复合材料格栅结构单元力学性能预测

合集下载

格栅结构力学性能研究进展

格栅结构力学性能研究进展

格栅结构力学性能研究进展
格栅结构力学性能研究进展
格栅复合材料是一种新型轻质高强材料.综述了格栅复合材料的周期构型特征和格栅结构的制备工艺.归纳了二维周期格栅材料的等效刚度矩阵计算方法,比较了不同构型格栅的基本力学性能,介绍了胞元材料的微极弹性理论和格栅的强度与屈服面计算方法.探讨了格栅的缺陷及其力学响应,包括格栅的尺度效应、夹杂缺陷以及裂纹扩展特征,介绍了波在格栅材料中传播机理的最新研究成果.根据格栅材料在工程中的应用形式,分类介绍了格栅板壳结构、格栅加筋板壳结构和格栅夹层结构的结构特点和破坏方式、设计优化准则和实验研究成果.还归纳了作者所在研究小组近期在碳纤维格栅复合材料的制备、实验研究和理论分析等方面的最新工作进展.
作者:范华林金丰年方岱宁 FAN Hualin JIN Fengnian FANG Daining 作者单位:范华林,FAN Hualin(清华大学航天航空学院,北京,100084;解放军理工大学理学院,南京,210007)
金丰年,JIN Fengnian(解放军理工大学理学院,南京,210007)
方岱宁,FANG Daining(清华大学航天航空学院,北京,100084)
刊名:力学进展ISTIC PKU 英文刊名:ADVANCES IN MECHANICS 年,卷(期): 2008 38(1) 分类号: O3 关键词:格栅复合材料制备力学性能实验研究。

基于复合材料的结构优化设计及力学性能分析

基于复合材料的结构优化设计及力学性能分析

基于复合材料的结构优化设计及力学性能分析随着科技的发展和工业化进程的加快,人们对材料和工程结构设计的要求越来越高。

传统的金属材料由于重量大、强度低、耐蚀性差等缺点,在一些对材料性能有较高需求的领域已经无法满足要求。

因此,研发新型高强度、低密度、耐腐蚀的结构材料已经成为当今材料科学领域的热点问题。

复合材料是一种由两种或两种以上材料组成的材料,其具有独特的物理、力学和化学性质,逐渐被人们所认识和发展。

复合材料的主要优点是其轻质高强,具有良好的耐腐蚀性能和设计灵活性。

因此,越来越多的结构工程设计师和材料科学家开始研究如何更好地利用复合材料设计以及结构优化,以提高结构的性能,利用材料的优势实现工程应用的真正意义。

在现代工程领域中,使用复合材料构建复杂的结构是一项挑战。

目前大部分设计师还是依靠直觉选择材料和结构,然而这种方式已经不能满足复合材料结构设计的需求。

结构设计必须基于结构力学分析、优化设计模拟,并理解结构分析中的固有变量。

使用结构优化技术时,材料的特性将是一个关键因素,特别是复合材料的强度、刚度和失效机理。

复合材料结构的力学性能分析首先需要确定复合材料的材料性质。

复合材料是由多种相互作用的复合体系构成的,因此,其机械行为往往比单一材料复杂得多。

一个重要的特点就是复合材料的强度总是难以量化和预测。

因此,强度也成为复合材料设计与应用中一个关键的问题。

复合材料的复杂性使研究人员很难近一步了解其力学性能。

为了让更多的工程界人士、研究人员和设计师了解和使用复合材料作为工程结构中的一部分,需要使用一些强大的工具来确定和分析这些材料,并以此来评估其实用价值。

此时需要进行力学性能分析,研究复合材料结构的强度、稳定性、疲劳寿命等基本参数。

在本章中,我们将介绍一些常见的复合材料结构优化设计与力学性能分析的方法。

1. 复合材料结构的材料力学特性和结构力学分析在设计复合材料结构之前,首先需要了解复合材料的独特材料力学特性。

复合材料格栅结构的强度分析(英文)

