蔬菜运输问题数建模
蔬菜运输问题数学建模

蔬菜运输问题数学建模
蔬菜运输问题可以通过数学建模来解决。
以下是一种可能的数学建模方法:
1. 定义变量:
- X[i][j]:表示从地点i运送蔬菜到地点j的数量,其中i和j 是地点的编号。
- D[i][j]:表示从地点i到地点j的运输距离。
2. 目标函数:
由于蔬菜运输的目标通常是最小化总运输成本或最短运输时间,可以设置目标函数为最小化运输成本或最小化运输时间。
具体的目标函数可以根据具体情况来定。
3. 约束条件:
- 每个地点的进出蔬菜数量必须平衡:对于每个地点i,进出的蔬菜数量之和要等于该地点的需求或产出量。
即∑X[i][j] - ∑X[j][i] = 0。
- 运输量不能超过运输能力限制:对于每个地点i到地点j的运输量X[i][j],必须满足X[i][j] <= C[i][j],其中C[i][j]表示地点i到地点j的运输能力限制。
- 运输量必须是非负数:X[i][j] >= 0。
4. 其他要求和限制:
- 可以考虑添加其他特殊要求和限制,如运输时间窗限制、调度顺序要求等。
5. 求解方法:
运用数学规划方法,如线性规划或整数规划,求解目标函数和约束条件得到最优的蔬菜运输方案。
数学建模--运输问题

数学建模--运输问题(总22页) --本页仅作预览文档封面,使用时请删除本页--运输问题摘要本文主要研究的是货物运输的最短路径问题,利用图论中的Floyd算法、Kruskal算法,以及整数规划的方法建立相关问题的模型,通过matlab,lingo编程求解出最终结果。
关于问题一,是一个两客户间最短路程的问题,因此本文利用Floyd算法对其进行分析。
考虑到计算的方便性,首先,我们将两客户之间的距离输入到网络权矩阵中;然后,逐步分析出两客户间的最短距离;最后,利用Matlab软件对其进行编程求解,运行得到结果:2-3-8-9-10总路程为85公里。
关于问题二,运输公司分别要对10个客户供货,必须访问每个客户,实际上是一个旅行商问题。
首先,不考虑送货员返回提货点的情形,本文利用最小生成树问题中的Kruskal算法,结合题中所给的邻接矩阵,很快可以得到回路的最短路线:-9-10-2;然后利用问题一的Floyd算法编程,能求得从客户2到客户1(提货点)的最短路线是:2-1,路程为50公里。
即最短路线为:-9-10-2-1。
但考虑到最小生成树法局限于顶点数较少的情形,不宜进一步推广,因此本文建立以路程最短为目标函数的整数规划模型;最后,利用LINGO软件对其进行编程求解,求解出的回路与Kruskal算法求出的回路一致。
关于问题三,是在每个客户所需固定货物量的情况下,使得行程之和最短。
这样只要找出两条尽可能短的回路,并保证每条线路客户总需求量在50个单位以内即可。
因此我们在问题二模型的基础上进行改进,以货车容量为限定条件,建立相应的规划模型并设计一个简单的寻路算法,对于模型求解出来的结果,本文利用Kruskal算法结合题中所给的邻接矩阵进行优化。
得到优化结果为:第一辆车:-1,第二辆车:,总路程为280公里。
关于问题四,在问题一的基础上我们首先用Matlab软件编程确定提货点到每个客户点间的最短路线,然后结合一些限定条件建立一个目标模型,设计一个较好的解决方案进行求解可得到一种很理想的运输方案。
蔬菜运输问题数学建模

蔬菜运输问题数学建模目录一、引言二、蔬菜运输问题的背景和意义三、数学建模的基本概念和方法四、蔬菜运输问题的数学模型建立五、模型求解与分析六、结论正文一、引言随着我国经济的快速发展,物流行业发挥着日益重要的作用。
其中,蔬菜运输是物流领域的一个重要环节,关系到民生保障和社会稳定。
然而,在蔬菜运输过程中,如何合理安排运输路线、降低运输成本、保证蔬菜新鲜度等问题亟待解决。
为此,数学建模方法被广泛应用于蔬菜运输问题的研究,以提高运输效率和降低运输成本。
二、蔬菜运输问题的背景和意义蔬菜运输问题是指在保证蔬菜新鲜度和质量的前提下,如何合理安排运输路线、运输工具、运输时间等问题。
蔬菜运输问题的研究具有以下背景和意义:1.保障民生需求:蔬菜是居民日常生活中必不可少的食品,合理解决蔬菜运输问题,有利于保障民生需求和提高居民生活水平。
2.降低运输成本:通过数学建模方法优化运输方案,可以降低运输成本,提高运输效益。
