2018年安徽省合肥市中考数学第二次模拟试卷-含答案解析

合集下载

2023年安徽省合肥市高新区中考数学二模试卷(含解析)

2023年安徽省合肥市高新区中考数学二模试卷(含解析)

2023年安徽省合肥市高新区中考数学二模试卷学校:___________姓名:___________班级:___________考号:___________第I卷(选择题)一、选择题(本大题共10小题,共40.0分。

在每小题列出的选项中,选出符合题目的一项)1. −12023的相反数是( )A. 2023B. 12023C. −2023 D. −120232. 2022年,安徽省全省生产总值45045亿元,按不变价格计算,同比增长3.5%.分产业看,第一产业增加值3513.7亿元,增长4%;第二产业增加值18588亿元,增长5.1%;第三产业增加值22943.3亿元,增长2.2%.将数据“45045亿”用科学记数法表示为( )A. 0.45045×1013B. 4.5045×10nC. 4.5045×1012D. 45.045×10103.圆柱切除部分之后及其俯视图如图所示,则其主视图为( )A.B.C.D.4. 下列各运算中,计算正确的是( )A. a+a=a2B. (3a2)3=9a6C. (a+b)2=a2+b2D. 2a⋅3a=6a25. 由于国家出台对房屋的限购令,我市某地的房屋价格原价为18400元/米 2,通过连续两次降价a%后,售价变为16000元/米 2,下列方程中正确的是( )A. 16000(1+a%)2=18400B. 16000(1+2a%)=18400C. 18400(1−2a%)2=16000D. 18400(1−a%)2=160006. 如图,将直尺与30°角的三角尺叠放在一起,若∠1=65°,则∠2的大小是( )A. 50°B. 55°C. 60°D. 65°7. 关于x的一元二次方程mx2−2x−1=0无实数根,则一次函数y=mx−m的图象不经过( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限8.班长邀请A,B,C,D四位同学参加圆桌会议.如图,班长坐在⑤号座位,四位同学随机坐在①②③④四个座位,则A,B两位同学座位相邻的概率是( )A. 12B. 13C. 14D. 239. 已知3mn+3m=n+2,其中m和n是整数,则下列结论正确的是( )A. 3m+n=−2B. 3m+n=1C. mn=2D. mn=8310. 如图,在Rt△ABC中,∠ACB=90°,AC=BC=4,CD⊥AB于点D,P是AB上的一个动点,以P为直角顶点向右作等腰Rt△CPE,连接DE,则DE的最小值为( )A. 1B. 2C. 2D. 22−1第II 卷(非选择题)二、填空题(本大题共4小题,共20.0分)11. 不等式x−12≤−1的解集是______ .12. 因式分解:ab 2−4ab +4a = .13.如图,⊙O 的直径AB =8,点C 为AB 上的一点,过C 作AB 的垂线交⊙O 于M 、N 两点,连接MB ,若AC =3CB ,则M N 的长为______ .14. 已知:关于x 的二次函数y =x 2−ax +a2(0≤x ≤1).(1)当a =4时,函数的最大值为______ .(2)若函数的最大值为t ,则t 的最小值为______ .三、解答题(本大题共9小题,共90.0分。

2022年人教版中考第二次模拟检测《数学卷》含答案解析

2022年人教版中考第二次模拟检测《数学卷》含答案解析

人教版数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一.选择题(共8小题)1. 如图是圆规示意图,张开的两脚所形成的角大约是()A. 90°B. 60°C. 45°D. 30°2. 实数m,n在数轴上对应点的位置如图所示,若mn<0,且|m|<|n|,则原点可能是( )A. 点AB. 点BC. 点CD. 点D3. 如果a﹣b=3,那么代数式2b aaa a b⎛⎫-⋅⎪+⎝⎭的值为( )A. ﹣3B. 3C. 3D. 234. 若正多边形的内角和是540︒,则该正多边形的一个外角为( )A. 45︒B. 60︒C. 72︒D. 90︒5. 今年是我国建国70周年,回顾过去展望未来,创新是引领发展的第一动力,北京科技创新能力不断增强,下面的统计图反映了2010﹣2018年北京市每万人发明专利申请数与授权数的情况.根据统计图提供的信息,下列推断合理的是( ) A. 2010﹣2018年,北京市毎万人发明专利授权数逐年增长B. 2010﹣2018年,北京市毎万人发明专利授权数的平均数超过10件C. 2010年申请后得到授权的比例最低D. 2018年申请后得到授权的比例最高6. 弹簧原长(不挂重物)15cm ,弹簧总长L (cm )与重物质量x (kg )的关系如下表所示: 弹簧总长L (cm ) 16 17 18 19 20 重物重量x (kg )0.51.01.52.02.5当重物质量为5kg (在弹性限度内)时,弹簧总长L (cm )是( ) A. 22.5B. 25C. 27.5D. 307. 如图,抛物线2815y x x =-+与轴交于、两点,对称轴与轴交于点,点(0,2)D -,点(0,6)E -,点是平面内一动点,且满足90DPE ∠=︒,M 是线段PB 的中点,连结CM .则线段CM 的最大值是( ).A. 3B.412C.72D. 58. 如图,点A ,B ,C 是⊙O 上的三个点,点D 在BC 的延长线上.有如下四个结论:①在∠ABC 所对的弧上存在一点E ,使得∠BCE =∠DCE ;②在∠ABC 所对的弧上存在一点E ,使得∠BAE =∠AEC ;③在∠ABC 所对的弧上存在一点E ,使得EO 平分∠AEC ;④在∠ABC 所对的弧上任意取一点E (不与点A ,C 重合) ,∠DCE=∠ABO +∠AEO 均成立.上述结论中,所有..正确结论的序号是( )A. ①②③B. ①③④C. ②④D. ①②③④二.填空题(共8小题)9. 质地均匀的正方体骰子,其六个面上分别刻有1,2,3,4,5,6六个数字,投掷这个骰子一次,则向上一面的数字是偶数的概率为10. 用一组,,的值说明命题”若ac bc =,则a b =“是错误的,这组值可以是a =__________,b =__________,c =__________.11. 如图,某人从点A 出发,前进5m 后向右转60°,再前进5m 后又向右转60°,这样一直走下去,当他第一次回到出发点A 时,共走了_____m .12. 如图所示的网格是正方形网格,△ABC 是_____三角形.(填”锐角”“直角”或”钝角”)13. 如图,过⊙O 外一点P 作⊙O 的两条切线P A ,PB ,切点分别为A ,B ,作直线BC ,连接AB ,AC ,若∠P =80°,则∠C =_____°.14. 如图,在矩形ABCD 中,过点B 作对角线AC 的垂线,交AD 于点E ,若AB =2,BC =4,则AE =_____.15. 2019年2月,全球首个5G 火车站在上海虹桥火车站启动.虹桥火车站中5G 网络峰值速率为4G 网络峰值速率的10倍.在峰值速率下传输8千兆数据,5G 网络比4G 网络快720秒,求这两种网络的峰值速率.设4G 网络的峰值速率为每秒传输x 千兆数据,依题意,可列方程为___.16. ▱ABCD 中,对角线AC 、BD 相交于点O ,E 是边AB 上的一个动点(不与A 、B 重合),连接EO 并延长,交CD 于点F ,连接AF ,CE ,下列四个结论中: ①对于动点E ,四边形AECF 始终是平行四边形;②若∠ABC <90°,则至少存在一个点E ,使得四边形AECF 是矩形; ③若AB >AD ,则至少存在一个点E ,使得四边形AECF 菱形; ④若∠BAC =45°,则至少存在一个点E ,使得四边形AECF 是正方形. 以上所有正确说法的序号是_____.三.解答题(共12小题)17.计算:052sin 60(2019)π-︒--18. 解不等式组: 4(21)31385x x x x -<+⎧⎪-⎨<⎪⎩19. 已知:如图1,直线,所成的角跑到画板外面去了,你有什么办法作出这两条直线所成角的角平分线? 小明的做法是: (1)如图2,画PC a ∥;(2)以为圆心,任意长为半径画圆弧,分别交直线,PC 于点,; (3)连结AD 并延长交直线于点;请你先完成下面的证明,然后完成第(4)步作图: ∵PC a ∥∴1PDA ∠=∠( )∵以圆心,任意长为半径画圆弧,分别交直线,PC 于点, ∴PA PD =∴PAB ∠=∠ ∴1PAB ∠=∠∴以直线,的交点和点、为顶点所构成的三角形为等腰三角形( ) 根据上面的推理证明完成第(4)步作图(4)请在图2画板内作出”直线,所成的跑到画板外面去的角”的平分线(画板内的部分),尺规作出图形,并保留作图痕迹.第(4)步这么作图的理论依据是: .20. 已知关于的方程mx2+(2m-1)x+m-1=0(m≠0) .(1)求证:方程总有两个不相等的实数根;(2)若方程的两个实数根都是整数,求整数的值.21. 如图,在△ABC中,AB=AC,D为BC中点,AE∥BD,且AE=BD.(1)求证:四边形AEBD是矩形;(2)连接CE交AB于点F,若∠ABE=30°,AE=2,求EF的长.22. 在平面直角坐标系xOy中,直线l:y=x+b与x轴交于点A(﹣2,0),与y轴交于点B.双曲线ykx =与直线l交于P,Q两点,其中点P的纵坐标大于点Q的纵坐标(1)求点B的坐标;(2)当点P的横坐标为2时,求k的值;(3)连接PO,记△POB的面积为S.若112S<<,结合函数图象,直接写出k的取值范围.23. 如图,AB是O的直径,CB与O相切于点B.点D在O上,且BC BD=,连接CD交O于点E.过点E作EF⊥AB于点H,交BD于点M,交O于点F.(1)求证:∠MED=∠MDE.(2)连接BE,若3ME=,MB=2.求BE的长.24. 为了推动全社会自觉尊法学法守法用法,促进全面依法治国,某区每年都举办普法知识竞赛,该区某单位甲、乙两个部门各有员工200人,要在这两个部门中挑选一个部门代表单位参加今年的竞赛,为了解这两个部门员工对法律知识的掌握情况,进行了抽样调查,从甲、乙两个部门各随机抽取20名员工,进行了法律知识测试,获得了他们的成绩(百分制),并对数据(成绩)进行整理,描述和分析,下面给出了部分信息.a.甲部门成绩的频数分布直方图如下(数据分成6组:40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x <90,90≤x≤100)b.乙部门成绩如下:40 52 70 70 71 73 77 78 80 8182 82 82 82 83 83 83 86 91 94c.甲、乙两部门成绩的平均数、方差、中位数如下:平均数方差中位数甲79.6 36.84 78.5乙77 147.2 md.近五年该单位参赛员工进入复赛的出线成绩如下:2014年2015年2016年2017年2018年出线成绩(百79 81 80 81 82分制)根据以上信息,回答下列问题:(1)写出表中m值;(2)可以推断出选择部门参赛更好,理由为;(3)预估(2)中部门今年参赛进入复赛的人数为.25. 如图,P是直径AB上的一点,AB=6,CP⊥AB交半圆AB于点C,以BC为直角边构造等腰Rt△BCD,∠BCD=90°,连接OD.小明根据学习函数的经验,对线段AP,BC,OD的长度之间的关系进行了探究.下面是小明的探究过程,请补充完整:(1)对于点P在AB上的不同位置,画图、测量,得到了线段AP,BC,OD的长度的几组值,如下表:位置1 位置2 位置3 位置4 位置5 位置6 位置…AP 0.00 1.00 2.00 3.00 4.00 5.00 …BC 6.00 5.48 4.90 4.24 3.46 2.45 …OD 6.71 7.24 7.07 6.71 6.16 5.33 …在AP,BC,OD的长度这三个量中,确定________的长度是自变量,________的长度和________的长度都是这个自变量的函数;(2)在同一平面直角坐标系xOy中,画出(1)中所确定的函数的图象;(3)结合函数图象,解决问题:当OD=2BC时,线段AP的长度约为________.26. 在平面直角坐标系xOy中,抛物线y=mx2﹣6mx+9m+1(m≠0).(1)求抛物线的顶点坐标;(2)若抛物线与x轴的两个交点分别为A和B点(点A在点B的左侧),且AB=4,求m的值.(3)已知四个点C(2,2)、D(2,0)、E(5,﹣2)、F(5,6),若抛物线与线段CD和线段EF都没有公共点,请直接写出m的取值范围.27. 已知C为线段AB中点,∠ACM=α.Q为线段BC上一动点(不与点B重合),点P在射线CM上,连接P A,PQ,记BQ=kCP.(1)若α=60°,k=1,①如图1,当Q为BC中点时,求∠P AC的度数;②直接写出P A、PQ的数量关系;(2)如图2,当α=45°时.探究是否存在常数k,使得②中的结论仍成立?若存在,写出k的值并证明;若不存在,请说明理由.28. 对于平面直角坐标系xOy中的点P,Q,给出如下定义:若P,Q为某个三角形的顶点,且边PQ上的高h,满足h=PQ,则称该三角形为点P,Q的”生成三角形”.(1)已知点A(4,0);①若以线段OA为底的某等腰三角形恰好是点O,A的”生成三角形”,求该三角形的腰长;②若Rt△ABC是点A,B“生成三角形”,且点B在x轴上,点C在直线y=2x﹣5上,则点B的坐标为;(2)⊙T的圆心为点T(2,0),半径为2,点M的坐标为(2,6),N为直线y=x+4上一点,若存在Rt△MND,x的取值范围.是点M,N的”生成三角形”,且边ND与⊙T有公共点,直接写出点N的横坐标N答案与解析一.选择题(共8小题)1. 如图是圆规示意图,张开的两脚所形成的角大约是()A. 90°B. 60°C. 45°D. 30°【答案】B【解析】【分析】观察图形,直接判断结果.【详解】解:观察图形,张开的两脚所形成的角大约是60,故选B.【点睛】本题考查了角的概念,正确的识别图形是解题的关键.2. 实数m,n在数轴上对应的点的位置如图所示,若mn<0,且|m|<|n|,则原点可能是( )A. 点AB. 点BC. 点CD. 点D【答案】B【解析】【分析】由若mn<0可知,m、n异号,所以原点可能是点B或点C,而又由|m|<|n|即可根据距离正确判断.【详解】解:∵mn<0∴m、n异号∴原点可能是点B或点C又由|m|<|n|,观察数轴可知,原点应该是点B.故选B.【点睛】本题考查的是绝对值的意义,利用数形结合的思想研究绝对值会让问题更加明确清晰,是一种常用的方法.3. 如果a ﹣b 2b a a a a b ⎛⎫-⋅ ⎪+⎝⎭的值为( )A. C. 3 D. 【答案】A【解析】【分析】先化简分式,然后将a ﹣b =代入计算即可. 【详解】解:原式=22b a a a a b⋅-+ =()()a b a b a a a b-+-⋅+ =﹣(a ﹣b ),∵a ﹣b,故选A .【点睛】本题考查了分式的化简求值,熟练掌握分式混合运算法则是解题的关键.4. 若正多边形的内角和是540︒,则该正多边形的一个外角为( )A. 45︒B. 60︒C. 72︒D. 90︒【答案】C【解析】【分析】根据多边形的内角和公式()2180n -•︒求出多边形的边数,再根据多边形的外角和是固定的360︒,依此可以求出多边形的一个外角.【详解】正多边形的内角和是540︒,多边形的边数为54018025︒÷︒+=,多边形的外角和都是360︒,多边形的每个外角360572÷︒==.故选.【点睛】本题主要考查了多边形的内角和与外角和之间的关系,关键是记住内角和的公式与外角和的特征,难度适中.5. 今年是我国建国70周年,回顾过去展望未来,创新是引领发展第一动力,北京科技创新能力不断增强,下面的统计图反映了2010﹣2018年北京市每万人发明专利申请数与授权数的情况.根据统计图提供的信息,下列推断合理的是( )A. 2010﹣2018年,北京市毎万人发明专利授权数逐年增长B. 2010﹣2018年,北京市毎万人发明专利授权数的平均数超过10件C. 2010年申请后得到授权的比例最低D. 2018年申请后得到授权的比例最高【答案】B【解析】【分析】根据统计图得出各年的具体数据,依据增长情况和百分比概念逐一判断即可得.【详解】解:A .2010﹣2018年,北京市毎万人发明专利授权数在2012﹣2013年不变,此选项错误; B .2010﹣2018年,北京市毎万人发明专利授权数的平均数为5.989.99.910.916.319.121.222.39++++++++≈13.7,超过10件,此选项正确; C .2014年申请后得到授权的比例最低,此选项错误;D .2017年申请后得到授权的比例最高,此选项错误;故选B .【点睛】本题考查条形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.6. 弹簧原长(不挂重物)15cm ,弹簧总长L (cm )与重物质量x (kg )的关系如下表所示:弹簧总长L (cm )16 17 18 19 20 重物重量x (kg ) 0.5 1.0 1.5 2.0 2.5当重物质量为5kg (在弹性限度内)时,弹簧总长L (cm )是( )A. 22.5B. 25C. 27.5D. 30【答案】B【解析】【分析】根据表格数据,建立数学模型,进而利用待定系数法可得函数关系式,当x =5时,代入函数解析式求值即可.【详解】设弹簧总长L (cm )与重物质量x (kg )的关系式为L =kx +b , 将(0.5,16)、(1.0,17)代入,得:0.51617k b k b +=⎧⎨+=⎩, 解得:k 2b 15=⎧⎨=⎩, ∴L 与x 之间的函数关系式为:L =2x +15;当x =5时,L =2×5+15=25(cm ) 故重物为5kg 时弹簧总长L 是25cm ,故选B .【点睛】此题主要考查根据实际问题列一次函数关系式,解决本题的关键是得到弹簧长度的关系式,难点是得到x 千克重物在原来基础上增加的长度.7. 如图,抛物线2815y x x =-+与轴交于、两点,对称轴与轴交于点,点(0,2)D -,点(0,6)E -,点是平面内一动点,且满足90DPE ∠=︒,M 是线段PB 的中点,连结CM .