AB=8,∠C=90°,∠A=30°,DE 是中位线,则DE 的长为( )A .4B .3C .D .2【考点】KX :三角形中位线定理;KO :含30度角的直角三角形.【分析】先由含30°角的直角三角形的性质,得出BC ,再由三角形的中位线定理得出DE 即可.【解答】解:∵∠C=90°,∠A=30°,∴BC=AB=4,又∵DE是中位线,∴DE=BC=2.故选D.5.如图,△ABO的面积为3,且AO=AB,双曲线y=经过点A,则k的值为()A.B.3 C.6 D.9【考点】G5:反比例函数系数k的几何意义;KH:等腰三角形的性质.【分析】过点A作OB的垂线,垂足为点C,根据等腰三角形的性质得OC=BC,再根据三角形的面积公式得到OB•AC=3,易得OC•AC=3,设A点坐标为(x,y),即可得到k=xy=OC•AC=3.【解答】解:过点A作OB的垂线,垂足为点C,如图,∵AO=AB,∴OC=BC=OB,∵△ABO的面积为3,∴OB•AC=3,∴OC•AC=3.设A点坐标为(x,y),而点A在反比例函数y=(k>0)的图象上,∴k=xy=OC•AC=3.故选B.6.如图,已知顶点为(﹣3,﹣6)的抛物线y=ax2+bx+c经过点(﹣1,﹣4),则下列结论中错误的是()A.b2>4acB.ax2+bx+c≥﹣6C.若点(﹣2,m),(﹣5,n)在抛物线上,则m>nD.关于x的一元二次方程ax2+bx+c=﹣4的两根为﹣5和﹣1【考点】H4:二次函数图象与系数的关系;H5:二次函数图象上点的坐标特征;HA:抛物线与x轴的交点;HC:二次函数与不等式(组).【分析】由抛物线与x轴有两个交点则可对A进行判断;由于抛物线开口向上,有最小值则可对B进行判断;根据抛物线上的点离对称轴的远近,则可对C进行判断;根据二次函数的对称性可对D进行判断.【解答】解:A、图象与x轴有两个交点,方程ax2+bx+c=0有两个不相等的实数根,b2﹣4ac>0所以b2>4ac,故A选项正确;B、抛物线的开口向上,函数有最小值,因为抛物线的最小值为﹣6,所以ax2+bx+c ≥﹣6,故B选项正确;C、抛物线的对称轴为直线x=﹣3,因为﹣5离对称轴的距离大于﹣2离对称轴的距离,所以m<n,故C选项错误;D、根据抛物线的对称性可知,(﹣1,﹣4)关于对称轴的对称点为(﹣5,﹣4),所以关于x的一元二次方程ax2+bx+c=﹣4的两根为﹣5和﹣1,故D选项正确.故选C.二、填空题7.因式分解3x2﹣3y2= 3(x+y)(x﹣y).【考点】55:提公因式法与公式法的综合运用.【分析】先提取公因式3,再对余下的多项式利用平方差公式继续分解.【解答】解:3x2﹣3y2=3(x2﹣y2)=3(x+y)(x﹣y).故答案为:3(x+y)(x﹣y).8.几个棱长为1的正方体组成的几何体的三视图如图所示,则这个几何体的体积是 5 .【考点】U3:由三视图判断几何体.【分析】根据三视图,该几何体的主视图以及俯视图可确定该几何体共有两行三列,故可得出该几何体的小正方体的个数,即可得出这个几何体的体积.【解答】解:综合三视图可知,这个几何体的底层应该有3+1=4个小正方体,第二层应该有1个小正方体,因此搭成这个几何体所用小正方体的个数是4+1=5个,所以这个几何体的体积是5.故答案为:5.9.如图,某数学兴趣小组将边长为5的正方形铁丝框ABCD变形为以A为圆心,AB为半径的扇形(忽略铁丝的粗细),则所得的扇形ABD的面积为25 .【考点】MO:扇形面积的计算.【分析】根据扇形面积公式:S=•L•R(L是弧长,R是半径),求出弧长BD,根据题意=CD+BC,由此即可解决问题.【解答】解:由题意=CD+BC=10,S扇形ADB=••AB=×10×5=25,故答案为25.10.在函数y=中,自变量x的取值范围是x≥1 .【考点】E4:函数自变量的取值范围.【分析】因为当函数表达式是二次根式时,被开方数为非负数,所以x﹣1≥0,解不等式可求x的范围.【解答】解:根据题意得:x﹣1≥0,解得:x≥1.故答案为:x≥1.11.小明用S2= [(x1﹣3)2+(x2﹣3)2+…+(x10﹣3)2]计算一组数据的方差,那么x1+x2+x3+…+x10= 30 .【考点】W7:方差.【分析】根据计算方差的公式能够确定数据的个数和平均数,从而求得所有数据的和.【解答】解:∵S2= [(x1﹣3)2+(x2﹣3)2+…+(x10﹣3)2],∴平均数为3,共10个数据,∴x1+x2+x3+…+x10=10×3=30,故答案为:30.12.当﹣1≤x≤2时,二次函数y=(x﹣m)2+m2有最小值3,则实数m的值为或.【考点】H7:二次函数的最值.【分析】根据二次函数的最值问题列出方程求出m的值,再根据二次项系数大于0解答.【解答】解:∵二次函数y=(x﹣m)2+m2有最小值3,二次项系数a=1>0,故图象开口向上,对称轴为x=m,当m<﹣1时,最小值在x=﹣1取得,此时有(m+1)2+m2=3,求得m=,∵m<﹣1,∴m=;当﹣1≤m≤2时,最小值在x=m时取得,即有1﹣m2=﹣2求得m=或m=﹣(舍去)当m>2时,最小值在x=2时取得,即(2﹣m)2+m2=3求得m=(舍去)故答案为:或.