3.提高运输效率:合理安排运输路线和运输工具,可以提高运输效率,保证蔬菜新鲜度。
4.促进物流行业发展:解决蔬菜运输问题,有利于促进物流行业的发展和创新。
三、数学建模的基本概念和方法数学建模是将实际问题抽象为数学问题,建立数学模型,并通过求解数学模型得到实际问题的解决方案。
数学建模的基本方法包括:1.确定目标函数:根据实际问题中的优化目标,确定数学模型的目标函数。
2.建立约束条件:根据实际问题的限制条件,建立数学模型的约束条件。
3.选择合适的数学模型:根据实际问题的特点,选择合适的数学模型,如线性规划模型、整数规划模型等。
4.求解数学模型:通过数学方法和计算工具,求解数学模型,得到最优解。
四、蔬菜运输问题的数学模型建立在解决蔬菜运输问题时,我们可以采用整数线性规划模型。
首先,我们需要确定目标函数和约束条件。
目标函数:最小化总运输成本,即运输费用和运输时间之和。
约束条件:1.各种蔬菜的总运输量应等于需求量。
2.每种蔬菜的运输量应大于等于 0。
蔬菜运输问题--数学建模

蔬菜运输问题摘要本文运用floyd算法求出各蔬菜采购点到每个菜市场的最短运输距离,然后用lingo软件计算蔬菜调运费用及预期短缺损失最小的调运方案,紧接着根据题目要求对算法加以修改得出每个市场短缺率都小于20%的最优调运方案,并求出了最佳的供应改进方案。
求解各采购点到菜市场的最短距离,在图论里面关于最短路问题比较常用的是Dijkstra算法,Dijkstra算法提供了从网络图中某一点到其他点的最短距离。
关键词最短路问题floyd算法运输问题一、问题重述F市是一个人口不到15万人的小城市。
根据该市的蔬菜种植情况,分别在花市(A),城乡路口(B)和下塘街(C)设三个收购点,再由各收购点分送到全市的8个菜市场,该市道路情况,各路段距离(单位:100m)及各收购点,菜市场①⑧的具体位置见图1,按常年情况,A,B,C三个收购点每天收购量分别为200,170和160(单位:100 kg),各菜市场的每天需求量及发生供应短缺时带来的损失(元/100kg)见表 1.设从收购点至各菜市场蔬菜调运费为1元/(100kg.100m).①7 ②5 4 8 3 7A 7 ⑼ 6 B⑥ 6 8 55 4 7 117 ⑾ 4 ③7 5 66 ⑤ 3 ⑿ 5 ④⑽8 6 610 C 10 ⑧5 11⑦图1(a)为该市设计一个从收购点至个菜市场的定点供应方案,使用于蔬菜调运及预期的短缺损失为最小;(b)若规定各菜市场短缺量一律不超过需求量的20%,重新设计定点供应方案(c)为满足城市居民的蔬菜供应,光明市的领导规划增加蔬菜种植面积,试问增产的蔬菜每天应分别向A,B,C三个采购点供应多少最经济合理。
二、问题分析求总的运费最低,可以先求出各采购点到菜市场的最小运费,由于单位重量运费与距离成正比,题目所给的图1里包含了部分菜市场、中转点以及收购点之间的距离,(a)题可以用求最短路的方法求出各采购点到菜市场的最短路径,乘上单位重量单位距离费用就是单位重量各运输线路的费用,然后用线性方法即可解得相应的最小调运费用及预期短缺损失。
专题二 运输规划问题建模精品名师资料

运筹学
销地 产地 A1 A2
B1 c11 c21
B2 c12 c22
Bn c1n c2n
产量 a1 a2
Am 销量
cm1 b1
cm2 b2
cmn bn
am
2
运筹学
25
运筹学
闭回路计算检验数的经济解释为: 在已给出初始解的表中,可以从任一空格出发,如从 (A1 , B1) 出发,若让 A1 的产品调 1 吨给B1,为了保持 产销平衡,就要依次作调整:在 (A1 , B3) 处减少 1 吨 ,(A2 , B3) 处增加 1 吨,(A2 , B1) 处减少 1 吨,即构成 了以(A1 , B1)空格为起点,其它为有数字格的闭回路。 可见这一调整方案使运费增加了: (+1)3 + (-1) 3 + (+1)2 + (-1) 1 = 1 (元),这表明若这样调整运输方式将 增加运费。将“1” 填入(A1 , B1) 格,就是检验数。
26
运筹学
销地 产地 A1 A2 A3 销量 销地 产地 A1 A2
B1
B2
B3 4
B4 3
产量 7 4
3
3 2 10 5
4
10 8 5 7
供应 7 4 9
24
运筹学
