安徽省合肥市2019年中考数学模拟试卷(附答案)
安徽省合肥市包河区2019年中考数学一模试卷(含答案解析)

2019年安徽省合肥市包河区中考数学一模试卷一.选择题(共10小题,满分40分,每小题4分)1.|﹣2|=()A.0B.﹣2C.2D.12.计算(﹣p)8•(﹣p2)3•[(﹣p)3]2的结果是()A.﹣p20B.p20C.﹣p18D.p183.十九大报告指出,我国目前经济保持了中高速增长,在世界主要国家中名列前茅,国内生产总值从54万亿元增长80万亿元,稳居世界第二,其中80万亿用科学记数法表示为()A.8×1012B.8×1013C.8×1014D.0.8×10134.从图1的正方体上截去一个三棱锥,得到一个几何体,如图2.从正面看图2的几何体,得到的平面图形是()A.B.C.D.5.下列因式分解正确的是()A.x2﹣xy+x=x(x﹣y)B.a3+2a2b+ab2=a(a+b)2C.x2﹣2x+4=(x﹣1)2+3D.ax2﹣9=a(x+3)(x﹣3)6.一元二次方程2x2﹣2x﹣1=0的较大实数根在下列哪两个相邻的整数之间()A.4,3B.3,2C.2,1D.1,07.如图是某班学生外出乘车、步行、骑车的人数条形统计图和扇形统计图,则该班共有学生人数是()A.8B.10C.12D.408.如图,△ABC中,BC=4,⊙P与△ABC的边或边的延长线相切.若⊙P半径为2,△ABC的面积为5,则△ABC的周长为()A.8B.10C.13D.149.等腰三角形一腰上的高与另一腰所在直线的夹角为30°,则这个等腰三角形的顶角为()A.60°或120°B.30°或150°C.30°或120°D.60°10.如图,一次函数y1=ax+b图象和反比例函数y2=图象交于A(1,2),B(﹣2,﹣1)两点,若y1<y2,则x的取值范围是()A.x<﹣2B.x<﹣2或0<x<1C.x<1D.﹣2<x<0或x>1二.填空题(共4小题,满分20分,每小题5分)11.已知a为实数,那么等于.12.化简:=.13.如图,AB与⊙O相切于点B,AO的延长线交⊙O于点C,连接BC,若∠ABC=120°,OC=3,则弧BC的长为(结果保留π).14.如图,在△ABC中,若AB=AC,BC=2BD=6,DE⊥AC,则AC•EC的值是.三.解答题(共2小题,满分16分,每小题8分)15.计算:(x﹣2)2﹣(x+3)(x﹣3)16.桑植县为践行“绿水青山就是金山银山”的理念,保护生态环境,某村计划在荒山上植树1200棵,实际每天植树的数量是原计划的1.5倍,结果比原计划提前了5天完成任务,求原计划每天植树多少棵?四.解答题(共2小题,满分16分,每小题8分)17.在4×4的方格中,△ABC的三个顶点都在格点上.(1)在图1中画出与△ABC成轴对称且与△ABC有公共边的格点三角形(画出一个即可);(2)在图2、图3中各作一格点D,使得△ACD∽△DCB,并请连结AD、CD、BD.18.如图,吊车在水平地面上吊起货物时,吊绳BC与地面保持垂直,吊臂AB与水平线的夹角为64°,吊臂底部A距地面1.5m.(计算结果精确到0.1m,参考数据sin64°≈0.90,cos64°≈0.44,tan64°≈2.05)(1)当吊臂底部A与货物的水平距离AC为5m时,吊臂AB的长为m.(2)如果该吊车吊臂的最大长度AD为20m,那么从地面上吊起货物的最大高度是多少?(吊钩的长度与货物的高度忽略不计)五.解答题(共2小题,满分20分,每小题10分)19.如图,在四边形ABCD中,AD∥BC,∠B=90°,AB=8cm,AD=24cm,BC=26cm,动点P从点A出发,以1cm/s的速度向点D运动;动点Q从点C同时出发,以3cm/s的速度向点B运动.规定当其中一个动点到达端点时,另一个动点也随之停止运动.设运动时间为t,求:(1)当t为何值时,PQ∥CD?(2)当t为何值时,PQ=CD?20.矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(6,8),D是OA的中点,点E在AB 上,当△CDE的周长最小时,求点E的坐标.六.解答题(共1小题,满分12分,每小题12分)21.钦州市某中学为了解本校学生阅读教育、科技、体育、艺术四类课外书的喜爱情况,随机抽取了部分学生进行问卷调查,在此次调查中,甲、乙两班分别有2人特别喜爱阅读科技书报,若从这4人中随机抽取2人去参加科普比赛活动,请用列表法或画树状图的方法,求所抽取的2人来自不同班级的概率.七.解答题(共1小题,满分12分,每小题12分)22.某公司生产的某种产品每件成本为40元,经市场调查整理出如下信息:①该产品90天内日销售量(m件)与时间(第x天)满足一次函数关系,部分数据如下表:②该产品90天内每天的销售价格与时间(第x天)的关系如下表:(1)求m关于x的一次函数表达式;(2)设销售该产品每天利润为y元,请写出y关于x的函数表达式,并求出在90天内该产品哪天的销售利润最大?最大利润是多少?(3)在该产品销售的过程中,共有多少天销售利润不低于5400元,请直接写出结果.八.解答题(共1小题,满分14分,每小题14分)23.如图1,在Rt△ABC中,∠A=90°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.(1)观察猜想:图1中,线段PM与PN的数量关系是,位置关系是;(2)探究证明:把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN的形状,并说明理由;(3)拓展延伸:把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.2019年安徽省合肥市包河区中考数学一模试卷参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.【分析】根据绝对值的定义进行填空即可.【解答】解:|﹣2|=2,故选:C.【点评】本题考查了绝对值,掌握绝对值的定义是解题的关键.2.【分析】直接利用积的乘方运算法则以及幂的乘方运算法则计算得出答案.【解答】解:(﹣p)8•(﹣p2)3•[(﹣p)3]2=p8•(﹣p6)•p6=﹣p20.故选:A.【点评】此题主要考查了积的乘方运算以及幂的乘方运算,正确掌握相关运算法则是解题关键.3.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:80万亿用科学记数法表示为8×1013.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.4.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看是,故选:D.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.5.【分析】直接利用提取公因式法以及公式法分解因式,进而分析即可.【解答】解:A、x2﹣xy+x=x(x﹣y+1),故此选项错误;B、a3+2a2b+ab2=a(a+b)2,正确;C、x2﹣2x+4=(x﹣1)2+3,不是因式分解,故此选项错误;D 、ax 2﹣9,无法分解因式,故此选项错误; 故选:B .【点评】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键. 6.【分析】先求出方程的解,再求出的范围,最后即可得出答案.【解答】解:解方程2x 2﹣2x ﹣1=0得:x =,设a 是方程2x 2﹣2x ﹣1=0较大的根,∴a =,∵1<<2,∴2<1+<3,即1<a <.故选:C .【点评】本题考查了解一元二次方程,估算无理数的大小的应用,题目是一道比较典型的题目,难度适中. 7.【分析】此题首先根据乘车人数和所占总数的比例,求出总人数. 【解答】解:该班的学生总人数为20÷50%=40(人), 故选:D .【点评】本题考查扇形统计图及相关计算.在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比.8.【分析】根据三角形的面积公式以及切线长定理即可求出答案. 【解答】解:连接PE 、PF 、PG ,AP , 由题意可知:∠PEC =∠PFA =PGA =90°,∴S △PBC =BC •PE =×4×2=4,∴由切线长定理可知:S △PFC +S △PBG =S △PBC =4, ∴S 四边形AFPG =S △ABC +S △PFC +S △PBG +S △PBC =5+4+4=13,∴由切线长定理可知:S △APG =S 四边形AFPG =,∴=×AG •PG ,∴AG =,由切线长定理可知:CE =CF ,BE =BG , ∴△ABC 的周长为AC +AB +CE +BE =AC +AB +CF +BG=AF+AG=2AG=13,故选:C.【点评】本题考查切线长定理,解题的关键是画出辅助线,熟练运用切线长定理,本题属于中等题型.9.【分析】等腰三角形的高相对于三角形有三种位置关系,三角形内部,三角形的外部,三角形的边上.根据条件可知第三种高在三角形的边上这种情况不成了,因而应分两种情况进行讨论.【解答】解:当高在三角形内部时(如图1),顶角是60°;当高在三角形外部时(如图2),顶角是120°.故选:A.【点评】此题主要考查等腰三角形的性质,熟记三角形的高相对于三角形的三种位置关系是解题的关键,本题易出现的错误是只是求出60°一种情况,把三角形简单的认为是锐角三角形.因此此题属于易错题.10.【分析】当y1<y2时,存在不等式ax+b<,不等式的解集即为一次函数图象在反比例函数图象下方时,所对应的自变量x的取值范围.【解答】解:∵A(1,2),B(﹣2,﹣1),∴由图可得,当y1<y2时,x的取值范围是x<﹣2或0<x<1,故选:B.【点评】本题主要考查了反比例函数与一次函数交点问题,从函数的角度看,就是寻求使一次函数值大于(或小于)反比例函数值的自变量x的取值范围;从函数图象的角度看,就是确定直线在双曲线上方(或下方)部分所有的点的横坐标所构成的集合.二.填空题(共4小题,满分20分,每小题5分)11.【分析】根据非负数的性质,只有a=0时,有意义,可求根式的值.【解答】解:根据非负数的性质a2≥0,根据二次根式的意义,﹣a2≥0,故只有a=0时,有意义,所以,=0.故填:0.【点评】本题考查了算术平方根.注意:平方数和算术平方根都是非负数,这是解答此题的关键.12.【分析】先计算括号内的加法、将除法转化为乘法,继而约分即可得.【解答】解:原式=(﹣)•=•=•=x﹣1,故答案为:x﹣1.【点评】本题主要考查分式的混合运算,解题的关键是熟练掌握分式的混合运算顺序和运算法则.13.【分析】根据切线的性质得到∠OBA=90°,求出∠OBC,根据三角形内角和定理求出∠BOC=120°,根据弧长公式计算即可.【解答】解:连接OB,∵AB与⊙O相切于点B,∴∠OBA=90°,∴∠OBC=∠ABC﹣∠ABO=30°,∵OB=OC,∴∠C=∠B=30°,∴∠BOC=120°,∴弧BC的长==2π,故答案为:2π.【点评】本题考查的是切线的性质、弧长的计算,掌握圆的切线垂直于经过切点的半径、弧长的计算公式是解题的关键.14.