三、解答题13.(1)解方程: =﹣(2)如图,点B在线段AD上,BC∥DE,AB=ED,BC=DB,求证:∠A=∠E.【考点】KD:全等三角形的判定与性质;B3:解分式方程.【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2)由BC与DE平行得到一对同位角相等,利用SAS得到三角形ABC与三角形EDB全等,利用全等三角形对应角相等即可得证.【解答】解:(1)去分母得:2=2x﹣1﹣3,解得:x=3,经检验x=3是分式方程的解;(2)∵BC∥DE,∴∠ABC=∠D,在△ABC和△EDB中,,∴△ABC≌△EDB,∴∠A=∠E.14.先化简,再求代数式(﹣)÷的值,其中a=+1.【考点】6D:分式的化简求值.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把a的值代入计算即可求出值.【解答】解:原式=•(a+1)=,当a=+1时,原式=.15.如图,AB是⊙O的直径,点C在⊙O上,点D在AB延长线上,且∠BCD=∠A.(1)求证:DC是⊙O的切线;(2)若∠A=30°,AC=2,求图中阴影部分的面积.【考点】MD:切线的判定;MO:扇形面积的计算.【分析】(1)连结OC ,如图,根据圆周角定理得∠ACB=90°,再利用等腰三角形的性质得∠A=∠OCA ,∠OBC=∠OCB ,则∠A+∠BCO=90°,加上∠BCD=∠A ,所以∠BCD+∠BCO=90°,于是根据切线的判定方法可判断DC 是⊙O 的切线;(2)根据含30度的直角三角形三边的关系,在Rt △ACB 中计算出BC=AC=2,AB=2BC=4,再计算出∠AOC=120°,然后根据扇形面积公式,利用图中阴影部分的面积=S 扇形AOC ﹣S △AOC 进行计算. 【解答】(1)证明:连结OC ,如图, ∵AB 是⊙O 的直径, ∴∠ACB=90°, ∵OA=OC ,OB=OC ,∴∠A=∠OCA ,∠OBC=∠OCB , ∴∠A+∠BCO=90°, ∵∠BCD=∠A ,∴∠BCD+∠BCO=90°,即∠OCD=90°, ∴OC ⊥CD ,∴DC 是⊙O 的切线;(2)在Rt △ACB 中,∵∠A=30°,∴BC=AC=2,AB=2BC=4,∵∠AOC=180°﹣∠A ﹣∠ACO=120°,∴图中阴影部分的面积=S 扇形AOC ﹣S △AOC =S 扇形AOC ﹣S △ABC =﹣••2•2=π﹣.16.已知:▱ABCD 的两边AB ,AD 的长是关于x 的方程x 2﹣mx+﹣=0的两个实数根.(1)当m 为何值时,四边形ABCD 是菱形?求出这时菱形的边长; (2)若AB 的长为2,那么▱ABCD 的周长是多少?【考点】AD :一元二次方程的应用;L5:平行四边形的性质;L8:菱形的性质.【分析】(1)让根的判别式为0即可求得m ,进而求得方程的根即为菱形的边长;(2)求得m 的值,进而代入原方程求得另一根,即易求得平行四边形的周长. 【解答】解:(1)∵四边形ABCD 是菱形, ∴AB=AD ,∴△=0,即m 2﹣4(﹣)=0, 整理得:(m ﹣1)2=0, 解得m=1,当m=1时,原方程为x 2﹣x+=0, 解得:x 1=x 2=0.5,故当m=1时,四边形ABCD 是菱形,菱形的边长是0.5;(2)把AB=2代入原方程得,m=2.5,把m=2.5代入原方程得x 2﹣2.5x+1=0,解得x 1=2,x 2=0.5, ∴C ▱ABCD =2×(2+0.5)=5.17.如图,已知矩形OABC 中,OA=3,AB=4,双曲线y=(k >0)与矩形两边AB 、BC 分别交于D 、E ,且BD=2AD (1)求k 的值和点E 的坐标;(2)点P 是线段OC 上的一个动点,是否存在点P ,使∠APE=90°?若存在,求出此时点P 的坐标,若不存在,请说明理由.【考点】GB:反比例函数综合题.【分析】(1)由矩形OABC中,AB=4,BD=2AD,可得3AD=4,即可求得AD的长,然后求得点D的坐标,即可求得k的值,继而求得点E的坐标;(2)首先假设存在要求的点P坐标为(m,0),OP=m,CP=4﹣m,由∠APE=90°,易证得△AOP∽△PCE,然后由相似三角形的对应边成比例,求得m的值,继而求得此时点P的坐标.【解答】解:(1)∵AB=4,BD=2AD,∴AB=AD+BD=AD+2AD=3AD=4,∴AD=,又∵OA=3,∴D(,3),∵点D在双曲线y=上,∴k=×3=4;∵四边形OABC为矩形,∴AB=OC=4,∴点E的横坐标为4.把x=4代入y=中,得y=1,∴E(4,1);(2)假设存在要求的点P坐标为(m,0),OP=m,CP=4﹣m.∵∠APE=90°,∴∠APO+∠EPC=90°,又∵∠APO+∠OAP=90°,∴∠EPC=∠OAP,又∵∠AOP=∠PCE=90°,∴△AOP∽△PCE,∴,∴,解得:m=1或m=3,∴存在要求的点P,坐标为(1,0)或(3,0).