电源完整性设计1

合集下载

PCB设计中的电源信号完整性的考虑

PCB设计中的电源信号完整性的考虑

PCB设计中的电源信号完整性的考虑在PCB设计中,电源信号的完整性是一个非常重要的考虑因素。

电源信号完整性主要关注信号的稳定性、可靠性和抗干扰能力。

以下是在PCB设计中考虑电源信号完整性的几个重要方面:1.电源供电稳定性:电源信号的稳定性对系统的正常运行至关重要。

在设计中,应该选择具有稳定输出的电源,以确保电压和电流在整个系统中能够保持稳定。

稳定的电源可以减少系统噪声和漂移,提高系统性能和可靠性。

2.电源噪声和滤波:电源信号中的噪声可能会对系统的性能产生负面影响。

在PCB设计中,应采取一些滤波措施来降低电源噪声。

可以使用滤波电容和电源滤波器来抑制高频噪声。

此外,在布局中应该将电源线和地线分离,并与信号线保持足够的距离,以减少互联干扰。

3.电源线宽度和引出:电源线的宽度和布局对电源信号的完整性有重要影响。

电源线的宽度和长度应根据所需的电流和电压降进行计算。

在高电流应用中,更宽的电源线可以减少电源线的电阻和热降,确保供电稳定。

此外,应避免将电源线与其他信号线交叉,以减少互联干扰。

4.电源平面和地面平面:为了提供一个低电阻、低阻抗的供电路径,设计中通常会使用电源平面和地面平面。

电源平面提供了一个低阻抗的供电回路,可以降低电源噪声和电源电压的波动。

地面平面则提供了一个低阻抗的地引用,减少了信号线和电源线之间的串扰和互联干扰。

5.电源分区:在复杂的PCB设计中,将电源信号按照不同的功能分区是一个好的实践。

不同的模块或器件可能有不同的电源需求,分区设计可以简化供电布线,减少供电路径交叉,提高系统的电源完整性。

6.过热和过电流保护:为了保护系统免受过热和过电流的损害,设计中应考虑一些保护措施,如过热保险丝、过压保护器和电流限制器。

这些保护措施可以防止电源故障对系统产生严重影响,并提高系统的可靠性。

综上所述,在PCB设计中,电源信号的完整性是至关重要的。

通过选择稳定的电源、合理布局、适当的滤波和保护措施,可以提高电源信号的稳定性、可靠性和抗干扰能力,从而改善系统的性能和可靠性。

高速PCB中电源完整性的设计

高速PCB中电源完整性的设计

高速PCB中电源完整性的设计
中心议题:
* 电源噪声的起因及分析
* 去耦电容的应用
* 电源回路的设计
解决方案:
* 电源的分层设计来考虑
* 电容与芯片尽可能靠近芯片器件* 利用电源层和地层作为回路,减少了返回环路面积
一、引言
随着PCB 设计复杂度的逐步提高,对于信号完整性的分析除了反射,串扰以及EMI 之外,稳定可靠的电源供应也成为设计者们重点研究的方向之一。

尤其当开关器件数目不断增加,核心电压不断减小的时候,电源的波动往往会给系统带来致命的影响,于是人们提出了新的名词:电源完整性,简称
PI(powerintegrity)。

当今国际市场上,IC 设计比较发达,但电源完整性设计还是一个薄弱的环节。

因此本文提出了PCB 板中电源完整性问题的产生,分析了影响电源完整性的因素并提出了解决PCB 板中电源完整性问题的优化方法与经验设计,具有较强的理论分析与实际工程应用价值。

二、电源噪声的起因及分析
对于电源噪声的起因我们通过一个与非门电路图进行分析。

图1 中的电路图为一个三输入与非门的结构图,因为与非门属于数字器件,它是通过1 和0 电平的切换来工作的。

随着IC 技术的不断提高,数字器件的切换速度也越来越快,这就引进了更多的高频分量,同时回路中的电感在高频下就很容易引起电。

电源完整性设计

电源完整性设计

电源完整性设计一、电源完整性定义电源完整性是指电源波形的质量,研究的是电源分配网络(PDN),并从系统供电网络综合考虑,消除或者减弱噪声对电源的影响。

电源完整性的设计目标是把电源噪声控制在运行的范围内,为芯片提供干净稳定的电压,并使它能够维持在一个很小的容差范围内(通常为5%以内),实时响应负载对电流的快速变化,并能够为其他信号提供低阻抗的回流路径。