则线段CM 的最大值是( ).A. 3B. 412C.72D. 5【答案】C【解析】【分析】解方程x2−8x+15=0得A(3,0),利用抛物线的性质得到C点为AB的中点,再根据圆周角定理得到点P 在以DE为直径的圆上,圆心Q点的坐标为(−4,0),接着计算出AQ=5,⊙Q的半径为2,延长AQ交⊙Q于F,此时AF的最大值为7,连接AP,利用三角形的中位线性质得到CM=12AP,从而得到CM的最大值.【详解】解方程x2−8x+15=0得x1=3,x2=5,则A(3,0),∵抛物线的对称轴与x轴交于点C,∴C点为AB的中点,∵∠DPE=90°,∴点P在以DE为直径的圆上,圆心Q点的坐标为(−4,0),AQ=2234=5,⊙Q的半径为2,延长AQ交⊙Q于F,此时AF最大,最大值为2+5=7,连接AP,∵M是线段PB的中点,∴CM为△ABP为中位线,∴CM=12 AP,∴CM的最大值为72.故选:C.【点睛】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质和圆周角定理.8. 如图,点A,B,C是⊙O上的三个点,点D在BC的延长线上.有如下四个结论:①在∠ABC所对的弧上存在一点E,使得∠BCE=∠DCE;②在∠ABC所对的弧上存在一点E,使得∠BAE=∠AEC;③在∠ABC所对的弧上存在一点E,使得EO平分∠AEC;④在∠ABC所对的弧上任意取一点E(不与点A,C重合),∠DCE=∠ABO +∠AEO均成立.上述结论中,所有..正确结论的序号是( )A. ①②③B. ①③④C. ②④D. ①②③④【答案】D【解析】【分析】①当BE是⊙O的直径时,根据圆周角定理和邻补角的定义得到结论;②当AE∥BC时,得到弧AB=弧CE,根据圆周角定理得到结论;③当点E是弧AC的中点时,根据角平分线的定义得到结论;④根据圆内接四边形的性质和四边形的内角和得到结论.【详解】解:①当BE是⊙O的直径时,∠BCE=∠DCE=90°,故①正确;②当AE∥BC时,弧AB=弧CE,∴弧BCE=弧ABC,∴∠BAE=∠AEC;故②正确;③当点E是弧AC的中点时,EO平分∠AEC;故正确;④如图2,∵∠A=∠ECD,∠A+12∠BOE=180°,∴∠ABO+∠AEO=360°-∠A-∠BOE=360°-∠DCE-2(180°-∠COE),∴∠DCE=∠ABO+∠AEO,故正确;故选D .【点睛】本题考查圆周角定理,解题关键是正确的理解题意.二.填空题(共8小题)9. 质地均匀的正方体骰子,其六个面上分别刻有1,2,3,4,5,6六个数字,投掷这个骰子一次,则向上一面的数字是偶数的概率为 【答案】12 【解析】【分析】向上一面的数字是偶数的情况数除以总情况数6即为所求的概率.【详解】解:正方体骰子,六个面上分别刻有的1,2,3,4,5,6六个数字中,偶数为2,4,6,则向上一面的数字是偶数的概率为3162=. 【点睛】明确概率的意义是解答的关键,用到的知识点为:概率等于所求情况数与总情况数之比. 10. 用一组,,的值说明命题”若ac bc =,则a b =“是错误的,这组值可以是a =__________,b =__________,c =__________.【答案】 (1). -1 (2). -2 (3). 0【解析】【分析】根据题意选择a 、b 、c 的值即可.【详解】当c =0,a =−1,b =−2,所以ac =bc ,但a ≠b ,当c =0,a =3,b =−2,所以ac =bc ,但a ≠b ,故答案不唯一;故答案为:-1;-2,0.【点睛】本题考查了命题与定理,要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.11. 如图,某人从点A出发,前进5m后向右转60°,再前进5m后又向右转60°,这样一直走下去,当他第一次回到出发点A时,共走了_____m.【答案】30【解析】【分析】从A点出发,前进5m后向右转60°,再前进5m后又向右转60°,…,这样一直走下去,他第一次回到出发点A时,所走路径为正多边形,根据正多边形的外角和为360°,判断多边形的边数,再求路程.【详解】解:依题意可知,某人所走路径为正多边形,设这个正多边形的边数为n,则60n=360,解得n=6,∴他第一次回到出发点A时一共走了:5×6=30(m),故答案为30.【点睛】本题考查了多边形的外角和,正多边形的判定与性质.关键是根据每一个外角判断多边形的边数.12. 如图所示的网格是正方形网格,△ABC是_____三角形.(填”锐角”“直角”或”钝角”)【答案】锐角【解析】【分析】根据三边的长可作判断.【详解】解:∵AB2=32+12=10,AC2=12+42=17,BC2=32+42=25,∴AB2+AC2>BC2,∴△ABC为锐角三角形,故答案为锐角.【点睛】本题考查了三边的关系,会利用三边关系确定三角形的形状:若三角形的三边分别为a、b、c,①当a2+b2>c2时,△ABC为锐角三角形;②当a2+b2<c2时,△ABC为钝角三角形;③当a2+b2=c2时,△ABC为直角三角形.13. 如图,过⊙O外一点P作⊙O的两条切线P A,PB,切点分别为A,B,作直线BC,连接AB,AC,若∠P=80°,则∠C=_____°.【答案】50【解析】【分析】根据切线的性质得出∠P AO=∠PBO=90°,求出∠AOB的度数,根据圆周角定理求出∠C即可.【详解】解:连接OA,∵过⊙O外一点P作⊙O的两条切线P A,PB,切点分别为A,B,∴∠P AO=∠PBO=90°,∵∠P=80°,∴∠AOB=360°﹣90°﹣90°﹣80°=100°,∴∠C=12AOB=50°,故答案为50.【点睛】本题考查了切线的性质,圆周角定理等知识点,能求出∠AOB的度数和根据圆周角定理得出∠C=12AOB是解此题的关键.14. 如图,在矩形ABCD中,过点B作对角线AC的垂线,交AD于点E,若AB=2,BC=4,则AE=_____.【答案】1【解析】【分析】根据矩形的性质得到∠DAB=∠ABC=90°,AD=BC=4,根据勾股定理得到AC=22AB BC+=25,设AC与BE交于F,根据相似三角形的性质即可得到结论.【详解】解:∵四边形ABCD是矩形,∴∠DAB=∠ABC=90°,AD=BC=4,∴AC=22AB BC+=25,设AC与BE交于F,∵BE⊥AC,∴AB2=AF•AC,∴AF=2225525=,∴CF=AC﹣AF=855,∵AE∥BC,∴△AEF∽△CBF,∴AE AF BC CF=,∴255 4855AE=,∴AE=1,故答案为1.【点睛】本题考查了矩形的性质,相似三角形的判定和性质,勾股定理,熟练掌握正方形的性质是解题的关键.15. 2019年2月,全球首个5G火车站在上海虹桥火车站启动.虹桥火车站中5G网络峰值速率为4G网络峰值速率的10倍.在峰值速率下传输8千兆数据,5G网络比4G网络快720秒,求这两种网络的峰值速率.设4G网络的峰值速率为每秒传输x千兆数据,依题意,可列方程为___.【答案】8872010x x-=【解析】【分析】设4G网络的峰值速率为每秒传输x千兆,则5G网络的峰值速率为每秒传输10x千兆,根据在峰值速率下传输8千兆数据,5G网络快720秒列出方程即可.【详解】解:设4G网络的峰值速率为每秒传输x千兆,则5G网络的峰值速率为每秒传输10x千兆,根据题意,得8872010x x-=.故答案为8872010x x-=.【点睛】本题考查了由实际问题抽象出分式方程,理解题意,找到等量关系列出方程是解题的关键.16. ▱ABCD中,对角线AC、BD相交于点O,E是边AB上的一个动点(不与A、B重合),连接EO并延长,交CD于点F,连接AF,CE,下列四个结论中:①对于动点E,四边形AECF始终是平行四边形;②若∠ABC<90°,则至少存在一个点E,使得四边形AECF是矩形;③若AB>AD,则至少存在一个点E,使得四边形AECF是菱形;④若∠BAC=45°,则至少存在一个点E,使得四边形AECF是正方形.以上所有正确说法的序号是_____.【答案】①③④【解析】分析】①根据平行四边形的性质得AB∥DC,OA=OC,再由平行线的性质和对顶角相等可得∠OAE=∠OCF,∠AOE=∠COF,根据ASA来判定△AOE≌△COF,推出AE=CF,由此可判断四边形为平行四边形;②根据矩形的判定定理可知,当CE⊥AB时,四边形AECF为矩形,而图2-2中,AB<AD时,点E不在线段AB上;③根据菱形的判定定理可知:当EF⊥AC时,四边形AECF为菱形;④当CE⊥AB且∠BAC=45°时,四边形AECF为正方形,在AB上一定存在一点E【详解】解:(1)如图1,∵四边形ABCD为平行四边形,对角线AC与BD交于点O,∴AB∥DC,AB=DC,OA=OC,OB=OD,∴∠OAE=∠OCF,∵∠AOE=∠COF,∴△AOE≌△COF(ASA),∴AE=CF,又∵AE∥CF,∴四边形AECF为平行四边形,即E在AB上任意位置(不与A、B重合)时,四边形AECF恒为平行四边形,故选项①正确;(2)如图2,当∠ABC<90°,当CE⊥AB时,四边形AECF为矩形,在图2中,AB>AD时,存在一点E, 使得四边形AECF是矩形;而图2-2中,AB<AD时,点E不在线段AB上;故选项②不正确.(3)如图3,当EF⊥AC时,四边形AECF为菱形,∵AB>AD,∴在AB 上一定存在一点E, 使得四边形AECF 是矩形;故选项③正确.(4)如图4,当CE ⊥AB 且∠BAC =45°时,四边形AECF 为正方形,故选项④正确.故答案为:①③④.【点睛】本题主要考查平行四边形以及几种特殊平行四边形的判定.熟悉平行四边形、矩形、菱形、正方形的判定方法是解答此题的关键.三.解答题(共12小题)17. 计算:05122sin 60(2019)π-︒-- 【答案】4 3.+【解析】【分析】原式第一项利用绝对值的代数意义化简,第二项化为最简二次根式,第三项利用利用特殊角的三角函数值计算,第四项利用零指数幂法则计算,最后进行加减运算即可. 【详解】()05122sin602019π-︒--, =35321+-, =4 3.【点睛】此题考查了实数的运算,熟练掌握运算法则是解本题的关键. 18. 解不等式组: 4(21)31385x x x x -<+⎧⎪-⎨<⎪⎩ 【答案】4x 1-<<.【解析】【分析】分别解出两不等式的解集,再求其公共解.【详解】()42131385x x x x ⎧-+⎪⎨-⎪⎩<①<② 解不等式①得:x <1,解不等式②得:x >-4,所以不等式组的解集为:-4<x <1.【点睛】此题考查解一元一次不等式组,求不等式组的解集应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.19. 已知:如图1,直线,所成的角跑到画板外面去了,你有什么办法作出这两条直线所成角的角平分线? 小明的做法是:(1)如图2,画PC a ∥;(2)以为圆心,任意长为半径画圆弧,分别交直线,PC 于点,;(3)连结AD 并延长交直线于点;请你先完成下面的证明,然后完成第(4)步作图:∵PC a ∥∴1PDA ∠=∠( )∵以为圆心,任意长为半径画圆弧,分别交直线,PC 于点,∴PA PD =∴PAB ∠=∠∴1PAB ∠=∠∴以直线,的交点和点、为顶点所构成的三角形为等腰三角形( )根据上面的推理证明完成第(4)步作图(4)请在图2画板内作出”直线,所成的跑到画板外面去的角”的平分线(画板内的部分),尺规作出图形,并保留作图痕迹.第(4)步这么作图的理论依据是: .【答案】两直线平行,同位角相等;PDA ;等角对等边;等腰三角形三线合一【解析】【分析】根据平行线的性质及圆的特点得到1PAB ∠=∠,故可得以直线,的交点和点、为顶点所构成的三角形为等腰三角形,然后根据等腰三角形三线合一即可作图.【详解】(1)如图2,画PC a ∥;(2)以为圆心,任意长为半径画圆弧,分别交直线,PC 于点,;(3)连结AD 并延长交直线于点;请你先完成下面的证明,然后完成第(4)步作图:∵PC a ∥∴1PDA ∠=∠(两直线平行,同位角相等)∵以为圆心,任意长为半径画圆弧,分别交直线,PC 于点,∴PA PD =∴PAB ∠=∠PDA∴1PAB ∠=∠∴以直线,的交点和点、为顶点所构成的三角形为等腰三角形(等角对等边)根据上面的推理证明完成第(4)步作图(4)请在图2画板内作出”直线,所成的跑到画板外面去的角”的平分线(画板内的部分),尺规作出图形,并保留作图痕迹.第(4)步这么作图的理论依据是:等腰三角形三线合一故答案为:两直线平行,同位角相等;PDA ;等角对等边;等腰三角形三线合一.【点睛】此题主要考查复杂尺规作图,解题的关键是熟知平行线的性质、圆的基本性质及等腰三角形的判定与性质.20. 已知关于的方程mx 2+(2m-1)x+m-1=0(m≠0) .(1)求证:方程总有两个不相等的实数根;(2)若方程的两个实数根都是整数,求整数的值.【答案】(1)证明见解析(2)m=1或m=-1【解析】试题分析:(1)由于m≠0,则计算判别式的值得到1=,从而可判断方程总有两个不相等的实数根;(2)先利用求根公式得到1211,1x xm=-=-,然后利用有理数的整除性确定整数的值.试题解析:(1)证明:∵m≠0,∴方程为一元二次方程,2(21)4(1)10m m m=---=>,∴此方程总有两个不相等的实数根;(2)∵(21)12mxm--±=,1211,1x xm∴=-=-,∵方程的两个实数根都是整数,且m是整数,∴m=1或m=−1.21. 如图,在△ABC中,AB=AC,D为BC中点,AE∥BD,且AE=BD.(1)求证:四边形AEBD是矩形;(2)连接CE交AB于点F,若∠ABE=30°,AE=2,求EF的长.【答案】(1)证明见解析27.【解析】【分析】(1)由AE∥BD,且AE=BD可得四边形AEBD是平行四边形,再根据AB=AC,D为BC中点,可知AD⊥BC 即可得出四边形AEBD是矩形.(2)根据30°所对的直角边是斜边的一半即可求出EB,再根据矩形的性质求出BC即可利用勾股定理求出EC,由题意可证△AEF∽△BCF,再根据对应边成比例即可求出结果.【详解】(1)证明:∵AE∥BD,AE=BD,∴四边形AEBD是平行四边形,∵AB=AC,D为BC的中点,∴AD⊥BC,∴∠ADB=90°,∴四边形AEBD是矩形.(2)解:∵四边形AEBD是矩形,∴∠AEB=90°,∵∠ABE=30°,AE=2,∴BE=23,BC=4,∴EC=27,∵AE∥BC,∴△AEF∽△BCF,∴12 EF AECF BC,∴EF13=EC=273.【点睛】本题为矩形与等腰三角形的结合题型,关键在于熟练掌握矩形与等腰三角形的性质.22. 在平面直角坐标系xOy中,直线l:y=x+b与x轴交于点A(﹣2,0),与y轴交于点B.双曲线ykx =与直线l交于P,Q两点,其中点P的纵坐标大于点Q的纵坐标(1)求点B的坐标;(2)当点P的横坐标为2时,求k的值;(3)连接PO,记△POB的面积为S.若112S<<,结合函数图象,直接写出k的取值范围.【答案】(1)点B的坐标为(0,2);(2)k的值为8;(3)54<k<3.【解析】【分析】(1)有点A的坐标,可求出直线的解析式,再由解析式求出B点坐标.(2)把点P的横坐标代入直线解析式即可求得点P的纵坐标,然后把点P代入反比例函数解析式即可得k值.(3)根据△POB的面积为S的取值范围求点P的横坐标取值,然后把横坐标代入直线解析式,即可求得点P 纵坐标的取值范围,进而求得k的取值范围.【详解】解:(1)∵直线l:y=x+b与x轴交于点A(﹣2,0)∴﹣2+b=0∴b=2∴一次函数解析式为:y=x+2∴直线l与y轴交于点B为(0,2)∴点B的坐标为(0,2);(2)∵双曲线ykx=与直线l交于P,Q两点∴点P在直线l上∴当点P的横坐标为2时,y=2+2=4 ∴点P的坐标为(2,4)∴k=2×4=8∴k的值为8(3)如图:S△BOP12=⨯2×x p=x p,∵11 2S<<,∴12<x p<1,∴52<y p<3,∴54<k<3【点睛】本题主要涉及一次函数与反比例函数相交的知识点.根据交点既在一次函数上又在反比例函数上,即可解决问题.23. 如图,AB 是O 的直径,CB 与O 相切于点B .点D 在O 上,且BC BD =,连接CD 交O 于点E .过点E 作EF ⊥AB 于点H ,交BD 于点M ,交O 于点F . (1)求证:∠MED=∠MDE .(2)连接BE ,若3ME =,MB=2.求BE 的长.【答案】(1)证明见解析;(2)10【解析】【分析】(1)由题意得//EF BC ,则C DEM ∠=∠,又C MDE ∠=∠,则结论得证;(2)连BE ,BE BF =,可得BEF D ∠=∠,可证BEM BDE ∆∆∽,则2BE BM BD =,可求BE 的长.【详解】(1)证明:CB 与O 相切于点,OB BC ∴⊥,EF AB ⊥,//EF BC ∴,DEM C ∴∠=∠,BC BD =,C MDE ∴∠=∠,MED MDE ∴∠=∠;(2)EF AB ⊥,AB 是O 的直径,BE BF =,D BEF ∴∠=∠,EBM DBE ∠=∠,BEM BDE ∆∆∽,BE BD BM BE=,即2BE BM BD =, MED MDE ∠=∠3∴==ME MDBM=,2BD MB MD∴=+=5BE=.10【点睛】本题主要考查了等腰三角形和平行线之间的角度转化以及圆周角定理和相似综合,熟练的在圆中找出对应的相似三角形是求解本题的关键.24. 为了推动全社会自觉尊法学法守法用法,促进全面依法治国,某区每年都举办普法知识竞赛,该区某单位甲、乙两个部门各有员工200人,要在这两个部门中挑选一个部门代表单位参加今年的竞赛,为了解这两个部门员工对法律知识的掌握情况,进行了抽样调查,从甲、乙两个部门各随机抽取20名员工,进行了法律知识测试,获得了他们的成绩(百分制),并对数据(成绩)进行整理,描述和分析,下面给出了部分信息.a.甲部门成绩的频数分布直方图如下(数据分成6组:40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x <90,90≤x≤100)b.乙部门成绩如下:40 52 70 70 71 73 77 78 80 8182 82 82 82 83 83 83 86 91 94c.甲、乙两部门成绩的平均数、方差、中位数如下:平均数方差中位数甲79.6 36.84 78.5乙77 147.2 md.近五年该单位参赛员工进入复赛的出线成绩如下:2014年2015年2016年2017年2018年出线成绩(百79 81 80 81 82分制)。