【分析】由等腰三角形的性质得到AD⊥BC,然后根据“两角法”证得△CDE∽△CAD,所以由该相似三角形的对应边成比例求得答案.【解答】解:如图,∵在△ABC中,若AB=AC,BC=2BD=6,∴AD⊥BC,CD=BD=3.又DE⊥AC,∴∠CED=∠CDA=90°.∵∠C=∠C,∴△CDE∽△CAD.∴=,即AC•EC=CD2=9.故答案是:9.【点评】考查了相似三角形的判定与性质,等腰三角形性质.本题关键是要懂得找相似三角形,利用相似三角形的性质求解.三.解答题(共2小题,满分16分,每小题8分)15.【分析】原式利用完全平方公式,以及平方差公式计算即可求出值.【解答】解:(x﹣2)2﹣(x+3)(x﹣3)=x2﹣4x+4﹣(x2﹣9)=x2﹣4x+4﹣x2+9=﹣4x+13.【点评】此题考查了平方差公式,以及完全平方公式,熟练掌握公式是解本题的关键.16.【分析】设原计划每天植树x棵,则实际每天植树1.5x棵,根据工作时间=工作总量÷工作效率结合实际比原计划提前了5天完成任务,即可得出关于x的分式方程,解之经检验后即可得出结论.【解答】解:设原计划每天植树x棵,则实际每天植树1.5x棵,根据题意得:﹣=5,解得:x=80,经检验,x=80是所列分式方程的解,且符合题意.答:原计划每天植树80棵.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.四.解答题(共2小题,满分16分,每小题8分)17.【分析】(1)利用相似三角形的性质得出答案;(2)利用相似三角形的性质得出D点位置.【解答】解:(1)如图所示:(2)如图所示:△ACD∽△DCB.【点评】此题主要考查了相似变换,正确得出对应点位置是解题关键.18.【分析】(1)根据直角三角形的性质和三角函数解答即可;(2)过点D作DH⊥地面于H,利用直角三角形的性质和三角函数解答即可.【解答】解:(1)在Rt△ABC中,∵∠BAC=64°,AC=5m,∴AB=(m);故答案为:11.4;(2)过点D作DH⊥地面于H,交水平线于点E,在Rt△ADE中,∵AD=20m,∠DAE=64°,EH=1.5m,∴DE=sin64°×AD≈20×0.9≈18(m),即DH=DE+EH=18+1.5=19.5(m),答:如果该吊车吊臂的最大长度AD为20m,那么从地面上吊起货物的最大高度是19.5m.【点评】本题考查解直角三角形、锐角三角函数等知识,解题的关键是添加辅助线,构造直角三角形,记住锐角三角函数的定义,属于中考常考题型.五.解答题(共2小题,满分20分,每小题10分)19.【分析】(1)由当PQ∥CD时,四边形PQCD为平行四边形,可得方程24﹣t=3t,解此方程即可求得答案;(2)根据PQ=CD,一种情况是:四边形PQCD为平行四边形,可得方程24﹣t=3t,一种情况是:四边形PQCD为等腰梯形,可求得当QC﹣PD=QC﹣EF=QF+EC=2CE,即3t=(24﹣t)+4时,四边形PQCD 为等腰梯形,解此方程即可求得答案.【解答】解:根据题意得:PA=t,CQ=3t,则PD=AD﹣PA=24﹣t,(1)∵AD∥BC,即PD∥CQ,∴当PD=CQ时,四边形PQCD为平行四边形,∴PQ∥CD,即24﹣t=3t,解得:t=6,即当t=6时,PQ∥CD;(2)若要PQ=CD,分为两种情况:①当四边形PQCD为平行四边形时,即PD=CQ24﹣t=3t,解得:t=6,②当四边形PQCD为等腰梯形时,即CQ=PD+2(BC﹣AD)3t=24﹣t+4解得:t=7,即当t=6或t=7时,PQ=CD.【点评】此题考查了直角梯形的性质、平行四边形的判定、等腰梯形的判定以及全等三角形的判定与性质.此题难度适中,注意掌握数形结合思想与方程思想的应用.20.【分析】如图,作点D关于直线AB的对称点H,连接CH与AB的交点为E,此时△CDE的周长最小,先求出直线CH解析式,再求出直线CH与AB的交点即可解决问题.【解答】解:如图,作点D关于直线AB的对称点H,连接CH与AB的交点为E,此时△CDE的周长最小.∵D(3,0),A(6,0),∴H(9,0),∴直线CH解析式为y=﹣x+8,∴x=6时,y=,∴点E坐标(6,).【点评】本题考查矩形的性质、坐标与图形的性质、轴对称﹣最短问题、一次函数等知识,解题的关键是利用轴对称找到点E位置,学会利用一次函数解决交点问题,属于中考常考题型.六.解答题(共1小题,满分12分,每小题12分)21.【分析】根据题意先画出树状图,得出所有情况数,再根据概率公式即可得出答案.【解答】解:将两班报名的学生分别记为甲1、甲2、乙1、乙2,树状图如图所示:由树状图知共有12种等可能结果,其中抽取的2人来自不同班级的有8种结果,所以抽取的2人来自不同班级的概率为=.【点评】本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.七.解答题(共1小题,满分12分,每小题12分)22.【分析】(1)根据待定系数法解出一次函数解析式即可;(2)设利润为y元,则当1≤x<50时,y=﹣2x2+160x+4000;当50≤x≤90时,y=﹣120x+12000,分别求出各段上的最大值,比较即可得到结论;(3)根据1≤x<50和50≤x≤90时,由y≥5400求得x的范围,据此可得销售利润不低于5400元的天数.【解答】解:(1)∵m与x成一次函数,∴设m=kx+b,将x=1,m=198,x=3,m=194代入,得:,解得:.所以m关于x的一次函数表达式为m=﹣2x+200;(2)设销售该产品每天利润为y元,y关于x的函数表达式为:y=,当1≤x<50时,y=﹣2x2+160x+4000=﹣2(x﹣40)2+7200,∵﹣2<0,∴当x=40时,y有最大值,最大值是7200;当50≤x≤90时,y=﹣120x+12000,∵﹣120<0,∴y随x增大而减小,即当x=50时,y的值最大,最大值是6000;综上所述,当x=40时,y的值最大,最大值是7200,即在90天内该产品第40天的销售利润最大,最大利润是7200元;(3)当1≤x<50时,由y≥5400可得﹣2x2+160x+4000≥5400,解得:10≤x≤70,∵1≤x<50,∴10≤x<50;当50≤x≤90时,由y≥5400可得﹣120x+12000≥5400,解得:x≤55,∵50≤x≤90,∴50≤x≤55,综上,10≤x≤55,故在该产品销售的过程中,共有46天销售利润不低于5400元.【点评】本题主要考查二次函数的应用,解题的关键是理解题意根据销售问题中总利润的相等关系,结合x的取值范围列出分段函数解析式及二次函数和一次函数的性质.八.解答题(共1小题,满分14分,每小题14分)23.【分析】(1)利用三角形的中位线得出PM=CE,PN=BD,进而判断出BD=CE,即可得出结论,再利用三角形的中位线得出PM∥CE得出∠DPM=∠DCA,最后用互余即可得出结论;(2)先判断出△ABD≌△ACE,得出BD=CE,同(1)的方法得出PM=BD,PN=BD,即可得出PM=PN,同(1)的方法即可得出结论;(3)方法1:先判断出MN最大时,△PMN的面积最大,进而求出AN,AM,即可得出MN最大=AM+AN,最后用面积公式即可得出结论.方法2:先判断出BD最大时,△PMN的面积最大,而BD最大是AB+AD =14,即可得出结论.【解答】解:(1)∵点P,N是BC,CD的中点,∴PN∥BD,PN=BD,∵点P,M是CD,DE的中点,∴PM∥CE,PM=CE,∵AB=AC,AD=AE,∴BD=CE,∴PM=PN,∵PN∥BD,∴∠DPN=∠ADC,∵PM∥CE,∴∠DPM=∠DCA,∵∠BAC=90°,∴∠ADC+∠ACD=90°,∴∠MPN=∠DPM+∠DPN=∠DCA+∠ADC=90°,∴PM⊥PN,故答案为:PM=PN,PM⊥PN;(2)△PMN是等腰直角三角形.由旋转知,∠BAD=∠CAE,∵AB=AC,AD=AE,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,BD=CE,利用三角形的中位线得,PN=BD,PM=CE,∴PM=PN,∴△PMN是等腰三角形,同(1)的方法得,PM∥CE,∴∠DPM=∠DCE,同(1)的方法得,PN∥BD,∴∠PNC=∠DBC,∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC=∠BCE+∠DBC=∠ACB+∠ACE+∠DBC=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,∵∠BAC=90°,∴∠ACB+∠ABC=90°,∴∠MPN=90°,∴△PMN是等腰直角三角形;(3)方法1:如图2,同(2)的方法得,△PMN是等腰直角三角形,∴MN最大时,△PMN的面积最大,∴DE∥BC且DE在顶点A上面,∴MN最大=AM+AN,连接AM,AN,在△ADE中,AD=AE=4,∠DAE=90°,∴AM=2,在Rt△ABC中,AB=AC=10,AN=5,=2+5=7,∴MN最大∴S=PM2=×MN2=×(7)2=.△PMN最大方法2:由(2)知,△PMN是等腰直角三角形,PM=PN=BD,∴PM最大时,△PMN面积最大,∴点D在BA的延长线上,∴BD=AB+AD=14,∴PM=7,=PM2=×72=.∴S△PMN最大【点评】此题属于几何变换综合题,主要考查了三角形的中位线定理,等腰直角三角形的判定和性质,全等三角形的判断和性质,直角三角形的性质的综合运用;解(1)的关键是判断出PM=CE,PN=BD,解(2)的关键是判断出△ABD≌△ACE,解(3)的关键是判断出MN最大时,△PMN的面积最大.。
合肥市包河区2019年中考数学一模试卷含答案解析