(2)最优解的判别 判别的方法是计算非基变量即空格的检验数。当所有的非基 变量检验数全都大于等于 0 时为最优解。 ① 方法一:闭回路法
在给出调运方案的计算表上,从每一空格出发, 找一条闭回路。 它是以空格为起点,用水平线或垂直线向前划, 每碰到一数字格就转 90 度后继续前进。直到回到 起始空格处为止,(A1 , B1) 空格与(A1 , B4) 、 (A2 , B4) 和 (A2 , B1) 三个有数字的格构成一闭回路,如 此等等。 每个空格都存在唯一的闭回路。
货物配送问题数学建模

货物配送问题数学建模一、问题描述在物流配送中,如何合理地安排货物的配送路线,使得货物能够最快地到达目的地,同时保证配送成本最小化,是一个重要的问题。
本文将以某物流公司为例,探讨如何利用数学建模的方法解决货物配送问题。
二、问题分析该物流公司需要将货物从A地配送到B地,其中A地有n个发货点,B地有m个收货点。
每个发货点的货物重量不同,每个收货点的需求量也不同。
为了保证配送效率,该物流公司需要在每个发货点选择最优的配送路线,使得货物能够最快地到达目的地,同时保证配送成本最小化。
具体而言,该问题需要考虑以下因素:1.货物重量:每个发货点的货物重量不同,需要考虑不同重量的货物在配送过程中的影响。
2. 配送路线:如何选择最优的配送路线,使得货物能够最快地到达目的地,同时保证配送成本最小化。
3. 配送成本:配送成本包括人工成本、车辆成本、油费等,需要考虑如何在保证配送效率的同时最小化配送成本。
三、数学建模为了解决上述问题,我们可以采用数学建模的方法。
具体而言,我们可以将该问题建模为一个最小费用最大流问题。
最小费用最大流问题是图论中的一个经典问题,其主要思想是在网络流的基础上,引入费用这一概念,使得在满足流量限制的同时,最小化总费用。
在本问题中,我们可以将发货点看作源点,收货点看作汇点,货物的重量看作每个边的流量限制,配送成本看作每个边的费用。
具体而言,我们可以将该问题建模为以下几个步骤:1. 建立网络模型:将发货点和收货点看作网络中的节点,将货物的配送路线看作网络中的边,建立网络模型。
2. 确定流量限制:将每个发货点的货物重量看作每个边的流量限制。
3. 确定费用:将配送成本看作每个边的费用。
4. 求解最小费用最大流:利用最小费用最大流算法,求解最小费用最大流,得到最优的配送路线。
四、实际案例为了验证上述方法的有效性,我们在某物流公司的实际配送中进行了测试。
具体而言,我们将该问题建模为一个最小费用最大流问题,并利用最小费用最大流算法求解最优的配送路线。
运输问题的数学模型详细讲解,有案例+多种方法

m ( 3 1) x ij b j j 1,2, , n i 1 n s .t . x ij a i i 1,2, , m j 1 x 0 ij m n 其中,ai和bj满足: ai b j 称为产销平衡条件。
2、流向图
流向图:
在交通图上表示物资流向的图被称为流向 图。在图中每个发点吨数全部运完,每个 收点所需吨数均已满足。
2、流向图
发点A到收点B的 运输量,用括号 括起。
2、流向图
关于流向图的一些规定 箭头必须表示物资运输的方向 流量写在箭头的旁边,加小括号。 流向不能直接跨越路线上的收点、发点、 交叉点 任何一段弧上最多只能显示一条流向!即 同一段弧上的多条流向必须合并。 除端点外,任何点都可以流进和流出
2 4 6 4 B4
(2)
B5
4 2
8 B3
(8)
4
B2
(8) (1)
4 6 7 A1
3
5 8 A2
图 4-10
第三步:补上丢掉的边,检查有无迂回。 圈 B5B4B3A2 的 圈 长 =4+4+5+8=21, 内 圈长= 4+4+5=13>21/2,有迂回,所 以流向图不是最优流向图。需要调整。
约束方程式中共mn个变量,m+n个约束。
上述模型是一个线性规划问题。但是其结构很特殊, 特点如下: 1.变量多(mn个),但结构简单。
x11 x12 x1n x 21 x 22 x 2 n x m 1 x m 2 x mn 1 1 1 1 1 1 技术系数矩阵 A 1 1 1 1 1 1 1 1 1 1 1 1 m行 n行
数学建模---第四章-运输问题

p , p , , p i1 j1 i2 j2
ir jr
是线性相关的.