四、解答题18.学校实施新课程改革以来,学生的学习能力有了很大提高.王老师为进一步了解本班学生自主学习、合作交流的现状,对该班部分学生进行调查,把调查结果分成四类(A:特别好,B:好,C:一般,D:较差)后,再将调查结果绘制成两幅不完整的统计图(如图).请根据统计图解答下列问题:(1)本次调查中,王老师一共调查了20 名学生;(2)将条形统计图补充完整;(3)为了共同进步,王老师从被调查的A类和D类学生中分别选取一名学生进行“兵教兵”互助学习,请用列表或画树状图的方法求出恰好选中一名男生和一名女生的概率.【考点】X6:列表法与树状图法;VB:扇形统计图;VC:条形统计图.【分析】(1)由题意可得:王老师一共调查学生:(2+1)÷15%=20(名);(2)由题意可得:C类女生:20×25%﹣2=3(名);D类男生:20×(1﹣15%﹣50%﹣25%)﹣1=1(名);继而可补全条形统计图;(3)首先根据题意列出表格,再利用表格求得所有等可能的结果与恰好选中一名男生和一名女生的情况,继而求得答案.【解答】解:(1)根据题意得:王老师一共调查学生:(2+1)÷15%=20(名);故答案为:20;(2)∵C类女生:20×25%﹣2=3(名);D类男生:20×(1﹣15%﹣50%﹣25%)﹣1=1(名);如图:(3)列表如下:A类中的两名男生分别记为A1和A2,男A1男A2…女A男D男A1男D男A2男D女A男D女D男A1女D男A2女D女A女D共有6种等可能的结果,其中,一男一女的有3种,所以所选两位同学恰好是一位男生和一位女生的概率为: =.19.利用直尺画图(先用铅笔画图,然后再用墨水笔将符合条件的图形画出).(1)利用图1中的网格,过P点画直线AB的平行线和垂线;(2)平移图(2)网格中的三条线段AB、CD、EF,使平移后三条线段首尾顺次相接组成一个三角形;(3)如果每个方格的边长是单位1,那么图(2)中组成的三角形的面积等于3.5 .【考点】Q4:作图﹣平移变换;JA:平行线的性质.【分析】(1)根据网格结构的特点,利用直线与网格的夹角的关系找出与AB平行的格点以及垂直的格点作出即可;(2)根据网格结构的特点,过点E找出与AB、CD位置相同的线段,过点F找出与AB、CD位置相同的线段,作出即可;(3)根据S△=S正方形﹣三个角上的三角形的面积即可得出结论.【解答】解:(1)、(2)如图所示;(3)S△EFH=3×3﹣×1×2﹣×2×3﹣×1×3=9﹣1﹣3﹣=3.5.故答案为:3.5.20.如图,一个书架上的方格中放着四本厚度和长度相同的书,其中左边两边上紧贴书架方格内侧竖放,右边两本书自然向左斜放,支撑点为C,E,右侧书角正好靠在方格内侧上,若书架方格长BF=40cm,∠DCE=30°.(1)设一本书的厚度为acm,则EF= a cm;(2)若书的长度AB=20cm,求一本书的厚度(结果保留根号)【考点】T8:解直角三角形的应用.【分析】(1)根据三角形的内角和得到∠CED=60°,根据三角函数的定义即可得到结论;(2)设一本书的厚度为acm,根据BF=40cm,列方程即可得到结论.【解答】解:(1)如图,∵∠DCE=30°,∴∠CED=60°,∴∠GEH=30°,∴EH==a,∴HF=acos30°=a;∴EF=EH+HF=a故答案为: a;(2)设一本书的厚度为acm,则BD=2a,∴DE=CE=10cm,∵BF=40cm,∴2a+10+a=40,解得:a≈7.4.答:一本书的厚度7.4cm.五、解答题21.如图,抛物线C1:y=x2+4x﹣3与x轴交于A、B两点,将C1向右平移得到C2,C2与x轴交于B、C两点.(1)求抛物线C2的解析式.(2)点D是抛物线C2在x轴上方的图象上一点,求S△ABD的最大值.(3)直线l过点A,且垂直于x轴,直线l沿x轴正方向向右平移的过程中,交C1于点E交C2于点F,当线段EF=5时,求点E的坐标.【考点】HF:二次函数综合题.【分析】(1)先依据配方法求得抛物线C1的顶点坐标,然后令y=0,求得点A、B的坐标,从而可判断出C1平移的方向和距离,于是得到抛物线C2的顶点坐标,从而得到C2的解析式;(2)根据函数图象可知,当点D为C2的顶点时,△ABD的面积最大;(3)设点E的坐标为(x,﹣x2+4x﹣3),则点F的坐标为(x,﹣x2+8x﹣15),然后可求得EF长度的解析式,最后根据EF=5,可列出关于x的方程,从而可求得x的值,于是的得到点E的坐标.【解答】解:(1)∵y=﹣x2+4x﹣3=﹣(x﹣2)2+1,∴抛物线C1的顶点坐标为(2,1).令y=0,得﹣(x ﹣2)2+1=0,解得:x 1=1,x 2=3. ∵C 2经过B ,∴C 1向右平移了2个单位长度.∵将抛物线向右平移两个单位时,抛物线C 2的顶点坐标为(4,1), ∴C 2的解析式为y 2=﹣(x ﹣4)2+1,即y=﹣x 2+8x ﹣15. (2)根据函数图象可知,当点D 为C 2的顶点时,纵坐标最大, 即D (4,1)时,△ABD 的面积最大.S △ABD =AB •|y D |=×2×1=1.