安徽省合肥市高新区2018届中考数学一模试卷含答案解析模板

安徽省合肥市高新区2018届中考数学一模试卷含答案解析模板

2018年安徽省合肥市高新区中考数学一模试卷一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出出代号为A、B、C、D的四个结论,其中只有一个是正确的,把正确结论的代号写在题后的答题框中,每一小题:选对得4分,不选错选或选出的代号超过一个的一律得0分1.﹣3的倒数是()A.﹣B.3 C.D.±2.计算(m3)2÷m3的结果等于()A.m2B.m3C.m4D.m63.据统计,地球上的海洋面积约为361 000 000km2,该数用科学记数法表示为3.61×10m,则m的值为()A.6 B.7 C.8 D.94.某几何体的主视图和左视图完全一样均如图所示,则该几何体的俯视图不可能是()A.B.C.D.5.在数轴上标注了四段范围,如图,则表示的点落在()A.段①B.段②C.段③D.段④6.2017年安庆市体育考试跳绳项目为学生选考项目,下表是某班模拟考试时10名同学的测试成绩(单位:个/分钟)则关于这10名同学每分钟跳绳的测试成绩,下列说法错误的是()A.方差是135 B.平均数是170C.中位数是173.5 D.众数是1777.不等式组的解集在数轴上表示正确的是()A.B.C. D.8.如图,点A,B为定点,定直线l∥AB,P是l上一动点,点M,N分别为PA,PB的中点,对下列各值:①线段MN的长;②△PAB的周长;③△PMN的面积;④直线MN,AB之间的距离;⑤∠APB 的大小.其中会随点P的移动而变化的是()A.②③B.②⑤C.①③④ D.④⑤9.如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点,那么CH的长是()A.2.5 B.C. D.210.如图,Rt△ABC中,AC=BC=2,正方形CDEF的顶点D、F分别在AC、BC边上,设CD的长度为x,△ABC与正方形CDEF重叠部分的面积为y,则下列图象中能表示y与x之间的函数关系的是()A.B.C.D.二、填空题(本大题共4小题,每小题5分,满分20分)11.分解因式:12x2﹣3y2=.12.观察下列等式:30=1,31=3,32=9,33=27,34=81,35=243,36=729,37=2187…,解答下列问题:3+32+33+…+32017的末位数字是.13.如图,在⊙O中,AB为直径,BC为弦,CD为切线,连接OC.若∠BCD=50°,则∠AOC的度数为.14.如图,CB、CD分别是钝角△AEC和锐角△ABC的中线,且AC=AB,给出下列结论:①AE=2AC;②CE=2CD;③∠ACD=∠BCE;④CB平分∠DCE.请写出正确结论的序号(注:将你认为正确结论的序号都填上).三、(本大题共2小题,每小题8分,满分16分)15.计算:﹣(﹣2)+(1+π)0﹣|1﹣|+﹣cos45°.16.解方程:=.四、(本大题共2小题,每小题8分,满分16分)17.如图,△A1B1C1是△ABC向右平移4个单位长度后得到的,且三个顶点的坐标分别为A1(1,1),B1(4,2),C1(3,4).(1)请画出△ABC,并写出点A,B,C的坐标;(2)求出△AOA1的面积.18.一方有难八方支援.安徽地震局救援队在某次地震救援中,探测出某建筑物废墟下方点C处有生命迹象,在废墟一侧某面上选两探测点A、B,AB相距2.1米,探测线与地面的夹角分别是35°和45°(如图),试确定生命所在点C与探测面的距离(参考数据≈1.4,≈1.7)五、(本大题共2小题,每小题10分,满分20分)19.为了解外来务工子女就学情况,某校对七年级各班级外来务工子女的人数情况进行了统计,发现各班级中外来务工子女的人数有1名、2名、3名、4名、5名、6名共六种情况,并制成如下两幅统计图:(1)求该校七年级平均每个班级有多少名外来务工子女?并将该条形统计图补充完整;(2)学校决定从只有2名外来务工子女的这些班级中,任选两名进行生活资助,请用列表法或画树状图的方法,求出所选两名外来务工子女来自同一个班级的概率.20.(2017•威海)如图,在△ABC中,AB=AC,以AC为直径的⊙O交AB于点D,交BC于点E.(1)求证:BE=CE;(2)若BD=2,BE=3,求AC的长.六、(本题满分12分)21.如图,一次函数y=k1x+b与反比例函数y=的图象交于A(2,m),B(﹣3,﹣2)两点.(1)求一次函数与反比例函数的解析式;(2)根据所给条件,请直接写出不等式k1x+b>的解集;(3)若P(p,y1),Q(﹣2,y2),是函数y=图象上的两点,且y1>y2,求实数p的取值范围.七、(本题满分12分)22.如图,正方形ABCD边长为6,菱形EFGH的三个顶点E、G、H分别在正方形ABCD的边AB、CD、DA上,连接CF.(1)求证:∠HEA=∠CGF;(2)当AH=DG=2时,求证:菱形EFGH为正方形;(3)设AH=x,DG=2x,△FCG的面积为y,试求y的最大值.八、(本题满分14分)23.音乐喷泉(图1)可以使喷水造型随音乐的节奏起伏变化而变化,某种音乐喷泉形状如抛物线,设其出水口为原点,出水口离岸边18m,音乐变化时,抛物线的顶点在直线y=kx上变动,从而产生一组不同的抛物线(图2),这组抛物线的统一形式为y=ax2+bx.(1)若已知k=1,且喷出的抛物线水线最大高度达3m,求此时a、b的值;(2)若k=1,喷出的水恰好达到岸边,则此时喷出的抛物线水线最大高度是多少米?(3)若k=2,且要求喷出的抛物线水线不能到岸边,求a的取值范围.2018年安徽省合肥市高新区中考数学一模试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出出代号为A、B、C、D的四个结论,其中只有一个是正确的,把正确结论的代号写在题后的答题框中,每一小题:选对得4分,不选错选或选出的代号超过一个的一律得0分1.﹣3的倒数是()A.﹣B.3 C.D.±【考点】倒数.【分析】根据倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.【解答】解:﹣3的倒数是﹣.故选:A.【点评】本题主要考查了倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.计算(m3)2÷m3的结果等于()A.m2B.m3C.m4D.m6【考点】同底数幂的除法;幂的乘方与积的乘方.【分析】根据同底数幂的除法法则,同底数幂相除,底数不变指数相减的性质,对各选项计算后选取答案.【解答】解:(m3)2÷m3=m6÷m3=m3,故选B.【点评】本题考查同底数幂的除法法则,熟练掌握运算法则是解题的关键.3.据统计,地球上的海洋面积约为361 000 000km2,该数用科学记数法表示为3.61×10m,则m的值为()A.6 B.7 C.8 D.9【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将361 000 000用科学记数法表示为:3.61×108.故m=8.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.某几何体的主视图和左视图完全一样均如图所示,则该几何体的俯视图不可能是()A.B.C.D.【考点】由三视图判断几何体;简单组合体的三视图.【分析】本题给出了正视图与左视图,由所给的数据知凭据三视图的作法规则,来判断左视图的形状,由于正视图中的长与左视图中的长不一致,此特征即是判断俯视图开关的关键,由此标准对四个可选项依次判断即可.【解答】解:几何体的主视图和左视图完全一样均如图所示则上面的几何体从正面看和左面看的长度相等,只有等边三角形不可能,故选C.【点评】本题考点是简单空间图形的三视图,考查根据作三视图的规则来作出三个视图的能力,三视图的投影规则是:“主视、俯视长对正;主视、左视高平齐,左视、俯视宽相等”.三视图是高考的新增考点,不时出现在高考试题中,应予以重视.5.在数轴上标注了四段范围,如图,则表示的点落在()A.段①B.段②C.段③D.段④【考点】估算无理数的大小;实数与数轴.【分析】根据数的平方,即可解答.【解答】解:2.62=6.76,2.72=7.29,2.82=7.84,2.92=8.41,32=9,∵7.84<8<8.41,∴,∴的点落在段③,故选:C.【点评】本题考查了估算无理数的大小,解决本题的关键是计算出各数的平方.6.2017年安庆市体育考试跳绳项目为学生选考项目,下表是某班模拟考试时10名同学的测试成绩(单位:个/分钟)则关于这10名同学每分钟跳绳的测试成绩,下列说法错误的是()A.方差是135 B.平均数是170C.中位数是173.5 D.众数是177【考点】方差;加权平均数;中位数;众数.【分析】根据平均数、方差、中位数和众数的定义分别进行解答,即可求出答案.【解答】解:这组数据的平均数是:(140+160+169+170×2+177×3+180×2)÷10=170,则方差=[(140﹣170)2+(160﹣170)2+(169﹣170)2+2×(170﹣170)2+3×(177﹣170)2+2×(180﹣170)2]=134.8;∵共有10个数,∴中位数是第5个和6个数的平均数,∴中位数是(170+177)÷2=173.5;∵177出现了三次,出现的次数最多,∴众数是177;∴下列说法错误的是A;故选A.【点评】此题考查了平均数、方差、中位数和众数,掌握平均数、方差、中位数和众数的定义是解题的关键,一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数).7.不等式组的解集在数轴上表示正确的是()A.B.C. D.【考点】在数轴上表示不等式的解集;解一元一次不等式组.【分析】根据不等式的性质求出不等式的解集,根据找不等式组解集的规律找出即可.【解答】解:,由①得:x≥1,由②得:x<2,在数轴上表示不等式的解集是:故选:D.【点评】本题主要考查对不等式的性质,解一元一次不等式(组),在数轴上表示不等式的解集等知识点的理解和掌握,能根据不等式的解集找出不等式组的解集是解此题的关键.8.如图,点A,B为定点,定直线l∥AB,P是l上一动点,点M,N分别为PA,PB的中点,对下列各值:①线段MN的长;②△PAB的周长;③△PMN的面积;④直线MN,AB之间的距离;⑤∠APB 的大小.其中会随点P的移动而变化的是()A.②③B.②⑤C.①③④ D.④⑤【考点】三角形中位线定理;平行线之间的距离.【专题】压轴题.【分析】根据三角形的中位线平行于第三边并且等于第三边的一半可得MN=AB,从而判断出①不变;再根据三角形的周长的定义判断出②是变化的;确定出点P到MN的距离不变,然后根据等底等高的三角形的面积相等确定出③不变;根据平行线间的距离相等判断出④不变;根据角的定义判断出⑤变化.【解答】解:∵点A,B为定点,点M,N分别为PA,PB的中点,∴MN是△PAB的中位线,∴MN=AB,即线段MN的长度不变,故①错误;PA、PB的长度随点P的移动而变化,所以,△PAB的周长会随点P的移动而变化,故②正确;∵MN的长度不变,点P到MN的距离等于l与AB的距离的一半,∴△PMN的面积不变,故③错误;直线MN,AB之间的距离不随点P的移动而变化,故④错误;∠APB的大小点P的移动而变化,故⑤正确.综上所述,会随点P的移动而变化的是②⑤.故选:B.【点评】本题考查了三角形的中位线平行于第三边并且等于第三边的一半,等底等高的三角形的面积相等,平行线间的距离的定义,熟记定理是解题的关键.9.如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点,那么CH的长是()A.2.5 B.C. D.2【考点】直角三角形斜边上的中线;勾股定理;勾股定理的逆定理.【专题】几何图形问题.【分析】连接AC、CF,根据正方形性质求出AC、CF,∠ACD=∠GCF=45°,再求出∠ACF=90°,然后利用勾股定理列式求出AF,再根据直角三角形斜边上的中线等于斜边的一半解答即可.【解答】解:如图,连接AC、CF,∵正方形ABCD和正方形CEFG中,BC=1,CE=3,∴AC=,CF=3,∠ACD=∠GCF=45°,∴∠ACF=90°,由勾股定理得,AF===2,∵H是AF的中点,∴CH=AF=×2=.故选:B.【点评】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,正方形的性质,勾股定理,熟记各性质并作辅助线构造出直角三角形是解题的关键.10.如图,Rt△ABC中,AC=BC=2,正方形CDEF的顶点D、F分别在AC、BC边上,设CD的长度为x,△ABC与正方形CDEF重叠部分的面积为y,则下列图象中能表示y与x之间的函数关系的是()A.B.C.D.【考点】动点问题的函数图象;等腰三角形的性质.【专题】数形结合.【分析】分类讨论:当0<x≤1时,根据正方形的面积公式得到y=x2;当1<x≤2时,ED交AB于M,EF交AB于N,利用重叠的面积等于正方形的面积减去等腰直角三角形MNE的面积得到y=x2﹣2(x﹣1)2,配方得到y=﹣(x﹣2)2+2,然后根据二次函数的性质对各选项进行判断.【解答】解:当0<x≤1时,y=x2,当1<x≤2时,ED交AB于M,EF交AB于N,如图,CD=x,则AD=2﹣x,∵Rt△ABC中,AC=BC=2,∴△ADM为等腰直角三角形,∴DM=2﹣x,∴EM=x﹣(2﹣x)=2x﹣2,∴S△ENM=(2x﹣2)2=2(x﹣1)2,∴y=x2﹣2(x﹣1)2=﹣x2+4x﹣2=﹣(x﹣2)2+2,∴y=,故选:A.【点评】本题考查了动点问题的函数图象:通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.用图象解决问题时,要理清图象的含义即会识图.也考查了等腰直角三角形的性质.二、填空题(本大题共4小题,每小题5分,满分20分)11.分解因式:12x2﹣3y2=3(2x+y)(2x﹣y).【考点】提公因式法与公式法的综合运用.【分析】考查了对一个多项式因式分解的能力,本题属于基础题.当一个多项式有公因式,将其分解因式时应先提取公因式,再对余下的多项式继续分解.此题应提公因式,再用公式.【解答】解:12x2﹣3y2=3(2x﹣y)(2x+y).【点评】本题考查因式分解.因式分解的步骤为:一提公因式;二看公式.公式包括平方差公式与完全平方公式,要能用公式法分解必须有平方项,如果是平方差就用平方差公式来分解,如果是平方和需要看还有没有两数乘积的2倍,如果没有两数乘积的2倍还不能分解.解答这类题时一些学生往往因分解因式的步骤、方法掌握不熟练,对一些乘法公式的特点记不准确而误选其它选项.要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以提取公因式的要先提取公因式12.观察下列等式:30=1,31=3,32=9,33=27,34=81,35=243,36=729,37=2187…,解答下列问题:3+32+33+…+32017的末位数字是9.【考点】尾数特征.【专题】规律型.【分析】根据31=3,32=9,33=27,34=81,35=243,36=729,37=2187…得出3+32+33+34…+32017的末位数字相当于:3+7+9+1+…+3+7+9,进而得出末尾数字.【解答】解:∵31=3,32=9,33=27,34=81,35=243,36=729,37=2187…∴末尾数,每4个一循环,∵2017÷4=503…3,∴3+32+33+34…+32017的末位数字相当于:3+7+9+1+…+3+7+9=(3+9+7+1)×503+19=10079的末尾数为9.故答案为:9.【点评】此题主要考查了尾数特征以及数字变化规律,根据已知得出数字变化规律是解题关键.13.如图,在⊙O中,AB为直径,BC为弦,CD为切线,连接OC.若∠BCD=50°,则∠AOC的度数为80°.【考点】切线的性质.【分析】根据切线的性质得出∠OCD=90°,进而得出∠OCB=40°,再利用圆心角等于圆周角的2倍解答即可.【解答】解:∵在⊙O中,AB为直径,BC为弦,CD为切线,∴∠OCD=90°,∵∠BCD=50°,∴∠OCB=40°,∴∠AOC=80°.故答案为:80°.【点评】本题考查了切线的性质定理以及圆周角定理的运用,熟记和圆有关的各种性质定理是解题关键.14.如图,CB、CD分别是钝角△AEC和锐角△ABC的中线,且AC=AB,给出下列结论:①AE=2AC;②CE=2CD;③∠ACD=∠BCE;④CB平分∠DCE.请写出正确结论的序号①②④(注:将你认为正确结论的序号都填上).【考点】三角形中位线定理;全等三角形的判定与性质.【专题】压轴题.【分析】根据三角形的中位线定理和三角形全等的判定,此处可以运用排除法逐条进行分析.【解答】解:根据三角形的中线的概念得AE=2AB=2AC,①正确;②作CE的中点F,连接BF.根据三角形的中位线定理得AC=2BF,又AC=AB=2BD,所以BF=BD.根据三角形的中位线定理得到BF∥AC,则∠CBF=∠ACB=∠ABC.根据SAS得到△BCD≌△BCF,所以CF=CD,即CE=2CD.②正确;③根据②中的全等三角形得到∠BCD=∠BCE,若∠ACD=∠BCE,则需∠ACD=∠BCD.而CD只是三角形的中线.错误;④正确.故正确的是①②④.【点评】考查了三角形的中线的概念,能够熟练运用三角形的中位线定理,掌握全等三角形的判定和性质.三、(本大题共2小题,每小题8分,满分16分)15.计算:﹣(﹣2)+(1+π)0﹣|1﹣|+﹣cos45°.【考点】实数的运算;零指数幂;特殊角的三角函数值.【专题】计算题;实数.【分析】原式第一项利用去括号法则计算,第二项利用零指数幂法则计算,第三项利用绝对值的代数意义化简,第四项化为最简二次根式,最后一项利用特殊角的三角函数值计算即可得到结果.【解答】解:原式=2+1﹣+1+2﹣=4+.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.16.解方程:=.【考点】解分式方程.【分析】因为3x﹣3=3(x﹣1),所以可确定方程的最简公分母为3(x﹣1),确定方程最简公分母后,方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:方程两边同乘3(x﹣1),得:3x=2,解得x=.经检验x=是方程的根.【点评】本题考查了解分式方程,注意:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.(3)分式中有常数项的注意不要漏乘常数项.四、(本大题共2小题,每小题8分,满分16分)17.如图,△A1B1C1是△ABC向右平移4个单位长度后得到的,且三个顶点的坐标分别为A1(1,1),B1(4,2),C1(3,4).(1)请画出△ABC,并写出点A,B,C的坐标;(2)求出△AOA1的面积.【考点】作图-平移变换.【分析】(1)直接把△A1B1C1是向左平移4个单位,再写出点A,B,C的坐标即可;(2)直接根据三角形的面积公式即可得出结论.【解答】解:(1)如图所示,A(﹣3,1),B(0,2),C(﹣1,4);(2)S△AOA1=×4×1=2.【点评】本题考查的是作图﹣平移变换,熟知图形平移不变性的性质是解答此题的关键.18.一方有难八方支援.安徽地震局救援队在某次地震救援中,探测出某建筑物废墟下方点C处有生命迹象,在废墟一侧某面上选两探测点A、B,AB相距2.1米,探测线与地面的夹角分别是35°和45°(如图),试确定生命所在点C与探测面的距离(参考数据≈1.4,≈1.7)【考点】解直角三角形的应用.【分析】首先过C作CD⊥AB,设CD=x米,则DB=CD=x米,AD=CD=x米,再根据AB相距2.1米可得方程x﹣x=2.1,再解即可.【解答】解:过C作CD⊥AB,设CD=x米,∵∠ABE=45°,∴∠CBD=45°,∴DB=CD=x米,∵∠CAD=30°,∴AD=CD=x米,∵AB相距2.1米,∴x﹣x=2.1,解得:x=3.答:命所在点C与探测面的距离是3米.【点评】此题主要考查了解直角三角形的应用,关键是正确分析出CD、AD、BD的关系.五、(本大题共2小题,每小题10分,满分20分)19.为了解外来务工子女就学情况,某校对七年级各班级外来务工子女的人数情况进行了统计,发现各班级中外来务工子女的人数有1名、2名、3名、4名、5名、6名共六种情况,并制成如下两幅统计图:(1)求该校七年级平均每个班级有多少名外来务工子女?并将该条形统计图补充完整;(2)学校决定从只有2名外来务工子女的这些班级中,任选两名进行生活资助,请用列表法或画树状图的方法,求出所选两名外来务工子女来自同一个班级的概率.【考点】列表法与树状图法;扇形统计图;条形统计图.【分析】(1)根据外来务工子女有4名的班级占20%,可求得有外来务工子女的总班级数,再减去其它班级数,即可补全统计图;(2)根据班级个数和班级人数,求出总的外来务工子女数,再除以总班级数,即可得出答案;(3)根据(1)可知,只有2名外来务工子女的班级有2个,共4名学生,再设A1,A2来自一个班,B1,B2来自一个班,列出树状图可得出来自一个班的共有4种情况,再根据概率公式即可得出答案.【解答】解:(1)该校班级个数为4÷20%=20(个),只有2名外来务工子女的班级个数为:20﹣(2+3+4+5+4)=2(个),条形统计图补充完整如下该校平均每班外来务工子女的人数为:(1×2+2×2+3×3+4×4+5×5+6×4)÷20=4(个);(2)由(1)得只有2名外来务工子女的班级有2个,共4名学生,设A1,A2来自一个班,B1,B2来自一个班,画树状图如图所示;由树状图可知,共有12种可能的情况,并且每种结果出现的可能性相等,其中来自一个班的共有4种情况,则所选两名外来务工子女来自同一个班级的概率为:=.【点评】本题考查了条形统计图和扇形统计图、树状图的画法以及规律公式;读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20.(2017•威海)如图,在△ABC中,AB=AC,以AC为直径的⊙O交AB于点D,交BC于点E.(1)求证:BE=CE;(2)若BD=2,BE=3,求AC的长.【考点】相似三角形的判定与性质;等腰三角形的性质;圆周角定理.【专题】证明题.【分析】(1)连结AE,如图,根据圆周角定理,由AC为⊙O的直径得到∠AEC=90°,然后利用等腰三角形的性质即可得到BE=CE;(2)连结DE,如图,证明△BED∽△BAC,然后利用相似比可计算出AB的长,从而得到AC的长.【解答】(1)证明:连结AE,如图,∵AC为⊙O的直径,∴∠AEC=90°,∴AE⊥BC,而AB=AC,∴BE=CE;(2)连结DE,如图,∵BE=CE=3,∴BC=6,∵∠BED=∠BAC,而∠DBE=∠CBA,∴△BED∽△BAC,∴=,即=,∴BA=9,∴AC=BA=9.【点评】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.也考查了角平分线的性质和圆周角定理.六、(本题满分12分)21.如图,一次函数y=k1x+b与反比例函数y=的图象交于A(2,m),B(﹣3,﹣2)两点.(1)求一次函数与反比例函数的解析式;(2)根据所给条件,请直接写出不等式k1x+b>的解集;(3)若P(p,y1),Q(﹣2,y2),是函数y=图象上的两点,且y1>y2,求实数p的取值范围.【考点】反比例函数与一次函数的交点问题.【分析】(1)首先把B(﹣3,﹣2)代入反比例函数解析式中确定k2,然后把A(2,m)代入反比例函数的解析式确定m,然后根据A,B两点坐标利用待定系数法确定一次函数的解析式;(2)根据函数的图象即可求得;(3)分两种情况结合图象即可求得.【解答】解:(1)把B(﹣3,﹣2)代入数y=中,∴k2=6,∴反比例函数解析式为y=,把A(2,m)代入y=得,m=3,把A(2,3),B(﹣3,﹣2)代入y=k1x+b得:解得k1=1,b=1,∴一次函数解析式为y=x+1.(2)∵A(2,3),B(﹣3,﹣2),∴不等式k1x+b>的解集是﹣3<x<0或x>2;(3)分两种情况:当P在第三象限时,要使y1>y2,p的取值范围为p<﹣2;当P在第一象限时,要使y1>y2,p的取值范围为p>0;故P的取值范围是p<﹣2或p>0.【点评】此题考查了用待定系数法确定反比例函数和一次函数的解析式,也考查了反比例函数和一次函数的交点问题,函数和不等式的关系.七、(本题满分12分)22.如图,正方形ABCD边长为6,菱形EFGH的三个顶点E、G、H分别在正方形ABCD的边AB、CD、DA上,连接CF.(1)求证:∠HEA=∠CGF;(2)当AH=DG=2时,求证:菱形EFGH为正方形;(3)设AH=x,DG=2x,△FCG的面积为y,试求y的最大值.【考点】四边形综合题.【分析】(1)过F作FM⊥CD,垂足为M,连接GE,由AB与CD平行,利用两直线平行内错角相等得到一对角相等,再由GE为菱形的对角线,利用菱形的性质得到一对内错角相等,利用等式的性质即可得证;(2)由于四边形ABCD为正方形,四边形HEFG为菱形,那么∠D=∠A=90°,HG=HE,而AH=DG=2,易证△AHE≌△DGH,从而有∠DHG=∠HEA,等量代换可得∠AHE+∠DHG=90°,易证四边形HEFG 为正方形;(3)欲求△FCG的面积,由已知得CG的长易求,只需求出GC边的高,通过证明△AHE≌△MFG 可得.【解答】(1)证明:过F作FM⊥CD,垂足为M,连接GE,∵CD∥AB,∴∠AEG=∠MGE,∵GF∥HE,∴∠HEG=∠FGE,∴∠AEH=∠FGM;(2)证明:在△HDG和△AEH中,∵四边形ABCD是正方形,∴∠D=∠A=90°,∵四边形EFGH是菱形,∴HG=HE,在Rt△HDG和△AEH中,,∴Rt△HDG≌△AEH(HL),∴∠DHG=∠AEH,∴∠DHG+∠AHE=90°∴∠GHE=90°,∴菱形EFGH为正方形;(3)解:过F作FM⊥CD于M,在△AHE与△MFG中,,∴△AHE≌△MFG,∴MF=AH=x,∵DG=2x,∴CG=6﹣2x,∴y=CG•FM=•x•(6﹣2x)=﹣(x﹣)2+,=.∵a=﹣1<0,∴当x=时,y最大【点评】本题考查了正方形的性质、菱形的性质、全等三角形的判定和性质,解题的关键是作辅助线:过F作FM⊥DC,交DC延长线于M,连接GE,构造全等三角形和内错角.八、(本题满分14分)23.音乐喷泉(图1)可以使喷水造型随音乐的节奏起伏变化而变化,某种音乐喷泉形状如抛物线,设其出水口为原点,出水口离岸边18m,音乐变化时,抛物线的顶点在直线y=kx上变动,从而产生一组不同的抛物线(图2),这组抛物线的统一形式为y=ax2+bx.(1)若已知k=1,且喷出的抛物线水线最大高度达3m,求此时a、b的值;(2)若k=1,喷出的水恰好达到岸边,则此时喷出的抛物线水线最大高度是多少米?(3)若k=2,且要求喷出的抛物线水线不能到岸边,求a的取值范围.【考点】二次函数的应用.【分析】(1)根据抛物线的顶点在直线y=kx上,抛物线为y=ax2+bx,k=1,且喷出的抛物线水线最大高度达3m,可以求得a,b的值;(2)根据k=1,喷出的水恰好达到岸边,抛物线的顶点在直线y=kx上,可以求得抛物线的对称轴x 的值,从而可以得到此时喷出的抛物线水线最大高度;(3)抛物线的顶点在直线y=2x上可得b的值,根据喷出的抛物线水线不能到岸边,而出水口离岸边18m可知其对称轴﹣<9,可得a的范围.【解答】解:(1)∵y=ax2+bx的顶点为(﹣,﹣),抛物线的顶点在直线y=kx上,k=1,抛物线水线最大高度达3m,∴﹣=,=3,解得,a=﹣,b=2,即k=1,且喷出的抛物线水线最大高度达3m,此时a、b的值分别是﹣,2;(2)∵k=1,喷出的水恰好达到岸边,出水口离岸边18m,抛物线的顶点在直线y=kx上,∴此时抛物线的对称轴为x=9,y=x=9,即此时喷出的抛物线水线最大高度是9米;(3)∵y=ax2+bx的顶点为(﹣,﹣),抛物线的顶点在直线y=2x上,∴﹣×2=﹣,解得:b=4,∵喷出的抛物线水线不能到岸边,出水口离岸边18m,∴﹣<9,即:﹣<9,解得:a>﹣,又∵a<0,∴﹣<a<0.【点评】本题考查二次函数的应用,解题的关键是明确题意,根据题目给出的信息列出相应的关系式,找出所求问题需要的条件.。