在高度集成的电子产品中,电源系统的设计占到了设计工作量的50%左右;对于复杂的FPGA类型的产品应用,在电路中常常会达到15~30路不同的电源。

电源完整性的目的就是给系统提供持续、稳定、干净的电源,保证系统稳定的工作。

在数字系统中,使信号完整性满足系统设计的要求也需要有一个非常稳定的电源系统,但是又不能使电源系统超标。

所以在设计电源完整性时,不仅仅关注的是去耦电容,还需要关注电源完整性、信号完整性和电磁兼容性这个“生态系统”,尤其是要考虑高度集成化的数字电路对电源完整性的影响。

二、电源完整性概览电源完整性的层面:芯片层面、芯片封装层面、电路板层面及系统层面。

在电路板层面的电源完整性要达到以下三个需求:1.使芯片引脚的电压噪声+电压纹波比规格要求要小一些(例如芯片电源管脚的输入电压要求1V 之间的误差小于+/-50 mV);2.控制接地反弹(地弹)(同步切换噪声SSN、同步切换输出SSO);3.降低电磁干扰(EMI)并且维持电磁兼容性(EMC):电源分布网络(PDN)是电路板上最大型的导体,因此也是最容易发射及接收噪声的天线。

电源噪声来源1.稳压芯片输出的电压不是恒定的,会有一定的纹波。

2.稳压电源无法实时响应负载对于电流需求的快速变化。

稳压电源响应的频率一般在200Khz 以内,能做正确的响应,超过了这个频率则在电源的输出短引脚处出现电压跌落。

3.负载瞬态电流在电源路径阻抗和地路径阻抗产生的压降。

4.外部的干扰。

三、电源完整性相关参数讲解1.SI和PI传统分析信号完整性和电源完整性都是分开分析的,为了更好的分析SI和PI的相互影响,我们需要把SI和PI放在同一个EM仿真中来分析。

电源完整性设计指导

电源完整性设计指导

电源、地平面的功能与设计原理............................................................................................. 20 2.1 电地平面的阻抗与滤波功能.....................................................................................21 2.1.1 电地平面地目标阻抗......................................................................................... 21 2.1.2 2.2 2.3 2.3.1 2.3.2 2.3.3 2.3.4 2.3.5 2.3.6 目标阻抗的获得..................................................................................................21 电地平面的信号参考功能......................................................................................... 26 电地平面的 EMI 抑制 ................................................................................................ 28 PCB 叠层的处理:.............................................................................................28 PCB 分割、布局、布线和电源平面分配问题 ...............................................28 地平面地划分和处理......................................................................................... 29 地电平面谐振地处理......................................................................................... 30 电源滤波的处理..................................................................................................31 其他与 EMI 密切相关的问题 ........................................................................... 31

板级电源完整性设计与分析

板级电源完整性设计与分析

影响旁路电容器工作性能因素
等效串联电阻(ESR):电容器电极是由电导率有限的导体组成, 所以电容器存在与其本身有关的阻抗成为等效电阻。 等效串联电感(ESL):时变电流流过电容器产生磁场所引起的 电感成为电容器的等效串联电感。 ESL与电容器电容之间的相互作用产生谐振。当频率低于谐振频 率时电容器表现为容性,而当频率高于谐振频率时则表现为感性。 谐振频率公式:f=1/(2π LC )
电路板级电源完整性设计
电源配送中的问题
供电电源(电压和电流的源端)通常体积很大,不能直接接到IC的Vdd 和Gnd端。因此,不得不用具有电阻和电感的连线互联到一起。流过这些导 线的电流在IC的Vdd和Gnd端 引发了包括直流压降和时变电压波动等问题, 这对IC内部晶体管电路都是有害的。所以,必须在供电电源和IC之间建立一 个合适的电源配送网络(PDN),及时调节供电电压,使得在要求的时间区间 内能够为IC提供足够的电流。IC端电源的电压波动成为电源噪声,IC工作过 程中内部晶体管处于开关工作模式,将会导致这种噪声,所以也叫开关噪声。 该噪声将会导致以下问题: IC端电压的降低将减慢或阻止内部晶体管状态切换; IC端电压的升高将引发可靠性问题; 导致时序电路波形失真;
Z频率曲线
处理器PDN目标阻抗发展趋势
电路板级电源完整性设计
PDN的设计 阻抗和噪声电压
如下图供电电压为2V,要满足5%容限、10A平均电流,则目标阻 抗为10mΩ 。电源到电容器的分布电阻和电感分别为3mΩ 和320pH。当 电流从电源流到电容器(通过互联)对电容器充电时,分布电阻和分 布电感导致阻性和感性压降。电容器参数为:等效串联电阻(ESR) =10mΩ ,等效串联电感(ESL)=1nH,C=100UF,其谐振频率 f=1/(2π LC )=0.5MHZ