(3)设点E 的坐标为(x ,﹣x 2+4x ﹣3),则点F 的坐标为(x ,﹣x 2+8x ﹣15).EF=|(﹣x 2+4x ﹣3)﹣(﹣x 2+8x ﹣15)|=|﹣4x+12|. ∵EF=5,∴﹣4x+12=5或﹣4x+12=﹣5.解得:x=或x=.∴点E 的坐标为(,)或(,﹣)时,EF=5.22.如图,△AOB 是等腰直角三角形,直线BD ∥OA ,OB=OA=1,P 是线段AB 上一动点,过P 点作MN ∥OB ,分别交OA 、BD 于M 、N ,PC ⊥PO ,交BD 于点C . (1)求证:OP=PC ;(2)当点C 在射线BN 上时,设AP 长为m ,四边形POBC 的面积为S ,请求出S 与m 间的函数关系式,并写出自变量m 的取值范围;(3)当点P 在线段AB 上移动时,点C 也随之在直线BN 上移动,△PBC 是否可能成为等腰三角形?如果可能,求出所有能使△PBC 成为等腰三角形时的PM 的值;如果不可能,请说明理由.【考点】LO :四边形综合题.【分析】(1)首先利用矩形的判定得出四边形OBNM 为矩形,即可得出∠CPN=∠POM ,进而得出△OPM ≌△PCN ,求出即可; (2)利用S=S △OPB +S △PBC 进而得出S 与m 的函数关系;(3)利用①当点P 与点A 重合时,PC=BC=1,②如图②,当点C 在OB 下方,且PB=CB 时,分别求出即可.【解答】(1)证明:如图①,△AOB 是等腰直角三角形,AO=BO=1, ∴∠A=45°,∠AOB=90°, 直线BN ∥OA ,MN ∥OB , ∴四边形OBNM 为矩形, ∴MN=OB=1,∠PMO=∠CNP=90°而∠AMP=90°,∠A=∠APM=∠BPN=45°, ∴OM=BN=PN , ∵∠OPC=90°, ∴∠OPM+∠CPN=90°, 又∵∠OPM+∠POM=90°, ∴∠CPN=∠POM , 在△OPM 和△PCN 中,∴△OPM ≌△PCN (ASA ), ∴OP=PC ,(2)解:∵AM=PM=APsin45°=m ,∴NC=PM=m ,∴BN=OM=PN=1﹣m ;∴BC=BN ﹣NC=1﹣m ﹣m=1﹣m ,S=S △OPB +S △PBC =BO •MO+BC •PN ,=m 2﹣m+1(0≤m );(3)解:△PBC 可能为等腰三角形,①当点P 与点A 重合时,PC=BC=1,此时PM=0, ②如图②,当点C 在OB 下方,且PB=CB 时,有OM=BN=PN=1﹣m ,∴BC=PB=PN=﹣m ,∴NC=BN+BC=1﹣m+﹣m ,由(2)知:NC=PM=m ,∴1﹣m+﹣m=m ,∴m=1.∴PM=m=;∴使△PBC 为等腰三角形时的PM 的值为0或.六、解答题23.问题提出:如图1,在Rt △ABC 中,∠ACB=90°,CB=4,CA=6,⊙C 半径为2,P 为圆上一动点,连结AP 、BP ,求AP+BP 的最小值.(1)尝试解决:为了解决这个问题,下面给出一种解题思路:如图2,连接CP ,在CB 上取点D ,使CD=1,则有==,又∵∠PCD=∠BCP ,∴△PCD ∽△BCP .∴=,∴PD=BP ,∴AP+BP=AP+PD .请你完成余下的思考,并直接写出答案:AP+BP 的最小值为.(2)自主探索:在“问题提出”的条件不变的情况下, AP+BP 的最小值为.(3)拓展延伸:已知扇形COD 中,∠COD=90°,OC=6,OA=3,OB=5,点P 是上一点,求2PA+PB 的最小值.【考点】MR :圆的综合题.【分析】(1)利用勾股定理即可求出,最小值为AD=;(2)连接CP ,在CA 上取点D ,使CD=,则有,可证△PCD ∽△ACP ,得到PD=AP ,即: AP+BP=BP+PD ,从而AP+BP 的最小值为BD ;(3)延长OA 到点E ,使CE=6,连接PE 、OP ,可证△OAP ∽△OPE ,得到EP=2PA ,得到2PA+PB=EP+PB ,当E 、P 、B 三点共线时,得到最小值. 【解答】解:(1)如图1,连结AD ,∵AP+BP=AP+PD ,要使AP+BP 最小,∴AP+AD 最小,当点A ,P ,D 在同一条直线时,AP+AD 最小,即:AP+BP最小值为AD,在Rt△ACD中,CD=1,AC=6,∴AD==,AP+BP的最小值为,故答案为:;(2)如图2,连接CP,在CA上取点D,使CD=,∴,∵∠PCD=∠ACP,∴△PCD∽△ACP,∴,∴PD=AP,∴AP+BP=BP+PD,∴同(1)的方法得出AP+BP的最小值为BD==.故答案为:;(3)如图3,延长OA到点E,使CE=6,∴OE=OC+CE=12,连接PE、OP,∵OA=3,∴,∵∠AOP=∠AOP,∴△OAP∽△OPE,∴,∴EP=2PA,∴2PA+PB=EP+PB,∴当E、P、B三点共线时,取得最小值为:BE==13.。
江苏省泰州市兴化市2016-2017学年九年级上学期期中数学试卷及参考答案

16. 若抛物线y=x2﹣4x+t(t为实数)在0≤x≤3的范围内与x轴有公共点,则t的取值范围为________.