2018年中考数学专题《平面直角坐标系》复习试卷含答案解析

2018年中考数学专题《平面直角坐标系》复习试卷含答案解析

2018年中考数学专题复习卷: 平面直角坐标系一、选择题1.在平面直角坐标系中,点P(-1,2)所在的象限是()A. 第一象限B. 第二象限C. 第三象限D. 第四象限2.点P(x﹣1,x+1)不可能在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限3.在平面直角坐标系中,点P(-2,x2+1)所在的象限是()A. 第一象限B. 第二象限C. 第三象限D. 第四象限4.在平面直角坐标系的第二象限内有一点,点到轴的距离为3,到轴的距离为4,则点的坐标是()A. B. C. D.5.在平面直角坐标系中,以原点为对称中心,把点A(3,4)逆时针旋转90°,得到点B,则点B的坐标为()A.(4,-3)B.(-4,3)C.(-3,4)D.(-3,-4)6. 抛物线(m是常数)的顶点在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限7. 在平面直角坐标系中,点关于原点的对称点的坐标是()A. B. C. D.8. 已知a、b、c为常数,点P(a,c)在第二象限,则关于x的方程ax2+bx+c=0根的情况是()A. 有两个相等的实数根B. 有两个不相等的实数根C. 没有实数根D. 无法判断9.如果直线AB平行于y轴,则点A,B的坐标之间的关系是()A. 横坐标相等B. 纵坐标相等C. 横坐标的绝对值相等D. 纵坐标的绝对值相等10.如图,CB=1,且OA=OB,BC⊥OC,则点A在数轴上表示的实数是()A. B. ﹣ C. D. ﹣11. 小莹和小博士下棋,小莹执圆子,小博士执方子.如图,棋盘中心方子的位置用(﹣1,0)表示,右下角方子的位置用(0,﹣1)表示.小莹将第4枚圆子放入棋盘后,所有棋子构成一个轴对称图形.他放的位置是()A. (﹣2,1)B. (﹣1,1)C. (1,﹣2)D. (﹣1,﹣2)12.如图,小手盖住的点的坐标可能为()A. (-4,-5)B. (-4,5)C. (4,5)D. (4,-5)二、填空题13.如果在y轴上,那么点P的坐标是________ .14.平面直角坐标系内,点P(3,-4)到y轴的距离是________15.已知直角坐标系内有四个点O(0,0),A(3,0),B(1,1),C(x,1),若以O,A,B,C为顶点的四边形是平行四边形,则x=________.16.如图,在中国象棋的残局上建立平面直角坐标系,如果“相”和“兵”的坐标分别是(3,-1)和(-3,1),那么“卒”的坐标为________。

九年级数学中考复习二次函数压轴题代数推理题中考真题含答案解析

九年级数学中考复习二次函数压轴题代数推理题中考真题含答案解析

代数推理题11.B(2019·温州改编)已知抛物线y=-x2+2x+6与x轴交于A,B两点(点A在点B的左侧).把点B向上2平移m(m>0)个单位得点B1,若点B1向左平移n(n>0)个单位,将与该抛物线上的点B2重合;若点B1向左平移(n+6)个单位,将与该二次函数上的点B3重合.求m,n的值.2.B(2019·如皋)已知二次函数y=-x2+bx-c的图象与x轴的交点坐标为(m-2,0)和(2m+1,0).(1)若x<0时,y随x的增大而增大,求m的取值范围;(2)若y=1时,自变量x有唯一的值,求二次函数的解析式.3.B(2018·南通)在平面直角坐标系xOy中,将抛物线y=x2-2(k-1)x+k2-5k(k为常数)向右平移12个单位长度得到新抛物线,当1≤x≤2时,新抛物线对应的函数有最小值3,求k的值.2-3)和B(3,0).4.B(2019·海淀一模)在平面直角坐标系xOy中,抛物线y=ax2+bx+c(a>0)经过点A(0,(1)若抛物线在A,B两点间,从左到右上升,求a的取值范围;(2)结合函数图象判断:抛物线能否同时经过点M(-1+m,n),N(4-m,n)?若能,写出一个符合要求的抛物线的表达式和n的值;若不能,请说明理由.5.B(2019·南通)已知在同一直角坐标系中,若该二次函数=x2-4x+3a+2(a为常数)的图象在x≤4的部分与一次函数y=2x-1的图象有两个交点,求a的取值范围.6.B如图,平面直角坐标系xOy中,横坐标为a的点A在反比例函数y1═关于点O对称,一次函数y2=k(x>0)的图象上,点A′与点Ax1x+n的图象经过点A′.过点A作AD⊥x轴,与函数y2的图象相交于点D,2以AD为一边向右侧作正方形ADEF,试说明函数y2的图象与线段EF的交点P一定在函数y1的图象上.7.B(2020·顺义区期末)在平面直角坐标系xOy中,抛物线y=1x2+nx-m与y轴交于点A,将点A向左m平移3个单位长度,得到点B,点B在抛物线上.(1)求抛物线的对称轴;(2)已知点P(-1,-m),Q(-3,1).若抛物线与线段PQ恰有一个公共点,结合函数图象,求m的取值范围.8.C(2019·通州区期中)已知二次函数y=ax2+bx+c(a<0)的图象经过(m+1,a),(m,b)两点.(1)求证:am+b=0;(2)若该二次函数的最大值为-1,当x=1时,y≥3a,求a的取值范围.4。