安徽省合肥市包河区2019年中考数学一模试卷(解析版)一、选择题(本大题共10小题,每小题4分,满分40分)1.下面四个算式的计算结果为负数的是()A.(﹣1)﹣(﹣2) B.(﹣1)×(﹣2) C.(﹣1)+(﹣2)D.(﹣1)÷(﹣2)2.大树的价值很多,可以产生有毒气体,防止大气污染,增加土壤肥力,涵养水源,为鸟类及其他动物提供繁衍场所等价值,累计计算,一棵50年树龄的大树总计创造价值超过160万元,其中160万元用科学记数法表示为()A.1.6×105B.1.6×106C.1.6×107D.1.6×1083.以下各式计算结果等于a5的是()A.a2+a3B.(a2)3C.a10÷a2D.a2•a34.如图,一个圆柱体在正方体上沿虚线从左向右平移,平移过程中不变的是()A.主视图B.左视图C.俯视图D.主视图和俯视图5.已知:<x<2﹣1,在数轴上用点P表示x,可能正确的是()A.B.C.D.6.九(1)、九(2)两班各有2人寒假平均每天的课外阅读时间都在2小时以上,学校决定从这4人中任选2人参加全区中学生课外阅读交流活动,则选出的2人正好一个来自九(1)班,一个来自九(2)班的概率是()A.B.C.D.7.暑假开展中学生“一对一”对外交流活动,海川中学交流团的同学计划给国外同学每人买一件同样的纪念品,他们共筹集了60元钱,并看中了一种礼物,如果每人买一件,则正好缺一件礼物的钱,他们与商家商议,最后商家同意以八折优惠卖给同学们,这样不仅每人有了一件礼物,还剩余4元钱,设礼物原价为x元/件,则下列方程正确的是()A.=+1 B.=+1C.=+1 D.=﹣18.计算724次方的结果的个位数字是()A.7 B.9 C.3 D.19.如图,在矩形ABCD中,AB=a,AD=b,分别延长AB至E,AD至F,使得AF=AE=c (b<a<c).连结EF,交BC于M,交CD于N,则△AMN的面积为()A.c(a+b﹣c)B.c(b+c﹣a)C.c(a+c﹣b)D.a(b+c﹣a)10.如图,△ABC中,AB=AC,D为BC中点,在BA的延长线上取一点E,使得ED=EC,ED与AC交于点F,则的值为()A.B.C.D.二、填空题(本大题共4小题,每小题5分,满分20分)11.分解因式:2x3﹣8xy2=.12.如图,AB、CD是⊙O的直径,DE为⊙O的一条弦,已知∠AOC=45°,∠CDE=30°,则∠BDE的度数为.13.如图,在Rt △ABC 中,∠C=90°,AC=BC ,将∠A 沿直线MN 折叠,使点A 落在BC 边上的点D 处,若∠MDC=45°,则S △MND :S △BDN 的值是 .14.已知关于x 的两个二次函数y 1=a 1x 2+b 1x +c 1和y 2=a 2x 2+b 2x +c 2的图象关于原点O 成中心对称,给出以下结论:①a 1c 1=a 2c 2②b 1c 1+b 2c 2=0;③函数y 3=y 1﹣y 2的图象关于y 轴对称;④函数y 4=y 1+y 2的图象是抛物线则以上结论一定成立的是 (把所有正确结论的序号都填在横线上)三、解答题(本大题共2小题,每小题8分,共16分)15.先化简,再求值:a (a +2b )﹣(a ﹣2b )2,其中a=,b=﹣2.16.解方程:x 2+1=2(x +1)四、解答题(共2小题,每小题8分,满分16分)17.如图,在边长为1 的小正方形组成的网格中,给出了格点△ABC (顶点是网格线的交点)和格点O ,按要求画出格点△A 1B 1C 1和格点△A 2B 2C 2.(1)将△ABC 绕O 点顺时针旋转90°,得到△A 1B 1C 1;(2)以A 1为一个顶点,在网格内画格点△A 1B 2C 2,使得△A 1B 1C 1∽△A 1B 2C 2,且相似比为1:2.18.如图,小明在河的南岸A点测得北岸上的M点在正北方向,N点在北偏西30°方向,他向西行6千米到达B点,测得M点在北偏东45°方向,已知南北两岸互相平行,求MN 的距离(结果保留根号)五、解答题(共2小题,每小题10分,满分20分)19.(10分)(2019•包河区一模)某区教育局对本区教师个人的每学期绩效工资进行抽样问卷调查,并将调查结果整理后制作了如下不完整的统计图表:某区教师个人绩效工资统计表根据以上图表中信息回答下列问题:(1)直接写出结果a=;b=;c=;并将统计图表补充完整;(2)教师个人的每学期绩效工资的中位数出现在第组;(3)已知该区共有教师5000人,请你估计教师个人每学期绩效工资在6000元以上(不含6000元)的人数.20.(10分)(2019•包河区一模)已知:Rt△ABC的直角顶点C,另一顶点A及斜边AB 的中点D都在⊙O上,BC交⊙O于E.(1)如图1,若AC=CE,求∠B的度数;(2)如图2,若AC=6,BC=8,求⊙O的半径.六、解答题(共1小题,满分12分)21.(12分)(2019•包河区一模)某汽车专卖店计划购进甲、乙两种新型汽车共140辆,这两种汽车的进价、售价如下表:(1)若该汽车专卖店投入1000万元资金进货,则购进甲乙两种新型汽车各多少辆?(2)若该汽车专卖店准备乙种型号汽车的进货量不超过甲种型号汽车的进货量的3倍,应怎样安排进货方案,才能使该汽车专卖店售完这两种新型汽车后获得的利润最大?最大利润是多少?(其它成本不计)七、解答题(共1小题,满分12分)22.(12分)(2019•包河区一模)如图1,在▱ABCD中,E、F两点分别从A、D两点出发,以相同的速度在AD、DC边上匀速运动(E、F两点不与▱ABCD的顶点重合),连结BE、BF、EF.(1)如图2,当▱ABCD是矩形,AB=6,AD=8,∠BEF=90°时,求AE的长.(2)如图2,当▱ABCD是菱形,且∠DAB=60°时,试判断△BEF的形状,并说明理由;(3)如图3,在第(2)题的条件下,设菱形ABCD的边长为a,AE的长为x,试求△BEF 面积y与x的函数关系式,并求出y的最小值.八、解答题(共1小题,满分14分)23.(14分)(2019•包河区一模)如图,直线y=k1x+b1与反比例函数y=的图象及坐标轴依次相交于A、B、C、D四点,且点A坐标为(﹣3,),点B坐标为(1,n).(1)求反比例函数及一次函数的解析式;(2)求证:AC=BD;(3)若将一次函数的图象上下平移若干个单位后得到y=k1x+n,其与反比例函数图象及两坐标轴的交点仍然依次为A、B、C、D.(2)中的结论还成立吗?请写出理由,对于任意k<0的直线y=kx+b.(2)中的结论还成立吗?(请直接写出结论)2019年安徽省合肥市包河区中考数学一模试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,满分40分)1.下面四个算式的计算结果为负数的是()A.(﹣1)﹣(﹣2) B.(﹣1)×(﹣2) C.(﹣1)+(﹣2)D.(﹣1)÷(﹣2)【考点】有理数的混合运算;正数和负数.【分析】原式各项利用加减乘除法则计算得到结果,即可作出判断.【解答】解:A、原式=﹣1+2=1,不合题意;B、原式=2,不合题意;C、原式=﹣3,符合题意;D、原式=,不合题意,故选C【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.2.大树的价值很多,可以产生有毒气体,防止大气污染,增加土壤肥力,涵养水源,为鸟类及其他动物提供繁衍场所等价值,累计计算,一棵50年树龄的大树总计创造价值超过160万元,其中160万元用科学记数法表示为()A.1.6×105B.1.6×106C.1.6×107D.1.6×108【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,整数位数减1即可.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将160万用科学记数法表示为1.6×106.故选B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.以下各式计算结果等于a5的是()A.a2+a3B.(a2)3C.a10÷a2D.a2•a3【考点】同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据同底数幂的乘法、同底数幂的除法、幂的乘方与积的乘方的运算法则求解即可.【解答】解:A、a2+a3≠a5,本选项错误;B、(a2)3=a6≠a5,本选项错误;C、a10÷a2=a8≠a5,本选项错误;D、a2•a3=a5,本选项正确.故选D.【点评】本题考查了同底数幂的乘法、同底数幂的除法、幂的乘方与积的乘方的知识,解答本题的关键在于熟练掌握各知识点的概念和运算法则.4.如图,一个圆柱体在正方体上沿虚线从左向右平移,平移过程中不变的是()A.主视图B.左视图C.俯视图D.主视图和俯视图【考点】平移的性质;简单组合体的三视图.【分析】主视图是从正面观察得到的图形,左视图是从左侧面观察得到的图形,俯视图是从上面观察得到的图形,结合图形即可作出判断.【解答】解:根据图形,可得:平移过程中不变的是的左视图,变化的是主视图和俯视图.故选:B.【点评】此题主要考查了平移的性质和应用,以及简单组合体的三视图,要熟练掌握,解答此题的关键是掌握主视图、俯视图以及左视图的观察方法.5.已知:<x<2﹣1,在数轴上用点P表示x,可能正确的是()A.B.C.D.【考点】估算无理数的大小;实数与数轴.【分析】先求出与的值,再确定点P在x轴上的位置.【解答】解:∵≈3.162,2≈3.899,∴3.162<x<3.899,故选:C【点评】本题是考查无理数与有理数的大小比较,及无理数在数轴上的位置.6.九(1)、九(2)两班各有2人寒假平均每天的课外阅读时间都在2小时以上,学校决定从这4人中任选2人参加全区中学生课外阅读交流活动,则选出的2人正好一个来自九(1)班,一个来自九(2)班的概率是()A.B.C.D.【考点】列表法与树状图法.【分析】首先根据题意画树状图,然后由树状图即可求得所有等可能的结果,再利用概率公式求解即可.【解答】解:由题意可得:设九(1)班两人分别是:A1,A2、九(2)班两人分别是:B1,B2,列树状图得:,一共有12种可能,选出的2人正好一个来自九(1)班,一个来自九(2)班的有8种可能,故选出的2人正好一个来自九(1)班,一个来自九(2)班的概率是:=.故选:D.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.7.暑假开展中学生“一对一”对外交流活动,海川中学交流团的同学计划给国外同学每人买一件同样的纪念品,他们共筹集了60元钱,并看中了一种礼物,如果每人买一件,则正好缺一件礼物的钱,他们与商家商议,最后商家同意以八折优惠卖给同学们,这样不仅每人有了一件礼物,还剩余4元钱,设礼物原价为x元/件,则下列方程正确的是()A.=+1 B.=+1C.=+1 D.=﹣1【考点】由实际问题抽象出分式方程.【分析】根据题意假设出礼物原价为x元/件,进而得出分式方程即可.【解答】解:设礼物原价为x元/件,可得:故选A【点评】此题主要考查了分式方程的应用,得出正确的等量关系是解题关键.8.计算724次方的结果的个位数字是()A.7 B.9 C.3 D.1【考点】尾数特征;有理数的乘方.【分析】先分别求出71、72、73、74、75、76的数值可得出个位数成规律变化,继而可得出答案.【解答】解:71=7,72=49、73=343、74=2401、75=16807、76=117649,∴可得出个位数分别为7、9、3、1且呈周期性变化,又∵=6,724的个位数字与74的个位数字相同为:1.故选:D.【点评】本题考查尾数的特征,难度中等,在解答本题时注意先计算出前几个数的尾数的值,从而得出尾数成周期性变化的规律,继而得出答案.9.如图,在矩形ABCD中,AB=a,AD=b,分别延长AB至E,AD至F,使得AF=AE=c (b<a<c).连结EF,交BC于M,交CD于N,则△AMN的面积为()A.c(a+b﹣c)B.c(b+c﹣a)C.c(a+c﹣b)D.a(b+c﹣a)【考点】矩形的性质;三角形的面积.【分析】根据题意求出FN、ME的长与Rt△EAF的斜边上的高代入三角形面积公式计算即可.【解答】解:∵四边形ABCD是矩形,∴∠EAF=90°,∵AE=AF=c,∴∠E=∠F=45°,∴△FDN与△MBE均为等腰直角三角形,∴BE=BM=c﹣a,DF=DN=c﹣b,FN=(c﹣a),ME=(c﹣b),MN=﹣(c﹣a)﹣(c﹣b)=a+b﹣ c∵Rt△EAF斜边上的高h=c,=MN•h=(a+b﹣c)•c=c(a+b﹣c).∴S△AMN故:选A【点评】本题考查了矩形的性质以及等腰直角三角形的性质、三角形的面积等知识点,解题的关键是求出FN、ME的长与Rt△EAF的斜边上的高.10.