三、解答题
17. 综合题 (1) 已知二次函数y=ax2+bx+1的图象经过点(1,3)和(3,﹣5),求a、b的值; (2) 已知二次函数y=﹣x2+bx+c的图象与x轴的两个交点的横坐标分别为1和2.求这个二次函数的表达式. 18. 甲、乙两位同学参加数学综合素质测试,各项成绩如下(单位:分)
11. 函数y=(m+2) +2x﹣1是二次函数,则m=________. 12. 某厂今年一月份新产品的研发资金为1000元,以后每月新产品的研发资金与上月相比增长率都是x,则该厂今年三 月份新产品的研发资金y(元)关于x的函数关系式为y=________ 13. 已知某种礼炮的升空高度h(m)与飞行时间t(s)的关系式是h=﹣ t2+20t+1.若此礼炮在升空到最高处时引爆 ,则引爆需要的时间为________. 14. 把抛物线y=x2﹣2x向下平移2个单位长度,再向右平移1个单位长度,则平移后的抛物线相应的函数表达式为_____ ___. 15. 某学校九(1)班40名同学的期中测试成绩分别为a1 , a2 , a3 , …,a40 . 已知a1+a2+a3+…+a40=4800,y=( a﹣a1)2+(a﹣a2)2+(a﹣a3)2+…+(a﹣a40)2 , 当y取最小值时,a的值为________
(1) 求y与x之间的函数关系式; (2) 当每件售价定为多少元时,每星期的销售利润最大,最大利润多少元? 23. 国家规定,中小学生每天在校体育活动时间不低于1小时,为了解这项政策的落实情况,有关部门就“你某天在校体 育活动时间是多少”的问题,在某校随机抽查了部分学生,再根据活动时间t(小时)进行分组(A组:t<0.5,B组:0.5≤t <1,C组:1≤t<1.5,D组:t≥1.5),绘制成如下两幅不完整统计图,请根据图中信息回答问题:
2016-2017第一学期九年级数学期末试卷(含答案)

2016-2017学年度第一学期九年级数学期末检测试卷一、选择题(本大题8小题,每小题3分,共24分,请将下列各题中唯一正确的答案代号A 、B 、C 、D 填到本题后括号内)1. 民族图案是数学文化中的一块瑰宝,下列图案中,既不是中心对称图形也不是轴对称图形的是( )2.一元二次方程240+=x x 的解为( )A .4=xB .4=-xC .121,3=-=x xD .120,4==-x x 3.如果关于x 的一元二次方程ax 2+x ﹣1=0有实数根,则a 的取值范围是( ) A .14a >-B .14a ≥- C .14a ≥-且a ≠0 D .14a >且a ≠0 4.抛物线262y x x =-+的顶点坐标是( )A .(-3,7)B .(3,2)C .(3,-7)D .(6,2)5.如图,AB 是⊙O 的直径,C ,D 是⊙O 上一点,∠CDB =20°,过点C 作⊙O 的切线交AB 的延长线于点E ,则∠E 的度数为( ) A .20° B .30° C .40° D . 50°6. 一个布袋内只装有1个黑球和2个白球,这些球除颜色外其余都相同,随机摸出一个球后放回搅匀,再随机摸出一个球,则两次摸出的球都是黑球的概率是( ) A .49B .13C .16D .197.若反比例函数1232)12(---=k kx k y 的图象位于第二、四象限,则k 的值是( )A . 0B . 0或23 C . 0或23- D . 4 8. 已知面积为2的三角形ABC ,一边长为x ,这边上的高为y ,则y 与x 的变化规律用图象表示正确的是( )9.如图,Rt △ABC 的斜边AB 与量角器的直径恰好重合,B 点与0刻度线的一端重合,∠ABC=40°,射线CD 绕点C 转动,与量角器外沿交于点D ,若射线CD 将△ABC 分割出以BC 为边的等腰三角形,则点D 在量角器上对应的度数是( )A .40°B .80°或140°C .70°D .70°或80° 10.如图,已知△ABC 为等边三角形,AB =2,点D 为边AB 上一点,过点D 作DE∥AC,交BC 于点E ;过点E 作EF⊥DE,交AB 的延长线于点F.设AD =x ,△DEF 的面积为y ,则能大致反映y 与x函数关学校 班级 姓名 座位号系的图象是( )二、填空题(本题共4小题,每小题4分,共16分)11.某药品2013年的销售价为50元/盒,2015年降价为42元/盒,若平均每年降价百分率是x ,则可以列方程 ; 12.如图,在平面直角坐标系中,抛物线212y x =经过平移得到抛物线2122y x x =-,其对称轴与两段抛物线所围成的阴影部分的面积为__________;13.如图,在平面直角坐标系xOy 中,直线AB 经过点A(6,0)、B(0,6),⊙O 的半径为2(O 为坐标原点),点P 是直线AB 上的一动点,过点P 作⊙O 的一条切线PQ ,Q 为切点,则切线长PQ 的最小值为= ;14. 如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任意选取一个白色的小正方形并涂黑,使黑色部分的图形仍然构成一个轴对称图形的概率是 .三、解答题(本大题2小题,每小题8分,共16分)15. 某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利45元,为了扩大销售、增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出4件,若商场平均每天盈利2100元,每件衬衫应降价多少元?16.设点A 的坐标为(x ,y ),其中横坐标x 可取﹣1、2,纵坐标y 可取﹣1、1、2. (1)求出点A 的坐标的所有等可能结果(用树状图或列表法求解); (2)试求点A 与点B (1,﹣1)关于原点对称的概率.四、(本大题2小题,每小题8分,共16分)17. 如图,正比例函数12y x =-与反比例函数2y 相交于点E (m ,2). (1)求反比例函数2y 的解析式.(2)观察图象直接写出当120y y >>时,x 的取值范围.18.