电源完整性设计详解
PCB设计中的电源信号完整性的考虑

PCB设计中的电源信号完整性的考虑在PCB设计中,电源信号的完整性是一个非常重要的考虑因素。
电源信号完整性主要关注信号的稳定性、可靠性和抗干扰能力。
以下是在PCB设计中考虑电源信号完整性的几个重要方面:1.电源供电稳定性:电源信号的稳定性对系统的正常运行至关重要。
在设计中,应该选择具有稳定输出的电源,以确保电压和电流在整个系统中能够保持稳定。
稳定的电源可以减少系统噪声和漂移,提高系统性能和可靠性。
2.电源噪声和滤波:电源信号中的噪声可能会对系统的性能产生负面影响。
在PCB设计中,应采取一些滤波措施来降低电源噪声。
可以使用滤波电容和电源滤波器来抑制高频噪声。
此外,在布局中应该将电源线和地线分离,并与信号线保持足够的距离,以减少互联干扰。
3.电源线宽度和引出:电源线的宽度和布局对电源信号的完整性有重要影响。
电源线的宽度和长度应根据所需的电流和电压降进行计算。
在高电流应用中,更宽的电源线可以减少电源线的电阻和热降,确保供电稳定。
此外,应避免将电源线与其他信号线交叉,以减少互联干扰。
4.电源平面和地面平面:为了提供一个低电阻、低阻抗的供电路径,设计中通常会使用电源平面和地面平面。
电源平面提供了一个低阻抗的供电回路,可以降低电源噪声和电源电压的波动。
地面平面则提供了一个低阻抗的地引用,减少了信号线和电源线之间的串扰和互联干扰。
5.电源分区:在复杂的PCB设计中,将电源信号按照不同的功能分区是一个好的实践。
不同的模块或器件可能有不同的电源需求,分区设计可以简化供电布线,减少供电路径交叉,提高系统的电源完整性。
6.过热和过电流保护:为了保护系统免受过热和过电流的损害,设计中应考虑一些保护措施,如过热保险丝、过压保护器和电流限制器。
这些保护措施可以防止电源故障对系统产生严重影响,并提高系统的可靠性。
综上所述,在PCB设计中,电源信号的完整性是至关重要的。
通过选择稳定的电源、合理布局、适当的滤波和保护措施,可以提高电源信号的稳定性、可靠性和抗干扰能力,从而改善系统的性能和可靠性。
电源完整性设计

电源完整性设计一、电源完整性定义电源完整性是指电源波形的质量,研究的是电源分配网络(PDN),并从系统供电网络综合考虑,消除或者减弱噪声对电源的影响。
电源完整性的设计目标是把电源噪声控制在运行的范围内,为芯片提供干净稳定的电压,并使它能够维持在一个很小的容差范围内(通常为5%以内),实时响应负载对电流的快速变化,并能够为其他信号提供低阻抗的回流路径。
在高度集成的电子产品中,电源系统的设计占到了设计工作量的50%左右;对于复杂的FPGA类型的产品应用,在电路中常常会达到15~30路不同的电源。
电源完整性的目的就是给系统提供持续、稳定、干净的电源,保证系统稳定的工作。
在数字系统中,使信号完整性满足系统设计的要求也需要有一个非常稳定的电源系统,但是又不能使电源系统超标。
所以在设计电源完整性时,不仅仅关注的是去耦电容,还需要关注电源完整性、信号完整性和电磁兼容性这个“生态系统”,尤其是要考虑高度集成化的数字电路对电源完整性的影响。
二、电源完整性概览电源完整性的层面:芯片层面、芯片封装层面、电路板层面及系统层面。
在电路板层面的电源完整性要达到以下三个需求:1.使芯片引脚的电压噪声+电压纹波比规格要求要小一些(例如芯片电源管脚的输入电压要求1V 之间的误差小于+/-50 mV);2.控制接地反弹(地弹)(同步切换噪声SSN、同步切换输出SSO);3.降低电磁干扰(EMI)并且维持电磁兼容性(EMC):电源分布网络(PDN)是电路板上最大型的导体,因此也是最容易发射及接收噪声的天线。