如图,△ABC中,AB=AC,D为BC中点,在BA的延长线上取一点E,使得ED=EC,ED与AC交于点F,则的值为()A.B.C.D.【考点】平行线分线段成比例.【分析】过点D作DG∥AC,交EB于点G,连接AD,则G为AB的中点,∠EAC=∠DGE,得出DG是△ABC的中位线,由三角形中位线定理得出AC=2DG,由等腰三角形和三角形的外角性质证出∠ACE=∠EDG,由AAS证明△ACE≌△GED,得出AE=DG,由等腰三角形得性质和直角三角形斜边上的中线性质得出DG=AB=AG=BG,得出AE=AG,由平行线分线段成比例定理得出DG=2AF,因此AC=4AF,即可得出结果.【解答】解:过点D作DG∥AC,交EB于点G,连接AD,如图所示:∵D为BC中点,DG∥AC,∴G为AB的中点,∠EAC=∠DGE,∴DG是△ABC的中位线,∴AC=2DG,∵AB=AC,ED=EC,∴∠B=∠ACB,∠EDC=∠ECD,∵∠EDC=∠B+∠DEG,∠ECD=∠ACB+∠ACE,∴∠ACE=∠EDG,在△ACE和△GED中,,∴△ACE≌△GED(AAS),∴AE=DG,∵AB=AC,D为BC中点,∴AD⊥BC,∴∠ADB=90°,∴DG=AB=AG=BG,∴AE=AG,∵DG∥AC,∴AF:DG=AE:GE=1:2,即DG=2AF,∴AC=4AF,∴=;故选:B.【点评】本题考查了等腰三角形的性质、全等三角形的判定与性质、平行线分线段成比例定理、三角形中位线定理、直角三角形斜边上的中线性质等知识;本题有一定难度,证明三角形全等是解决问题的关键.二、填空题(本大题共4小题,每小题5分,满分20分)11.分解因式:2x3﹣8xy2=.【考点】提公因式法与公式法的综合运用.【分析】先提取公因式2x,再根据平方差公式进行二次分解即可求得答案.【解答】解:∵2x3﹣8xy2=2x(x2﹣4y2)=2x(x+2y)(x﹣2y).故答案为:2x(x+2y)(x﹣2y).【点评】本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次分解,注意分解要彻底.12.如图,AB、CD是⊙O的直径,DE为⊙O的一条弦,已知∠AOC=45°,∠CDE=30°,则∠BDE的度数为.【考点】圆周角定理.【分析】先求出∠BDE 所对弧所对的圆心角的度数,再转化成同弧所对的圆周角即可. 【解答】解:如图,连接OE ,∵∠CDE=30°, ∴∠COE=60°, ∵∠AOC=45°,∴∠BOE=180°﹣∠AOC ﹣∠COE=75°, ∴∠BDE=∠BOE=37.5° 故答案为:37.5°.【点评】此题是圆周角定理题目,主要考查了邻补角,圆周角定理,解本题的关键是求出∠BOE ,此题也可以连接AD 直接用直径所对的圆周角是直角来计算.13.如图,在Rt △ABC 中,∠C=90°,AC=BC ,将∠A 沿直线MN 折叠,使点A 落在BC 边上的点D 处,若∠MDC=45°,则S △MND :S △BDN 的值是 .【考点】翻折变换(折叠问题).【分析】要求S △MND :S △BDN 的值,只要求的S △AMN :S △BDN 的值即可,根据题题目中的信息可以求得这两个三角形面积的比值. 【解答】解:由题意可得, △AMN ≌△MND ,∵Rt △ABC 中,∠C=90°,AC=BC ,∠MDC=45°, ∴∠A=∠B=∠MDN=45°, ∴∠NDC=∠MDN +∠MDC=90°,设DC=a ,则MC=a ,MD=AM=BD=a ,∴,∴S △MND :S △BDN 的值是:2,故答案为::2.【点评】本题考查翻折变化,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.14.已知关于x 的两个二次函数y 1=a 1x 2+b 1x +c 1和y 2=a 2x 2+b 2x +c 2的图象关于原点O 成中心对称,给出以下结论: ①a 1c 1=a 2c 2 ②b 1c 1+b 2c 2=0;③函数y 3=y 1﹣y 2的图象关于y 轴对称; ④函数y 4=y 1+y 2的图象是抛物线则以上结论一定成立的是 (把所有正确结论的序号都填在横线上) 【考点】二次函数图象与几何变换.【分析】先求出二次函数y 1关于原点对称的函数解析式,根据二次函数y 1、y 2关于原点对称,从而得出﹣a 1=a 2、b 1=b 2、﹣c 1=c 2,即可判断①②,根据y 3=y 1﹣y 2、y 4=y 1+y 2列出相应函数解析式,由以上结论得出y 3=2a 1x 2+2c 1、y 4=2b 1x ,即可判断③④.【解答】解:①∵y 1=a 1x 2+b 1x +c 1和y 2=a 2x 2+b 2x +c 2的图象关于原点O 成中心对称, 且y 1=a 1x 2+b 1x +c 1关于原点对称的二次函数为﹣y 1=a 1x 2﹣b 1x +c 1,即y 1=﹣a 1x 2+b 1x ﹣c 1 ∴﹣a 1=a 2,b 1=b 2,﹣c 1=c 2, ∴a 1c 1=a 2c 2,故①正确;②﹣b 1c 1=b 2c 2,即b 1c 1+b 2c 2=0,故②正确;③∵y 3=y 1﹣y 2=a 1x 2+b 1x +c 1﹣(a 2x 2+b 2x +c 2) =(a 1﹣a 2)x 2+(b 1﹣b 2)x +(c 1﹣c 2) =2a 1x 2+2c 1,∴函数y3=y1﹣y2的图象关于y轴对称,故③正确;④∵y4=y1+y2=a1x2+b1x+c1+(a2x2+b2x+c2)=(a1+a2)x2+(b1+b2)x+(c1+c2)=2b1x,∴函数y4=y1+y2的图象过原点的一条直线,故④错误;故答案为:①②③.【点评】本题主要考查二次函数图象与几何变换,根据题意得出﹣a1=a2、b1=b2、﹣c1=c2是解题的关键.三、解答题(本大题共2小题,每小题8分,共16分)15.先化简,再求值:a(a+2b)﹣(a﹣2b)2,其中a=,b=﹣2.【考点】整式的混合运算—化简求值.【分析】先根据整式的乘法法则化简整式,再将字母的值代入结果计算求值即可.【解答】解:a(a+2b)﹣(a﹣2b)2=a2+2ab﹣a2+4ab﹣4b2=6ab﹣4b2当a=,b=﹣2时,原式=6××(﹣2)﹣4×4=﹣6﹣16=﹣22.【点评】本题主要考查了整式的混合运算,解题时先按运算顺序把整式化简,再把对应字母的值代入求整式的值.有乘方、乘除的混合运算中,要按照先乘方后乘除的顺序运算.16.解方程:x2+1=2(x+1)【考点】解一元二次方程-公式法.【分析】根据配方法,可得方程的解.【解答】解:去括号、移项,得x2+2x=1,配方,得(x+1)2=1+1,解得x1=1+,x2=﹣1﹣.【点评】本题考查了配方法解一元二次方程,利用了配方法解一元二次方程.四、解答题(共2小题,每小题8分,满分16分)17.如图,在边长为1 的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点)和格点O,按要求画出格点△A1B1C1和格点△A2B2C2.(1)将△ABC绕O点顺时针旋转90°,得到△A1B1C1;(2)以A1为一个顶点,在网格内画格点△A1B2C2,使得△A1B1C1∽△A1B2C2,且相似比为1:2.【考点】作图—相似变换;作图-旋转变换.【分析】(1)直接利用旋转的性质得出对应点位置进而得出答案;(2)直接利用位似图形的性质,结合位似中心得出答案.【解答】解:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A1B2C2,即为所求.【点评】此题主要考查了位似变换以及旋转变换,根据题意得出对应点位置是解题关键.18.如图,小明在河的南岸A点测得北岸上的M点在正北方向,N点在北偏西30°方向,他向西行6千米到达B点,测得M点在北偏东45°方向,已知南北两岸互相平行,求MN 的距离(结果保留根号)【考点】解直角三角形的应用-方向角问题.【分析】连结AM,在Rt△BAM中,AB=6千米,∠MBA=90°﹣45°=45°,根据三角函数可求AM,在Rt△AMN中,根据三角函数可求MN的距离.【解答】解:连结AM,在Rt△BAM中,AB=6千米,∠MBA=90°﹣45°=45°,则AM=AB=6千米,在Rt△AMN中,∠AMN=30°,则MN=AM•tan30°=2千米.故MN的距离是2千米.【点评】本题考查方位角、直角三角形、锐角三角函数的有关知识.解一般三角形的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.五、解答题(共2小题,每小题10分,满分20分)19.(10分)(2019•包河区一模)某区教育局对本区教师个人的每学期绩效工资进行抽样问卷调查,并将调查结果整理后制作了如下不完整的统计图表:某区教师个人绩效工资统计表根据以上图表中信息回答下列问题:(1)直接写出结果a=;b=;c=;并将统计图表补充完整;(2)教师个人的每学期绩效工资的中位数出现在第组;(3)已知该区共有教师5000人,请你估计教师个人每学期绩效工资在6000元以上(不含6000元)的人数.【考点】频数(率)分布直方图;用样本估计总体;频数(率)分布表;中位数.【分析】(1)利用A组的频数与频率可计算出调查的总人数C的值,再利用频数分布直方图得到a的值,则用a除以c可得到b的值,然后计算出C组的频数后补全统计图;(2)根据中位数定义求解;(3)利用样本估计总体,用5000乘以样本中D组和E组的频率和即可.【解答】解:(1)c=18÷0.15=120,a=36,b=36÷120=0.30;C组的人数为120﹣18﹣36﹣24﹣12=30(人)如图,(2)教师个人的每学期绩效工资的中位数出现在第C组;故答案为30,0.25;36,0.30,120,C;(3)5000×(0.20+0.10)=1500,所以估计教师个人每学期绩效工资在6000元以上(不含6000元)的人数为1500人.【点评】本题考查了频数(率)分布直方图:提高读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.也考查了用样本估计总体和中位数的定义.20.(10分)(2019•包河区一模)已知:Rt△ABC的直角顶点C,另一顶点A及斜边AB 的中点D都在⊙O上,BC交⊙O于E.(1)如图1,若AC=CE,求∠B的度数;(2)如图2,若AC=6,BC=8,求⊙O的半径.【考点】圆周角定理.【分析】(1)作辅助线,根据等腰直角三角形的性质得:∠CEA=45°,利用同弧所对的圆周角相等得:∠ADC=45°,运用外角定理得出∠B的度数;(2)作辅助线,构建相似三角形,证明△BDE∽△BCA,列比例式求出DE的长,最后利用勾股定理求直径AE,则半径为.【解答】解:(1)如图1,连接AE、DC,∵∠ECA=90°,且E、C、A三点都在⊙O上,∴AE是⊙O的直径,∵EC=AC,∴∠CEA=45°,∵D是斜边AB的中点,∴BD=DC,∴∠B=∠BCD,∵∠ADC=∠AEC=∠B+∠BCD=45°,∴∠B=45°÷2=22.5°;(2)如图2,连接DE、AE、CD,由(1)得:AE是⊙O的直径,∴∠ADE=90°,∵∠EBD=∠ABC,∠BDE=∠BCA=90°,∴△BDE∽△BCA,∴,∵D是斜边AB的中点,∴BD=AD,由勾股定理得:AB==10,∴BD=AD=AB=5,∴,∴DE=,∴AE===,∴OE=AE=,则⊙O的半径为.