如图,在平面直角坐标系中,点A 的坐标是(10,0),点B 的坐标为(8,0),点C ,D 在以OA 为直径的半圆M 上,且四边形OCDB 是平行四边形.求点C 的坐标.五、(本大题2小题,每小题10分,共20分)19.如图所示,已知△ABC 的三个顶点的坐标分别为A (﹣2,3),B (﹣6,0),C (﹣1,0). (1)点A 关于原点O 对称的点的坐标为 ;(2)将△ABC 绕坐标原点O 逆时针旋转90°,画出图形并求A 点经过的路径长; (3)请直接写出:以A 、B 、C 为顶点的平行四边形的第四个顶点D 的坐标.20. 实验数据显示,一般成人喝半斤低度白酒后,1.5小时内其血液中酒精含量y (毫克/百毫升)与时间x (时)的关系可近似地用二次函数2200400y x x =-+;1.5小时后(含1.5小时)y 与x 可近似地用反比例函数(0ky k x=>)刻画,如图.(1)喝酒后血液中酒精含量达到最大值?最大值是多少? (2)当x=5时,y=45,求k 的值;(3)按照国家规定,驾驶员血液中酒精含量大于或等于20毫克/百毫升时,属于“酒后驾驶”,不能驾车,假设某驾驶员晚上20:00在家喝了半斤低度白酒,第二天早上7:00能否驾车去上班?说明理由.六、本题12分21. 如图,△ABC 中,BE 是它的角平分线,∠C =90°,D 在AB 边上,以DB 为直径的半圆O 经过点E ,交BC 于点F .(1)求证:AC 是⊙O 的切线;(2)若∠A =30°,连接EF ,求证:EF ∥AB ;(3)在(2)的条件下,若AE =2,求图中阴影部分的面积.七、本题12分22. 操作:在△ABC 中,AC=BC=2,∠C =90°,将一块等腰三角板的直角顶点放在斜边AB 的中点P 处,将三角板绕点P 旋转,三角板的两直角边分别交射线AC 、CB 于D 、E 两点.如图①、②、③是旋转三角板得到的图形中的3种情况,研究:y (毫克/百毫升)455x (时)(1)三角板绕点P旋转,观察线段PD与PE之间有什么数量关系?并结合图②说明理由.(2)三角板绕点P旋转,△PBE是否能成为等腰三角形?若能,指出所有情况(即写出△PBE为等腰三角形时CE的长);若不能,请说明理由.八、本题14分23.科技馆是少年儿童节假日游玩的乐园.如图所示,图中点的横坐标x表示科技馆从8:30开门后经过的时间(分钟),纵坐标y表示到达科技馆的总人数.图中曲线对应的函数解析式为y=,10:00之后来的游客较少可忽略不计.(1)请写出图中曲线对应的函数解析式;(2)为保证科技馆内游客的游玩质量,馆内人数不超过684人,后来的人在馆外休息区等待.从10:30开始到12:00馆内陆续有人离馆,平均每分钟离馆4人,直到馆内人数减少到624人时,馆外等待的游客可全部进入.请问馆外游客最多等待多少分钟?2016-2017九年级数学参考答案一、选择题: 1-10:C D CCD D A C B A二、填空题11、250(1)42x -=; 12、4; 13、 14; 14、513三、解答题:15、解:设每件衬衫应降价x 元,可使商场每天盈利2100元.根据题意得(45﹣x )(20+4x )=2100, 化简得:2403000x x -+=…………………………..5分 解得x 1=10,x 2=30.因尽快减少库存,故x=30.(未作讨论的酌情扣1-2分) 答:每件衬衫应降价30元.…………………………..10分16、(1)列举所有等可能结果,画出树状图如下由上图可知,点A 的坐标的所有等可能结果为:(﹣1,﹣1)、(﹣1,1)、(﹣1,2)、(2,﹣1)、 (2,1)、(2,2),共有6种,…………………………6分 (2)点B (1,﹣1)关于原点对称点的坐标为(-1,1). ∴P (点A 与点B 关于原点对称)=16…………………………10分 四、17、解:(1)设反比例函数解析式为xky =2………………1分 ∵x y 21-=过点)2,(m E ∴122-==-m m ∴)2,1(-E …………4分∵xky =2过)2,1(-E ∴2-=k ∴反比例函数解析式为xy 22-=……………7分 (2)当x <-1时,120y y >>.………………………10分18. 解:过点M 作MF ⊥CD 于点F ,过点C 作CE ⊥x 轴于点E ,连接CM. 在Rt △CMF 中,CF =12CD =12OB =4,CM =12OA =5,∴MF =CM 2-CF 2=3.∴CE =MF =3.又EM =CF =4,OM =12OA =5,∴OE =OM -EM =1. ∴C(1,3).五、19、解:(1)点A 关于原点O 对称的点的坐标为(2,﹣3);…………………………..1分(2)△ABC 旋转后的△A ′B ′C ′如图所示,…………………………..4分 点A ′的对应点的坐标为(﹣3,﹣2); OA ′,即点A;…………..7分(3)若AB 是对角线,则点D (﹣7,3), 若BC 是对角线,则点D (﹣5,﹣3), 若AC 是对角线,则点D (3,3).…………………………..10分 20.解:(1)证明:连接OE.∵OB =OE ,∴∠BEO =∠EBO.∵BE 平分∠CBO ,∴∠EBO =∠CBE. ∴∠BEO =∠CBE.∴EO ∥BC.∵∠C =90°,∴∠AEO =∠C =90°. ∴AC 是⊙O 的切线.(2)证明:∵∠A =30°,∴∠ABC =60°. ∴∠OBE =∠FBE =30°.∴∠BEC =90°-∠FBE =60°. ∵∠CEF =∠FBE =30°,∴∠BEF =∠BEC -∠CEF =60°-30°=30°. ∴∠BEF =∠OBE.∴EF ∥AB. (3)连接OF.∵EF ∥AB ,BF ∥OE ,OB =OE ,∴四边形OBFE 是菱形. ∴S △EFB =S △EOF. ∴S 阴影=S 扇EOF.设圆的半径为r ,在Rt △AEO 中,AE =2,∠A =30°,∴r =OE =233.∴S 阴影=S 扇EOF =60π×(233)2360=2π9.