电源噪声来源1.稳压芯片输出的电压不是恒定的,会有一定的纹波。
2.稳压电源无法实时响应负载对于电流需求的快速变化。
稳压电源响应的频率一般在200Khz 以内,能做正确的响应,超过了这个频率则在电源的输出短引脚处出现电压跌落。
3.负载瞬态电流在电源路径阻抗和地路径阻抗产生的压降。
4.外部的干扰。
三、电源完整性相关参数讲解1.SI和PI传统分析信号完整性和电源完整性都是分开分析的,为了更好的分析SI和PI的相互影响,我们需要把SI和PI放在同一个EM仿真中来分析。
高速电路信号完整性分析与设计九--电源完整性分析

第9章高速信号的电源完整性分析在电路设计中,设计好一个高质量的高速PCB板,应该从信号完整性(SI——Signal Integrity)和电源完整性(PI——Power Integrity )两个方面来考虑。
尽管从信号完整性上表现出来的结果较为直接,但是信号参考层的不完整会造成信号回流路径变化多端,从而引起信号质量变差,连带引起了产品的EMI性能变差。
这将直接影响最终PCB板的信号完整性。
因此研究电源完整性是非常必要和重要的。
9.1 电源完整性概述虽然电子设计的发展已经有相当长的历史,但是高速信号是近些年才开始面对的问题,随之出现的电源完整性的许多概念并不为大多数人所了解。
这里,对其中涉及到的一些基本名词做些简单的介绍。
9.1.1 电源完整性的相关概念电源完整性(Power Integrity) :是指系统供电电源在经过一定的传输网络后在指定器件端口相对该器件对工作电源要求的符合程度。
虽然电源完整性是讨论电源供给的稳定性问题,但由于地在实际系统中总是和电源密不可分的,通常把如何减少地平面的噪声也做为电源完整性的一部分讨论。
电源分配网络:电源分配网络的作用就是给系统内所有器件或芯片提供足够的电源,并满足系统对电源稳定性的要求。
同步开关噪声(Simultaneous Switch Noise,简称SSN):是指当器件处于开关状态,产生瞬间变化的电流(di/dt),在经过回流途径上存在的电感时,形成交流压降,从而引起噪声,所以也称为Δi噪声。
同步开关噪声包括电子噪声、地弹噪声、回流噪声、断点噪声等。
它对电源完整性的影响表现为地弹和电源反弹。
地弹噪声:它是同步开关噪声对电源完整性影响的表现之一。
是指芯片上的地参考电压的跳动。
当大量芯片的输出同时开启时,将有一个较大的瞬态电流在芯片与板的电源平面流过,芯片封装与电源平面的电感和电阻会引发电源噪声,这样会在真正的地平面(0V)上产生电压的波动和变化,这个噪声会影响其它元器件的动作。
《信号完整性与电源完整性的仿真分析与设计》

信号完整性与电源完整性的仿真分析与设计1简介信号完整性是指信号在通过一定距离的传输路径后在特定接收端口相对指定发送端口信号的还原程度。
在讨论信号完整性设计性能时,如指定不同的收发参考端口,则对信号还原程度会用不同的指标来描述。
通常指定的收发参考端口是发送芯片输出处及接收芯片输入处的波形可测点,此时对信号还原程度主要依靠上升/下降及保持时间等指标来进行描述。
而如果指定的参考收发端口是在信道编码器输入端及解码器输出端时,对信号还原程度的描述将会依靠误码率来描述。
电源完整性是指系统供电电源在经过一定的传输网络后在指定器件端口相对该器件对工作电源要求的符合程度。
同样,对于同一系统中同一个器件的正常工作条件而言,如果指定的端口不同,其工作电源要求也不同(在随后的例子中将会直观地看到这一点)。