复合材料格栅结构的强度分析(英文)
g i tfe d sr t e rd sif ne t uc ur ①
HE Jn —u n,HE Gu — in igx a oqa g
( o .o A t nui ,N r w s r oy c n a U ie i , in 70 7 , hn ) C i f s oa ts ot et P leh i l nvr t X h 10 2 C ia l r c h e n t e sy
dain to
CLC mb r V4 4 8 Nu e : 1 .
Do u e d A c m ntCo e:
Aril D:0 6 2 9 ( 0 0)4-4 90 t eI 10 -7 3 2 1 0 0 4 -5 c
复 合 材 料 格 栅 结 构 的 强 度 分 析
何 景 轩 , 国强 何
( 西北工业大学 航 天学院 , 西安 7 07 ) 10 2续 纤 维 缠 绕 的 斜 向及 环 向 肋 和 蒙 皮 组 成 的 结构 。 对 A S S软 件 进 行 了 二 次 开发 , 复 NY 分
别采 用层合板 和层合梁单元模拟复合材料格栅 结构的蒙皮和肋 。根 据复合 材料格栅 结构 的几何特征及 其载荷分 布特征 ,
f rh rd v l p n f EM a c lt n s f r u t e e e o me t oF c lu a i o t eANS o wa YS,t es i n i sa e smu ae y lmi ae l t e e n ̄a d b a e e h k n a d rb r i l td b a n t d p ae l me t n e m l —
固 体 火 箭 技 术 第3 3卷第 4期
J u a fS l o k t e h oo y o r lo oi R c e c n lg n d T V0 . 3 No 4 2 1 13 . 0 0

复合材料的动态力学性能与评估

复合材料的动态力学性能与评估

复合材料的动态力学性能与评估在当今科技飞速发展的时代,复合材料凭借其优异的性能在众多领域得到了广泛应用,从航空航天到汽车制造,从体育用品到医疗器械,无处不在。

而要充分理解和有效利用这些复合材料,对其动态力学性能的研究与评估就显得至关重要。

复合材料的动态力学性能是指材料在动态载荷作用下的力学响应,包括应力、应变、模量、阻尼等参数随时间、频率和温度的变化关系。

与静态力学性能不同,动态力学性能更能反映材料在实际使用过程中的真实表现,因为大多数工程结构和部件在服役期间都会受到动态载荷的作用,如振动、冲击、疲劳等。

动态力学性能的研究对于复合材料的设计和应用具有重要意义。

首先,它可以帮助我们了解材料在不同工况下的力学行为,为结构的可靠性分析和设计提供依据。

例如,在航空航天领域,飞机的机翼和机身在飞行过程中会受到气流的冲击和振动,需要使用具有良好动态力学性能的复合材料来保证结构的稳定性和安全性。

其次,通过对动态力学性能的研究,可以优化复合材料的配方和制备工艺,提高材料的性能和质量。

此外,动态力学性能还可以为材料的失效分析和寿命预测提供重要的参考信息,有助于延长材料的使用寿命和降低维护成本。

为了评估复合材料的动态力学性能,通常采用一系列的实验方法和测试技术。

其中,动态力学分析(DMA)是一种常用的手段。

DMA通过对试样施加周期性的动态载荷,并测量其响应,可以得到材料的储能模量、损耗模量和损耗因子等参数。

储能模量反映了材料在变形过程中储存能量的能力,损耗模量则反映了材料在变形过程中能量的损耗,而损耗因子则是损耗模量与储能模量的比值,它可以用来衡量材料的阻尼性能。

除了 DMA 之外,还有其他一些测试方法也常用于复合材料动态力学性能的评估。

例如,冲击试验可以用来研究材料在受到高速冲击时的力学响应,疲劳试验可以用来评估材料在循环载荷作用下的寿命和可靠性,振动试验则可以研究材料在振动环境下的性能。

这些测试方法各有特点,可以从不同的角度反映材料的动态力学性能。

格栅结构吸波性能探索研究

格栅结构吸波性能探索研究

第26卷 第3期2006年6月 航 空 材 料 学 报JOURNAL OF AERONAUTI CA L MATER I ALSVol .26,No .3June 2006格栅结构吸波性能探索研究蒋诗才,邢丽英,李斌太,陈祥宝(北京航空材料研究院,北京100095)摘要:探索研究了格栅结构作为吸波结构的可能性,利用Floque t 定理分析格栅结构传播电磁波的特性,通过传输线和等效电路法设计格栅结构,为展宽吸波频带和提高吸波性能,将电路屏引入格栅结构,结果表明当电路屏与格栅结构匹配时,含有电路屏的格栅结构在8~18G Hz 内反射率≤-5d B ,在频率点为16.4GHz 时最大峰值为-24.4d B 。

关键词:格栅结构;电路屏;吸波复合材料中图分类号:T B 34;T B332 文献标识码:A 文章编号:100525053(2006)0320196203收稿日期622;修订日期6232作者简介蒋诗才(3),男,博士研究生。