【点评】本题考查了圆中的基本性质和直角三角形斜边中线的性质,①直径所对的圆周角是直角,反之,90°的圆周角所对的弦是直径,②同弧所对的圆周角相等,③直角三角形斜边中线是斜边的一半.六、解答题(共1小题,满分12分)21.(12分)(2019•包河区一模)某汽车专卖店计划购进甲、乙两种新型汽车共140辆,这两种汽车的进价、售价如下表:(1)若该汽车专卖店投入1000万元资金进货,则购进甲乙两种新型汽车各多少辆?(2)若该汽车专卖店准备乙种型号汽车的进货量不超过甲种型号汽车的进货量的3倍,应怎样安排进货方案,才能使该汽车专卖店售完这两种新型汽车后获得的利润最大?最大利润是多少?(其它成本不计)【考点】一元一次不等式的应用;二元一次方程组的应用.【分析】(1)设购进甲种新型汽车x辆,购进乙种新型汽车y辆,根据“购进甲、乙两种新型汽车共140辆、该汽车专卖店投入1000万元资金进货”列方程组求解;(2)设购进a辆甲种新型汽车,则购进乙种新型车辆(140﹣a)辆,令该汽车专卖店售完这两种新型汽车后获得的利润为W,列出W关于a的函数关系式,由a的取值范围结合一次函数性质可得其最值情况.【解答】解:(1)设购进甲种新型汽车x辆,购进乙种新型汽车y辆,根据题意,得:,解得:,答:购进甲种新型汽车65辆,购进乙种新型汽车75辆;(2)设购进a辆甲种新型汽车,则购进乙种新型车辆(140﹣a)辆,令该汽车专卖店售完这两种新型汽车后获得的利润为W,根据题意,W=(8﹣5)a+(13﹣9)(140﹣a)=﹣a+560,∵140﹣a≤3a,且a为整数,∴a≥35,a为整数,∵W随a的增大而减小,∴当a=35时,W取得最大值,最大值为﹣35+560=525(万元),即购进35辆甲种新型汽车,则购进乙种新型车辆105辆,答:购进35辆甲种新型汽车,则购进乙种新型车辆105辆,获得的利润最大,最大利润是525万元.【点评】本题主要考查二元一次方程组与一次函数的实际应用能力,理解题意得出题目中蕴含的相等关系列出方程或函数解析式、熟练掌握一次函数性质是解题的关键.七、解答题(共1小题,满分12分)22.(12分)(2019•包河区一模)如图1,在▱ABCD中,E、F两点分别从A、D两点出发,以相同的速度在AD、DC边上匀速运动(E、F两点不与▱ABCD的顶点重合),连结BE、BF、EF.(1)如图2,当▱ABCD是矩形,AB=6,AD=8,∠BEF=90°时,求AE的长.(2)如图2,当▱ABCD是菱形,且∠DAB=60°时,试判断△BEF的形状,并说明理由;(3)如图3,在第(2)题的条件下,设菱形ABCD的边长为a,AE的长为x,试求△BEF 面积y与x的函数关系式,并求出y的最小值.【考点】四边形综合题.【分析】(1)依据矩形的性质可知∠D=∠A=90°,接下来,依据同角的余角相等可得到∠DFE=∠AEB,然后依据ASAS证明△DEF≌△ABE,依据全等三角形的性质可得到DE=6,从而可求得AE的长;(2)连结BD.首先证明△ADB为等边三角形,于是得到BD=BC,然后再证明△BED≌△BFC,△AEB≌△DFB,由全等三角形的性质得到BE=BF,∠ABE=∠DBF,接下来证明∠EBF=60°,从而可判定△EBF为等边三角形.(3)过点E作EM⊥AB,EN⊥DC,垂足为M、N,过点B作BG⊥DC,垂足为G.首先依据特殊锐角三角函数值可求得EM=x,NE=(a﹣x),BG=a,然后依据△EFB 的面积=菱形的面积﹣△AEB的面积﹣△DFE的面积﹣△FCB的面积列出y与x的函数关系式,最后依据二次函数的性质求解即可.【解答】解:(1)如图1所示:∵四边形ABCD为矩形,∴∠D=∠A=90°.∵∠BEF=90°,∴∠DEF+∠AEB=90°.又∵∠DEF+∠DFE=90°,∴∠DFE=∠AEB.在△DEF和△ABE中,∴△DEF≌△ABE.∴AB=DE=6.∴AE=AD﹣DE=8﹣6=2.(2)如图2所示:连结BD.∵四边形ABCD为菱形,∠A=60°,∴AD=AB=DC=BC,∠EDB=60°.∵∠A=60°,AD=AB,∴△ADB为等边三角形.∴AD=AB=BD.∴DB=BC.∵AD=DC,AE=DF,∴DE=FC.在△BED和△BFC中,,∴△BED≌△BFC.∴BE=BF.在△AEB和△DFB中,∴△AEB≌△DFB.∴∠ABE=∠DBF.∴∠EBF=∠EBD+∠DBF=∠ABE+∠EBD=60°.∴△EBF为等边三角形.(3)如图3所示:过点E作EM⊥AB,EN⊥DC,垂足为M、N,过点B作BG⊥DC,垂足为G.∵AE=DF=x,∴DE=FC=a﹣x.∵∠A=∠NDE=∠C=60°,∴EM=x,NE=(a﹣x),BG=a.∵△EFB的面积=菱形的面积﹣△AEB的面积﹣△DFE的面积﹣△FCB的面积,∴y=a•a﹣a•x﹣•x•(a﹣x)﹣•(a﹣x)•a.∴y=x2﹣ax+a2.∴当x=﹣=时,y取得最小值为a2.【点评】本题主要考查的是四边形的综合应用,解答本题主要应用了菱形的性质、矩形的性质、全等三角形的性质和判定、等边三角形的判定、二次函数的顶点坐标公式,依据△EFB的面积=菱形的面积﹣△AEB的面积﹣△DFE的面积﹣△FCB的面积列出y与x的函数关系式是解题的关键.八、解答题(共1小题,满分14分)23.(14分)(2019•包河区一模)如图,直线y=k1x+b1与反比例函数y=的图象及坐标轴依次相交于A、B、C、D四点,且点A坐标为(﹣3,),点B坐标为(1,n).(1)求反比例函数及一次函数的解析式;(2)求证:AC=BD;(3)若将一次函数的图象上下平移若干个单位后得到y=k1x+n,其与反比例函数图象及两坐标轴的交点仍然依次为A、B、C、D.(2)中的结论还成立吗?请写出理由,对于任意k<0的直线y=kx+b.(2)中的结论还成立吗?(请直接写出结论)【考点】反比例函数综合题.【分析】(1)用待定系数法求出直线解析式和反比例函数解析式;(2)确定出点A,B,C,D,坐标,利用两点间距离公式求解得AC=BD;(3)①确定出点A,B,C,D,坐标,利用两点间距离公式求解得AC=BD;②确定出点A,B,C,D,坐标,利用两点间距离公式求解得AC=BD;【解答】解:(1)∵点A坐标为(﹣3,),且在反比例函数y=的图象上,∴k2=xy=﹣3×=﹣,∴反比例函数的解析式为:y=﹣;∵点B坐标为(1,n),且在反比例函数y=的图象上,∴n=﹣,∴点B坐标为(1,﹣);∴,解得:,∴一次函数的解析式为:y=﹣x﹣1;(2)∵当x=0时,y=﹣1,则点D的坐标为:(0,﹣1);当y=0时,x=﹣2,则点C的坐标为:(﹣2,0);∴AC==,BD==,∴AC=BD;(3)①成立,理由:∵将一次函数的图象上下平移若干个单位后得到y=k1x+n,∴y=﹣x+n,∴C(2n,0),D(0,n),∵反比例函数的解析式为:y=﹣和一次函数y=﹣x+n,∴它两的交点坐标为A(n+,),B(n﹣,),∴AC=,BD=,∴AC=BD②AC=BD,理由:同①的方法求出直线y=kx+b与x,y轴的交点坐标C(﹣,0),D(0,b),联立直线解析式和反比例函数解析式y=﹣求出交点坐标A(,b+),B(,b+),用平面坐标系内,两点间的距离公式求解得,AC=BD.【点评】此题是反比例函数综合题,主要考查了待定系数法,两点间距离公式,解本题的关键求出直线和反比例函数的交点坐标.难点是用两点间距离公式求解AC,BD.。
合肥市包河区2019年中考数学一模试卷附答案解析

合肥市包河区2019年中考一模数学试卷一.选择题(共10小题,满分40分,每小题4分)1.|﹣2|=()A.0B.﹣2C.2D.12.计算(﹣p)8•(﹣p2)3•[(﹣p)3]2的结果是()A.﹣p20B.p20C.﹣p18D.p183.十九大报告指出,我国目前经济保持了中高速增长,在世界主要国家中名列前茅,国内生产总值从54万亿元增长80万亿元,稳居世界第二,其中80万亿用科学记数法表示为()A.8×1012B.8×1013C.8×1014D.0.8×10134.从图1的正方体上截去一个三棱锥,得到一个几何体,如图2.从正面看图2的几何体,得到的平面图形是()A.B.C.D.5.下列因式分解正确的是()A.x2﹣xy+x=x(x﹣y)B.a3+2a2b+ab2=a(a+b)2C.x2﹣2x+4=(x﹣1)2+3D.ax2﹣9=a(x+3)(x﹣3)6.一元二次方程2x2﹣2x﹣1=0的较大实数根在下列哪两个相邻的整数之间()A.4,3B.3,2C.2,1D.1,07.如图是某班学生外出乘车、步行、骑车的人数条形统计图和扇形统计图,则该班共有学生人数是()A.8B.10C.12D.408.如图,△ABC中,BC=4,⊙P与△ABC的边或边的延长线相切.若⊙P半径为2,△ABC的面积为5,则△ABC的周长为()A.8B.10C.13D.149.等腰三角形一腰上的高与另一腰所在直线的夹角为30°,则这个等腰三角形的顶角为()A.60°或120°B.30°或150°C.30°或120°D.60°10.如图,一次函数y1=ax+b图象和反比例函数y2=图象交于A(1,2),B(﹣2,﹣1)两点,若y1<y2,则x的取值范围是()A.x<﹣2B.x<﹣2或0<x<1C.x<1D.﹣2<x<0或x>1二.填空题(共4小题,满分20分,每小题5分)11.已知a为实数,那么等于.12.化简:=.13.如图,AB与⊙O相切于点B,AO的延长线交⊙O于点C,连接BC,若∠ABC=120°,OC=3,则弧BC的长为(结果保留π).14.如图,在△ABC中,若AB=AC,BC=2BD=6,DE⊥AC,则AC•EC的值是.三.解答题(共2小题,满分16分,每小题8分)15.计算:(x﹣2)2﹣(x+3)(x﹣3)16.桑植县为践行“绿水青山就是金山银山”的理念,保护生态环境,某村计划在荒山上植树1200棵,实际每天植树的数量是原计划的1.5倍,结果比原计划提前了5天完成任务,求原计划每天植树多少棵?四.解答题(共2小题,满分16分,每小题8分)17.在4×4的方格中,△ABC的三个顶点都在格点上.(1)在图1中画出与△ABC成轴对称且与△ABC有公共边的格点三角形(画出一个即可);(2)在图2、图3中各作一格点D,使得△ACD∽△DCB,并请连结AD、CD、BD.18.如图,吊车在水平地面上吊起货物时,吊绳BC与地面保持垂直,吊臂AB与水平线的夹角为64°,吊臂底部A距地面1.5m.(计算结果精确到0.1m,参考数据sin64°≈0.90,cos64°≈0.44,tan64°≈2.05)(1)当吊臂底部A与货物的水平距离AC为5m时,吊臂AB的长为m.(2)如果该吊车吊臂的最大长度AD为20m,那么从地面上吊起货物的最大高度是多少?(吊钩的长度与货物的高度忽略不计)五.解答题(共2小题,满分20分,每小题10分)19.如图,在四边形ABCD中,AD∥BC,∠B=90°,AB=8cm,AD=24cm,BC=26cm,动点P从点A出发,以1cm/s的速度向点D运动;动点Q从点C同时出发,以3cm/s的速度向点B运动.