电源完整性设计

电源完整性设计

电容对于交流信号呈现低阻抗特性,因此加入电容,实际上就是 降低了电源系统的交流阻抗。 瞬态电流的剧变也要使得电压变化很小,这就要求阻抗足够低。 事实上,电源分配系统设计的原则便是使阻抗最小。
从储能的角度来理解电源退耦,非常直观易懂,但是对电路设计 帮助不大。从阻抗的角度理解电容退耦,能让我们的设计有章可 循。
从电源系统的角度进行去耦设计
不同容值的电容并联
反谐振
A.不同容值的电容并联,其阻抗特性曲线的底部要比相同容值并联阻 抗曲线的底部平坦,因而能更有效地在很宽的频率范围内减小阻抗。 B.在反谐振频率点处会产生EMI问题,合理的选择电容,尽可能的压低 反谐振点处的阻抗。
从电源系统的角度进行去耦设计
合理选择电容组合
相同容值的电容并联
使用很多电容并联能有效地减小阻抗。63 个0.0316uF的小电容(每个 电容ESL为1nH)并联的效果相当于一个具有0.159nH ESL 的1.9908uF 的电容。
从电源系统的角度进行去耦设计
单个电容
并联电容
单个电容及并联电容的阻抗特性如图所示。并联后仍有相同的 谐振频率,但是并联电容在每一个频率点上的阻抗都小于单个 电容。要在很宽的频率范围内满足目标阻抗要求,需要并联大 量的同值电容。
从电源系统的角度进行去耦设计
电容的去耦半径
理解去耦半径可以通过考察噪声源和电容补偿电流之间的相位关系感知源自压波动电源平面的电 压波动
去耦电容
放电补偿
去耦电容感知电压波动和放电到波动区域,都有时间延迟,因而便有相位 上的不一致。特定的电容,对与它自谐振频率相同的噪声补偿效果最好, 我们以这个频率来衡量这种相位关系。 补偿电流: 。自谐振频率为f,对应波长为λ,A是电流幅度, R为需要补偿的区域到电容的距离,C为信号传播速度。 R=λ/4时,电流和噪声源完全反相,补偿能量无法到达,去耦作用消失。 R=0时,全补偿。 要求R远小于λ/4,经验数据是λ/40~ λ/50.

电源完整性

电源完整性

引言电源完整性这一概念是以信号完整性为基础的,两者的出现都源自电路开关速度的提高。

当高速信号的翻转时间和系统的时钟周期可以相比时,具有分布参数的信号传输线、电源和地就和低速系统中的情况完全不同了。

与信号完整性是指信号在传输线上的质量相对应,电源完整性是指高速电路系统中电源和地的质量。

它在对高速电路进行仿真时,往往会因信号参考层的不完整造成信号回流路径变化多端,从而引起信号质量变差和产品的EMI性能变差,并直接影响信号完整性。

为了提高信号质量、产品的EMI性能,人们开始研究怎样为信号提供一个稳定、完整的参考平面,并随之提出了电源完整性的概念。

EDA厂商Cadence公司资深技术工程师曾指出,在未来的三到五年内,电源完整性设计将取代信号完整性设计成为高速PCB设计新的难点和重点。

电源完整性的影响因素及措施电源完整性的作用是为系统所有的信号线提供完整的回流路径。

但在技术高速发展以及生产成本的控制下,往往不能为所有的信号线提供理想而完整的回流路径,这就是说,在高速电路中,不能够简单地将电源和地当作理想的情况来处理。

这主要是因为地弹噪声太大、去耦电容设计不合理、回流影响严重、多电源/地平面的分割不当、地层设计不合理、电流分配不均匀、高频的趋肤效应导致系统阻抗变化等诸多因素都会破坏电源完整性。

地弹噪声地弹噪声也称为同步开关噪声(SSN),通常认为是由电路的感应引起的。

当电路中有较大的瞬态电流出现时(比如多条信号线上的信号同时翻转),会在电路分布参数所引起的感性阻抗上产生瞬态电压,进而便引起SSN。

芯片封装结构的SSN是由于突变的电流流过封装结构的引脚、引线和焊盘等寄生电感所导致。

如芯片的多个输出管脚同时触发时,将有一个较大的瞬态电流在芯片与板的电源平面流过,芯片封装与电源平面的电感和电阻会引发电源噪声,这样会在真正的地平面(0V)上产生电压波动,此波动对其他共电源/地总线的静态驱动将构成严重的干扰,甚至引起误触发。