推论 1 若变量组对应的列向量组线性无关,则该变 量组一定不包含闭回路.
Go on
性质 1 的证明
Proof : 由直接计算可知
p p p p i1 j1
i1 j2
i2 j2
从理论上讲,运输问题也可用单纯形法来求解, 但是由于运输问题数学模型具有特殊的结构,存在一 种比单纯形法更简便的计算方法 —— 表上作业法, 用表上作业法来求解运输问题比用单纯形法可节约计 算时间与计算费用.但表上作业法的实质仍是单纯形法
§1 运输问题及其数学模型
§1 运输问题及其数学模型
一、运输问题的数学模型
A3 55
6
3
10 4
10
bj 5500 25 10 15
§2 运输问题的表上作业法 2、最小元素法 规则:优先安排单位运价最小的产地与销地之间的运输
任务. Note : 在某行(或列)填入最后一个数时,如果行和 列同时饱和,规定只划去该行(或列)
z 10 40 5 25 3 5 110
设某种物资共有 m 个产地 A1,A2,…,Am,各 产地的产量分别是a1,a2 ,…,am;有n 个销地 B1, B2,…,Bn ,各销地的销量分别为b1,b2,…,bn .
假定从产地Ai(i =1,2,…,m)向销地Bj(j =1, 2,…,n)运输单位物资的运价是cij,问怎样调运才能 使总运费最小?
j 1
i 1, 2, , m
m
xij bj
i 1
j 1, 2, , n
xij 0 i 1, 2, , m; j 1, 2, , n xij 0 i 1, 2, , m; j 1, 2, , n
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
蔬菜运输问题2012年8月22日摘要本文运用floyd算法求出各蔬菜采购点到每个菜市场的最短运输距离,然后用lingo软件计算蔬菜调运费用及预期短缺损失最小的调运方案,紧接着根据题目要求对算法加以修改得出每个市场短缺率都小于20%的最优调运方案,并求出了最佳的供应改进方案。
关键词最短路问题floyd算法运输问题一、问题重述光明市是一个人口不到15万人的小城市。
根据该市的蔬菜种植情况,分别在花市(A),城乡路口(B)和下塘街(C)设三个收购点,再由各收购点分送到全市的8个菜市场,该市道路情况,各路段距离(单位:100m)及各收购点,菜市场①⑧的具体位置见图1,按常年情况,A,B,C三个收购点每天收购量分别为200,170和160(单位:100 kg),各菜市场的每天需求量及发生供应短缺时带来的损失(元/100kg)见表 1.设从收购点至各菜市场蔬菜调运费为1元/(100kg.100m).①7 ②5 4 8 3 7A 7 ⑼ 6 B⑥ 6 8 55 4 7 117 ⑾ 4 ③7 5 66 ⑤ 3 ⑿ 5 ④⑽8 6 610 C 10 ⑧5 11⑦图1(a)为该市设计一个从收购点至个菜市场的定点供应方案,使用于蔬菜调运及预期的短缺损失为最小;(b)若规定各菜市场短缺量一律不超过需求量的20%,重新设计定点供应方案(c)为满足城市居民的蔬菜供应,光明市的领导规划增加蔬菜种植面积,试问增产的蔬菜每天应分别向A,B,C三个采购点供应多少最经济合理。
二、问题分析求总的运费最低,可以先求出各采购点到菜市场的最小运费,由于单位重量运费与距离成正比,题目所给的图1里包含了部分菜市场、中转点以及收购点之间的距离,(a)题可以用求最短路的方法求出各采购点到菜市场的最短路径,乘上单位重量单位距离费用就是单位重量各运输线路的费用,然后用线性方法即可解得相应的最小调运费用及预期短缺损失。
第二问规定各菜市场短缺量一律不超过需求量的20%,只需要在上题基础上加上新的限制条件,即可得出新的调运方案。
第三问可以在第二问的基础上用灵敏度分析进行求解,也可以建立新的线性问题进行求解。
三、模型假设1、各个菜市场、中转点以及收购点都可以作为中转点;2、各个菜市场、中转点以及收购点都可以的最大容纳量为610吨;3、假设只考虑运输费用和短缺费用,不考虑装卸等其它费用;4、假设运输的蔬菜路途中没有损耗;5、忽略从种菜场地到收购点的运输费用。
四、符号说明A收购点分送到全市的8个菜市场的供应量分别为a1,b1,c1,d1,e1,f1,g1,h1, B收购点分送到全市的8个菜市场的供应量分别为a2,b2,c2,d2,e2,f2,g2,h2, C收购点分送到全市的8个菜市场的供应量分别为a3,b3,c3,d3,e3,f3,g3,h3, 8个菜市场的短缺损失量分别为a,b,c,d,e,f,g,h(单位均为100kg)。
五、模型的建立与求解按照问题的分析,首先就要求解各采购点到菜市场的最短距离,在图论里面关于最短路问题比较常用的是Dijkstra算法,Dijkstra算法提供了从网络图中某一点到其他点的最短距离。