通常指定的器件参考端口是芯片电源及地连接引脚处的可测点,此时该芯片的产品手册应给出该端口处的相应指标,常用纹波大小或者电压最大偏离范围来表征。
图一是一个典型背板信号传输的系统示意图。
本文中“系统”一词包含信号传输所需的所有相关硬件及软件,包括芯片、封装与PCB板的物理结构,电源及电源传输网络,所有相关电路实现以及信号通信所需的协议等。
从设计目的而言,需要硬件提供可制作的支撑及电信号有源/无源互联结构;需要软件提供信号传递的传输协议以及数据内容。
图1 背板信号传输的系统示意图在本文的以下内容中,将会看到由于这些支撑与互联结构对电信号的传输呈现出一定的频率选择性衰减,从而会使设计者产生对信号完整性及电源完整性的担忧。
而不同传输协议及不同数据内容的表达方式对相同传输环境具备不同适应能力,使得设计者需要进一步根据实际的传输环境来选择或优化可行的传输协议及数据内容表达方式。
为描述方便起见以下用“完整性设计与分析”来指代“信号完整性与电源完整性设计与分析”。
2 版图完整性问题、分析与设计上述背板系统中的硬件支撑及无源互联结构基本上都在一种层叠平板结构上实现。
板级电源完整性设计与分析

影响旁路电容器工作性能因素
等效串联电阻(ESR):电容器电极是由电导率有限的导体组成, 所以电容器存在与其本身有关的阻抗成为等效电阻。 等效串联电感(ESL):时变电流流过电容器产生磁场所引起的 电感成为电容器的等效串联电感。 ESL与电容器电容之间的相互作用产生谐振。当频率低于谐振频 率时电容器表现为容性,而当频率高于谐振频率时则表现为感性。 谐振频率公式:f=1/(2π LC )
电路板级电源完整性设计
电源配送中的问题
供电电源(电压和电流的源端)通常体积很大,不能直接接到IC的Vdd 和Gnd端。因此,不得不用具有电阻和电感的连线互联到一起。流过这些导 线的电流在IC的Vdd和Gnd端 引发了包括直流压降和时变电压波动等问题, 这对IC内部晶体管电路都是有害的。所以,必须在供电电源和IC之间建立一 个合适的电源配送网络(PDN),及时调节供电电压,使得在要求的时间区间 内能够为IC提供足够的电流。IC端电源的电压波动成为电源噪声,IC工作过 程中内部晶体管处于开关工作模式,将会导致这种噪声,所以也叫开关噪声。 该噪声将会导致以下问题: IC端电压的降低将减慢或阻止内部晶体管状态切换; IC端电压的升高将引发可靠性问题; 导致时序电路波形失真;
Z频率曲线
处理器PDN目标阻抗发展趋势
电路板级电源完整性设计
PDN的设计 阻抗和噪声电压
如下图供电电压为2V,要满足5%容限、10A平均电流,则目标阻 抗为10mΩ 。电源到电容器的分布电阻和电感分别为3mΩ 和320pH。当 电流从电源流到电容器(通过互联)对电容器充电时,分布电阻和分 布电感导致阻性和感性压降。电容器参数为:等效串联电阻(ESR) =10mΩ ,等效串联电感(ESL)=1nH,C=100UF,其谐振频率 f=1/(2π LC )=0.5MHZ
AllegroSigrityPISolution电源完整性解决方案-Cadence

Allegro Sigrity PI Solution (电源完整性)解决方案Allegro Sigrity PI solution(电源完整性)提供了可扩展、高性价比的预布局及布局后系统PDN设计和分析环境,包含电路板、封装和系统级的初阶及进阶分析。