2018-2020年安徽省中考数学复习各地区模拟试题分类(合肥专版)(6)——函数基础与一次函数

2018-2020年安徽省中考数学复习各地区模拟试题分类(合肥专版)(6)——函数基础与一次函数

2018-2020年安徽省中考数学复习各地区模拟试题分类(合肥专版)(6)——函数基础与一次函数一.选择题(共17小题)1.(2019•合肥二模)甲、乙两车从A 地出发,沿同一路线驶向B 地.甲车先出发匀速驶向B 地,40min 后,乙车出发,匀速行驶一段时间后,在途中的货站装货耗时半小时.由于满载货物,为了行驶安全,速度减少了50km /h ,结果与甲车同时到达B 地.甲乙两车距A 地的路程y (km )与乙车行驶时间x (h )之间的函数图象如图所示,则下列说法:①a =4.5;②甲的速度是60km /h ;③乙出发80min 追上甲;④乙刚到达货站时,甲距B 地180km .其中正确是( )A .①②③B .①②④C .②③④D .①②③④2.(2019•合肥模拟)在20km 的环湖越野赛中,甲乙两选手的行程y (单位:km )随时间x (单位:h )变化的图象如图所示,根据图中提供的信息,下列说法中,错误的是( )A .出发后1小时,两人行程均为10kmB .出发后1.5小时,甲的行程比乙多3kmC .两人相遇前,甲的速度小于乙的速度D .甲比乙先到达终点3.(2019•庐江县一模)如图在平面直角坐标系中,直线y =−43x +8与x 轴、y 轴分别交于点A 、B ,点C 在x 轴正半轴上,点D 在y 轴正半轴上,且CD =6,以CD 为直径的半圆与AB 交于点E 、F ,则线段EF 的最大值为( )A .245B .125C .16√65D .8√654.(2017•合肥模拟)直线y =x +1与y 轴交于点A 1,按如图方式作正方形A 1B 1C 1O 、A 2B 2C 2C 1、A 3B 3C 2C 3,…,A 1、A 2、A 3,…A n ,在直线y =x +1上,点C 1、C 2、C 3,…∁n 在x 轴上,图中阴影部分三角形的面积从左到右依次记为S1、S2、S3,…S n,则以下结论中正确的个数为()①S2=2②B n是线段A n+1∁n的中点;③S n=n 22④B1,B2,B3…B n都位于同一条直线上A.1个B.2个C.3个D.4个5.(2020•庐阳区校级一模)如图,Rt△ABC中,∠C=90°,AB=5cm,AC=4cm,点P从点A出发,以1cm/s的速度沿A→C向点C运动,同时点Q从点A出发,以2cm/s的速度沿A→B→C向点C运动,直到它们都到达点C为止.若△APQ的面积为S(cm2),点P的运动时间为t(s),则S与t的函数图象是()A.B.C.D.6.(2020•包河区一模)在四边形ABCD中,AB∥DC,∠A=60°,AD=DC=BC=4,点E沿A→D→C→B运动,同时点F沿A→B→C运动,运动速度均为每秒1个单位,当两点相遇时,运动停止,则△AEF 的面积y与运动时间x秒之间的图象大致为()A.B.C .D .7.(2020•瑶海区二模)如图所示,在△ABC 中,AB =AC ,动点D 在折线段BAC 上沿B →A →C 方向以每秒1个单位的速度运动,过D 垂直于BC 的直线交BC 边于点E .如果AB =5,BC =8,点D 运动的时间为t 秒,△BDE 的面积为S ,则S 关于t 的函数图象的大致形状是( )A .B .C .D .8.(2020•庐江县一模)小元步行从家去火车站,走到6分钟时,以同样的速度回家取物品,然后从家乘出租车赶往火车站,结果比预计步行时间提前了3分钟.小元离家路程S (米)与时间t (分钟)之间的函数图象如图,那么从家到火车站路程是( )A .1300米B .1400米C .1600米D .1500米9.(2019•长丰县三模)如图1,点F 从菱形ABCD 的顶点A 出发,沿A →D →B 以1cm /s 的速度匀速运动到点B ,图2是点F 运动时,△FBC 的面积y (cm 2)随时间x (s )变化的关系图象,则a 的值为( )A .√5B .2C .52D .210.(2019•瑶海区二模)如图1,点P 从△ABC 的顶点B 出发,沿B →C →A 匀速运动到点A ,图2是点P 运动时,线段BP 的长度y 随时间x 变化的函数关系图象,其中M 为曲线部分的最低点下列说法错误的是( )A.△ABC是等腰三角形B.AC边上的高为4C.△ABC的周长为16 D.△ABC的面积为1011.(2019•包河区一模)已知,△ABC中,∠BAC=135°,AB=AC=2√2,P为边AC上一动点,PQ∥BC 交AB于Q,设PC=x,△PCQ的面积为y,则y与x的函数关系图象是()A.B.C.D.12.(2019•庐江县一模)如图,EF垂直平分矩形ABCD的对角线AC,与AB、CD分别交于点E、F,连接AF.已知AC=4,设AB=x,AF=y,则y关于x的函数关系用图象大致可以表示为()A.B.C.D.13.(2019•合肥模拟)如图1,在矩形MNPQ中,动点R从点N出发,沿着N→P→Q→M方向运动至点M 处停止,设点R运动的路程为x,△MNR的面积为y,如果y关于x的函数图象如图2所示,则下列说法不正确的是()A .当x =2时,y =5B .矩形MNPQ 的面积是20C .当x =6时,y =10D .当y =152时,x =1014.(2018•长丰县一模)如图1,△ABC 中,∠A =30°,点P 从点A 出发以2cm /s 的速度沿折线A →C →B 运动,点Q 从点A 出发以a (cm /s )的速度沿AB 运动,P ,Q 两点同时出发,当某一点运动到点B 时,两点同时停止运动.设运动时间为x (s ),△APQ 的面积为y (cm 2),y 关于x 的函数图象由C 1,C 2两段组成,如图2所示,下列结论中,错误的是( )A .α=1B .sin B =13C .△APQ 面积的最大值为2D .图2中图象C 2段的函数表达式为y =−13x 2+53x 15.(2018•瑶海区三模)某条公共汽车线路收支差额y 与乘客量x 的函数关系如图所示(收支差额=车票收入﹣支出费用),由于目前本条线路亏损,公司有关人员提出了两条建议:建议(Ⅰ)不改变支出费用,提高车票价格;建议(Ⅱ)不改变车票价格,减少支出费用.下面给出的四个图形中,实线和虚线分别表示目前和建议后的函数关系,则( )A .①反映了建议(Ⅰ),③反映了建议(Ⅱ)B .②反映了建议(Ⅰ),④反映了建议(Ⅱ)C .①反映了建议(Ⅱ),③反映了建议(Ⅰ)D .②反映了建议(Ⅱ),④反映了建议(Ⅰ)16.(2018•长丰县二模)如图,向一个半径为3m ,容积为36πm 3的球形容器内注水,则能够反映容器内水的体积y 与水深x 间的函数关系的图象可能是( )A.B.C.D.17.(2018•合肥一模)如图,⊙O的直径AB垂直于CD弦,垂足为E,P为⊙O上一动点,P从A→D→B 在半圆上运动(点P不与点A重合),AP交CD所在的直线于F点,已知AB=10,CD=8,记P A=x,AF 为y,则y关于x的函数图象大致是()A.B.C.D.二.填空题(共6小题)18.(2020•肥城市四模)如图,在平面直角坐标系中,函数y=2x和y=﹣x的图象分别为直线l1、l2,过点(1,0)作x轴的垂线交l2于点A1,过点A1作y轴的垂线交l2于点A2,过点A2作x轴的垂线交l1于点A3,过点A3作y轴的垂线交l2于点A4,…,依次进行下去,则点A2020的坐标为.19.(2019•瑶海区校级三模)在平面直角坐标系中,直线y=−34x+6分别与x轴、y轴交于A、B两点,M是线段AB上的一个动点(点A、B除外),在x轴上方存在点N,使以O、B、M、N为顶点的四边形是菱形,则ON的长度为.20.(2017•合肥一模)将直线y=4x+1向下平移3个单位长度,得到直线解析式为.21.(2017•包河区一模)高速公路上依次有3个标志点A、B、C,甲、乙两车分别从A、C两点同时出发,匀速行驶,甲车从A→B→C,乙车从C→B→A,甲、乙两车离B的距离y1、y2(千米)与行驶时间x(小时)之间的函数关系图象如图所示.观察图象,给出下列结论:①A、C之间的路程为690千米;②乙车比甲车每小时快30千米;③4.5小时两车相遇;④点E的坐标为(7,180),其中正确的有(把所有正确结论的序号都填在横线上).22.(2020•包河区一模)函数y=1√n的自变量的取值范围是.23.(2019•合肥二模)函数y=√2−nn的自变量取值范围是.三.解答题(共9小题)24.(2020•瑶海区校级模拟)甲、乙两车分别从A、B两地同时出发,在同一条公路上,匀速行驶,相向而行,到两车相遇时停止.甲车行驶一段时间后,因故停车0.5小时,故障解除后,继续以原速向B地行驶,两车之间的路程y(千米)与出发后所用时间x(小时)之间的函数关系如图所示.(1)求甲、乙两车行驶的速度V甲、V乙.(2)求m的值.(3)若甲车没有故障停车,求可以提前多长时间两车相遇.25.(2019•蜀山区一模)小明大学毕业后积极响应政府号召回乡创业,准备经营水果生意,他在批发市场了解到某种水果的批发单价与批发量有如下关系批发量m(kg)批发单价(元/kg)40≤m≤100 6m>100 5(1)写出批发该种水果的资金金额w(元)与批发量m(kg)之间的函数关系式;并在如图的坐标系网格中画出该函数图象;指出资金金额在什么范围内,以同样的资金可以批发到较多数量的该种水果.(2)经市场调查,销售该种水果的日最高销量n(kg)与零售价x(元/kg)之间满足函数关系n=440﹣40x,小明同学拟每日售出100kg以上该种水果(不考虑损耗),且当日零售价不变,请问他批发多少千克该种水果,零售价定为多少元时,能使当日获得的利润最大,最大利润是多少?26.(2019•合肥模拟)如图,冬生、夏亮两位同学从学校出发到青年路小学参加现场作为比赛,冬生步行一段时间后,夏亮骑自行车沿相同路线行进,两人都是匀速前进,他们的路程差s(米)与冬生出发时间t (分)之间的函数关系如图所示.根据图象进行以下探究:(1)冬生的速度是米/分,请你解释点B坐标(15,0)所表示的意义:;(2)求夏亮的速度和他们所在学校与青年路小学的距离;(3)求a,b值及线段CD所表示的s与t之间的函数关系,并写出自变量的取值范围.27.(2018•瑶海区二模)甲、乙两名同学从学校去图书馆,甲骑自行车,乙步行,甲比乙早出发5分钟,甲到达图书馆查阅资料,一段时间后离开图书馆返回学校,乙到达图书馆还书后立即返回学校(还书时间忽略不计).甲往返的速度均为250米/分,乙往返的速度均为80米/分.下图是两人距学校的距离y(米)与甲出发时间x(分)之间的函数图象,请结合图象回答下列问题(1)从学校到图书馆的距离是米,甲到达图书馆后分钟乙也到达图书馆.(2)求乙返回学校时距学校的距离y(米)与甲出发时间x(分)之间的函数关系式,并直接写出当甲回到学校时乙离学校的距离.28.(2018•包河区二模)A,B两地相距60km,甲从A地去B地,乙从B地去A地,图中l1,l2分别表示甲、乙两人离B地的距离y(km)与甲出发时间x(h)的函数关系图象.(1)根据图象,写出乙的行驶速度为km/h,并解释交点A的实际意义;(2)甲出发多少时间,两人之间的距离恰好相距5km;(3)若用y3(km)表示甲、乙两人之间的距离,请在坐标系中画出y3(km)关于时间x(h)的函数关系图象.29.(2017•庐江县模拟)一列快车由甲地开往乙地,一列慢车由乙地开往甲地,两车同时出发,匀速运动,快车离乙地的路程y1(km)与行驶的时间x(h)之间的函数关系,如图中线段AB所示,慢车离乙地的路程y2(km)与行驶的时间x(h)之间的函数关系,如图中线段OC所示,根据图象进行以下探究.(1)甲、乙两地之间的距离为km;(2)线段AB的解析式为;线段OC的解析式为.(3)设快、慢车之间的距离为y(km),请直接写出y与行驶时间x(h)的函数关系式.30.(2017•蜀山区一模)如图,在平面直角坐标系中,直线l:y=x﹣1与x轴交于点A1,如图所示依次作正方形A1B1C1O,正方形A2B2C2C1,…,正方形A n B n∁n C n﹣1,使得点A1、A2、A3…A n在直线l上,点C1、C2、C3…∁n在y轴正半轴上,请解决下列问题:(1)点A6的坐标是;点B6的坐标是;(2)点A n的坐标是;正方形A n B n∁n C n﹣1的面积是.31.(2017•瑶海区一模)如图,一次函数的图象经过(2,0)和(0,﹣4),根据图象求√n2−2nn+n2的值.32.(2019•瑶海区校级三模)现有一笔直的公路连接M、N两地,甲车从M地驶往N地,速度为每小时60千米,同时乙车从N地驶往M地,速度为每小时80千米.途中甲车发生故障,于是停车修理了2.5小时,修好后立即开车驶往N地.设甲车行驶的时间为t(h),两车之间的距离为s(km).已知s与t的函数关系的部分图象如图所示.(1)直接写出B点的实际意义.(2)问:甲车出发几小时后发生故障?(3)将s与t的函数图象补充完整.(请对画出的图象用数据作适当的标注)2018-2020年安徽省中考数学复习各地区模拟试题分类(合肥专版)(6)——函数基础与一次函数参考答案与试题解析一.选择题(共17小题)1.【解答】解:由题意可得,a =4+0.5=4.5,故①正确,甲的速度是:460÷(7+4060)=60km /h ,故②正确,设乙刚开始的速度为xkm /h ,则4x +(7﹣4.5)×(x ﹣50)=460,得x =90, 则设经过bmin ,乙追上甲, 90×n 60=60×40+n 60,解得,b =80,故③正确,乙刚到达货站时,甲距B 地:60×(7﹣4)=180km ,故④正确,故选:D .2.【解答】解:由图象可得,出发后1小时,两人行程均为10km ,故选项A 正确;甲的速度为:10÷1=10千米/时,则1.5小时时,甲走的路程是10×1.5=15(千米),当0.5≤x ≤1.5时,乙的速度为:(10﹣8)÷(1﹣0.5)=4千米/时,则1.5小时时,乙走的路程是10+(1.5﹣1)×4=12(千米),则出发后1.5小时,甲的行程比乙多走:15﹣12=3千米,故选项B 正确;两人相遇前,前0.5小时,甲的速度小于乙的速度,后来甲的速度大于乙的速度,故选项C 错误; 甲比乙先到达终点,故选项D 正确;故选:C .3.【解答】解:过CD 的中点作EF 的垂线与AB 交于点M ,连接MF ,当直线过O 点时,EF 的值最大;∵A (6,0),B (0,8),∴AB =10,∵sin ∠OAB =810=nn 6, ∴OM =4.8,∵CD =6,∴OG =3,∴GM =1.8,∴FM =2.4,∴EF =4.8;故选:A .4.【解答】解:∵直线y =x +1的k =1,∴直线与x 轴的夹角为45°,∴直线与坐标轴相交构成的三角形是等腰直角三角形,当x =0时,y =1,所以,OA 1=1,即第一个正方形的边长为1,所以,第二个正方形的边长为1+1=2,第三个正方形的边长为2+2=4=22,…,第n 个正方形的边长为2n ﹣1,∴S 1=12×1×1=12,S 2=12×2×2=222,S 3=12×22×22=242, …,n n =12×2n −1×2n −1=22n −22=22n −3. 故①②正确,③错误;B 1,B 2,B 3…B n 都位于同一条直线y =x 上,故④正确.所以正确的个数有①②④三个.故选:C .5.【解答】解:①当0≤t ≤2时,点Q 在AB 上,∴AQ =2t ,AP =t ,过Q 作QD ⊥AC 交AC 于点D ,∵Rt △ABC 中,∠C =90°,AB =5cm ,AC =4cm ,∴BC =3cm ,∴nn nn =nn nn ,∴QD =65t ,S △APQ =12×AP ×QD =12×t ×65t =35t 2,②当2<t ≤4时,点Q 在BC 上,S △APQ =S △ABC ﹣S △CPQ ﹣S △ABQ=12×3×4−12×(4﹣t )×(8﹣2t )−12×4×(2t ﹣5) =﹣t 2+4t=﹣(t ﹣2)2+4,综上所述,正确的图象是C .故选:C .6.【解答】解:∵点E 沿A →D →C →B 运动,同时点F 沿A →B →C 运动,运动速度均为每秒1个单位,∠A =60°,∴△AEF 为等边三角形,∵AD =DC =BC =4,∴当0≤x ≤4时,AE =AF =x ,△AEF 的面积y =12x •x •sin60°=√34x 2;当4<x ≤8时,如图1,AF =x ,作DG ⊥AB 于G ,则DG =4sin60°=2√3,∴△AEF 的面积y =12AF •DG =12x ×4×√32=√3x ;当8<x ≤10时,如图2,CE =x ﹣8,BF =x ﹣8,则EF =4﹣(x ﹣8)﹣(x ﹣8)=20﹣2x ,过D 作DG ⊥AB ,CH ⊥AB ,连接AC ,∵AB ∥DC ,AD =DC =BC =4,∴四边形ABCD 为等腰梯形,∴AG =BH =4×cos60°=2,GH =DC =4,∴AH =2+4=6,CH =DG =2√3,AB =2+4+2=8,由勾股定理得:AC =√nn 2+nn 2=√62+(2√3)2=4√3,∵AC 2+BC 2=48+16=64=AB 2,∴∠ACB =90°,∴△AEF 的面积y =12AC •EF =2√3(20﹣2x ),∴此时y 为x 的一次函数,A 正确.故选:A .7.【解答】解:过点A 作AH ⊥BC ,∵AB =AC ,∴HB =HC =12BC =4,∴cos B =nn nn =45,则sin B =35; 当点D 在AB 上时, S =12×AE ×DE =12×AD sin B •AD cos B =625t 2,该函数为开口向上的抛物线; 当点D 在BC 上时,同理可得:S =−625t 2+125t ;该函数为开口向下的抛物线, 故选:B .8.【解答】解:步行的速度为:480÷6=80米/分钟,∵小元步行从家去火车站,走到6分钟时,以同样的速度回家取物品,∴小元回到家时的时间为6×2=12(分钟)则返回时函数图象的点坐标是(12,0)设后来乘出租车中s 与t 的函数解析式为s =kt +b (k ≠0),把(12,0)和(16,1280)代入得,{12n +n =016n +n =1280, 解得{n =320n =−3840, 所以s =320t ﹣3840;设步行到达的时间为t ,则实际到达的时间为t ﹣3,由题意得,80t =320(t ﹣3)﹣3840,解得t =20.所以家到火车站的距离为80×20=1600m .故选:C .9.【解答】解:过点D 作DE ⊥BC 于点E ,由图象可知,点F 由点A 到点D 用时为as ,△FBC 的面积为acm 2.∴AD =a∴12nn ⋅nn =12nn ⋅nn =12n ⋅nn =a∴DE =2当点F 从D 到B 时,用√5s∴BD =√5Rt △DBE 中,BE =√nn 2−nn 2=√(√5)2−22=1∵ABCD 是菱形∴EC =a ﹣1,DC =aRt △DEC 中,a 2=22+(a ﹣1)2 解得a =52,故选:C .10.【解答】解:由图1看到,点P 从B 运动到A 的过程中,y =BP 先从0开始增大,到达点C 时达到最大,对应图2可得此时y =5,即BC =5;点P 从C 运动到A 的过程中,y =BP 先减小,到达BP ⊥AC 时达到最小,对应图2可得此时BP =4;而后BP 又开始增大,到达点A 时达到最大y =5,即BA =5,所以△ABC 为等腰三角形.由图形和图象可得BC =BA =5,BP ⊥AC 时,BP =4过点B 作BD ⊥AC 于D ,则BD =4∴AD =CD =√nn 2−nn 2=√52−42=3,∴AC =6,∴△ABC 的周长为:5+5+6=16,∴S △ABC =12AC •BD =12×6×4=12 故选项A 、B 、C 正确,选项D 错误.故选:D .11.【解答】解:∵AB =AC =2√2,PQ ∥BC ,∴AQ =AP =2√2−x ,过Q 作QD ⊥AC 交CA 的延长线于D ,∵∠BAC =135°,∴∠DAQ =45°,∴△AQD 是等腰直角三角形,∴DQ =√22AQ =2−√22x ,∴PC =x ,△PCQ 的面积为y ,∴y =12×(2−√22x )•x =−√24x 2+x (0<x <2√2),∴y=−√24(x−√2)2+√22;故选:C.12.【解答】解:由AB<AC=4可知,B错误;由EF垂直平分矩形ABCD的对角线AC,得F A=FC,连接EC,则EC=EA,易证△CFO≌△AEO(ASA)∴AE=CF=AF=CE=y,BE=AB﹣AE=x﹣y,∵在直角三角形AEO中,AE>AO=nn2=2,∴y>2,排除C;在直角三角形ABC和直角三角形ECB中,由勾股定理可得:AC2﹣AB2=EC2﹣BE2,16﹣x2=y2﹣(x﹣y)2,化简得:xy=8,∴n=8n,故y为关于x的反比例函数,排除A;综上,D正确.故选:D.13.【解答】解:由图2可知:PN=4,PQ=5.A、当x=2时,y=12×nn×nn=12×5×2=5,故A正确,与要求不符;B、矩形的面积=MN•PN=4×5=20,故B正确,与要求不符;C、当x=6时,点R在QP上,y=12×nn×nn=10,故C正确,与要求不符;D、当y=152时,x=3或x=10,故D错误,与要求相符.故选:D.14.【解答】解:当点P在AC上运动时,y=12nn⋅nn⋅nnnnn=12×2n⋅nn12=12nn2当x=1,y=12时,a=1由图象可知,AB=5,AC+CB=10当P在BC上时y=12⋅n⋅(10−2n)⋅nnnnn,当x=4,y=43时,代入解得sin∠B=13∴y=12⋅n(10−2n)13=−13x2+53x当x=−n2n=52时,y最大=2512故选:C.15.【解答】解:∵建议(Ⅰ)是不改变支出费用,提高车票价格;也就是也就是图形增大倾斜度,提高价格,∴③反映了建议(Ⅰ),∵建议(Ⅱ)是不改变车票价格,减少支出费用,也就是y增大,车票价格不变,即平行于原图象,∴①反映了建议(Ⅱ).故选:C.16.【解答】解:根据球形容器形状可知,函数y的变化趋势呈现出,当0<x<3时,y增量越来越大,当3<x<6时,y增量越来越小,曲线上的点的切线斜率先是逐渐变大,后又逐渐变小,故y关于x的函数图象是先凹后凸.故选:A.17.【解答】解:如图,分别连结OC、AC、CP、BP,在Rt△OCE中,OC=5,CE=4,∴OE=3,在Rt△ACE中,AE=5+3=8,CE=4,∴AC=√82+42=4√5,∵∠AFE=∠ABP=∠ACP,∠CAP=∠F AC,∴△ACP∽△F AC,∴AC2=AP•AF,即xy=80,∴y=80n(0<x≤10),∴函数图象为第一象限内的双曲线的一部分,故选:A.二.填空题(共6小题)18.【解答】解:当x=1时,y=2,∴点A1的坐标为(1,2);当y=﹣x=2时,x=﹣2,∴点A2的坐标为(﹣2,2);同理可得:A3(﹣2,﹣4),A4(4,﹣4),A5(4,8),A6(﹣8,8),A7(﹣8,﹣16),A8(16,﹣16),A9(16,32),…,∴A4n+1(22n,22n+1),A4n+2(﹣22n+1,22n+1),A4n+3(﹣22n+1,﹣22n+2),A4n+4(22n+2,﹣22n+2)(n为自然数).∵2020=505×4,∴点A2020的坐标为(21010,﹣21010),故答案为:(21010,﹣21010).19.【解答】解:y=−34x+6,令x=0,y=6,令y=0,x=8,故点A、B的坐标分别为:(8,0)、(0,6),则OA=8,OB=6,则AB=√nn2+nn2=10,当BO是边时,如图所示,菱形为BOMN,连接ON交AB于点H,则OH⊥AB,S △AOB =12×OA ×OB =12×AB ×OH ,即6×8=10×OH ,解得:OH =4.8,ON =2OH =9.6;当BO 是对角线时,菱形为BN ′OM ′,当点M ′是Rt △ABO 的中线时,BM ′=OM ′=12AB =5=ON ′,综上,ON =5或9.6;故答案为:5或9.6.20.【解答】解:将直线y =4x +1向下平移3个单位长度后得到的直线解析式为y =4x +1﹣3, 即y =4x ﹣2.故答案为y =4x ﹣2.21.【解答】解:①450+240=690(千米).故A 、C 之间的路程为690千米是正确的;②450÷5﹣240÷4=90﹣60=30(千米/小时).故乙车比甲车每小时快30千米是正确的;③690÷(450÷5+240÷4)=690÷(90+60)=690÷150=4.6(小时).故4.6小时两车相遇,原来的说法是错误的;④(450﹣240)÷(450÷5﹣240÷4)=210÷(90﹣60)=210÷30=7(小时),450÷5×7﹣450=630﹣450=180(千米).故点E 的坐标为(7,180)是正确的,故其中正确的有①②④.故答案为:①②④.22.【解答】解:由题意,得x >0,故答案为:x >0.23.【解答】解:根据题意得,2﹣x ≥0,且x ≠0,解得:x ≤2且x ≠0.故答案为:x ≤2且x ≠0.三.解答题(共9小题)24.【解答】解:(1)由图可得,{0.5(n 甲+n 乙)=180−110(1.5−0.5)n 甲+1.5n 乙=180, 解得,{n 甲=60n 乙=80, 答:甲的速度是60km /h 乙的速度是80km /h ;(2)m =(1.5﹣1)×(60+80)=0.5×140=70,即m 的值是70;(3)甲车没有故障停车,则甲乙相遇所用的时间为:180÷(60+80)=97,若甲车没有故障停车,则可以提前:1.5−97=314(小时)两车相遇,即若甲车没有故障停车,可以提前314小时两车相遇.25.【解答】解:(1)由题意得,当40≤m ≤100时,w =6m ;当m >100时,w =5m .由图象可知,当资金金额500<w ≤600时,以同样的资金可以批发到较多数量的该种水果.(2)∵销售该种水果的日最高销量n (kg )与零售价x (元/kg )之间满足函数关系n =440﹣40x ,∵小明同学拟每日售出100kg 以上该种水果,则其批发单价为5元/kg ,设利润为L 元,则由题意得: L =n (x ﹣5)=(440﹣40x )×(x ﹣5)=﹣40x 2+640x ﹣2200=﹣40(x ﹣8)2+360∴当x =8,n =440﹣40×8=120时,时,能使当日获得的利润最大,最大利润为360元.答:他批发120千克该种水果,零售价定为8元时,能使当日获得的利润最大,最大利润是360元26.【解答】解:(1)冬生的速度:900÷9=100米/分,点B 所表示的意义:冬生出发15分时,夏亮追上冬生;故答案为:100,冬生出发15分时,夏亮追上冬生;(2)当冬生出发15分时,夏亮运动了15﹣9=6(分),运动的距离是:15×100=1500(米), ∴夏亮的速度:1500÷6=250(米/分),当第19分以后两人距离越来越近,说明夏亮已到达终点,故夏亮先到达青年路小学,此时夏亮运动的时间为19﹣9=10(分),运动的距离为10×250=2500(米),故他们所在学校与青年路小学的距离是2500米;(3)由(1)(2)可知,两所学校相距2500米,冬生的速度是100米/分,故a =2500100=25,b =100×(25﹣19)=600,设线段CD 所表示的s 与t 之间的函数关系为s =kt +d ,由题意得{19n +n =60025n +n =0, 解得{n =−100n =2500. 故s =﹣100t +2500(19≤t ≤25).27.【解答】解:(1)250×8=2000(米),2000÷80=25(分),25+5﹣8=22∴从学校到图书馆的距离是1000米,甲到达图书馆后22分钟乙也到达图书馆,故答案为2000,22;(2)乙返回学校的函数解析式为y =mx +n ,把(30,2000)和(55,0)代入得到{30n +n =200055n +n =0, 解得{n =−80n =4400, ∴y =﹣80x +4400,当x =46时,y =720,答:乙返回学校时距学校的距离y (米)与甲出发时间x (分)之间的函数关系式为y =﹣80x +4400,甲回到学校时乙离学校的距离720米.28.【解答】解:(1)由图象可得,乙的行驶速度为:60÷(3.5﹣0.5)=20km /h ,设l 1对应的函数解析式为y 1=k 1x +b 1, {n 1=602n 1+n 1=0,得{n 1=−30n 1=60, 即l 1对应的函数解析式为y 1=﹣30x +60,设l 2对应的函数解析式为y 2=k 2x +b 2, {0.5n 2+n 2=03.5n 2+n 2=60,得{n 2=20n 2=−10, 即l 2对应的函数解析式为y 2=20x ﹣10,{n =−30n +60n =20n −10,得{n =1.4n =18, 即点A 的坐标为(1.4,18),∴点A 的实际意义是在甲出发1.4小时时,甲乙两车相遇,此时距离B 地18km ;(2)由题意可得,|(﹣30x +60)﹣(20x ﹣10)|=5,解得,x 1=1.3,x 2=1.5,答:当甲出发1.3h 或1.5h 时,两人之间的距离恰好相距5km ;(3)由题意可得,当0≤x ≤0.5时,y 3=﹣30x +60,当0.5<x ≤1.4时,y 3=y 1﹣y 2=(﹣30x +60)﹣(20x ﹣10)=﹣50x +70,当1.4<x ≤2时,y 3=y 2﹣y 1=(20x ﹣10)﹣(﹣30x +60)=50x ﹣70,当2<x ≤3.5时,y 3=20x ﹣10,y 3(km )关于时间x (h )的函数关系图象如右图所示.29.【解答】解:(1)∵当x =0时,y 1=450,∴甲、乙两地之间的距离为450km .故答案为:450.(2)设线段AB 的解析式为y 1=kx +b ,线段OC 的解析式为y 2=mx ,将点A (0,450)、B (3,0)代入y 1=kx +b , {n =4503n +n =0,解得:{n =−150n =450, ∴线段AB 的解析式为y 1=﹣150x +450(0≤x ≤3).将点C (6,450)代入y 2=mx ,6m =450,解得:m =75,∴线段OC 的解析式为y 2=75x (0≤x ≤6).故答案为:y 1=﹣150x +450(0≤x ≤3);y 2=75x (0≤x ≤6).(3)令y 1=y 2,则﹣150x +450=75x ,解得:x =2.当0≤x <2时,y =y 1﹣y 2=﹣150x +450﹣75x =﹣225x +450;当2≤x ≤3时,y =y 2﹣y 1=75x ﹣(﹣150x +450)=225x ﹣450;当3<x ≤6时,y =y 2=75x .∴快、慢车之间的距离y (km )与行驶时间x (h )的函数关系式为y ={−225n +450(0≤n <2)225n −450(2≤n ≤3)75n (3<n ≤6).30.【解答】解:(1)观察,发现:A 1(1,0),A 2(2,1),A 3(4,3),A 4(8,7),A 5(16,15),A 6(32,31),…,∴A n (2n ﹣1,2n ﹣1﹣1)(n 为正整数).观察图形可知:点B n 是线段∁n A n +1的中点,∴点B n 的坐标是(2n ﹣1,2n ﹣1),∴B 6的坐标是(32,63);故答案为:(32,31),(32,63);(2)由(1)得A n (2n ﹣1,2n ﹣1﹣1)(n 为正整数),∴正方形A n B n ∁n C n ﹣1的面积是(2n ﹣1)2=22n ﹣2,故答案为:(2n ﹣1,2n ﹣1﹣1),22n ﹣2(n 为正整数).31.【解答】解:∵一次函数的图象经过(2,0)和(0,﹣4),∴{2n +n =0n =−4,解得{n =2n =−4. ∵k 2﹣2kb +b 2=(k ﹣b )2=(2+4)2=36,∴√n 2−2nn +n 2=√36=6.32.【解答】解:(1)点B 的实际意义是甲车故障开始修理了,乙车还在继续行驶;(2)∵t =3时,两车距离为0,相遇,∵80×3=240km ,∴发生故障前甲车行驶路程为300﹣240=60km ,时间=60÷60=1小时;(3)甲车再次行驶时,t =1+2.5=3.5h ,乙车到达N 地时,t =300÷80=3.75h ,甲车到达M 地时,t =300÷60+2.5=7.5h ,所以,3<t ≤3.5时,s =80(t ﹣3)=80t ﹣240,t =3.5时,80t ﹣240=80×3.5﹣240=40km ,3.5<t ≤3.75时,s =80(t ﹣3)+60(t ﹣3.5)=140t ﹣450,t =3.75时,140t ﹣450=140×3.75﹣450=75km ,3.75<t ≤7.5时,s =60(t ﹣3.75)+75=60t ﹣150,补全图形如图所示..。