主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。
但由于它遍历计算的节点很多,所以效率较低,实际问题中往往要求网络中任意两点之间的最短路距离。
如果仍然采用Dijkstra算法对各点分别计算,就显得很麻烦。
所以就可以使用网络各点之间的矩阵计算法,即Floyd 算法。
Floyd算法的基本是:从任意节点i到任意节点j的最短路径不外乎2种可能,1是直接从i到j,2是从i经过若干个节点k到j。
i到j的最短距离不外乎存在经过i与j之间的k和不经过k两种可能,所以可以令k=1,2,3,...,n(n是城市的数目),在检查d(i,j)与d(i,k)+d(k,j)的值;在此d(i,k)与d(k,j)分别是目前为止所知道的i到k与k到j的最短距离。
因此d(i,k)+d(k,j)就是i到j经过k的最短距离。
所以,若有d(i,j)>d(i,k)+d(k,j),就表示从i出发经过k再到j的距离要比原来的i到j距离短,自然把i到j的d(i,j)重写为d(i,k)+d(k,j),每当一个k查完了,d(i,j)就是目前的i到j的最短距离。
重复这一过程,最后当查完所有的k时,d(i,j)里面存放的就是i到j之间的最短距离了。
对于上面的问题,只要能列出它的距离的邻接矩阵,如表2所示。
便能用floyd法进行计算了。
表2 各点的邻接矩阵图首先对图1中的4个纯中转点进行编号,为(9)~(12),并标注在图1中,A、B、C的编号分别为1、14、15,其余点在矩阵中的编号如表1第一行所示。
由于数据比较复杂,用普通的计算很困难,所以我们可以用MATLAB软件来编程求解。
算法思路:采用标号作业法,每次迭代产生一个永久标号, 从而生长一颗以V0为根的最短路树,在这颗树上每个顶点与根节点之间的路径皆为最短路径。
当然此问题也需要表2的各点邻接矩阵。
接下来可以得到Dijkstra法的MATLAB语言。
M程序如下:function [min,path]=dijkstra(w,start,terminal)n=size(w,1); label(start)=0; f(start)=start;for i=1:nif i~=startlabel(i)=inf;end, ends(1)=start; u=start;while length(s)<nfor i=1:nins=0;for j=1:length(s)if i==s(j)ins=1;end, endif ins==0v=i;if label(v)>(label(u)+w(u,v))label(v)=(label(u)+w(u,v)); f(v)=u;end, end, endv1=0;k=inf;for i=1:nins=0;for j=1:length(s)if i==s(j)ins=1;end, endif ins==0v=i;if k>label(v)k=label(v); v1=v;end, end, ends(length(s)+1)=v1;u=v1;endmin=label(terminal); path(1)=terminal;i=1;while path(i)~=startpath(i+1)=f(path(i));i=i+1 ;endpath(i)=start;L=length(path);path=path(L:-1:1);图2 Dijkstra算法的MATLAB运行图如图2,红色框内的是Dijkstra算法的脚本程序,蓝色框内的试运行结果,根据程序显示s点到j点的最短路就是4百米。
在程序中显示所走的路线为path=1 2,对应点即为直接从A点到达①点。
但是由于运用dijkstra编程每次都要修改起始点和终点,所以在大部分情况下效率都不高。
由于dijkstra算法较为复杂,所以可用Floyd算法用于求最短路径。
Floyd 算法思路本质很简单,即用三个for循环的嵌套,代码思路如下:for ( int i = 0; i < 节点个数; ++i ){for ( int j = 0; j < 节点个数; ++j ){for ( int k = 0; k < 节点个数; ++k ){if ( Dis[i][k] + Dis[k][j] < Dis[i][j] ){// 找到更短路径Dis[i][j] = Dis[i][k] + Dis[k][j];}}}}但是这里我们要注意循环的嵌套顺序,如果把检查所有节点X放在最内层,那么结果将是不正确的,因为这样便过早的把i到j的最短路径确定下来了,所以正确的应该是这样的:for ( k = 0; k < 节点个数; ++k ){for ( i = 0; i < 节点个数; ++i ){for ( j = 0; j < 节点个数; ++j ){if ( Dis[i][k] + Dis[k][j] < Dis[i][j] ){%找到更短路径Dis[i][j] = Dis[i][k] + Dis[k][j];}}}.}那么接下来的问题就是,我们如何找出最短路径.这里需要借助一个辅助数组Path,它是这样使用的:Path(AB)的值如果为P,则表示A节点到B节点的最短路径是A->...->P->B。