Allegro Sigrity PI Base与Cadence PCB和IC封装layout编辑器、Cadence Allegro Design Authoring紧密集成,实现了PCB和IC封装设计从前端至后端的约束驱动PDN设计。
Allegro Sigrity PI solution(电源完整性)可帮助设计工程师在整个设计过程中解决PDN问题,包括设计密度增加、数据吞吐率加快、产品设计时间缩减等设计挑战。
更可帮助设计团队消除设计后期耗时的设计迭代问题。
PDN中的电源和接地网络可通过混合求解器或3D全波求解器进行建模。
用户可根据自身的设计信息和专业知识选择合适的模型。
电源完整性约束集(PI Csets)可帮助决定去耦电容的放置,可以将电容与元器件相关联,约束将电容放置在离器件约束距离范围之内,以及定义电容应放置在设计元器件位置的同侧还是异侧。
核心优势• 高度集成的设计和分析环境,消除了手动设计过程中产生的出错、耗时等问题。
• 直观的在线设计分析工具,可统一从前端到后端的电气约束管理环境,从而简化布线后的签收验证过程。
• 直流压降分析(DC IR drop)以双窗口视图模式运行。
设计师们在Allegro编辑器进行编辑的同时也可查看直流压降分析结果。
• 设计规则检查(DRC)标记可以在Allegro编辑器中精准锁定直流压降分析结果超出约束限制的位置。
• 可轻松评估IC封装设计的质量,并可用于芯片间的瞬态电源分析。
主要功能设计界面与Allegro Sigrity PI solution(电源完整性)相结合,当分析AllegroPCB或者IC封装设计时,可用AllegroSigrity PI进行查看和修改设计。
电源完整性设计

电容对于交流信号呈现低阻抗特性,因此加入电容,实际上就是 降低了电源系统的交流阻抗。 瞬态电流的剧变也要使得电压变化很小,这就要求阻抗足够低。 事实上,电源分配系统设计的原则便是使阻抗最小。
从储能的角度来理解电源退耦,非常直观易懂,但是对电路设计 帮助不大。从阻抗的角度理解电容退耦,能让我们的设计有章可 循。
从电源系统的角度进行去耦设计
不同容值的电容并联
反谐振
A.不同容值的电容并联,其阻抗特性曲线的底部要比相同容值并联阻 抗曲线的底部平坦,因而能更有效地在很宽的频率范围内减小阻抗。 B.在反谐振频率点处会产生EMI问题,合理的选择电容,尽可能的压低 反谐振点处的阻抗。
从电源系统的角度进行去耦设计
合理选择电容组合
相同容值的电容并联
使用很多电容并联能有效地减小阻抗。63 个0.0316uF的小电容(每个 电容ESL为1nH)并联的效果相当于一个具有0.159nH ESL 的1.9908uF 的电容。
从电源系统的角度进行去耦设计
单个电容
并联电容
单个电容及并联电容的阻抗特性如图所示。并联后仍有相同的 谐振频率,但是并联电容在每一个频率点上的阻抗都小于单个 电容。要在很宽的频率范围内满足目标阻抗要求,需要并联大 量的同值电容。
从电源系统的角度进行去耦设计
电容的去耦半径
理解去耦半径可以通过考察噪声源和电容补偿电流之间的相位关系感知源自压波动电源平面的电 压波动
去耦电容
放电补偿
去耦电容感知电压波动和放电到波动区域,都有时间延迟,因而便有相位 上的不一致。特定的电容,对与它自谐振频率相同的噪声补偿效果最好, 我们以这个频率来衡量这种相位关系。 补偿电流: 。自谐振频率为f,对应波长为λ,A是电流幅度, R为需要补偿的区域到电容的距离,C为信号传播速度。 R=λ/4时,电流和噪声源完全反相,补偿能量无法到达,去耦作用消失。 R=0时,全补偿。 要求R远小于λ/4,经验数据是λ/40~ λ/50.