规定当其中一个动点到达端点时,另一个动点也随之停止运动.设运动时间为t,求:(1)当t为何值时,PQ∥CD?(2)当t为何值时,PQ=CD?20.矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(6,8),D是OA的中点,点E在AB上,当△CDE的周长最小时,求点E的坐标.六.解答题(共1小题,满分12分,每小题12分)21.钦州市某中学为了解本校学生阅读教育、科技、体育、艺术四类课外书的喜爱情况,随机抽取了部分学生进行问卷调查,在此次调查中,甲、乙两班分别有2人特别喜爱阅读科技书报,若从这4人中随机抽取2人去参加科普比赛活动,请用列表法或画树状图的方法,求所抽取的2人来自不同班级的概率.七.解答题(共1小题,满分12分,每小题12分)22.某公司生产的某种产品每件成本为40元,经市场调查整理出如下信息:①该产品90天内日销售量(m件)与时间(第x天)满足一次函数关系,部分数据如下表:时间(第x天)13610…198194188180…日销售量(m件)②该产品90天内每天的销售价格与时间(第x天)的关系如下表:时间(第x天)1≤x<5050≤x≤90销售价格(元/件)x+60100(1)求m关于x的一次函数表达式;(2)设销售该产品每天利润为y元,请写出y关于x的函数表达式,并求出在90天内该产品哪天的销售利润最大?最大利润是多少?(3)在该产品销售的过程中,共有多少天销售利润不低于5400元,请直接写出结果.八.解答题(共1小题,满分14分,每小题14分)23.如图1,在Rt△ABC中,∠A=90°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.(1)观察猜想:图1中,线段PM与PN的数量关系是,位置关系是;(2)探究证明:把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN的形状,并说明理由;(3)拓展延伸:把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.【分析】根据绝对值的定义进行填空即可.【解答】解:|﹣2|=2,故选:C.【点评】本题考查了绝对值,掌握绝对值的定义是解题的关键.2.【分析】直接利用积的乘方运算法则以及幂的乘方运算法则计算得出答案.【解答】解:(﹣p)8•(﹣p2)3•[(﹣p)3]2=p8•(﹣p6)•p6=﹣p20.故选:A.【点评】此题主要考查了积的乘方运算以及幂的乘方运算,正确掌握相关运算法则是解题关键.3.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:80万亿用科学记数法表示为8×1013.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看是,故选:D.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.5.【分析】直接利用提取公因式法以及公式法分解因式,进而分析即可.【解答】解:A、x2﹣xy+x=x(x﹣y+1),故此选项错误;B、a3+2a2b+ab2=a(a+b)2,正确;C、x2﹣2x+4=(x﹣1)2+3,不是因式分解,故此选项错误;D、ax2﹣9,无法分解因式,故此选项错误;故选:B.【点评】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.6.【分析】先求出方程的解,再求出的范围,最后即可得出答案.【解答】解:解方程2x2﹣2x﹣1=0得:x=,设a是方程2x2﹣2x﹣1=0较大的根,∴a=,∵1<<2,∴2<1+<3,即1<a<.故选:C.【点评】本题考查了解一元二次方程,估算无理数的大小的应用,题目是一道比较典型的题目,难度适中.7.【分析】此题首先根据乘车人数和所占总数的比例,求出总人数.【解答】解:该班的学生总人数为20÷50%=40(人),故选:D.【点评】本题考查扇形统计图及相关计算.在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比.8.【分析】根据三角形的面积公式以及切线长定理即可求出答案.【解答】解:连接PE 、PF 、PG ,AP , 由题意可知:∠PEC =∠PFA =PGA =90°, ∴S △PBC =BC •PE =×4×2=4,∴由切线长定理可知:S △PFC +S △PBG =S △PBC =4, ∴S 四边形AFPG =S △ABC +S △PFC +S △PBG +S △PBC =5+4+4=13, ∴由切线长定理可知:S △APG =S 四边形AFPG =,∴=×AG •PG ,∴AG =,由切线长定理可知:CE =CF ,BE =BG , ∴△ABC 的周长为AC +AB +CE +BE =AC +AB +CF +BG =AF +AG =2AG =13, 故选:C .【点评】本题考查切线长定理,解题的关键是画出辅助线,熟练运用切线长定理,本题属于中等题型.9.【分析】等腰三角形的高相对于三角形有三种位置关系,三角形内部,三角形的外部,三角形的边上.根据条件可知第三种高在三角形的边上这种情况不成了,因而应分两种情况进行讨论. 【解答】解:当高在三角形内部时(如图1),顶角是60°;当高在三角形外部时(如图2),顶角是120°.故选:A.【点评】此题主要考查等腰三角形的性质,熟记三角形的高相对于三角形的三种位置关系是解题的关键,本题易出现的错误是只是求出60°一种情况,把三角形简单的认为是锐角三角形.因此此题属于易错题.10.【分析】当y1<y2时,存在不等式ax+b<,不等式的解集即为一次函数图象在反比例函数图象下方时,所对应的自变量x的取值范围.【解答】解:∵A(1,2),B(﹣2,﹣1),∴由图可得,当y1<y2时,x的取值范围是x<﹣2或0<x<1,故选:B.【点评】本题主要考查了反比例函数与一次函数交点问题,从函数的角度看,就是寻求使一次函数值大于(或小于)反比例函数值的自变量x的取值范围;从函数图象的角度看,就是确定直线在双曲线上方(或下方)部分所有的点的横坐标所构成的集合.二.填空题(共4小题,满分20分,每小题5分)11.【分析】根据非负数的性质,只有a=0时,有意义,可求根式的值.【解答】解:根据非负数的性质a2≥0,根据二次根式的意义,﹣a2≥0,故只有a=0时,有意义,所以,=0.故填:0.【点评】本题考查了算术平方根.注意:平方数和算术平方根都是非负数,这是解答此题的关键.12.【分析】先计算括号内的加法、将除法转化为乘法,继而约分即可得.【解答】解:原式=(﹣)•=•=•=x﹣1,故答案为:x﹣1.【点评】本题主要考查分式的混合运算,解题的关键是熟练掌握分式的混合运算顺序和运算法则.13.【分析】根据切线的性质得到∠OBA=90°,求出∠OBC,根据三角形内角和定理求出∠BOC=120°,根据弧长公式计算即可.【解答】解:连接OB,∵AB与⊙O相切于点B,∴∠OBA=90°,∴∠OBC=∠ABC﹣∠ABO=30°,∵OB=OC,∴∠C=∠B=30°,∴∠BOC=120°,∴弧BC的长==2π,故答案为:2π.【点评】本题考查的是切线的性质、弧长的计算,掌握圆的切线垂直于经过切点的半径、弧长的计算公式是解题的关键.14.【分析】由等腰三角形的性质得到AD⊥BC,然后根据“两角法”证得△CDE∽△CAD,所以由该相似三角形的对应边成比例求得答案.【解答】解:如图,∵在△ABC中,若AB=AC,BC=2BD=6,∴AD⊥BC,CD=BD=3.又DE⊥AC,∴∠CED=∠CDA=90°.∵∠C=∠C,∴△CDE∽△CAD.∴=,即AC•EC=CD2=9.故答案是:9.【点评】考查了相似三角形的判定与性质,等腰三角形性质.本题关键是要懂得找相似三角形,利用相似三角形的性质求解.三.解答题(共2小题,满分16分,每小题8分)15.【分析】原式利用完全平方公式,以及平方差公式计算即可求出值.【解答】解:(x﹣2)2﹣(x+3)(x﹣3)=x2﹣4x+4﹣(x2﹣9)=x2﹣4x+4﹣x2+9=﹣4x+13.【点评】此题考查了平方差公式,以及完全平方公式,熟练掌握公式是解本题的关键.16.【分析】设原计划每天植树x棵,则实际每天植树1.5x棵,根据工作时间=工作总量÷工作效率结合实际比原计划提前了5天完成任务,即可得出关于x的分式方程,解之经检验后即可得出结论.【解答】解:设原计划每天植树x棵,则实际每天植树1.5x棵,根据题意得:﹣=5,解得:x=80,经检验,x=80是所列分式方程的解,且符合题意.答:原计划每天植树80棵.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.四.解答题(共2小题,满分16分,每小题8分)17.【分析】(1)利用相似三角形的性质得出答案;(2)利用相似三角形的性质得出D点位置.【解答】解:(1)如图所示:(2)如图所示:△ACD∽△DCB.【点评】此题主要考查了相似变换,正确得出对应点位置是解题关键.18.【分析】(1)根据直角三角形的性质和三角函数解答即可;(2)过点D作DH⊥地面于H,利用直角三角形的性质和三角函数解答即可.【解答】解:(1)在Rt△ABC中,∵∠BAC=64°,AC=5m,∴AB=(m);故答案为:11.4;(2)过点D作DH⊥地面于H,交水平线于点E,在Rt△ADE中,∵AD=20m,∠DAE=64°,EH=1.5m,∴DE=sin64°×AD≈20×0.9≈18(m),即DH=DE+EH=18+1.5=19.5(m),答:如果该吊车吊臂的最大长度AD为20m,那么从地面上吊起货物的最大高度是19.5m.【点评】本题考查解直角三角形、锐角三角函数等知识,解题的关键是添加辅助线,构造直角三角形,记住锐角三角函数的定义,属于中考常考题型.五.解答题(共2小题,满分20分,每小题10分)19.【分析】(1)由当PQ∥CD时,四边形PQCD为平行四边形,可得方程24﹣t=3t,解此方程即可求得答案;(2)根据PQ=CD,一种情况是:四边形PQCD为平行四边形,可得方程24﹣t=3t,一种情况是:四边形PQCD为等腰梯形,可求得当QC﹣PD=QC﹣EF=QF+EC=2CE,即3t=(24﹣t)+4时,四边形PQCD为等腰梯形,解此方程即可求得答案.【解答】解:根据题意得:PA=t,CQ=3t,则PD=AD﹣PA=24﹣t,(1)∵AD∥BC,即PD∥CQ,∴当PD=CQ时,四边形PQCD为平行四边形,∴PQ∥CD,即24﹣t=3t,解得:t=6,即当t=6时,PQ∥CD;(2)若要PQ=CD,分为两种情况:①当四边形PQCD为平行四边形时,即PD=CQ24﹣t=3t,解得:t=6,②当四边形PQCD为等腰梯形时,即CQ=PD+2(BC﹣AD)3t=24﹣t+4解得:t=7,即当t=6或t=7时,PQ=CD.【点评】此题考查了直角梯形的性质、平行四边形的判定、等腰梯形的判定以及全等三角形的判定与性质.此题难度适中,注意掌握数形结合思想与方程思想的应用.20.