格栅结构是一种轻质、高效的结构形式,从20世纪70年代末期,随着复合材料在航空领域的应用逐步增加,美国和前苏联就开始尝试制造is ogrid 复合材料结构。

复合材料的力学性能各向异性的特点使其非常适合于制造isogrid 复合材料结构,使得is ogrid 复合材料结构肋长度方向的强度和刚度非常高。

由于复合材料格栅结构的重量相对同规格的铝合金格栅结构重量减轻60%,刚度增加10倍,强度增加3倍,在国外复合材料界得到越来越广泛的重视,并被确定为下一代返回式宇航飞行器壳体三大候选制造技术(加筋结构、夹层结构、格栅结构)之一。

现有关于格栅结构的文献主要集中于格栅的制造方法[1]和力学性能预测[225],制造格栅结构比较典型的方法有光学复合材料公司提出的SnapSat 方法,斯坦福大学提出的TR I G(成型工装增强格栅结构)方法以及美国空军实验室提出的利用复合模具制造格栅结构的方法。

复合材料结构设计分析与力学性能测试

复合材料结构设计分析与力学性能测试
一、复合材料结构设计流程
层合板设计的主要内容选择合适的单层铺设角-铺层方向;确定各铺设角单层的层数百分比-铺层比;确定铺层顺序:直接影响到层合板的刚度、强度、稳定性、振动、工艺性和使用维护性。
第28页/共128页
一、复合材料结构设计流程
层合板设计的主要内容铺层结构简化表示
第29页/共128页
一、复合材料结构设计流程
第31页/共128页
一、复合材料结构设计流程
确定各铺设角单层的层数百分比-铺层比 若需设计成准各向同性层合板,采用[0/45/90/-45]s。0:90:±45铺层比0.25:0.25:0.50 准各向同性层合板:[A]为各向同性,与方向无关;各层具有相同的[Q]和相同的厚度;各层之间夹角相等。
第39页/共128页
一、复合材料结构设计流程
层合板的设计方法

设计方法
方法要点
说明
1
等代设计
采用准各性同性层合板按刚度等代铝板
2
准网格设计
设计中仅考虑纤维承载能力,按应力比确定0、90、45纤维铺层比例
3
刚度设计毯式曲线设计
以面内刚度为主,设计铺层比例与面内强、刚度关系曲线,查出所需铺层比例
层合板初步设计方法
一、复合材料结构设计流程
1、明确设计条件: 性能要求、载荷情况、环境条件、形状限制等。2、材料设计: 原材料选择、铺层性能确定、层合板设计等。3、结构设计: 复合材料层合板设计、结构典型特征的设计、夹芯结构设计、复合材料接头设计等。
第1页/共128页
一、复合材料结构设计流程
设计分析制造一体化 在材料设计和结构设计中都涉及到应变、应力与变形分析、失效分析,以确保结构的强度和刚度。 复合材料结构往往是材料与结构一次成型的,且材料也具有可设计性。

格栅结构受力分析与载荷重构研究

格栅结构受力分析与载荷重构研究
f 6)
收稿 日期 :20 - -9 0 90 0 7 作者简介 :武玉芬 ( 99 ) 17 . ,女 ,在读博士研究生 ,主要从 事复合材料结构与设计方面 的研究 。
F / M 2 1 . RP C 0 0 N氆 4
21 0 0年 第 4期
玻 璃 钢 / 复 合 材 料
3 1
3 0
格 栅 结 构 受 力 分 析 与 载 荷 重 构 研 究
21 0 0年 7月
格栅 结构 受 力分 析 与载 荷 重构 研 究
武 玉 芬 ,张博 明
( 哈尔滨丁业大学复合材料与结构研究所 , 哈尔滨 10 8 ) 50 0
摘要: 本文基于有限元软件 自动生成 系统 ( E G) 编制 了先进 复合材料格栅 结构( G ) FP , A S 在低 速冲击作用 下的有限元分析 程序 , 实现 了 A S在低速 冲击载荷作 用下的响应分析 , G 通过 实验 验证 了 F P 生成程序 的正确 性。将有 限元 与遗传 算法相结 EG
a +a +
v a
格栅 结构 正是满 足 了上述 要求 而广 受关 注 。但 在 制 作过程 中 , 在肋条 互 锁 处 会 出 现纤 维 堆 积 和 纤 维 弯
曲 , 得 冈 度和强 度 降低 , 成 了格 栅结 构 “ 中不 使 l 形 美 足” 的薄弱 环 节 ¨ , 得 这 种 结 构 的应 用 受 到 了一 J使 定 的限制 。另外 , 格栅 结构 具有 开放性 的结 构形 式 , 便 于布设 传感 器 对其 做 实 时 检 测 , 据 已知 的 响应 根
+ : +叩 p
其 中 , 、" r 9 O 1 而 点 3 r " 、
r O 为 正 应力 ,