什么叫电源完整性

什么叫电源完整性
电源完整性(Power Integrity,简称PI):当大量芯片内的电路输出级同时动作时,会产生较大的瞬态电流,这时由于供电线路上的电阻电感的影响,电源线上和地线上电压就会波动和变化,良好的电源分配网络设计是电源完整性的保证。
电源完整性设计:1、使用电源平面代替电源线,降低供电线路上的电感和电阻;2、电源平面和地平面相邻,电源和地紧密耦合;3、放置旁路电容,1μF~10μF 电容放置在电路板的电源输入上,而0.01μF ~0.1μF 电容则放置在电路板的每个有源器件的电源引脚和接地引脚上;4、保证大电流器件电源的回流路径畅通无阻。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
于博士信号完整性研究网电源完整性设计详解作者:于争博士2009年4整理发布:Baidu文库浩书目 录1 为什么要重视电源噪声问题?....................................................................- 1 -2 电源系统噪声余量分析................................................................................- 1 -3 电源噪声是如何产生的?............................................................................- 2 -4 电容退耦的两种解释....................................................................................- 3 -4.1 从储能的角度来说明电容退耦原理。
..............................................- 3 -4.2 从阻抗的角度来理解退耦原理。
......................................................- 4 -5 实际电容的特性............................................................................................- 5 -6 电容的安装谐振频率....................................................................................- 8 -7 局部去耦设计方法......................................................................................- 10 -8 电源系统的角度进行去耦设计..................................................................- 12 -8.1 著名的Target Impedance(目标阻抗)..........................................- 12 -8.2 需要多大的电容量............................................................................- 13 -8.3 相同容值电容的并联........................................................................- 15 -8.4 不同容值电容的并联与反谐振(Anti-Resonance)......................- 16 -8.5 ESR对反谐振(Anti-Resonance)的影响......................................- 17 -8.6 怎样合理选择电容组合....................................................................- 18 -8.7 电容的去耦半径................................................................................- 20 -8.8 电容的安装方法................................................................................- 21 -9 结束语..........................................................................................................- 24 -电源完整性设计详解1、为什么要重视电源噪声问题?芯片内部有成千上万个晶体管,这些晶体管组成内部的门电路、组合逻辑、寄存器、计数器、延迟线、状态机、以及其他逻辑功能。
随着芯片的集成度越来越高,内部晶体管数量越来越大。
芯片的外部引脚数量有限,为每一个晶体管提供单独的供电引脚是不现实的。
芯片的外部电源引脚提供给内部晶体管一个公共的供电节点,因此内部晶体管状态的转换必然引起电源噪声在芯片内部的传递。
对内部各个晶体管的操作通常由内核时钟或片内外设时钟同步,但是由于内部延时的差别,各个晶体管的状态转换不可能是严格同步的,当某些晶体管已经完成了状态转换,另一些晶体管可能仍处于转换过程中。