【分析】如图,作点D关于直线AB的对称点H,连接CH与AB的交点为E,此时△CDE的周长最小,先求出直线CH解析式,再求出直线CH与AB的交点即可解决问题.【解答】解:如图,作点D关于直线AB的对称点H,连接CH与AB的交点为E,此时△CDE的周长最小.∵D(3,0),A(6,0),∴H(9,0),∴直线CH解析式为y=﹣x+8,∴x=6时,y=,∴点E坐标(6,).【点评】本题考查矩形的性质、坐标与图形的性质、轴对称﹣最短问题、一次函数等知识,解题的关键是利用轴对称找到点E位置,学会利用一次函数解决交点问题,属于中考常考题型.六.解答题(共1小题,满分12分,每小题12分)21.【分析】根据题意先画出树状图,得出所有情况数,再根据概率公式即可得出答案.【解答】解:将两班报名的学生分别记为甲1、甲2、乙1、乙2,树状图如图所示:由树状图知共有12种等可能结果,其中抽取的2人来自不同班级的有8种结果,所以抽取的2人来自不同班级的概率为=.【点评】本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.七.解答题(共1小题,满分12分,每小题12分)22.【分析】(1)根据待定系数法解出一次函数解析式即可;(2)设利润为y元,则当1≤x<50时,y=﹣2x2+160x+4000;当50≤x≤90时,y=﹣120x+12000,分别求出各段上的最大值,比较即可得到结论;(3)根据1≤x<50和50≤x≤90时,由y≥5400求得x的范围,据此可得销售利润不低于5400元的天数.【解答】解:(1)∵m与x成一次函数,∴设m=kx+b,将x=1,m=198,x=3,m=194代入,得:,解得:.所以m关于x的一次函数表达式为m=﹣2x+200;(2)设销售该产品每天利润为y元,y关于x的函数表达式为:y=,当1≤x<50时,y=﹣2x2+160x+4000=﹣2(x﹣40)2+7200,∵﹣2<0,∴当x=40时,y有最大值,最大值是7200;当50≤x≤90时,y=﹣120x+12000,∵﹣120<0,∴y随x增大而减小,即当x=50时,y的值最大,最大值是6000;综上所述,当x=40时,y的值最大,最大值是7200,即在90天内该产品第40天的销售利润最大,最大利润是7200元;(3)当1≤x<50时,由y≥5400可得﹣2x2+160x+4000≥5400,解得:10≤x≤70,∵1≤x<50,∴10≤x<50;当50≤x≤90时,由y≥5400可得﹣120x+12000≥5400,解得:x≤55,∵50≤x≤90,∴50≤x≤55,综上,10≤x≤55,故在该产品销售的过程中,共有46天销售利润不低于5400元.【点评】本题主要考查二次函数的应用,解题的关键是理解题意根据销售问题中总利润的相等关系,结合x的取值范围列出分段函数解析式及二次函数和一次函数的性质.八.解答题(共1小题,满分14分,每小题14分)23.【分析】(1)利用三角形的中位线得出PM=CE,PN=BD,进而判断出BD=CE,即可得出结论,再利用三角形的中位线得出PM∥CE得出∠DPM=∠DCA,最后用互余即可得出结论;(2)先判断出△ABD≌△ACE,得出BD=CE,同(1)的方法得出PM=BD,PN=BD,即可得出PM=PN,同(1)的方法即可得出结论;(3)方法1:先判断出MN最大时,△PMN的面积最大,进而求出AN,AM,即可得出MN最大=AM+AN,最后用面积公式即可得出结论.方法2:先判断出BD最大时,△PMN的面积最大,而BD最大是AB+AD=14,即可得出结论.【解答】解:(1)∵点P,N是BC,CD的中点,∴PN∥BD,PN=BD,∵点P,M是CD,DE的中点,∴PM∥CE,PM=CE,∵AB=AC,AD=AE,∴BD=CE,∴PM=PN,∵PN∥BD,∴∠DPN=∠ADC,∵PM∥CE,∴∠DPM=∠DCA,∵∠BAC=90°,∴∠ADC+∠ACD=90°,∴∠MPN=∠DPM+∠DPN=∠DCA+∠ADC=90°,∴PM⊥PN,故答案为:PM=PN,PM⊥PN;(2)△PMN是等腰直角三角形.由旋转知,∠BAD=∠CAE,∵AB=AC,AD=AE,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,BD=CE,利用三角形的中位线得,PN=BD,PM=CE,∴PM=PN,∴△PMN是等腰三角形,同(1)的方法得,PM∥CE,∴∠DPM=∠DCE,同(1)的方法得,PN∥BD,∴∠PNC=∠DBC,∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC=∠BCE+∠DBC=∠ACB+∠ACE+∠DBC=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,∵∠BAC=90°,∴∠ACB+∠ABC=90°,∴∠MPN=90°,∴△PMN是等腰直角三角形;(3)方法1:如图2,同(2)的方法得,△PMN是等腰直角三角形,∴MN最大时,△PMN的面积最大,∴DE∥BC且DE在顶点A上面,∴MN最大=AM+AN,连接AM,AN,在△ADE中,AD=AE=4,∠DAE=90°,∴AM=2,=2+5=7,在Rt△ABC中,AB=AC=10,AN=5,∴MN最大=PM2=×MN2=×(7)2=.∴S△PMN最大方法2:由(2)知,△PMN是等腰直角三角形,PM=PN=BD,∴PM最大时,△PMN面积最大,∴点D在BA的延长线上,∴BD=AB+AD=14,∴PM=7,=PM2=×72=.∴S△PMN最大【点评】此题属于几何变换综合题,主要考查了三角形的中位线定理,等腰直角三角形的判定和性质,全等三角形的判断和性质,直角三角形的性质的综合运用;解(1)的关键是判断出PM=CE,PN=BD,解(2)的关键是判断出△ABD≌△ACE,解(3)的关键是判断出MN最大时,△PMN 的面积最大.。
安徽省合肥市十校联考2019年中考数学一模试卷(含解析)

2019年安徽省合肥市十校联考中考数学一模试卷一•选择题(共10小题,满分40分,每小题4分)1. a,b是有理数,它们在数轴上的对应点的位置如图所示,把a,- a, b,- b按照从小到大的顺序排列()a a hA. - b v- a v a v bB.- a v- b v a v bC.- b v a v- a v bD.—b v b v- a v a2. 2018年10月24日港珠澳大桥全线通车,港珠澳大桥东起香港国际机场附近的香港口岸人工岛,向西横跨伶仃洋海域后连接珠海和澳门人工岛,止于珠海洪湾,它是世界上最长的跨海大桥,被称为“新世界七大奇迹之一”,港珠澳大桥总长度55000米,则数据55000用科学记数法表示为()A. 55 X 105B. 5.5 X 104C. 0.55 X 105D. 5.5 X 1053. 下列运算正确的是()A. 6x3- 5x2= xB. (- 2a)2=- 2a2C.(a-b)2= a2- b2D.- 2 (a- 1)=- 2a+24. 如图,直线l // m// n,等边△ ABC的顶点B、C分别在直线n和m上,边BC与直线n所夹的角为25°,则/ a的度数为()I \ m ■ n *t I iA. 25 °B. 45 °C. 35°D. 30°5. 如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是()A 田B 土C出 D EF6. 在一次中学生田径运动会上,参加跳远的15名运动员的成绩如下表所示成绩(米)4.50 4.60 4.65 4.70 4.75 4.80 人数232 3417. 如图是二次函数 y = ax 2+bx +c (a * 0)的图象,根据图象信息,下列结论错误的是(面积记作S ,四边形 AAaBzB 的面积记作 5,四边形 的面积记作 &,•••,四边形 A —1ABBA. 4.65、4.70B. 4.65、4.75C. 4.70、4.75D. 4.70、4.70C . 4a - 2b +c > 0D . 9a +3b +c = 01的小正方形网格中,O 0的圆心在格点上,则 sin / EDBF 值是(9 .如图,直线丨1丄x 轴于点(1, 0),直线12丄x 轴于点(2, 0) ,直线丨3丄x 轴于点 (3, 0), 直线I n 丄x 轴于点(n , 0).函数y = x 的图象与直线丨1、12、13、…、I n 分别交于点A 、A 2、A …、A ;函数y = 2x 的图象与直线丨1、丨2、丨3、…、l n 分别交于点B 、B 、B 3、…、B .如果△ OAB 的2、 3、 C. 2018.5 D. 20192a +b = 0B&如图,边长为EA <A. 2017.5B. 201810.如图,AD 为等边△ ABO 的高,E 、F 分别为线段 AD AC 上的动点,且 AE= CF,当BF +CE 取得最二•填空题(共 4小题,满分20分,每小题5 分)11. ________________________________________ 把多项式3mx- 6my 分解因式的结果是 . 12. 不等式组;1’的所有整数解的积为13. 如图,一次函数 y = k 1X +b 的图象过点 A (0, 3),且与反比例函数 y =「i -H :的图象相交x于B 、C 两点.若AB= BC 贝U k 1?k 2的值为 _________ .三•解答题(共 2小题,满分16分,每小题8分) 15.用适当的方法解方程:(1) ( x +1)( x -2)= x +1; (2)( 2x - 5) 2-( x - 2) 2 = 0.C. 90°D. 82.5小值时,/ AFB=()105 °16 •某一天,水果经营户老张用1600元从水果批发市场批发猕猴桃和芒果共50千克,后再到水果品名猕猴桃卄田芒果^批发价(元/千克)2040零售价(元/千克)2650(2)如果猕猴桃和芒果全部卖完,他能赚多少钱?四.解答题(共2小题,满分16分,每小题8分)17. 有这样一个题目:按照给定的计算程序,确定使代数式n (n+2)大于2000的n的最小正整数值.想一想,怎样迅速找到这个n值,请与同学们交流你的体会.求的n的值;n值”这个问题,说说你的想法.n5040n (n+2) 26001680(要18. 如图,已知O是坐标原点,B、C两点的坐标分别为(3, - 1 )、(2, 1)(1)以0点为位似中心在y轴的左侧将△ OB(放大到两倍(即新图与原图的相似比为2),画出图形;(2)分别写出B、C两点的对应点B'、C'的坐标;(3) 如果△ OBC 内部一点 M 的坐标为(x , y ),写出 M 的对应点 M 的坐标.五•解答题(共 2小题,满分20分,每小题10分)19.如图,在△ ABC 中, AD 是/ BAC 的平分线,EF 垂直平分 AD 交AB 于E ,交AC 于F .60°,/ BEQ= 45°;在点 F 处测得/ AFP= 45°,/ BFQ= 90°, EF = 2km(1) 判断AB AE 的数量关系,并说明理由; (2) 求两个岛屿 A 和B 之间的距离(结果保留根号).六•解答题(共1小题,满分12分,每小题12分)21•抚顺某中学为了解八年级学生的体能状况,从八年级学生中随机抽取部分学生进行体能测试, 测试结果分为 A, B, C, D 四个等级.