六、21、解:(1)22200400200(1)200y x x x =-+=--+,∴饮酒后1小时血液中酒精含量达到最大值,最大值为200(毫克/百毫升)(2)k=225(3)不能驾车上班,理由:晚上20:00到第二天早上7:00共计11小时,把x=11代入22522511y y x ==得,>20,所以不能.七、22、解:(1)由图①可猜想PD=PE ,再在图②中构造全等三角形来说明.即PD=PE .y (毫克/百毫升)455x (时)理由如下:连接PC,因为△ABC是等腰直角三角形,P是AB的中点,∴CP=PB,CP⊥AB,∠ACP=12∠ACB=45°.∴∠ACP=∠B=45°.又∵∠DPC+∠CPE=∠BPE+∠CPE,∴∠DPC=∠BPE.∴△PCD≌△PBE.∴PD=PE.(2)△PBE是等腰三角形,①当PE=PB时,此时点C与点E重合,CE=0;②当BP=BE时,E在线段BC上,;E在CB的延长线上,;③当EP=EB时,CE=1.八、23、解(1)由图象可知,300=a×302,解得a=,n=700,b×(30﹣90)2+700=300,解得b=﹣,∴y=,(2)由题意﹣(x﹣90)2+700=684,解得x=78,∴=15,∴15+30+(90﹣78)=57分钟所以,馆外游客最多等待57分钟.。
2017上海宝山初三数学一模

九年级中考数学(模拟一) 2017宝山一模(满分150分,考试时间100分钟)考生注意:1.本试卷含四个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一. 选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】1.已知∠A=30°,下列判断正确的是……………………………………………………()A.; B.; C. A=; D..2.如果C是线段AB的黄金分割点C,并且AC>CB,AB=1,那么AC的长度为…()A.; B.; C.; D..3.二次函数的定义域为………………………………………………()A.; B.为一切实数; C.; D.为一切实数.4.已知非零向量、之间满足,下列判断正确的是………………………()A.的模为3; B.与的模之比为;C.与平行且方向相同; D.与平行且方向相反.二.填空题:(本大题共12题,每题4分,满分48分)【请将结果直接填入答题纸的相应位置】7.已知,那么= ▲.8.如果两个相似三角形的相似比为1:4,那么它们的面积比为▲.10.如图△ABC中∠C=90°,若CD⊥AB于D,且BD=4,AD=9,则= ▲.11.计算: = ▲.13.二次函数向左平移二个单位长度,再向下平移一个单位长度,得到的函数解析式是▲.14.如果点A(1,2)和点B(3,2)都在抛物线的图像上,那么抛物线的对称轴是直线▲.15.已知A(2,y1)、B(3,y2)是抛物线的图像上两点,则y1__▲__y2.(填不等号)16.如果在一个斜坡上每向上前进13米,水平高度升高了5米,则该斜坡的坡度▲.17.数学小组在活动中继承了学兄学姐们的研究成果,将能够确定形如的抛物线的形状、大小、开口方向、位置等特征的系数、、称为该抛物线的特征数,记作:特征数.(请你求)在研究活动中被记作特征数为的抛物线的顶点坐标是▲.18.如图,D为直角△ABC的斜边AB上一点, DE⊥AB交AC于E,如果△AED沿DE翻折,A 恰好与B重合,联结CD交BE于F,如果AC=8,,那么CF:DF = ▲.三、(本大题共7题,第19--22题每题10分;第23、24题每题12分;第25题14分;满分78分)19.计算:21.如图, AB、CD分别表示两幢相距36米的大楼,高兴同学站在CD大楼的处窗口观察AB 大楼的底部B点的俯角为45°,观察AB大楼的顶部A点的仰角为30°,求大楼AB的高.如图,点E是正方形ABCD对角线AC上的一个动点(不与A、C重合),作EF⊥AC交边BC于点F,联结AF、BE交于点G..(1)求证:△CAF∽△CBE;(2)若AE:EC=2:1,求∠BEF的值.(1)求时,的面积关于t的函数解析式;(2) 求出线段BC、BE、ED的长度;(3) 当为多少秒时,以B、P、Q为顶点的三角形和相似;(4) 如图(3) 过E作EF⊥BC于F,△BEF绕点B按顺时针方向旋转一定角度,如果△BEF中E、F的对应点H、I恰好和射线BE、CD的交点G在一条直线,求此时C、I两点之间的距离.2016学年第一学期期末考试九年级数学参考答案(评分细则)一、选择题:(本大题共6题,每题4分,满分24分)1. A; 2. C; 3. B; 4.D; 5. A; 6. C.7.; 8.1:16; 9.AC; 10.; 11.; 12.8; 13.; 14.; 15.; 16.;17.; 18..19.解:原式= ……………………6分= ……………………8分=. …………………10分20.解:(1)在△ABC 中,∵DE∥BC,∴…………3分(2)∵,, =,∴……………………………………8分∴……………………………………10分设过A、B、C抛物线的表达式为:………………………6分将(0,6)代入,∴抛物线的表达式为…………………8分当或时,的函数值大于的函数值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015年德州市经济开发区模拟测试
1.下列各式计算正确的是( ). A .236m m m ⋅= B .114
16
163333
=⋅= C .33323235+=+= D .211
(1)
(1)111a a a a a
-=--⋅=----(a <1) 2..下列四个圆形图案中,分别以它们所在圆的圆心为旋转中心,顺时针旋转120°后,
能与原图形完全重合的是( )
3.如图,几何体上半部为正三梭柱,下半部为圆柱,其俯视图是( ).
4.2013年,我国上海和安徽首先发现“H7N9”禽流感,H7N9是一种新型禽流感,其病毒颗粒呈多形性,其中球形病毒的最大直径为0.00000012米,这一直径用科学记数法表示为( ).