芯片内部处于高电平的门电路会把电源噪声传递到其他门电路的输入部分。
如果接受电源噪声的门电路此时处于电平转换的不定态区域,那么电源噪声可能会被放大,并在门电路的输出端产生矩形脉冲干扰,进而引起电路的逻辑错误。
芯片外部电源引脚处的噪声通过内部门电路的传播,还可能会触发内部寄存器产生状态转换。
除了对芯片本身工作状态产生影响外,电源噪声还会对其他部分产生影响。
比如电源噪声会影响晶振、PLL、DLL的抖动特性,AD转换电路的转换精度等。
解释这些问题需要非常长的篇幅,本文不做进一步介绍,有兴趣的可以关注于博士信号完整性研究网,我会在后续文章中详细讲解。
由于最终产品工作温度的变化以及生产过程中产生的不一致性,如果是由于电源系统产生的问题,电路将非常难调试,因此最好在电路设计之初就遵循某种成熟的设计规则,使电源系统更加稳健。
2、电源系统噪声余量分析绝大多数芯片都会给出一个正常工作的电压范围,这个值通常是±5%。
例如:对于3.3V 电压,为满足芯片正常工作,供电电压在3.13V到3.47V之间,或3.3V±165mV。
对于1.2V 电压,为满足芯片正常工作,供电电压在1.14V到1.26V之间,或1.2V±60mV。
这些限制可以在芯片datasheet中的recommended operating conditions部分查到。
这些限制要考虑两个部分,第一是稳压芯片的直流输出误差,第二是电源噪声的峰值幅度。
老式的稳压芯片的输出电压精度通常是±2.5%,因此电源噪声的峰值幅度不应超过±2.5%。
当然随着芯片工艺的提高,现代的稳压芯片直流精度更高,可能会达到±1%以下,TI公司的开关电源芯片TPS54310精度可达±1%,线性稳压源AMS1117可达±0.2%。
但是要记住,达到这样的精度是有条件的,包括负载情况,工作温度等限制。
因此可靠的设计还是以±2.5%这个值更把握些。
如果你能确保所用的芯片安装到电路板上后能达到更高的稳压精度,那么你可以为你的这款设计单独进行噪声余量计算。
本文着重电源部分设计的原理说明,电源噪声余量将使用±2.5%这个值。
电源噪声余量计算非常简单,方法如下:比如芯片正常工作电压范围为3.13V到3.47V之间,稳压芯片标称输出3.3V。
安装到电路板上后,稳压芯片输出3.36V。
那么容许电压变化范围为3.47-3.36=0.11V=110mV。
稳压芯片输出精度±1%,即±3.363*1%=±33.6 mV。
电源噪声余量为110-33.6=76.4 mV。
计算很简单,但是要注意四个问题:第一,稳压芯片输出电压能精确的定在3.3V么?外围器件如电阻电容电感的参数也不是精确的,这对稳压芯片的输出电压有影响,所以这里用了3.36V这个值。
在安装到电路板上之前,你不可能预测到准确的输出电压值。
第二,工作环境是否符合稳压芯片手册上的推荐环境?器件老化后参数还会和芯片手册上的一致么?第三,负载情况怎样?这对稳压芯片的输出电压也有影响。
第四,电源噪声最终会影响到信号质量。
而信号上的噪声来源不仅仅是电源噪声,反射串扰等信号完整性问题也会在信号上叠加噪声,不能把所有噪声余量都分配给电源系统。
所以,在设计电源噪声余量的时候要留有余地。
另一个重要问题是:不同电压等级,对电源噪声余量要求不一样,按±2.5%计算的话,1.2V电压等级的噪声余量只有30mV。
这是一个很苛刻的限制,设计的时候要谨慎些。
模拟电路对电源的要求更高。
电源噪声影响时钟系统,可能会引起时序匹配问题。
因此必须重视电源噪声问题。
3、电源噪声是如何产生的?电源系统的噪声来源有三个方面:第一,稳压电源芯片本身的输出并不是恒定的,会有一定的波纹。
这是由稳压芯片自身决定的,一旦选好了稳压电源芯片,对这部分噪声我们只能接受,无法控制。
第二,稳压电源无法实时响应负载对于电流需求的快速变化。
稳压电源芯片通过感知其输出电压的变化,调整其输出电流,从而把输出电压调整回额定输出值。
多数常用的稳压源调整电压的时间在毫秒到微秒量级。
因此,对于负载电流变化频率在直流到几百KHz之间时,稳压源可以很好的做出调整,保持输出电压的稳定。
当负载瞬态电流变化频率超出这一范围时,稳压源的电压输出会出现跌落,从而产生电源噪声。
现在,微处理器的内核及外设的时钟频率已经超过了600兆赫兹,内部晶体管电平转换时间下降到800皮秒以下。
这要求电源分配系统必须在直流到1GHz范围内都能快速响应负载电流的变化,但现有稳压电源芯片不可能满足这一苛刻要求。
我们只能用其他方法补偿稳压源这一不足,这涉及到后面要讲的电源去耦。
第三,负载瞬态电流在电源路径阻抗和地路径阻抗上产生的压降。
PCB板上任何电气路径不可避免的会存在阻抗,不论是完整的电源平面还是电源引线。
对于多层板,通常提供一个完整的电源平面和地平面,稳压电源输出首先接入电源平面,供电电流流经电源平面,到达负载电源引脚。
地路径和电源路径类似,只不过电流路径变成了地平面。
完整平面的阻抗很低,但确实存在。
如果不使用平面而使用引线,那么路径上的阻抗会更高。
另外,引脚及焊盘本身也会有寄生电感存在,瞬态电流流经此路径必然产生压降,因此负载芯片电源引脚处的电压会随着瞬态电流的变化而波动,这就是阻抗产生的电源噪声。
在电源路径表现为负载芯片电源引脚处的电压轨道塌陷,在地路径表现为负载芯片地引脚处的电位和参考地电位不同(注意,这和地弹不同,地弹是指芯片内部参考地电位相对于板级参考地电位的跳变)。
4、电容退耦的两种解释采用电容退耦是解决电源噪声问题的主要方法。