2022-2023学年安徽省合肥市中考数学专项突破仿真模拟卷(一模二模)含答案

2022-2023学年安徽省合肥市中考数学专项突破仿真模拟卷(一模二模)含答案

2022-2023学年安徽省合肥市中考数学专项突破仿真模拟卷(一模)一、选一选(本题共10小题,每小题4分,共40分)1.﹣2的值等于()A.2B.﹣2C.12D.±22.下列计算正确的是()A.(a3)2=a5B.a6÷a3=a2C.(ab)2=a2b2D.(a+b)2=a2+b23.与“滴滴打车联合推出优惠,“滴滴打车”一夜之间红遍大江南北,据统计,2017年“滴滴打车账户流水总金额达到4930000000元,用科学记数法表示为()A.4.93×108B.4.93×109C.4.93×1010D.4.93×10114.如图,在一个长方体上放着一个小正方体,若这个组合体的俯视图如图所示,则这个组合体的左视图是()A.B.C.D.5.没有等式组101102xx-≥⎧⎪⎨-<⎪⎩的最小整数解是()A.1B.2C.3D.46.如图,已知直线AB∥CD,∠GEB的平分线EF交CD于点F,∠1=40°,则∠2等于A.130° B.140° C.150° D.160°7.在某次体育测试中,九年级一班女同学的一分钟仰卧起坐成绩(单位:个)如下表:成绩454647484950人数124251这此测试成绩的中位数和众数分别为()A.47,49B.48,49C.47.5,49D.48,508.如图所示,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数k yx 在象限的图像点B,与OA交于点P,若OA2-AB2=18,则点P的横坐标为()A.9B.6C.3D.9.如图,四边形ABCD是边长为1的正方形,E,F为BD所在直线上的两点,若∠EAF=135°,则下列结论正确的是()A.DE=1B.tan∠AFO=13 C.AF=102 D.四边形AFCE的面积为9 410.二次函数y=ax2+bx+c(a≠0)的图象如图,下列四个结论:①4a+c<0;②m(am+b)+b>a(m≠﹣1);③关于x的一元二次方程ax2+(b﹣1)x+c=0没有实数根;④ak4+bk2<a(k2+1)2+b(k2+1)(k为常数).其中正确结论的个数是()A.4个B.3个C.2个D.1个二、填空题(本题共4小题,每题5分,共20分)11.分解因式2242xy xy x ++=___________12.若实数x 、y 满足x 40-+=,则以x 、y 的值为边长的等腰三角形的周长为_____.13.如图,在⊙O 中,CD 是直径,弦AB⊥CD,垂足为E,若∠C=22.5°,AB=6cm,则阴影部分面积为_____.14.在平行四边形ABCD 中,AE 平分∠BAD 交边BC 于E ,DF 平分∠ADC 交边BC 于F ,若AD =11,EF =5,则AB =___.三、解答题(本题共2小题,每题8分,共16分)15.计算:|﹣2|﹣()0﹣33cos30°.16.先化简,再求值.()22222122322233x x xy y x xy y ⎡⎤⎛⎫--++--- ⎪⎢⎥⎝⎭⎣⎦,其中x =12,y =﹣1.四、(本题共2小题,每小题8分,共16分)17.已知:如图△ABC 三个顶点的坐标分别为A (0,﹣3)、B (3,﹣2)、C (2,﹣4),正方形网格中,每个小正方形的边长是1个单位长度.(1)画出△ABC向上平移6个单位得到的△A1B1C1;(2)以点C为位似,在网格中画出△A2B2C2,使△A2B2C2与△ABC位似,且△A2B2C2与△ABC的位似比为2:1,并直接写出点A2的坐标.18.随着人们经济收入的没有断提高,汽车已越来越多地进入到各个家庭.某大型超市为缓解停车难问题,建筑设计师提供了楼顶停车场的设计示意图.按规定,停车场坡道口上坡要张贴限高标志,以便告知车辆能否驶入.如图,地面所在的直线ME与楼顶所在的直线AC是平行的,CD的厚度为0.5m,求出汽车通过坡道口的限高DF的长(结果到0.1m,sin28°≈0.47,cos28°≈0.88,tan28°≈0.53).五、(本题共2小题,每题10分,共20分)19.为了巩固全国文明城市建设成果,突出城市品质的提升,近年来,我市积极落实节能减排政策,推行绿色建筑,据统计,我市2016年的绿色建筑面积约为950万平方米,2018年达到了1862万平方米.若2017年、2018年的绿色建筑面积按相同的增长率逐年递增,请解答下列问题:(1)求这两年我市推行绿色建筑面积的年平均增长率;(2)2019年我市计划推行绿色建筑面积达到2400万平方米.如果2019年仍保持相同的年平均增长率,请你预测2019年我市能否完成计划目标?20.电视台的“中国诗词大赛”节目文化品位高,内容丰富.某校初二年级模拟开展“中国诗词大赛”比赛,对全年级同学成绩进行统计后分为“”、“良好”、“一般”、“较差”四个等级,并根据成绩绘制成如下两幅没有完整的统计图,请统计图中的信息,回答下列问题:(1)扇形统计图中“”所对应扇形的圆心角为度,并将条形统计图补充完整.(2)此次比赛有四名同学获得满分,分别是甲、乙、丙、丁,现从这四名同学中挑选两名同学参加学校举行的“中国诗词大赛”比赛,请用列表法或画树状图法,求出选中的两名同学恰好是甲、丁的概率.六、(本题共1小题,共12分)21.如图,AB是⊙O的直径,点C在⊙O上,∠ABC的平分线与AC相交于点D,与⊙O过点A的切线相交于点E.(1)∠ACB=°,理由是:;(2)猜想△EAD的形状,并证明你的猜想;(3)若AB=8,AD=6,求BD.七、(本题共1小题,共12分)22.九年级某班数学兴趣小组市场整理出某种商品在第x天(1≤x≤90,且x为整数)的售价与量的相关信息如下.已知商品的进价为30元/件,设该商品的售价为y(单位:元/件),每天的量为p(单位:件),每天的利润为w(单位:元).(1)求出w与x的函数关系式;(2)问该商品第几天时,当天的利润?并求出利润;(3)该商品在过程有多少天每天的利润没有低于5600元?请直接写出结果.八、(本题共1小题,共14分)23.如图1,在Rt△ABC中,∠C=90°,AC=6,BC=8,动点P从点A开始沿边AC向点C以1个单位长度的速度运动,动点Q从点C开始沿边CB向点B以每秒2个单位长度的速度运动,过点P作PD∥BC,交AB于点D,连接PQ分别从点A、C同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t秒(t≥0).(1)直接用含t的代数式分别表示:QB=________,PD=________.(2)是否存在t的值,使四边形PDBQ为菱形?若存在,求出t的值;若没有存在,说明理由.并探究如何改变Q的速度(匀速运动),使四边形PDBQ在某一时刻为菱形,求点Q的速度;(3)如图2,在整个运动过程中,求出线段PQ中点M所的路径长.2022-2023学年安徽省合肥市中考数学专项突破仿真模拟卷(一模)一、选一选(本题共10小题,每小题4分,共40分)1.﹣2的值等于()D.±2 A.2 B.﹣2 C.12【正确答案】A【详解】解:根据数轴上某个数与原点的距离叫做这个数的值的定义,在数轴上,点﹣2到原点的距离是2,所以﹣2的值是2,故选A.2.下列计算正确的是()A.(a3)2=a5B.a6÷a3=a2C.(ab)2=a2b2D.(a+b)2=a2+b2【正确答案】C【详解】试题分析:A、底数没有变指数相乘,故A错误;B、底数没有变指数相减,故B错误;C、积得乘方等于每个因式分别乘方,再把所得的幂相乘,故C正确;D、和的平方等于平方和加积的二倍,故D错误;故选C.【考点】1.幂的乘方与积的乘方;2.同底数幂的除法;3.完全平方公式.3.与“滴滴打车联合推出优惠,“滴滴打车”一夜之间红遍大江南北,据统计,2017年“滴滴打车账户流水总金额达到4930000000元,用科学记数法表示为()A.4.93×108B.4.93×109C.4.93×1010D.4.93×1011【正确答案】B【详解】由科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的值与小数点移动的位数相同.当原数值>1时,n是正数;当原数的值<1时,n是负数.因此4930000000=4.93×109.故选B.点睛:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.如图,在一个长方体上放着一个小正方体,若这个组合体的俯视图如图所示,则这个组合体的左视图是()A.B.C.D.【正确答案】B【详解】由原立体图形和俯视图中长方体和正方体的位置关系,可排除A、C、D.故选B.5.没有等式组101102xx-≥⎧⎪⎨-<⎪⎩的最小整数解是()A.1B.2C.3D.4【正确答案】C【分析】首先解没有等式中的每个没有等式,然后确定没有等式组的解集,确定解集中的最小整数即可.【详解】没有等式组10(1)110(2)2x x -≥⎧⎪⎨-<⎪⎩解没有等式(1)得:1≥x ,解没有等式(2)得:2x >,所以该没有等式组的解集为:2x >,大于2的最小整数是3,所以没有等式组101102x x -≥⎧⎪⎨-<⎪⎩的最小整数解是3,故选:C .本题考查求一元没有等式的整数解.熟练掌握解一元没有等式的基本步骤,并能依据没有等式的性质去计算是解决此题的关键.6.如图,已知直线AB ∥CD ,∠GEB 的平分线EF 交CD 于点F ,∠1=40°,则∠2等于A.130°B.140°C.150°D.160°【正确答案】D【详解】解:∵AB//CD ,∴∠GEB=∠1=40°.∵EF 为∠GEB 的平分线,∴∠FEB=12∠GEB=20°.∴∠2=180°﹣∠FEB=160°.故选D .7.在某次体育测试中,九年级一班女同学的一分钟仰卧起坐成绩(单位:个)如下表:成绩454647484950人数124251这此测试成绩的中位数和众数分别为()A.47,49B.48,49C.47.5,49D.48,50【正确答案】B【详解】试题解析:测试的人数是15人,处于第8位的是48,所以中位数是48.49的次数至多,众数是49.故选B.8.如图所示,△OAC 和△BAD 都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数k y x=在象限的图像点B,与OA 交于点P,若OA 2-AB 2=18,则点P 的横坐标为()A.9B.6C.3D.【正确答案】C【详解】试题解析:设B 点坐标为(,)a b ,OAC 和BAD 都是等腰直角三角形,∴,OA =.AB =OC AC AD BD ==,,∵2218OA AB -=,222218,AC AD ∴-=即229AC AD ,-=()()9AC AD AC AD ∴+-=,()9OC BD CD ∴+⋅=,9a b ∴⋅=,9.k ∴=反比例函数表达式是:9.y x=直线OA 的表达式为:.y x =联立方程:9{.y x y x ==解得:33x y =⎧⎨=⎩或3{ 3.x y =-=-(舍去).点P 的横坐标是3.故答案为3.9.如图,四边形ABCD 是边长为1的正方形,E ,F 为BD 所在直线上的两点,若∠EAF=135°,则下列结论正确的是()A.DE=1B.tan ∠AFO=13C.AF=102D.四边形AFCE 的面积为94【正确答案】C 【分析】根据正方形的性质求出AO 的长,用勾股定理求出EO 的长,然后由∠EAF =135°及∠BAD=90°可以得到相似三角形,根据相似三角形的性质求出BF的长,再一一计算即可判断.【详解】∵四边形ABCD是正方形,∴AB=CB=CD=AD=1,AC⊥BD,∠ADO=∠ABO=45°,∴OD=OB=OA=22,∠ABF=∠ADE=135°,在Rt△AEO中,EO322 =,∴DE,故A错误.∵∠EAF=135°,∠BAD=90°,∴∠BAF+∠DAE=45°,∵∠ADO=∠DAE+∠AED=45°,∴∠BAF=∠AED,∴△ABF∽△EDA,∴AF AB AE DE=,=,AF=102,故C正确,=tan∠AFO=2122OAOF==,故B错误,∴S四边形AECF =12•AC•EF=12×522=52,故D错误,故选C.本题考查的是相似三角形的判定与性质,根据正方形的性质,运用勾股定理求出相应线段的长,再根据∠EAF=135°和∠BAD=90°,得到相似三角形,用相似三角形的性质求出AF的长,然后根据对称性求出四边形的面积.10.二次函数y =ax 2+bx +c (a ≠0)的图象如图,下列四个结论:①4a +c <0;②m (am +b )+b >a (m ≠﹣1);③关于x 的一元二次方程ax 2+(b ﹣1)x +c =0没有实数根;④ak 4+bk 2<a (k 2+1)2+b (k 2+1)(k 为常数).其中正确结论的个数是()A.4个B.3个C.2个D.1个【正确答案】D 【详解】①因为二次函数的对称轴是直线x =﹣1,由图象可得左交点的横坐标大于﹣3,小于﹣2,所以﹣2b a=﹣1,可得b =2a ,当x =﹣3时,y <0,即9a ﹣3b +c <0,9a ﹣6a +c <0,3a +c <0,∵a <0,∴4a +c <0,所以①选项结论正确;②∵抛物线的对称轴是直线x =﹣1,∴y =a ﹣b +c 的值,即把x =m (m ≠﹣1)代入得:y =am 2+bm +c <a ﹣b +c ,∴am 2+bm <a ﹣b ,m (am +b )+b <a ,所以此选项结论没有正确;③ax 2+(b ﹣1)x +c =0,△=(b ﹣1)2﹣4ac ,∵a <0,c >0,∴ac <0,∴﹣4ac >0,∵(b ﹣1)2≥0,∴△>0,∴关于x 的一元二次方程ax 2+(b ﹣1)x +c =0有实数根;④由图象得:当x >﹣1时,y 随x 的增大而减小,∵当k 为常数时,0≤k 2≤k 2+1,∴当x =k 2的值大于x =k 2+1的函数值,即ak 4+bk 2+c >a (k 2+1)2+b (k 2+1)+c ,ak 4+bk 2>a (k 2+1)2+b (k 2+1),所以此选项结论没有正确;所以正确结论的个数是1个,故选D .二、填空题(本题共4小题,每题5分,共20分)11.分解因式2242xy xy x ++=___________【正确答案】22(1)x y +【分析】原式提取公因式,再利用完全平方公式分解即可.【详解】原式=2x (y 2+2y +1)=2x (y +1)2,故答案为2x (y +1)2此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.12.若实数x 、y 满足x 40-+=,则以x 、y 的值为边长的等腰三角形的周长为_____.【正确答案】20【分析】先根据非负数的性质列式求出x、y的值,再分4是腰长与底边两种情况讨论求解:【详解】根据题意得,x﹣4=0,y﹣8=0,解得x=4,y=8.①4是腰长时,三角形的三边分别为4、4、8,∵4+4=8,∴没有能组成三角形,②4是底边时,三角形的三边分别为4、8、8,能组成三角形,周长=4+8+8=20.所以,三角形的周长为20.13.如图,在⊙O中,CD是直径,弦AB⊥CD,垂足为E,若∠C=22.5°,AB=6cm,则阴影部分面积为_____.【正确答案】99 2π-【详解】试题解析:连接OA,OB,22.5C∠=,45AOD ,∴∠=AB CD ⊥ ,90AOB ∴∠= ,123,22OE AB OA OB AB ∴=====∴S 阴影=S 扇形−S △AOB 290π1963π9.36022⋅⨯=-⨯⨯=-故答案为9π9.2-点睛:扇形的面积公式:2π.360n r S =14.在平行四边形ABCD 中,AE 平分∠BAD 交边BC 于E ,DF 平分∠ADC 交边BC 于F ,若AD =11,EF =5,则AB =___.【正确答案】8或3【分析】根据AE 和DF 是否相交分类讨论,分别画出对应的图形,根据平行四边形的性质、平行线的性质、角平分线的定义和等角对等边即可得出结论.【详解】解:①当AE 和DF 相交时,如下图所示∵四边形ABCD 为平行四边形,AD =11,EF =5,∴BC =AD =11,AD ∥BC ,AB =CD ,∴∠DAE =∠BEA ,∠ADF =∠CFD ,∵AE 平分∠BAD ,DF 平分∠ADC ,∴∠DAE =∠BAE ,∠ADF =∠CDF ,∴∠BEA =∠BAE ,∠CFD =∠CDF ,∴BE=AB,CF=CD,∴BE=AB=CD=CF,∵BE+CF=BC+EF,∴2AB=11+5,解得:AB=8;②当AE和DF没有相交时,如下图所示∵四边形ABCD为平行四边形,AD=11,EF=5,∴BC=AD=11,AD∥BC,AB=CD,∴∠DAE=∠BEA,∠ADF=∠CFD,∵AE平分∠BAD,DF平分∠ADC,∴∠DAE=∠BAE,∠ADF=∠CDF,∴∠BEA=∠BAE,∠CFD=∠CDF,∴BE=AB,CF=CD,∴BE=AB=CD=CF,∵BE+CF+EF=BC,∴2AB+5=11,解得:AB=3,综上所述:AB=8或3,故8或3.此题考查的是平行四边形的性质、平行线的性质、角平分线的定义和等腰三角形的性质,掌握平行四边形的性质、平行线的性质、角平分线的定义和等角对等边是解决此题的关键.三、解答题(本题共2小题,每题8分,共16分)15.计算:|﹣2|﹣()0﹣3cos30°.【正确答案】52【分析】根据值的性质,零次幂的性质、二次根式的性质、锐角三角函数值,直接化简即可求解.【详解】|﹣2|﹣()0﹣33cos30°=2﹣1+2﹣3332⨯,=2﹣1+2﹣12,=52.16.先化简,再求值.()22222122322233x x xy y x xy y ⎡⎤⎛⎫--++--- ⎪⎢⎥⎝⎭⎣⎦,其中x =12,y =﹣1.【正确答案】x 2+2y 2,94.【分析】先去小括号,再去中括号,合并同类项,代入求出即可.【详解】()22222122322233x x xy y x xy y ⎡⎤⎛⎫--++--- ⎪⎢⎥⎝⎭⎣⎦=2x 2﹣[﹣x 2+2xy +2y 2]﹣2x 2+2xy +4y 2=2x 2+x 2﹣2xy ﹣2y 2﹣2x 2+2xy +4y 2=x2+2y2,当x=12,y=﹣1时,原式=14+2=94.