复合材料结构的力学性能分析与优化设计

复合材料结构的力学性能分析与优化设计

复合材料结构的力学性能分析与优化设计复合材料在现代工程领域中得到广泛应用,其独特的力学性能使其成为许多领域的首选材料。

为了确保使用复合材料结构的稳定性和安全性,对其力学性能进行准确的分析与优化设计是必不可少的。

复合材料的力学性能分析需要考虑以下几个方面:材料属性、构件设计和力学行为。

首先,复合材料的力学性能是由其材料属性决定的。

复合材料由纤维和基体组成,纤维负责承载载荷,而基体则起到连接纤维的作用。

在分析复合材料的力学性能时,需要了解纤维的类型、方向和体积分数,以及基体的特性。

这些信息可以通过材料测试和实验获得,例如拉伸测试、弯曲测试和压缩测试等。

通过这些测试可以获得复合材料的弹性模量、屈服强度和断裂韧性等力学特性。

其次,构件设计是影响复合材料力学性能的关键因素。

复合材料可以通过不同的构件设计来适应不同的工程要求。

构件的几何形状、层数、层序和连接方式等都会对复合材料的力学性能产生影响。

在进行力学性能分析时,需要根据构件的实际情况建立有限元模型。

有限元分析是一种常用的数值模拟方法,通过将复合材料结构划分为小块进行离散建模,然后通过求解有限元方程得到应力、应变和变形等信息。

通过有限元分析,可以评估不同构件设计对复合材料力学性能的影响,为优化设计提供依据。

最后,力学行为是评价复合材料力学性能的关键。

复合材料的力学行为通常包括线弹性、非线性、破坏和疲劳等。

线弹性是指在小应变范围内,复合材料的应力和应变呈线性关系。

非线性行为包括塑性变形、集中变形和层间剪切等,这些行为会导致驰豫和刚度退化。

破坏行为是复合材料在超出其极限时发生的,通常包括纤维断裂、基体剥离和界面开裂。

疲劳行为是复合材料在长期受到循环载荷作用下发生的。

优化设计是通过改变材料和结构参数来增强复合材料的力学性能。

在复合材料结构的力学性能分析中,通过在有限元模型中改变材料的属性和构件的设计来优化设计。

优化设计的目标可以是最小化构件的重量、最大化构件的刚度、最大化构件的承载能力等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第27卷 第4期2007年8月航 空 材 料 学 报J OURNAL OF A ERONAUT ICAL MAT ER I A LSV o l 127,N o 14 A ugust 2007复合材料格栅结构单元力学性能预测蒋诗才, 邢丽英, 李斌太, 陈祥宝(北京航空材料研究院,北京100095)摘要:采用商业有限元软件M SC.N astran ,运用简单的She ll 单元对复合材料格栅结构蒙皮和加强筋进行模拟,预测复合材料格栅结构名义纵向拉伸强度/模量,弯曲强度/模量。

计算结果表明,随着复合材料格栅中肋高度的增加,名义弯曲强度/模量和拉伸强度/模量均有下降趋势。

关键词:复合材料格栅结构;力学性能;预测中图分类号:TB332 文献标识码:A 文章编号:1005-5053(2007)04-0065-04收稿日期:2007-03-15;修订日期:2007-04-12作者简介:蒋诗才(1973)),男,博士研究生,主要从事复合材料研究。

格栅结构是一种轻质、高效的结构形式,复合材料格栅结构以较强的可设计性和多种优良性能而广受关注。

由于复合材料格栅结构重量相对同规格铝合金格栅结构重量减轻60%,刚度增加10倍,强度增加3倍,在国外复合材料界得到越来越广泛的重视,并被确定为下一代返回式宇航飞行器壳体三大候选制造技术(加筋结构、夹层结构、格栅结构)之一[1]。

复合材料格栅结构研究热点之一为力学性能预测[2~5],早期是利用经典的加筋层合板理论,预测格栅结构的过屈曲行为,但存在误差太大。

为了更有效的预测格栅结构的力学性能,研究者利用ANSYS 等有限元软件或应用/s m eari n g 0方法预测复合材料格栅结构的力学行为,以及利用混合遗传算法[6]优化设计格栅结构。