电源完整性设计:需要多大的电容量

电源完整性设计:需要多大的电容量

电源完整性设计-需要多大的电容量 需要多大的电容量 有两种方法确定所需的电容量。

第一种方法利用电源驱动的负载计算电容量。

这种方法 没有考虑 ESL 及 ESR 的影响,因此很不精确,但是对理解电容量的选择有好处。

第二种方 法就是利用目标阻抗(Target Impedance )来计算总电容量,这是业界通用的方法,得到了 广泛验证。

你可以先用这种方法来计算,然后做局部微调,能达到很好的效果,如何进行局 部微调,是一个更高级的话题。

下面分别介绍两种方法。

方法一:利用电源驱动的负载计算电容量 设负载(容性)为 30pF,要在 2ns 内从 0V 驱动到 3.3V,瞬态电流为:(公式 5) 如果共有 36 个这样的负载需要驱动,则瞬态电流为:36*49.5mA=1.782A 。

假设容许电压波 动为:3.3*2.5%=82.5 mV,所需电容量为 C=I*dt/dv=1.782A*2ns/0.0825V=43.2nF 说明:所加的电容实际上作为抑制电压波纹的储能元件,该电容必须在 2ns 内为负载提供 1.782A 的电流, 同时电压下降不能超过 82.5 mV, 因此电容值应根据 82.5 mV 来计算。

记住: 电容放电给负载提供电流,其本身电压也会下降,但是电压下降的量不能超过 82.5 mV(容 许的电压波纹) 。

这种计算没什么实际意义,之所以放在这里说一下,是为了让大家对去耦 原理认识更深。

方法二:利用目标阻抗计算电容量(设计思想很严谨,要吃透) 为了清楚的说明电容量的计算方法,我们用一个例子。

要去耦的电源为 1.2V,容许电 压波动为 2.5%,最大瞬态电流 600mA, 第一步:计算目标阻抗第二步:确定稳压电源频率响应范围。

和具体使用的电源片子有关,通常在 DC 到几百 kHz 之间。

这里设为 DC 到 100kHz 。

在 100kHz 以下时,电源芯片能很好的对瞬态电流做出反应,高于 100kHz 时,表现为很高 的阻抗,如果没有外加电容,电源波动将超过允许的 2.5%。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电源完整性设计1
为什么要重视电源噪声问题
芯片内部有成千上万个晶体管,这些晶体管组成内部的门电路、组合逻辑、寄存器、计数器、延迟线、状态机、以及其他逻辑功能。

随着芯片的集成度越来越高,内部晶体管数量越来越大。

芯片的外部引脚数量有限,为每一个晶体管提供单独的供电引脚是不现实的。

芯片的外部电源引脚提供给内部晶体管一个公共的供电节点,因此内部晶体管状态的转换必然引起电源噪声在芯片内部的传递。

对内部各个晶体管的操作通常由内核时钟或片内外设时钟同步,但是由于内部延时的差别,各个晶体管的状态转换不可能是严格同步的,当某些晶体管已经完成了状态转换,另一些晶体管可能仍处于转换过程中。

芯片内部处于高电平的门电路会把电源噪声传递到其他门电路的输入部分。

如果接受电源噪声的门电路此时处于电平转换的不定态区域,那么电源噪声可能会被放大,并在门电路的输出端产生矩形脉冲干扰,进而引起电路的逻辑错误。

芯片外部电源引脚处的噪声通过内部门电路的传播,还可能会触发内部寄存器产生状态转换。

除了对芯片本身工作状态产生影响外,电源噪声还会对其他部分产生影响。

比如电源噪声会影响晶振、PLL、DLL 的抖动特性,AD 转换电路的转换精度等。

解释这些问题需要非常长的篇幅,本文不做进一步介绍,我会在后续文章中详细讲解。

由于最终产品工作温度的变化以及生产过程中产生的不一致性,如果是由于电源系统产生的问题,电路将非常难调试,因此最好在电路设计之初就遵循某种成熟的设计规则,使电源系统更加稳健。

电源完整性设计(2)电源系统噪声余量分析
绝大多数芯片都会给出一个正常工作的电压范围,这个值通常是。

相关文档
最新文档