A .1.2×10﹣9米
B .1.2×10﹣8米
C .12×10﹣8米
D .1.2×10﹣7米 5.如图,梯形ABCD 中,AD ∥BC ,AB=3,BC=4,连结BD ,∠BAD 的平分线交BD 于 点
E ,且AE ∥CD ,则AD 的长为( ).
A .1
B .2
C .3
D .4 6.已知点P (3﹣m ,m ﹣1)在第二象限,则m 的取值范围在数轴上表示正确的是( ) A .
B .
C .
D .
(A ) (B )
(C ) (D )
正弦值是( )
A .
3310
B .1
2 C .1
3 D .10
10
8.如图是交警在一个路口统计的某个时段来往车辆的车速(单位:千米/时)情况.则这些车的车速的众数、中位数分别是( )
A .8,6
B .8,5
C .52,53
D .52,52
9.甲、乙两人在一条长400米的直线跑道上同起点、同终点、同方向匀速跑步,先到终点的人原地休息.已知甲先出发3秒,在跑步过程中,甲、乙两人的距离y (米)与乙出发的时间t (秒)之间的关系如图所示,则下列结论正确的是( ) A. 乙的速度是4米/秒
B. 离开起点后,甲、乙两人第一次相遇时,距离起点12米
C. 甲从起点到终点共用时83秒
D. 乙到达终点时,甲、乙两人相距68米
10. 方程23+x =11
+x 的解为( )
A .x=54
B .x= -2
1
C .x=-2
D .无解
11一个圆锥的侧面展开图是半径为R 的半圆,则该圆锥的高是( ) A .
B .
C .
D .
12.如图,O 是△ABC 的外接圆的圆心,∠AB C=60°,BF ,CE 分别是AC ,AB 边上的高且交于点H ,CE 交⊙O 于M ,D ,G 分别在边BC ,AB 上,且BD=BH ,BG=BO ,下列结论:①∠ABO=∠HBC ;②AB•BC=2BF•BH;③BM=BD ;④△GBD 为等边三角形,其中正确结论的序号是( )
A .①②
B .①③④
C .①②④
D .①②③④ 二.填空题
13.因式分解:=--x x x 12423 14. 已知x ,y 为实数,且y=
,则x-y 的值为 。
15.如图,半径为2 cm ,圆心角为90°的扇形OAB 中,分别以OA 、OB 为直径作半圆,则图中阴影部分的面积为
16.若关于x 的方程x 2+(k ﹣2)x+k 2=0的两根互为倒数,则k= .
17.如图,已知A 1、A 2、A 3、…、A n 是x 轴上的点,且OA 1=A 1A 2=A 2A 3…=A n A n +1=1,分
别过点A 1、A 2、A 3、…、A n +1作x 轴的垂线交一次函数y =1
2x 的图像于点B 1、B 2、B 3、…、
B n +1,连接A 1B 2、B 1A 2、A 2B 3、B 2A 3、…、A n B n +1、B n A n +1依次产生交点P 1、P 2、P 3、…、Pn ,则点P n 的横坐标是_______.21n n n ⎛
⎫
+ ⎪+⎝
⎭
18.(6分)先化简,再求值:⎝ ⎛⎭⎪⎫a -1a 2
-4a +4-a +2a 2-2a ÷⎝ ⎛⎭⎪⎫4a -1,其中a =2- 3
19.(本题满分8分)某学校为了增强学生体质,决定开设以下体育课外活动项目:A.篮球B.乒乓球C.羽毛球D.足球,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共有人;
(2)请你将条形统计图(2)补充完整;
(3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答)
20.(本题满分10分)
商场经销甲、乙两种商品,甲种商品每件进价15元,售价20元;乙种商品每件进
价35元,售价45元.
(1)若该商场同时购进甲、乙两种商品共100件恰好用去2700元,求能购进甲、乙
两种商品各多少件?
(2)该商场为使甲、乙两种商品共100件的总利润(利润=售价 进价)不少于750
元,且不超过760元,请你帮助该商场设计相应的进货方案.
21.如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使DC=BD,连接AC,过点D作DE⊥AC,垂足为E.
(1)求证:AB=AC;
(2)求证:DE为⊙O的切线;
(3)若⊙O的半径为5,∠BAC=60°,求DE的长.
22.(本题8分)如图,一次函数y=kx+b 与反比例函数y=的图象相交于A (2,3),B (-3,n )两点.
(1)求一次函数与反比例函数的解析式; (2)根据所给条件,请直接写出不等式kx+b > 的解集;
(3)过点B 作BC ⊥x 轴,垂足为C ,求S △ABC .
23.如图1,在正方形ABCD中,E、F分别为BC、CD的中点,连接AE、BF,交点为G.
(1)求证:AE⊥BF;
(2)将△BCF沿BF对折,得到△BPF(如图2),延长FP交BA的延长线于点Q,求sin∠BQP 的值;
(3)将△ABE绕点A逆时针方向旋转,使边AB正好落在AE上,得到△AHM(如图3),若AM和BF相交于点N,当正方形ABCD的面积为4时,求四边形GHMN的面积.
24如图1,抛物线2y x bx c =++与x 轴交于A B 、两点,与y 轴交于点()02C ,,连结AC ,若tan 2.OAC =∠
(1)求抛物线的解析式;
(2)抛物线对称轴上有一动点P ,当90APC °=∠时,求出点P 的坐标;
(3)如图2所示,连结BC ,M 是线段BC 上(不与B 、C 重合)的一个动点.过点M 作直线l l '∥,交抛物线于点N ,连结CN 、BN ,设点M 的横坐标为.当t 为何值时,BCN △的面积最大?最大面积为多少?。