但以往的学者在分析预测格栅结构力学行为时都需要建立特殊的加筋板壳单元,如张志峰[7]建立的协调转角独立加筋板壳单元,存在建模复杂和计算量大等问题,并且多为分析格栅结构的压缩和屈曲失效性能。

而在实际工程应用中,先进复合材料格栅结构的拉伸性能和弯曲性能也是非常重要的,尤其是弯曲性能与制造先进复合材料格栅结构的工艺性能密切相关。

因此本研究采用商业有限元软件M SC .N astran ,运用简单的Shell 单元对含上下层蒙皮格栅结构的蒙皮和加强筋进行模拟,预测复合材料格栅结构名义纵向拉伸强度/模量,弯曲强度/模量。

为工程应用复合材料格栅结构提供参考价值。

1 格栅结构有限元模型的建立1.1 几何模型在本模型中,采用Shell 单元对复合材料格栅结构的蒙皮和加强筋进行模拟。

M SC .N astran 中shell 单元的定义为两维单元,某一个方向的尺寸远小于另外两个方向的尺寸。

进表面蒙皮和加强筋的整体格栅结构为典型厚板结构,不适用于上述薄板假设。

但是,在对复合材料格栅结构分析时,由于复合材料格栅结构整体力学性能未知,不能沿复合材料格栅结构厚度处理为单一壳单元。

作为分析对象的是复合材料格栅结构的蒙皮和加强筋,它们均可满足上述假设。

将具有实际厚度的蒙皮和格栅抽象为离散的面元结构时,采用结构的中性面作为网格划分的参考面。

实际结构为关于中性面对称的三维结构(图1)。

因此,如果复合材料格栅结构的实际高度为H 2,抽象几何面结构的高度为h 1,则: h 2=h 1+12(h u +h b )h u 和h b 分别为上蒙皮和下蒙皮的厚度。

本研究在建立复合材料格栅结构计算分析模型时考虑到格栅结构中单元尺寸较大,为了避免由于模型中格栅单元数目分布带来的非对称效应,在拉伸、弯曲模型中采用格栅单元对称分布的几何尺寸模型。

在采用中性面建模,会出现模型中数学意义上下蒙皮和格栅肋的重叠现象,不符合物理模型,会给结果带来一定误差(图1)。

也可以通过参考面偏移避免这一问题,但是考虑到参考面偏移同时会引入载荷作用点偏心问题,因此,仍然采用中性面建航 空 材 料 学 报第27卷模,并且认为这一重叠带来的误差是忽略不计的。

拉伸模型拉伸、弯曲模型中采用格栅单元对称分布的分析模型如图2,网格划分后的拉伸有限元模型如图3。

在弯曲模型中,为了避免施加集中载荷带来的局部应力过高问题,事先在模型中定义出了弯曲载荷施加区域,认为弯曲载荷均匀施加在该区域上(图4),网格划分后的有限元模型如图5。

在以上的格栅模型中,主要采用了四节点面元进行结构的网格划分,在局部不能采用四节点单元的地方采用三角元划分。

由于三角元具有较大的面外刚度,为了保证模型精度,尽量减少三角元的应用。

1.2 壳单元模型本研究格栅分析的模型中主要采用N astran 中的QUAD4单元,局部采用T ri 3单元,QUAD4和Tri 3单元均为面单元,坐标系统如图6。

图6 QUAD4单元的坐标系统(来自N astran 技术文档)F ig .6 Coord i nate system of QUAD4ce ll (from N astrandocum ent)1.3 复合材料格栅结构分析单元力学性能定义 在QUAD4单元中,需要给出单元的材料属性。

对于各向同性材料,需要给出材料的属性、厚度。

由于沿单元厚度方向材料的力学性能并不连续,实际为具有不同材料性能主方向的分段连续结构。

因此,需要给出每一层的性能属性和主方向,以及其在单元厚度上的位置和厚度。

本模型中采用的材料属性参数示于表1。

格栅结构的蒙皮面板、格栅筋采用相同的铺层方式,采用对称式铺层,其中每一单层厚度均为0.125mm 。

对于格栅蒙皮面板,零度铺层角定义为沿着整体坐标的x 方向(图2~5)。

对于格栅的加强筋,零度铺层角定义为格栅的长度方向。

表1 有限元模型中采用的复合材料性能参数T ab l e 1 M ain composite param eter Para m ete rs /00L o w te mperature cure resin /T 700T ens ile m odulus /G Pa 120T ensile strength /M P a 2300Com press i ve strength /M Pa1000C ross Po isson rati o 0.31Interla m i nar shear streng t h /M P a6866第4期复合材料格栅结构单元力学性能预测在计算试样不同载荷条件下的强度值时,对复合材料的材料强度判据采用Tsa-i W u准则。