这样一来,假设我们要找A->B的最短路径,那么就依次查找,假设Path(AB)的值为P,那么接着查找Path(AP),假设Path(AP)的值为L,那么接着查找Path(AL),假设Path(AL)的值为A,则查找结束,最短路径为A->L->P->B。
那么,如何填充Path的值呢?很简单,当我们发现Dis(AX) + Dis(XB) < Dis(AB)成立时,就要把最短路径改为A->...->X->...->B,而此时,Path(XB)的值是已知的,所以,Path(AB) = Path(XB)。
Floyd算法直接在图的带权邻接矩阵中用插入顶点的方法依次递推地构造出n个矩阵D(1), D(2), …, D(n), D(n)是图的距离矩阵, 同时引入一个后继点矩阵记录两点间的最短路径。
d(i,j) : i到j的距离; path(i,j): i到j的路径上i的后继点;输入带权邻接矩阵a(i,j)。
赋初值,对所有i,j, d(i,j)a(i,j) , path(i,j)j,k=l。
然后更新d(i,j) , path(i,j)对所有i,j,若d(i,k)+d(k,j)<d(i,j)则d(i,j)=d(i,k)+d(k,j) , path(i,j)path(i,k) , k =k+1。
重复上述步骤直到k=n+1。
接下来就是代入具体的数据了,这里的图以及邻接矩阵依旧是修改后的图1及表2。
Floyd算法的MATLAB代码如下:M程序function [D,path,min1,path1]=floyd(a,start,terminal)D=a;n=size(D,1);path=zeros(n,n);for i=1:nfor j=1:nif D(i,j)~=infpath(i,j)=j;end, end, endfor k=1:nfor i=1:nfor j=1:nif D(i,k)+D(k,j)<D(i,j)D(i,j)=D(i,k)+D(k,j);path(i,j)=path(i,k);end, end, end,endif nargin==3min1=D(start,terminal);m(1)=start;i=1;path1=[ ];while path(m(i),terminal)~=terminalk=i+1;m(k)=path(m(i),terminal);i=i+1;endm(i+1)=terminal;path1=m;end脚本程序的代码如下:a=[0 4 8 8 inf inf 6 inf inf 7 inf 4 inf inf inf4 0 7 inf inf inf5 inf inf inf inf inf inf inf inf8 7 0 inf inf inf inf inf inf 3 inf inf inf 7 inf8 inf inf 0 inf 5 inf inf inf 5 inf 4 6 7 infinf inf inf inf 0 inf inf inf inf inf inf inf 5 inf inf inf inf inf 5 inf 0 inf inf inf inf 6 7 3 inf 66 5 inf inf inf inf 0 inf inf inf7 5 inf inf infinf inf inf inf inf inf inf 0 11 inf 10 inf inf inf 5 inf inf inf inf inf inf inf 11 0 inf inf inf 6 inf 10 7 inf 3 5 inf inf inf inf inf 0 inf inf inf 6 infinf inf inf inf inf 6 7 10 inf inf 0 inf inf inf 84 inf inf 4 inf 75 inf inf inf inf 0 inf inf infinf inf inf 6 5 3 inf inf 6 inf inf inf 0 11 inf inf inf 7 7 inf inf inf inf inf 6 inf inf 11 0 inf inf inf inf inf inf 6 inf 5 10 inf 8 inf inf inf 0];[D, path]=floyd(a)运行结果如下:图3 返回矩阵D图4 返回矩阵pathD(i,j)表示i到j的最短距离; path(i,j)表示i与j之间的最短路径上顶点i的后继点。