本题考查了整式的加减-化简求值,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键.四、(本题共2小题,每小题8分,共16分)17.已知:如图△ABC三个顶点的坐标分别为A(0,﹣3)、B(3,﹣2)、C(2,﹣4),正方形网格中,每个小正方形的边长是1个单位长度.(1)画出△ABC向上平移6个单位得到的△A1B1C1;(2)以点C为位似,在网格中画出△A2B2C2,使△A2B2C2与△ABC位似,且△A2B2C2与△ABC 的位似比为2:1,并直接写出点A2的坐标.【正确答案】(1)作图见解析;(2)作图见解析;A2坐标(﹣2,﹣2).【详解】试题分析(1)直接利用平移的性质得出对应点位置进而得出答案;(2)利用位似图形的性质得出对应点的位置进而得出.试题解析:⑴如图所示:△A1B1C1,即为所求;⑵如图所示△A2B2C2,即为所求;A2坐标(-2,-2)18.随着人们经济收入的没有断提高,汽车已越来越多地进入到各个家庭.某大型超市为缓解停车难问题,建筑设计师提供了楼顶停车场的设计示意图.按规定,停车场坡道口上坡要张贴限高标志,以便告知车辆能否驶入.如图,地面所在的直线ME与楼顶所在的直线AC是平行的,CD的厚度为0.5m,求出汽车通过坡道口的限高DF的长(结果到0.1m,sin28°≈0.47,cos28°≈0.88,tan28°≈0.53).【正确答案】坡道口的限高DF的长是3.8m.【详解】试题分析:首先根据AC∥ME,可得∠CAB=∠AE28°,再根据三角函数计算出BC的长,进而得到BD的长,进而求出DF即可.试题解析:∵AC∥ME,∴∠CAB=∠AEM,在Rt△ABC中,∠CAB=28°,AC=9m,∴BC=ACtan28°≈9×0.53=4.77(m),∴BD=BC﹣CD=4.77﹣0.5=4.27(m),在Rt△BDF中,∠BDF+∠FBD=90°,在Rt△ABC中,∠CAB+∠FBC=90°,∴∠BDF=∠CAB=28°,∴DF=BDcos28°≈4.27×0.88=3.7576≈3.8(m),答:坡道口的限高DF的长是3.8m.五、(本题共2小题,每题10分,共20分)19.为了巩固全国文明城市建设成果,突出城市品质的提升,近年来,我市积极落实节能减排政策,推行绿色建筑,据统计,我市2016年的绿色建筑面积约为950万平方米,2018年达到了1862万平方米.若2017年、2018年的绿色建筑面积按相同的增长率逐年递增,请解答下列问题:(1)求这两年我市推行绿色建筑面积的年平均增长率;(2)2019年我市计划推行绿色建筑面积达到2400万平方米.如果2019年仍保持相同的年平均增长率,请你预测2019年我市能否完成计划目标?【正确答案】(1)这两年我市推行绿色建筑面积的年平均增长率为40%;(2)如果2019年仍保持相同的年平均增长率,2019年我市能完成计划目标.【分析】(1)设这两年我市推行绿色建筑面积的年平均增长率x,根据2016年的绿色建筑面积约为950万平方米和2018年达到了1862万平方米,列出方程求解即可;(2)根据(1)求出的增长率问题,先求出预测2019年绿色建筑面积,再与计划推行绿色建筑面积达到2400万平方米进行比较,即可得出答案.【详解】(1)设这两年我市推行绿色建筑面积的年平均增长率为x,则有950(1+x)2=1862,解得,x1=0.4,x2=−2.4(舍去),即这两年我市推行绿色建筑面积的年平均增长率为40%;(2)由题意可得,1862×(1+40%)=2606.8,∵2606.8>2400,∴2019年我市能完成计划目标,即如果2019年仍保持相同的年平均增长率,2019年我市能完成计划目标.本题考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件和增长率问题的数量关系,列出方程进行求解.20.电视台的“中国诗词大赛”节目文化品位高,内容丰富.某校初二年级模拟开展“中国诗词大赛”比赛,对全年级同学成绩进行统计后分为“”、“良好”、“一般”、“较差”四个等级,并根据成绩绘制成如下两幅没有完整的统计图,请统计图中的信息,回答下列问题:(1)扇形统计图中“”所对应扇形的圆心角为度,并将条形统计图补充完整.(2)此次比赛有四名同学获得满分,分别是甲、乙、丙、丁,现从这四名同学中挑选两名同学参加学校举行的“中国诗词大赛”比赛,请用列表法或画树状图法,求出选中的两名同学恰好是甲、丁的概率.【正确答案】(1)72;补图见解析;(2)1 6.【分析】(1)由周角乘以“”所对应的扇形的百分数,得出“”所对应的扇形的圆心距度数;求出全年级总人数,得出“良好”的人数,补全统计图即可;(2)画出树状图,由概率公式即可得出答案.【详解】(1)360°(1﹣40%﹣25%﹣15%)=72°;故答案为72;全年级总人数为45÷15%=300(人),“良好”的人数为300×40%=120(人),将条形统计图补充完整,如图所示:(2)画树状图,如图所示:共有12个可能的结果,选中的两名同学恰好是甲、丁的结果有2个,∴P(选中的两名同学恰好是甲、丁)=21= 126.考点:列表法与树状图法;扇形统计图;条形统计图.六、(本题共1小题,共12分)21.如图,AB是⊙O的直径,点C在⊙O上,∠ABC的平分线与AC相交于点D,与⊙O过点A的切线相交于点E.(1)∠ACB=°,理由是:;(2)猜想△EAD的形状,并证明你的猜想;(3)若AB=8,AD=6,求BD.【正确答案】(1)90°;直径所对的圆周角是直角;(2)证明见解析;(3)14 5【详解】试题分析:(1)根据AB是⊙O的直径,点C在⊙O上利用直径所对的圆周角是直角即可得到结论;(2)根据∠ABC的平分线与AC相交于点D,得到∠CBD=∠ABE,再根据AE是⊙O的切线得到∠EAB=90°,从而得到∠CDB+∠CBD=90°,等量代换得到∠AED=∠EDA,从而判定△EAD是等腰三角形.(3)证得△CDB∽△AEB后设BD=5x,则CB=4x,CD=3x,从而得到CA=CD+DA=3x+6,然后在直角三角形ACB中,利用AC2+BC2=AB2得到(3x+6)2+(4x)2=82解得x后即可求得BD的长.试题解析:(1)∵AB是⊙O的直径,点C在⊙O上,∴∠ACB=90°(直径所对的圆周角是直角)(2)△EAD是等腰三角形.证明:∵∠ABC的平分线与AC相交于点D,∴∠CBD=∠ABE∵AE是⊙O的切线,∴∠EAB=90°∴∠AEB+∠EBA=90°,∵∠EDA=∠CDB,∠CDB+∠CBD=90°,∵∠CBE=∠ABE,∴∠AED=∠EDA,∴AE=AD∴△EAD是等腰三角形.(3)解:∵AE=AD,AD=6,∴AE=AD=6,∵AB=8,∴在直角三角形AEB中,EB=10∵∠CDB=∠E,∠CBD=∠ABE∴△CDB∽△AEB,∴6384 AE DCAB BC===,∴设CB=4x,CD=3x则BD=5x,∴CA=CD+DA=3x+6,在直角三角形ACB中,AC2+BC2=AB2即:(3x+6)2+(4x)2=82,解得:x=﹣2(舍去)或x=14 25∴BD=5x=14 5.点睛:本题考查了圆的综合知识,题目中涉及到了圆周角定理、等腰三角形的性质与判定以及相似三角形的判定与性质,难度中等偏上.七、(本题共1小题,共12分)22.九年级某班数学兴趣小组市场整理出某种商品在第x天(1≤x≤90,且x为整数)的售价与量的相关信息如下.已知商品的进价为30元/件,设该商品的售价为y(单位:元/件),每天的量为p(单位:件),每天的利润为w(单位:元).(1)求出w与x的函数关系式;(2)问该商品第几天时,当天的利润?并求出利润;(3)该商品在过程有多少天每天的利润没有低于5600元?请直接写出结果.【正确答案】(1)见解析;(2)第45天时,当天获得的利润,利润是6050元;(3)共有24天每天的利润没有低于5600元.【详解】试题分析:(1)当1≤x≤50时,设商品的售价y与时间x的函数关系式为y=kx+b,由点的坐标利用待定系数法即可求出此时y关于x的函数关系式,根据图形可得出当50≤x≤90时,y=90.再给定表格,设每天的量p与时间x的函数关系式为p=mx+n,套入数据利用待定系数法即可求出p关于x的函数关系式,根据利润=单件利润×数量即可得出w关于x的函数关系式;(2)根据w关于x的函数关系式,分段考虑其最值问题.当1≤x≤50时,二次函数的性质即可求出在此范围内w的值;当50≤x≤90时,根据函数的性质即可求出在此范围内w的值,两个值作比较即可得出结论;(3)令w≥5600,可得出关于x的一元二次没有等式和一元没有等式,解没有等式即可得出x 的取值范围,由此即可得出结论.试题解析:(1)当1≤x≤50时,设商品的售价y与时间x的函数关系式为y=kx+b(k、b为常数且k≠0),∵y=kx+b点(0,40)、(50,90),∴40{5090bk b=+=,解得1{40kb==,∴售价y与时间x的函数关系式为y=x+40;当50≤x≤90时,y=90.∴售价y与时间x的函数关系式为y=40(150,{905090,x x xx x+≤≤<≤且为整数)(且为整数).由数据可知每天的量p与时间x成函数关系,设每天的量p与时间x的函数关系式为p=mx+n(m、n为常数,且m≠0),∵p=mx+n过点(60,80)、(30,140),∴6080{30140m nm n+=+=,解得:2{200mn=-=,∴p=﹣2x+200(0≤x≤90,且x为整数),当1≤x≤50时,w=(y﹣30)•p=(x+40﹣30)(﹣2x+200)=﹣2x2+180x+2000;当50≤x≤90时,w=(90﹣30)(﹣2x+200)=﹣120x+12000.综上所示,每天的利润w与时间x的函数关系式是w=221802000(1150,{120120005090,x x x xx x x-++≤≤-+<≤且为整数)(且为整数).(2)当1≤x≤50时,w=﹣2x2+180x+2000=﹣2(x﹣45)2+6050,∵a=﹣2<0且1≤x≤50,∴当x=45时,w取值,值为6050元.当50≤x≤90时,w=﹣120x+12000,∵k=﹣120<0,w随x增大而减小,∴当x=50时,w取值,值为6000元.∵6050>6000,∴当x=45时,w,值为6050元.即第45天时,当天获得的利润,利润是6050元.(3)当1≤x≤50时,令w=﹣2x2+180x+2000≥5600,即﹣2x2+180x﹣3600≥0,解得:30≤x≤50,50﹣30+1=21(天);当50≤x≤90时,令w=﹣120x+12000≥5600,即﹣120x+6400≥0,解得:50≤x≤53,∵x为整数,∴50≤x≤53,53﹣50+1=4(天).综上可知:21+4﹣1=24(天),故该商品在过程有24天每天的利润没有低于5600元.本题考查了二次函数的应用、一元没有等式的应用、一元二次没有等式的应用以及利用待定系数法求函数解析式,解题的关键:(1)根据点的坐标利用待定系数法求出函数关系式;(2)利用二次函数与函数的性质解决最值问题;(3)得出关于x的一元和一元二次没有等式.本题属于中档题,难度没有大,但较繁琐,解决该题型题目时,根据给定数量关系,找出函数关系式是关键.八、(本题共1小题,共14分)23.如图1,在Rt△ABC中,∠C=90°,AC=6,BC=8,动点P从点A开始沿边AC向点C以1个单位长度的速度运动,动点Q从点C开始沿边CB向点B以每秒2个单位长度的速度运动,过点P作PD∥BC,交AB于点D,连接PQ分别从点A、C同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t秒(t≥0).(1)直接用含t的代数式分别表示:QB=________,PD=________.(2)是否存在t的值,使四边形PDBQ为菱形?若存在,求出t的值;若没有存在,说明理由.并探究如何改变Q的速度(匀速运动),使四边形PDBQ在某一时刻为菱形,求点Q的速度;(3)如图2,在整个运动过程中,求出线段PQ中点M所的路径长.【正确答案】(1)8-2t;43t;(2)没有存在,理由见解析,当点Q的速度为每秒1615个单位长度时,103秒,四边形PDBQ是菱形;(3).【详解】解:(1)根据题意得:CQ=2t,PA=t,∴QB=8﹣2t,∵在Rt△ABC中,∠C=90°,AC=6,BC=8,PD∥BC,∴∠APD=90°,∴tanA=4=3 PD BCPA AC,∴PD=43t.故答案为(1)8﹣2t,43t.(2)没有存在在Rt△ABC中,∠C=90°,AC=6,BC=8,∴AB=10∵PD∥BC,∴△APD∽△ACB,∴AD AFAB AC=,即106AD t=,∴AD=53t,∴BD=AB﹣AD=10﹣53t,∵BQ∥DP,∴当BQ=DP时,四边形PDBQ是平行四边形,即8﹣2t=43t,解得:t=125.当t=125时,PD=41216=355⨯,BD=10﹣53×125=6,∴DP≠BD,∴▱PDBQ没有能为菱形.设点Q的速度为每秒v个单位长度,则BQ=8﹣vt,PD=43t,BD=10﹣53t,要使四边形PDBQ为菱形,则PD=BD=BQ,当PD=BD时,即43t=10﹣53t,解得:t=103当PD=BQ,t=103时,即41033⨯=8﹣103,解得:v=1615当点Q的速度为每秒1615个单位长度时,103秒,四边形PDBQ是菱形.(3)如图2,以C为原点,以AC所在的直线为x轴,建立平面直角坐标系.依题意,可知0≤t≤4,当t=0时,点M1的坐标为(3,0),当t=4时点M2的坐标为(1,4).设直线M1M2的解析式为y=kx+b,∴304k bk b+=⎧⎨+=⎩,解得26kb=-⎧⎨=⎩,∴直线M1M2的解析式为y=﹣2x+6.∵点Q(0,2t),P(6﹣t,0)∴在运动过程中,线段PQ中点M3的坐标(62t-,t).把x=62t-代入y=﹣2x+6得y=﹣2×62t-+6=t,∴点M3在直线M1M2上.过点M2做M2N⊥x轴于点N,则M2N=4,M1N=2.∴M1M2∴线段PQ中点M所的路径长为单位长度.此题考查了相似三角形的判定与性质、平行四边形的判定与性质、菱形的判定与性质以及函数的应用.此题综合性很强,难度较大,解题的关键是注意数形思想的应用.2022-2023学年安徽省合肥市中考数学专项突破仿真模拟卷(二模)第I 卷(选一选)评卷人得分一、单选题1.10的算术平方根是()A .10B C .D .2.下列运算正确的是()A .639x x x +=B .()326m m m ⋅-=C .()3339a a -=-D .()32628x x -=-3.某块三棱柱积木如图所示,它的左视图是()A .B .C .D .4.根据世界卫生组织统计,截止目前,全球新冠确诊病例累计超过522000000,用科学记数法表示这一数据是()A .85.2210⨯B .95.2210⨯C .652210⨯D .100.52210⨯5.如图,一副直角三角板如图所示摆放,∠A =30°,∠E =45°,∠C =∠FDE =90°.顶点D 在AC 边上,且EF ∥AB ,则∠CDF 的度数是()A .10°B .15°C .20°D .25°6.北京2022吉祥物“冰墩墩”和“雪容融”受到大家的喜爱,某网店出售这两种吉祥物礼品,上线天2000个15分钟,后两天紧急加工上线5200个.若后较前的增长率均为x .则可列方程正确的是()A .()2200015200x +=B .()2200015200x -=C .()()2200020001200015200x x ++++=D .()()220001200015200x x +++=7.在一个没有透明的口袋中,放置了红球,白球共5个,这些小球除颜色外其余均相同,数学小组每次摸出一个球记录下颜色后再放回,并且统计了红球出现的频率如下图,现从中无放回的抽取两个球.抽到一红一白的概率是()A .320B .425C .310D .158.已知5a +6b -3p =0,3a +5b -2q =0,则下列说法中,正确的是()A .当0a >,0b >时,p q<B .当0a >,0b <时,p q <C .当0a <,0b >时,p q <D .当0a <,0b <时,p q<9.如图,⊙O 的半径为5,边长为4的正六边形ABCDEF 的与O 重合,M 、N 分别是AB 、FA 的延长线与⊙O 交点,则图中阴影部分的面积是()A .54πB .54πC .256π-D .256π10.如图,在Rt △ABC 纸片中,∠ACB =90°,AC =4,BC =3,点D ,E 分别在BC ,AB 边上,连接DE ,将△BDE 沿DE 翻折,使点B 落在点F 的位置,连接AF ,若四边形BEFD 是菱形,则AF 的长的最小值为()A BC .52D .32第II 卷(非选一选)评卷人得分二、填空题11.分解因式:32x 2x x -+=_________.12.关于x 的没有等式:231x -+≥-的解集为______.13.如图,已知平行四边形OABC ,⊙O 恰好B ,C 两点,且与边AB 相切,延长AO 交⊙O 于点D ,连接BD ,则∠ADB 的度数为______.14.如图.已知反比例m y x =与()0,0n y x m n x =><<的图象如图所示,点A ,B 在m y x =的图象上,点C ,D 在n y x=的图象上,对角线BD ⊥AC 于点P ,对角线BD y ∥轴.已知点B 的横坐标为4:(1)当m =4,n =20,且P 为BD 中点,判断四边形ABCD 的形状为______.(2)当四边形ABCD 为正方形时m ,n 之间的数量关系为______.评卷人得分三、解答题15.求x 的方程323x x=-的解.16.“两果问价”问题出自我国古代算书《四元玉鉴》,原题如下:九百九十九文钱,甜果苦果买一千,甜果九个十一文,苦果七个四文钱,试问甜苦果几个?又问各该几个钱?将题目译成白话文,内容如下:九百九十九文钱买了甜果和苦果共一千个,已知十一文钱可买九个甜果,四文钱可买七个苦果,那么甜果、苦果各买了多少个?买甜果和苦果各需要多少文钱?17.如图,在由边长为1个单位长度的小正方形组成的814⨯网格中,已知ABC 的顶点都在格点上,直线l 与网线重合.。