在T sa-i W u判据中取F12为零,其他值参照上表。

2格栅结构力学性能预测2.1弯曲性能预测三点弯曲格栅结构的有限元模型如图5。

在两端边界施加简支约束在中间区域施加均布载荷。

为了能够得到与实际结构变形更接近的计算结果,采用N astran中针对大变形的非线性求解器SOL106。

厚度10mm,12mm,16mm试样(模型中厚度方向高度8mm,10mm,14mm)的有限元分析结果,力-位移曲线如图7。

其中力为垂直于厚度方向施加载荷,位移为试样长度方向中点的最大厚度方向位移。

图7复合材料格栅结构的弯曲力-位移曲线F i g.7L oad/displace m ent fi gure of AGS bend properties参照相关三点弯曲试验的计算公式如下,可以得到格栅结构的名义弯曲强度和弯曲模量:R m ax=3F max L2BH2(1)E=L3$p4B H3$l(2)表2复合材料格栅结构弯曲性能有限元预测结果T ab le2Bend i ng prope rti es pred icted by M SC.N astranSpan l eng th/mmG rad i ent of load-d i sp l ace m ent fi gure/N#mm-1W i dth/mm H eight/mm Load/N E/G Pa R/M P a192872.2343.5610331035218.843 1921360.7343.5612414031190.0826 *******.4843.5616663026171.229由表2可以看出,随着复合材料格栅中肋高度的增加,名义弯曲模量和弯曲强度有下降趋势。

其实,这是显而易见的。

因为,随着肋高度的增加,蒙皮面板对整体结构贡献比率下降,而肋对整体结构性能贡献比率上升造成了这种结果。

2.2格栅结构纵向拉伸名义模量和强度预测格栅结构纵向拉伸的有限元模型如图3。

在一端施加固支约束,另一端施加拉伸载荷。

厚度分别为10mm,12mm,16mm的格栅结构纵向拉伸载荷下的力-位移曲线如图8。

计算结构单向拉伸强度和模量的公式如下:R m ax=F m axA(3)E=$F#L$L#A(4)求得不同厚度格栅结构的名义拉伸模量和拉伸强度,如表3所示。

在表3中,同样可以看到随着格栅高度的增加,名义模量和名义拉伸强度都随之下降。

与弯曲加载模型中的计算结果具有相近的分布趋势。

表3复合材料格栅结构纵向拉伸性能有限元预测结果T ab le300tensile properti es predicted by M SC.N astranW i dth/mm H eight/mm L eng t h/mm E/G Pa R/M PaS ize1043.5610171.2220.82979793119.5942378 S ize1243.5612171.2219.41874448115.3116391 S ize1643.5616171.2215.9550794398.8383121由于在模型中采用了边约束和边加载的方法,在约束端和加载端有应力集中出现,而这与实际试验过程中的加载方式不符。

因此在下面的应力场分布情况中,只给出试样长度方向的中间部分。

在该67航 空 材 料 学 报第27卷图8 复合材料格栅结构纵向拉伸力-位移曲线F i g .8 Lo ad /d i sp l acement fi gure o fAG S 00tensil eprope rties区域,应力分布均匀,符合实际试验过程中的应力状态。

作为典型,给出了格栅高度为10mm 时,蒙皮上面板、下面板、格栅肋的应力场分布情况(图9)。

3 结 论基于简单的Shell 单元,采用中性面建模对复合材料格栅结构的蒙皮和加强筋进行模拟,在此基础上使用M SC .Nastran 预测复合材料格栅结构名义纵向拉伸性能和弯曲性能。

计算结果表明,随着复合材料格栅中肋高度的增加,名义弯曲性能和拉伸性图9 纵向拉伸状态下蒙皮上面板、下面板、格栅肋的应力场F ig .9 S tress fi e l d of AG S top /bo ttom pane ,l ri b under 00tensil e能均呈下降趋势,这是由于随着复合材料格栅中肋高度的增加,蒙皮面板对整体结构贡献比率下降,而肋对整结构性能贡献比率上升所造成的。

相关文档
最新文档