人教版数学七年级第七章坐标方法的简单应用单元测试精选(含答案)6

人教版数学七年级第七章坐标方法的简单应用单元测试精选(含答案)6

人教版七年级第七章坐标方法的简单应用单元测试精选(含答案)学校:___________姓名:___________班级:___________考号:___________一、单选题1.小明住在学校正东方向200米处,从小明家出发向北走150米就到了李华家.若选取李华家为原点,分别以正东、正北方向为x轴、y轴正方向建立平面直角坐标系,则学校的坐标为()A.(-150,-200) B.(-200,-150) C.(0,-50) D.(-150,200)【来源】2017-2018学年八年级数学冀教版下册单元测试题第19章平面直角坐标系【答案】B2.若点P(x,y)横坐标x与纵坐标y均为整数,则P点称为整点,在以(10,0)、(0,10)、(﹣10,0)、(0,﹣10)为顶点的正方形中(包括边界)整点的个数一共有()A.220 B.221 C.222 D.223【来源】张家口市万全区第三初级中学2018年数学中考模拟试题【答案】B3.如图,已知A1(1,0),A2(1,1),A3(﹣1,1),A4(﹣1,﹣1),A5(2,﹣1),则点A2012的坐标为()A.(2012,2012)B.(﹣1006,﹣1006)C.(﹣503,﹣503)D.(﹣502,﹣502)【来源】2018年内蒙古鄂尔多斯市东胜区中考数学一模试卷【答案】C4.下列表述中,位置确定的是()A.北偏东30°B.东经118°,北纬24°C.淮海路以北,中山路以南D.银座电影院第2排【来源】2017-2018学年江苏省徐州市八年级(上)期末数学试卷(解析版)【答案】B5.如图,在平面直角坐标系中,点B、C在y轴上,△ABC是等边三角形,AB=4,AC与x轴的交点D的坐标是(√3,0),则点A的坐标为()A.(1,2√3)B.(2,2√3)C.(2√3,1)D.(2√3,2)【来源】2016届江苏省南京市秦淮区中考一模数学试卷(带解析)【答案】C6.如图,一个点在第一象限及x轴、y轴上运动,在第一秒钟,它从原点(0,0)运动到(0,1),然后接着按图中箭头所示方向运动,即(0,0)→(0,1)→(1,1)→(1,0)•••,且每秒移动一个单位,那么第64秒时这个点所在位置的坐标是( )A.(0,9) B.(9,0) C.(8,0) D.(0,8)【来源】安徽省淮南市潘集区2017-2018学年七年级下学期期中考试数学试题【答案】C7.如图,在直角坐标系中,已知点A(﹣3,0)、B(0,4),对△OAB连续作旋转变换,依次得到△1、△2、△3、△4…,则△2017的直角顶点的坐标为.().A.(4032,0) B.(4032,125) C.(8064,0) D.(8052,125)【来源】重庆市江津区七校2017-2018学年八年级下学期第9周联考数学试题【答案】C8.在平面直角坐标系中,点P(x,y)经过某种变换后得到点P′(﹣y+1,x+2),我们把点P′(﹣y+1,x+2)叫做点P(x,y)的终结点.已知点P1的终结点为P2,点P2的终结点为P3,点P3的终结点为P4,这样依次得到P1、P2、P3、P4…P n,若点P1的坐标为(2,0),则点P2017的坐标为()A.(﹣3,3)B.(1,4)C.(2,0)D.(﹣2,﹣1)【来源】安徽省芜湖市南陵县黄浒初中2017-2018学年度第二学期七年级数学期中复习试卷【答案】C9.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2015次运动后,动点P的坐标是()A.(2015,0)B.(2015,1)C.(2015,2)D.(2016,0)【来源】2016届山东省济宁市邹城市中考一模数学试卷(带解析)【答案】C10.如图,动点P第1次从矩形的边上的(0,3)出发,沿所示方向运动,第2次碰到边上的点(3,0),每当碰到矩形的边时反弹,反弹时反射角等于入射角.当点P第10次碰到矩形的边时,点P的坐标为()A.(5,0) B.(0,3) C.(7,4) D.(8,3)【来源】湖北省武汉市江汉区2018届九年级中考模拟数学试题【答案】D11.如图,在平面直角坐标系xoy中,函数y=x的图象为直线l,作点A1(1,0)关于直线l 的对称点A 2,将A 2向右平移2个单位得到点A 3;再作A 3关于直线l 的对称点A 4,将A 4向右平移2个单位得到点A 5;….则按此规律,所作出的点A 2015的坐标为( )A .(1007,1008)B .(1008,1007)C .(1006,1007)D .(1007,1006)【来源】2015届江苏省南京市高淳区中考二模数学试卷(带解析)【答案】B12.我们把1,1,2,3,5,8,13,21,…这组数称为斐波那契数列,为了进一步研究,依次以这列数为半径作90°圆弧12PP u u u u r ,23P P u u u u r ,34P P u u u u r ,…得到斐波那契螺旋线,然后顺次连结12P P ,23P P ,34P P ,…得到螺旋折线(如图),已知点1P (0,1),2P (1-,0),3P (0,1-),则该折线上的点9P 的坐标为( )A .(6-,24)B .(6-,25)C .(5-,24)D .(5-,25)【来源】江苏省苏州市2018届九年级中考数学模拟试题【答案】B13.如图,一个粒子从原点出发,每分钟移动一次,依次运动到(0,1)→(1,0)→(1,1)→(1,2)→(2,1)→…,则2015分钟时粒子所在点的横坐标为( )A.886 B.903 C.946 D.990【来源】河北省2018届中考数学模拟试卷(二)【答案】D14.甲和乙下棋,甲执白子,乙执黑子.如图,已共下了7枚棋子,棋盘中心黑子的位置用(﹣1,0)表示,其右下角黑子的位置用(0,﹣1)表示.甲将第4枚白子放入棋盘后,所有棋子构成一个轴对称图形.他放的位置是()A.(﹣1,1)B.(﹣2,1)C.(1,﹣2)D.(﹣1,﹣2)【来源】[湖北省孝感市云梦县2018届九年级中考数学一模试卷【答案】A15.将点A(﹣1,2)向右平移4个单位长度,再向下平移3个单位长度,则平移后点的坐标是()A.(3,1)B.(﹣3,﹣1)C.(3,﹣1)D.(﹣3,1)【来源】2018年山东省济南市天桥区初三下学期数学一模试题【答案】C16.如图,在平面直角坐标系上有点A(1.O),点A第一次跳动至点A1(-1,1).第四次向右跳动5个单位至点A4(3,2),…,依此规律跳动下去,点A第100次跳动至点A100的坐标是( )A.(50,49) B.(51, 49) C.(50, 50) D.(51, 50)【来源】山东省汶上县2017-2018学年七年级下学期期中考试数学试题【答案】D17.在平面直角坐标系中,一蚂蚁从原点O出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其行走路线如图所示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年安徽省合肥市中考数学第二次模拟试卷一、选择题(每小题4分,共40分)1.在﹣2,﹣5,5,0这四个数中,最小的数是()A.﹣2 B.﹣5 C.5 D.02.据统计2014年我国高新技术产品出口总额40570亿元,将数据40570亿用科学记数法表示为()A.4.0570×109B.0.40570×1010C.40.570×1011D.4.0570×10123.如图,直线l1∥l2,CD⊥AB于点D,∠1=50°,则∠BCD的度数为()A.50°B.45°C.40°D.30°4.不等式组﹣2≤x+1<1的解集,在数轴上表示正确的是()A.B.C.D.5.过正方体上底面的对角线和下底面一顶点的平面截去一个三棱锥所得到的几何体如图所示,它的俯视图为()A.B. C. D.6.如图,A、B、C三点在正方形网格线的交点处,若将△ABC绕着点A逆时针旋转得到△AC′B′,则tanB′的值为()A.B.C.D.7.下表是某校合唱团成员的年龄分布对于不同的x,下列关于年龄的统计量不会发生改变的是()A.平均数、中位数B.众数、中位数C.平均数、方差D.中位数、方差8.已知一个函数图象经过(1,﹣4),(2,﹣2)两点,在自变量x的某个取值范围内,都有函数值y随x的增大而减小,则符合上述条件的函数可能是()A.正比例函数 B.一次函数C.反比例函数 D.二次函数9.某工厂二月份的产值比一月份的产值增长了x%,三月份的产值又比二月份的产值增长了x%,则三月份的产值比一月份的产值增长了()A.2x% B.1+2x% C.(1+x%)x% D.(2+x%)x%10.如图,在△ABC中,AB=AC=a,BC=b(a>b).在△ABC内依次作∠CBD=∠A,∠DCE=∠CBD,∠EDF=∠DCE.则EF等于()A.B.C.D.二、填空题(每小题5分,共20分)11.分解因式:m3n﹣4mn= .12.若函数y=与y=x﹣2图象的一个交点坐标(a,b),则﹣的值为.13.一组数:2,1,3,x,7,y,23,…,满足“从第三个数起,前两个数依次为a、b,紧随其后的数就是2a﹣b”,例如这组数中的第三个数“3”是由“2×2﹣1”得到的,那么这组数中y表示的数为.14.如图,在一张矩形纸片ABCD中,AB=4,BC=8,点E,F分别在AD,BC上,将纸片ABCD沿直线EF折叠,点C落在AD上的一点H处,点D落在点G处,有以下四个结论:①四边形CFHE是菱形;②线段BF的取值范围为3≤BF≤4;③EC平分∠DCH;④当点H与点A重合时,EF=2以上结论中,你认为正确的有.(填序号)三、解答题(本大题共2小题,每小题8分,共16分)15.计算:﹣22﹣+2cos45°+|1﹣|16.如图,一次函数的图象经过(2,0)和(0,﹣4),根据图象求的值.四、解答题(本大题共2小题,每小题8分,共16分)17.如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣4,3)、B(﹣3,1)、C(﹣1,3).(1)请按下列要求画图:①将△ABC先向右平移4个单位长度、再向上平移2个单位长度,得到△A1B1C1,画出△A1B1C1;②△A2B2C2与△ABC关于原点O成中心对称,画出△A2B2C2.(2)在(1)中所得的△A1B1C1和△A2B2C2关于点M成中心对称,请直接写出对称中心M点的坐标.18.有甲、乙两个不透明的盒子,甲盒子中装有3张卡片,卡片上分别写着3cm、7cm、9cm;乙盒子中装有4张卡片,卡片上分别写着2cm、4cm、6cm、8cm;盒子外有一张写着5cm的卡片.所有卡片的形状、大小都完全相同.现随机从甲、乙两个盒子中各取出一张卡片,与盒子外的卡片放在一起,用卡片上标明的数量分别作为一条线段的长度.(1)请用树状图或列表的方法求这三条线段能组成三角形的概率;(2)求这三条线段能组成直角三角形的概率.五、解答题(本大题共2小题,每小题10分,共20分)19.已知:如图,斜坡AP的坡度为1:2.4,坡长AP为26米,在坡顶A处的同一水平面上有一座古塔BC,在斜坡底P处测得该塔的塔顶B的仰角为45°,在坡顶A处测得该塔的塔顶B的仰角为76°.求:(1)坡顶A到地面PQ的距离;(2)古塔BC的高度(结果精确到1米).(参考数据:sin76°≈0.97,cos76°≈0.24,tan76°≈4.01)20.如图,点B、C、D都在⊙O上,过C点作CA∥BD交OD的延长线于点A,连接BC,∠B=∠A=30°,BD=2.(1)求证:AC是⊙O的切线;(2)求由线段AC、AD与弧CD所围成的阴影部分的面积.(结果保留π)六、解答题(本题满分12分)21.如图甲,AB⊥BD,CD⊥BD,AP⊥PC,垂足分别为B、P、D,且三个垂足在同一直线上,我们把这样的图形叫“三垂图”.(1)证明:AB•CD=PB•PD.(2)如图乙,也是一个“三垂图”,上述结论成立吗?请说明理由.(3)已知抛物线与x轴交于点A(﹣1,0),B(3,0),与y轴交于点(0,﹣3),顶点为P,如图丙所示,若Q是抛物线上异于A、B、P的点,使得∠QAP=90°,求Q点坐标.七、解答题(本题满分12分)22.某网店打出促销广告:最潮新款服装50件,每件售价300元,若一次性购买不超过10件时,售价不变;若一次性购买超过10件时,每多买1件,所买的每件服装的售价均降低2元.已知该服装成本是每件200元,设顾客一次性购买服装x件时,该网店从中获利y元.(1)求y与x的函数关系式,并写出自变量x的取值范围;(2)顾客一次性购买多少件时,该网店从中获利最多?八、解答题(本题满分14分)23.在平面直角坐标系中,O为原点,点A(﹣2,0),点B(0,2),点E,点F 分别为OA,OB的中点.若正方形OEDF绕点O顺时针旋转,得正方形OE′D′F′,记旋转角为α.(Ⅰ)如图①,当α=90°时,求AE′,BF′的长;(Ⅱ)如图②,当α=135°时,求证AE′=BF′,且AE′⊥BF′;(Ⅲ)若直线AE′与直线BF′相交于点P,求点P的纵坐标的最大值(直接写出结果即可).参考答案与试题解析一、选择题(每小题4分,共40分)1.在﹣2,﹣5,5,0这四个数中,最小的数是()A.﹣2 B.﹣5 C.5 D.0【考点】有理数大小比较.【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:根据有理数比较大小的方法,可得﹣5<﹣2<0<5,∴在﹣2,﹣5,5,0这四个数中,最小的数是﹣5.故选:B.2.据统计2014年我国高新技术产品出口总额40570亿元,将数据40570亿用科学记数法表示为()A.4.0570×109B.0.40570×1010C.40.570×1011D.4.0570×1012【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.本题中40570亿,有13位整数,n=13﹣1=12.【解答】解:40570亿=4057000000000=4.057×1012,故选D.3.如图,直线l1∥l2,CD⊥AB于点D,∠1=50°,则∠BCD的度数为()A.50°B.45°C.40°D.30°【考点】平行线的性质.【分析】先依据平行线的性质可求得∠ABC的度数,然后在直角三角形CBD中可求得∠BCD的度数.【解答】解:∵l1∥l2,∴∠1=∠ABC=50°.∵CD⊥AB于点D,∴∠CDB=90°.∴∠BCD+∠DBC=90°,即∠BCD+50°=90°.∴∠BCD=40°.故选:C.4.不等式组﹣2≤x+1<1的解集,在数轴上表示正确的是()A.B.C.D.【考点】在数轴上表示不等式的解集;解一元一次不等式组.【分析】先求出不等式组的解集,再求出其公共解集,并在数轴上表示出来即可.【解答】解:∵由题意可得,由①得,x≥﹣3,由②得,x<0,∴﹣3≤x<0,在数轴上表示为:.故选:B.5.过正方体上底面的对角线和下底面一顶点的平面截去一个三棱锥所得到的几何体如图所示,它的俯视图为()A.B. C. D.【考点】简单组合体的三视图.【分析】俯视图是从上向下看得到的视图,结合选项即可作出判断.【解答】解:所给图形的俯视图是B选项所给的图形.故选B.6.如图,A、B、C三点在正方形网格线的交点处,若将△ABC绕着点A逆时针旋转得到△AC′B′,则tanB′的值为()A.B.C.D.【考点】锐角三角函数的定义;旋转的性质.【分析】过C点作CD⊥AB,垂足为D,根据旋转性质可知,∠B′=∠B,把求tanB′的问题,转化为在Rt△BCD中求tanB.【解答】解:过C点作CD⊥AB,垂足为D.根据旋转性质可知,∠B′=∠B.在Rt△BCD中,tanB==,∴tanB′=tanB=.故选B.7.下表是某校合唱团成员的年龄分布对于不同的x,下列关于年龄的统计量不会发生改变的是()A.平均数、中位数B.众数、中位数C.平均数、方差D.中位数、方差【考点】统计量的选择;频数(率)分布表.【分析】由频数分布表可知后两组的频数和为10,即可得知总人数,结合前两组的频数知出现次数最多的数据及第15、16个数据的平均数,可得答案.【解答】解:由表可知,年龄为15岁与年龄为16岁的频数和为x+10﹣x=10,则总人数为:5+15+10=30,故该组数据的众数为14岁,中位数为: =14岁,即对于不同的x,关于年龄的统计量不会发生改变的是众数和中位数,故选:B.8.已知一个函数图象经过(1,﹣4),(2,﹣2)两点,在自变量x的某个取值范围内,都有函数值y随x的增大而减小,则符合上述条件的函数可能是()A.正比例函数 B.一次函数C.反比例函数 D.二次函数【考点】二次函数的性质;一次函数的性质;正比例函数的性质;反比例函数的性质.【分析】求出一次函数和反比例函数的解析式,根据其性质进行判断.【解答】解:设一次函数解析式为:y=kx+b,由题意得,,解得,,∵k>0,∴y随x的增大而增大,∴A、B错误,设反比例函数解析式为:y=,由题意得,k=﹣4,k<0,∴在每个象限,y随x的增大而增大,∴C错误,当抛物线开口向上,x>1时,y随x的增大而减小.故选:D.9.某工厂二月份的产值比一月份的产值增长了x%,三月份的产值又比二月份的产值增长了x%,则三月份的产值比一月份的产值增长了()A.2x% B.1+2x% C.(1+x%)x% D.(2+x%)x%【考点】列代数式.【分析】直接利用已知表示出三月份的产值,进而表示出增长率,即可得出答案.【解答】解:设一月份的产值为a,则二月份的产值为:a(1+x%),故三月份的产值为:a(1+x%)2,则三月份的产值比一月份的产值增长了﹣1=(2+x%)x%.故选:D.10.如图,在△ABC中,AB=AC=a,BC=b(a>b).在△ABC内依次作∠CBD=∠A,∠DCE=∠CBD,∠EDF=∠DCE.则EF等于()A.B.C.D.【考点】相似三角形的判定与性质;等腰三角形的判定与性质.【分析】依次判定△ABC∽△BDC∽△CDE∽△DFE,根据相似三角形的对应边成比例的知识,可得出EF的长度.【解答】解:∵AB=AC,∴∠ABC=∠ACB,又∵∠CBD=∠A,∴△ABC∽△BDC,同理可得:△ABC∽△BDC∽△CDE∽△DFE,∴=, =, =, =,∵AB=AC,∴CD=CE,解得:CD=CE=,DE=,EF=.故选C.二、填空题(每小题5分,共20分)11.分解因式:m3n﹣4mn= mn(m﹣2)(m+2).【考点】提公因式法与公式法的综合运用.【分析】先提取公因式mn,再利用平方差公式分解因式得出即可.【解答】解:m3n﹣4mn=mn(m2﹣4)=mn(m﹣2)(m+2).故答案为:mn(m﹣2)(m+2).12.若函数y=与y=x﹣2图象的一个交点坐标(a,b),则﹣的值为﹣2 .【考点】反比例函数与一次函数的交点问题.【分析】根据函数解析式,可得b=,b=a﹣2,进而得出ab=1,b﹣a=﹣2,即可求得﹣===﹣2.【解答】解:∵函数y=与y=x﹣2图象的一个交点坐标(a,b),∴b=,b=a﹣2,∴ab=1,b﹣a=﹣2,∴﹣===﹣2故答案为﹣2.13.一组数:2,1,3,x,7,y,23,…,满足“从第三个数起,前两个数依次为a、b,紧随其后的数就是2a﹣b”,例如这组数中的第三个数“3”是由“2×2﹣1”得到的,那么这组数中y表示的数为﹣9 .【考点】规律型:数字的变化类.【分析】根据“从第三个数起,前两个数依次为a、b,紧随其后的数就是2a﹣b”,首先建立方程2×3﹣x=7,求得x,进一步利用此规定求得y即可.【解答】解:解法一:常规解法∵从第三个数起,前两个数依次为a、b,紧随其后的数就是2a﹣b∴2×3﹣x=7∴x=﹣1则2×(﹣1)﹣7=y解得y=﹣9.解法二:技巧型∵从第三个数起,前两个数依次为a、b,紧随其后的数就是2a﹣b∴7×2﹣y=23∴y=﹣9故答案为:﹣9.14.如图,在一张矩形纸片ABCD中,AB=4,BC=8,点E,F分别在AD,BC上,将纸片ABCD沿直线EF折叠,点C落在AD上的一点H处,点D落在点G处,有以下四个结论:①四边形CFHE是菱形;②线段BF的取值范围为3≤BF≤4;③EC平分∠DCH;④当点H与点A重合时,EF=2以上结论中,你认为正确的有①②④.(填序号)【考点】翻折变换(折叠问题);菱形的判定;矩形的性质.【分析】①先判断出四边形CFHE是平行四边形,再根据翻折的性质可得CF=FH,然后根据邻边相等的平行四边形是菱形证明,判断出①正确;②点H与点A重合时,设BF=x,表示出AF=FC=8﹣x,利用勾股定理列出方程求解得到BF的最小值,点G与点D重合时,CF=CD,求出BF=4,然后写出BF的取值范围,判断出②正确;③根据菱形的对角线平分一组对角线可得∠BCH=∠ECH,然后求出只有∠DCE=30°时EC平分∠DCH,判断出③错误;④过点F作FM⊥AD于M,求出ME,再利用勾股定理列式求解得到EF,判断出④正确.【解答】解:①∵FH与CG,EH与CF都是矩形ABCD的对边AD、BC的一部分,∴FH∥CG,EH∥CF,∴四边形CFHE是平行四边形,由翻折的性质得,CF=FH,∴四边形CFHE是菱形,故①正确;②点H与点A重合时,设BF=x,则AF=FC=8﹣x,在Rt△ABF中,AB2+BF2=AF2,即42+x2=(8﹣x)2,解得x=3,点G与点D重合时,CF=CD=4,∴BF=4,∴线段BF的取值范围为3≤BF≤4,故②正确;③∴∠BCH=∠ECH,∴只有∠DCE=30°时EC平分∠DCH,故③错误;过点F作FM⊥AD于M,则ME=(8﹣3)﹣3=2,由勾股定理得,EF==2,故④正确.综上所述,结论正确的有①②④.故答案为:①②④.三、解答题(本大题共2小题,每小题8分,共16分)15.计算:﹣22﹣+2cos45°+|1﹣|【考点】实数的运算;特殊角的三角函数值.【分析】原式利用乘方的意义,二次根式性质,特殊角的三角函数值,以及绝对值的代数意义化简,计算即可得到结果.【解答】解:原式=﹣4﹣2+2×+﹣1=﹣5.16.如图,一次函数的图象经过(2,0)和(0,﹣4),根据图象求的值.【考点】一次函数图象上点的坐标特征.【分析】先根据题意得出一次函数的解析式,求出k、b的值,再代入代数式进行计算即可.【解答】解:∵一次函数的图象经过(2,0)和(0,﹣4),∴,解得.∵k2﹣2kb+b2=(k﹣b)2=(2+4)2=36,∴==6.四、解答题(本大题共2小题,每小题8分,共16分)17.如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣4,3)、B(﹣3,1)、C(﹣1,3).(1)请按下列要求画图:①将△ABC先向右平移4个单位长度、再向上平移2个单位长度,得到△A1B1C1,画出△A1B1C1;②△A2B2C2与△ABC关于原点O成中心对称,画出△A2B2C2.(2)在(1)中所得的△A1B1C1和△A2B2C2关于点M成中心对称,请直接写出对称中心M点的坐标.【考点】作图﹣旋转变换;作图﹣平移变换.【分析】(1)①根据网格结构找出点A、B、C平移后的对应点A1、B1、C1的位置,然后顺次连接即可;②根据网格结构找出A、B、C关于原点O的中心对称点A2、B2、C2的位置,然后顺次连接即可;(2)连接B1B2,C1C2,交点就是对称中心M.【解答】解:(1)①△A1B1C1如图所示;②△A2B2C2如图所示;(2)连接B1B2,C1C2,得到对称中心M的坐标为(2,1).18.有甲、乙两个不透明的盒子,甲盒子中装有3张卡片,卡片上分别写着3cm、7cm、9cm;乙盒子中装有4张卡片,卡片上分别写着2cm、4cm、6cm、8cm;盒子外有一张写着5cm的卡片.所有卡片的形状、大小都完全相同.现随机从甲、乙两个盒子中各取出一张卡片,与盒子外的卡片放在一起,用卡片上标明的数量分别作为一条线段的长度.(1)请用树状图或列表的方法求这三条线段能组成三角形的概率;(2)求这三条线段能组成直角三角形的概率.【考点】列表法与树状图法;勾股定理的逆定理.【分析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与这三条线段能组成三角形的情况,再利用概率公式求解即可求得答案;(2)首先由树状图求得这三条线段能组成直角三角形的情况,然后直接利用概率公式求解即可求得答案.【解答】解:(1)画树状图得:∵共有12种等可能的结果,这三条线段能组成三角形的有7种情况,∴这三条线段能组成三角形的概率为:;(2)∵这三条线段能组成直角三角形的只有:3cm,4cm,5cm;∴这三条线段能组成直角三角形的概率为:.五、解答题(本大题共2小题,每小题10分,共20分)19.已知:如图,斜坡AP的坡度为1:2.4,坡长AP为26米,在坡顶A处的同一水平面上有一座古塔BC,在斜坡底P处测得该塔的塔顶B的仰角为45°,在坡顶A处测得该塔的塔顶B的仰角为76°.求:(1)坡顶A到地面PQ的距离;(2)古塔BC的高度(结果精确到1米).(参考数据:sin76°≈0.97,cos76°≈0.24,tan76°≈4.01)【考点】解直角三角形的应用﹣坡度坡角问题;解直角三角形的应用﹣仰角俯角问题.【分析】(1)过点A作AH⊥PQ,垂足为点H,利用斜坡AP的坡度为1:2.4,得出AH,PH,AP的关系求出即可;(2)利用矩形性质求出设BC=x,则x+10=24+DH,再利用tan76°=,求出即可.【解答】解:(1)过点A作AH⊥PQ,垂足为点H.∵斜坡AP的坡度为1:2.4,∴=,设AH=5km,则PH=12km,由勾股定理,得AP=13km.∴13k=26m.解得k=2.∴AH=10m.答:坡顶A到地面PQ的距离为10m.(2)延长BC交PQ于点D.∵BC⊥AC,AC∥PQ,∴BD⊥PQ.∴四边形AHDC是矩形,CD=AH=10,AC=DH.∵∠BPD=45°,∴PD=BD.设BC=x,则x+10=24+DH.∴AC=DH=x﹣14.在Rt△ABC中,tan76°=,即≈4.0,解得x=,即x≈19,答:古塔BC的高度约为19米.20.如图,点B、C、D都在⊙O上,过C点作CA∥BD交OD的延长线于点A,连接BC,∠B=∠A=30°,BD=2.(1)求证:AC是⊙O的切线;(2)求由线段AC、AD与弧CD所围成的阴影部分的面积.(结果保留π)【考点】切线的判定;扇形面积的计算.【分析】(1)连接OC,根据圆周角定理求出∠COA,根据三角形内角和定理求出∠OCA,根据切线的判定推出即可;(2)求出DE,解直角三角形求出OC,分别求出△ACO的面积和扇形COD的面积,即可得出答案.【解答】(1)证明:连接OC,交BD于E,∵∠B=30°,∠B=∠COD,∴∠COD=60°,∵∠A=30°,∴∠OCA=90°,即OC⊥AC,∴AC是⊙O的切线;(2)解:∵AC∥BD,∠OCA=90°,∴∠OED=∠OCA=90°,∴DE=BD=,∵sin∠COD=,∴OD=2,在Rt△ACO中,tan∠COA=,∴AC=2,=×2×2﹣=2﹣.∴S阴影六、解答题(本题满分12分)21.如图甲,AB⊥BD,CD⊥BD,AP⊥PC,垂足分别为B、P、D,且三个垂足在同一直线上,我们把这样的图形叫“三垂图”.(1)证明:AB•CD=PB•PD.(2)如图乙,也是一个“三垂图”,上述结论成立吗?请说明理由.(3)已知抛物线与x轴交于点A(﹣1,0),B(3,0),与y轴交于点(0,﹣3),顶点为P,如图丙所示,若Q是抛物线上异于A、B、P的点,使得∠QAP=90°,求Q点坐标.【考点】二次函数综合题.【分析】(1)根据同角的余角相等求出∠A=∠CPD,然后求出△ABP和△PCD相似,再根据相似三角形对应边成比例列式整理即可得证;(2)与(1)的证明思路相同;(3)利用待定系数法求出二次函数解析式,根据抛物线解析式求出点P的坐标,再过点P作PC⊥x轴于C,设AQ与y轴相交于D,然后求出PC、AC的长,再根据(2)的结论求出OD的长,从而得到点D的坐标,利用待定系数法求出直线AD的解析式,与抛物线解析式联立求解即可得到点Q的坐标.【解答】(1)证明:∵AB⊥BD,CD⊥BD,∴∠B=∠D=90°,∴∠A+∠APB=90°,∵AP⊥PC,∴∠APB+∠CPD=90°,∴∠A=∠CPD,∴△ABP∽△PCD,∴=,∴AB•CD=PB•PD;(2)AB•CD=PB•PD仍然成立.理由如下:∵AB⊥BD,CD⊥BD,∴∠B=∠CDP=90°,∴∠A+∠APB=90°,∵AP⊥PC,∴∠APB+∠CPD=90°,∴∠A=∠CPD,∴△ABP∽△PCD,∴=,∴AB•CD=PB•PD;(3)设抛物线解析式为y=ax2+bx+c(a≠0),∵抛物线与x轴交于点A(﹣1,0),B(3,0),与y轴交于点(0,﹣3),∴,解得,所以,y=x2﹣2x﹣3,∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴顶点P的坐标为(1,﹣4),过点P作PC⊥x轴于C,设AQ与y轴相交于D,则AO=1,AC=1+1=2,PC=4,根据(2)的结论,AO•AC=OD•PC,∴1×2=OD•4,解得OD=,∴点D的坐标为(0,),设直线AD的解析式为y=kx+b(k≠0),则,解得,所以,y=x+,联立,解得,(为点A坐标,舍去),所以,点Q的坐标为(,).七、解答题(本题满分12分)22.某网店打出促销广告:最潮新款服装50件,每件售价300元,若一次性购买不超过10件时,售价不变;若一次性购买超过10件时,每多买1件,所买的每件服装的售价均降低2元.已知该服装成本是每件200元,设顾客一次性购买服装x件时,该网店从中获利y元.(1)求y与x的函数关系式,并写出自变量x的取值范围;(2)顾客一次性购买多少件时,该网店从中获利最多?【考点】二次函数的应用.【分析】(1)根据题意可得出销量乘以每台利润进而得出总利润,进而得出答案;(2)根据销量乘以每台利润进而得出总利润,即可求出即可.【解答】解:(1)y=;(2)在0≤x≤10时,y=100x,当x=10时,y有最大值1000;在10<x≤30时,y=﹣2x2+120x,当x=30时,y取得最大值=1400,∴顾客一次购买30件时,该网站从中获利最多.八、解答题(本题满分14分)23.在平面直角坐标系中,O为原点,点A(﹣2,0),点B(0,2),点E,点F 分别为OA,OB的中点.若正方形OEDF绕点O顺时针旋转,得正方形OE′D′F′,记旋转角为α.(Ⅰ)如图①,当α=90°时,求AE′,BF′的长;(Ⅱ)如图②,当α=135°时,求证AE′=BF′,且AE′⊥BF′;(Ⅲ)若直线AE′与直线BF′相交于点P,求点P的纵坐标的最大值(直接写出结果即可).【考点】几何变换综合题;三角形的外角性质;全等三角形的判定与性质;含30度角的直角三角形;勾股定理.【分析】(1)利用勾股定理即可求出AE′,BF′的长.(2)运用全等三角形的判定与性质、三角形的外角性质就可解决问题.(3)首先找到使点P的纵坐标最大时点P的位置(点P与点D′重合时),然后运用勾股定理及30°角所对的直角边等于斜边的一半等知识即可求出点P的纵坐标的最大值.【解答】解:(Ⅰ)当α=90°时,点E′与点F重合,如图①.∵点A(﹣2,0)点B(0,2),∴OA=OB=2.∵点E,点F分别为OA,OB的中点,∴OE=OF=1∵正方形OE′D′F′是正方形OEDF绕点O顺时针旋转90°得到的,∴OE′=OE=1,OF′=OF=1.在Rt△AE′O中,AE′=.在Rt△BOF′中,BF′=.∴AE′,BF′的长都等于.(Ⅱ)当α=135°时,如图②.∵正方形OE′D′F′是由正方形OEDF绕点O顺时针旋转135°所得,∴∠AOE′=∠BOF′=135°.在△AOE′和△BOF′中,,∴△AOE′≌△BOF′(SAS).∴AE′=BF′,且∠OAE′=∠OBF′.∵∠ACB=∠CAO+∠AOC=∠CBP+∠CPB,∠CAO=∠CBP,∴∠CPB=∠AOC=90°∴AE′⊥BF′.(Ⅲ)∵∠BPA=∠BOA=90°,∴点P、B、A、O四点共圆,∴当点P在劣弧OB上运动时,点P的纵坐标随着∠PAO的增大而增大.∵OE′=1,∴点E′在以点O为圆心,1为半径的圆O上运动,∴当AP与⊙O相切时,∠E′AO(即∠PAO)最大,此时∠AE′O=90°,点D′与点P重合,点P的纵坐标达到最大.过点P作PH⊥x轴,垂足为H,如图③所示.∵∠AE′O=90°,E′O=1,AO=2,∴∠E′AO=30°,AE′=.∴AP=+1.∵∠AHP=90°,∠PAH=30°,∴PH=AP=.∴点P的纵坐标的最大值为.。

相关文档
最新文档