请根据两幅统计图中的信息回答下列问题: (1 )本次抽样调查共抽取了多少名学生?(2) 求测试结果为 C 等级的学生数,并补全条形图;(3)若该中学八年级共有 700名学生,请你估计该中学八年级学生中体能测试结果为 D 等级的学生有多少名?PQ 上点E 处测得/AEP=II求证:四边形 AEDF 1菱形.(4)若从体能为A等级的2名男生2名女生中随机的抽取2名学生,做为该校培养运动员的重点对象,请用列表法或画树状图的方法求所抽取的两人恰好都是男生的概率.七•解答题(共1小题,满分12分,每小题12分)22.如图,已知抛物线y=- x2+bx+c与一直线相交于A (1, 0)、C (- 2, 3)两点,与y轴交于点N,其顶点为D.(1)求抛物线及直线AC的函数关系式;(2)若P是抛物线上位于直线AC上方的一个动点,求厶APC勺面积的最大值及此时点P的坐标;(3) 在对称轴上是否存在一点M使厶ANM勺周长最小.若存在,请求出M点的坐标和△ ANM 周八•解答题(共1小题,满分14分,每小题14分)23.如图1,在Rt△ ABC中,/ ACB= 90°, AC= 2BC点D在边AC上,连接BD过A作BD的垂线交BD的延长线于点E.(1)若M N分别为线段AB EC的中点,如图1,求证:MNL EC(2)如图2,过点C作CH EC交BD于点F,求证:AE= 2BF;(3)如图3,以AE为一边作一个角等于/ BAC这个角的另一边与BE的延长线交于P点,O为BP的中点,连接OC求证:OC=+ ( BE- PE .2019 年安徽省合肥市十校联考中考数学一模试卷参考答案与试题解析一.选择题(共10小题,满分40 分,每小题4分)1. 【分析】利用有理数大小的比较方法可得- a v b,- b v a,b>0>a进而求解.【解答】解:观察数轴可知:b>0>a,且b的绝对值大于a的绝对值.在b和-a两个正数中,-a v b;在a和-b两个负数中,绝对值大的反而小,则- b v a.因此,- b v a v- a v b.故选:C.【点评】有理数大小的比较方法:正数大于0;负数小于0;正数大于一切负数;两个负数,绝对值大的反而小.2. 【分析】科学记数法的表示形式为a x I0n的形式,其中1w|a| v 10, n为整数•确定n的值时,要看把原数变成a 时,小数点移动了多少位, n 的绝对值与小数点移动的位数相同.当原数绝对值〉1时,n是正数;当原数的绝对值v 1时,n是负数.【解答】解:将数据55000用科学记数法表示为 5.5x104.故选:B.【点评】此题考查科学记数法的表示方法. 科学记数法的表示形式为a x 10n的形式,其中1 w|a| v 10, n 为整数,表示时关键要正确确定a 的值以及n 的值.3. 【分析】A、原式不能合并,错误;B原式利用积的乘方与幕的乘方运算法则计算得到结果,即可做出判断;C原式利用完全平方公式化简得到结果,即可做出判断;D原式去括号得到结果,即可做出判断.【解答】解:A、原式不能合并,错误;B原式=4a2,错误;C 原式=a2+b2- 2ab,错误;D原式=-2a+2,正确,故选:D.【点评】此题考查了完全平方公式,合并同类项,去括号与添括号,幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.4. 【分析】根据两直线平行,内错角相等求出/ 1,再根据等边三角形的性质求出/ 2,然后根据两直线平行,同位角相等可得/ a =Z 2 .【解答】解:如图,T m// n,•••/ 1 = 25°,•••△ABC是等边三角形,•••/ ACB= 60°,•••/ 2 = 60°- 25°= 35°,•/ l // m,• a =Z 2 = 35 °.故选:C.【点评】本题考查了平行线的性质,等边三角形的性质,熟记性质是解题的关键,利用阿拉伯数字加弧线表示角更形象直观.5. 【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.【解答】解:从左面看易得第一层有2个正方形,第二层最左边有一个正方形.故选:B.【点评】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.6. 【分析】根据中位数、众数的定义即可解决问题.【解答】解:这些运动员成绩的中位数、众数分别是 4.70 , 4.75 .故选:C.【点评】本题考查中位数、众数的定义,解题的关键是记住中位数、众数的定义,属于中考基础题.7. 【分析】根据二次函数的图象与性质即可求出答案.【解答】解:(A)由图象可知:a v 0, c> 0,u对称轴x= _、> 0,b> 0,••• abc v 0,故A正确;(B)由对称轴可知:. =1,2a• 2a+b= 0,故正确;(C)当x =— 2 时,y V 0,••• 4a- 2b+c v 0,故C错误;(D) (- 1, 0)与(3, 0)关于直线x= 1对称,• 9a+3b+c = 0,故D 正确;故选:C.【点评】本题考查二次函数,解题的关键熟练运用二次函数的图象与性质,本题属于中等题型.&【分析】由于所求的/ EDB是圆周角,因此可将其转化到另外一个圆周角来求解,设圆O与小正方形网格的另外一个切点为F,连接EF BF BE因此/ EDB=Z EFB= 45°,所以sin / EDB=^.2【解答】解:设圆O与小正方形网格的另一个切点为F,连接BF BEv'I',•••/ EDB=Z EFB由题意知:EB= BF•••/ EFB= 45°,• sin / ED= sin / EFB= ,2故选:B.【点评】本题考查圆周角定理的应用,如若条件出现的角是圆周角,可考虑圆周角定理将其转移到适合的位置进行求解.9.【分析】根据直线解析式求出A T B-! , AB n的值,再根据直线I n-!与直线l n互相平行并判断出四边形A--i是梯形,然后根据梯形的面积公式求出$的表达式,然后把n= 2013代入表达式进行计算即可得解.【解答】解:根据题意,A-1^-1= 2 (n- 1)-( n- 1 )= 2n- 2 - n+1= n- 1,AB= 2n - n= n,•••直线I n —i丄x轴于点(n- 1, 0),直线I n丄x轴于点(n, 0),••• A-1B-1// AB,且I n-1 与I n 间的距离为1 ,•••四边形A-i A n Ba-1是梯形,S = (n- 1+n)x 1= ( 2n- 1),:- :当n= 2018 时,So18 = —(2X 2018 - 1 )= 2017.5 .2故选:A.【点评】本题考查的是一次函数图象上点的坐标特点,读懂题意,根据直线解析式求出A-1B-1, AB的值是解题的关键,要注意脚码的对应关系,这也是本题最容易出错的地方.10.【分析】如图,作辅助线,构建全等三角形,证明△AEC^A CFH得CE= FH将CE转化为FH与BF在同一个三角形中,根据两点之间线段最短,确定点F的位置,即F为AC与BH的交点时,BF+CE的值最小,求出此时/ AFB= 105°.【解答】解:如图,作CHL BC且CH= BC连接BH交AD于M连接FH•/△ ABC是等边三角形,AD L BC•AC= BC / DA= 30 ° ,•AC= CH•••/ BCH= 90°, / ACB= 60° ,•••/ ACH= 90°- 60°= 30° ,•••/ DAC=Z ACH= 30° ,•/ AE= CF•△AEC^A CFH•CE= FH BF+CE= BF+FH•••当F为AC与BH的交点时,如图2 , BF+CE的值最小,此时/ FBC= 45°, / FCB= 60° ,•••/ AFB= 105 ° ,故选:B.图1【点评】此题考查全等三角形的性质和判定、等边三角形的性质、最短路径问题,关键是作出辅助线,当BF+CE取得最小值时确定点F的位置,有难度.二•填空题(共4小题,满分20分,每小题5分)11. 【分析】直接提取公因式3m进而分解因式即可.【解答】解:3mx-6my= 3m(x- 2y).故答案为:3m (x- 2y).【点评】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.12. 【分析】先分别求出各不等式的解集,再求出其公共解集,在其公共解集内找出符合条件的x的所有整数解相乘即可求解.3x+5》l① yx-25<0 ②'4解不等式①得:X》-.,解不等式②得:X W 50,4•••不等式组的解集为- —< x< 50,•••不等式组的整数解为-1, 0, 1…50,所以所有整数解的积为0,故答案为:0.i3【点评】本题考查的是解一元一次不等式组及求一元一次不等式组的整数解, 要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了. 13. 【分析】设一次函数的解析式为-k 2 = 0,得到再由AB= BC 点C 的横坐标是点 B 横坐标的2倍,不防设X 2= 2x i ,列出X i , X 2关 系等式,据此可以求出 k i ?k 2的值.【解答】解:k i ?k 2=- 2,是定值.理由如下: •••一次函数y = k i x +b 的图象过点 A (0, 3),•••设一次函数的解析式为 y = k i x +3,反比例函数解析式 y=…, k i x +3=—,x整理得 k i x 2+3x - k 2= 0,3k 2…X i +X 2=-, X i X 2=- ,•/ AB= BC•••点C 的横坐标是点B 横坐标的2倍,不防设X 2 = 2x i ,3 2 ^2 • X i +X 2= 3x i =- , X i X 2 = 2x i =-——,•-=(-—),整理得,k i k 2=- 2,是定值. 故答案为-2.【点评】本题主要考查反比例函数的综合题的知识点,解答本题的关键是运用好 AB= BC 这一条件,此题有一定的难度,需要同学们细心领会.i4.【分析】 由DE/ BC 可得出/ AD =Z B, / AE =Z C 进而可得出△ AD0A ABC 利用相似三角 形的性质可得出[亠'=一.,进而可得出「二“=「,此题得解.SAAEC 9'四边形 BCEE ) 8【解答】解:I DE/ BC•••/ ADE=Z B , / AED=Z C, • △ ADE^A ABC求不等式的公共解,y = k i x +3,反比例函数解析式 ,都经过B 点,得等式k i x +3x•%皿2_(检I^A AEC AB AD+DB 9. 'AADE_ ^AADE_ 1 _ 1・------------- . ---------------- ------技四边形BCED S△怔匚-S△肋E 9T 8 故答案为:'.8【点评】本题考查了相似三角形的判定与性质,牢记相似三角形的面积比等于相似比的平方是解题的关键. 三•解答题(共2小题,满分16分,每小题8分)15. 【分析】(1)利用因式分解法求解可得;(2)利用因式分解法求解可得.【解答】解:(1)v( x+1)( x-2)-( x+1)- 0,贝9( x+1)( x - 3)- 0,•- x+1 —0 或x - 3—0,解得:X1-- 1, X2—3;(2)v [ (2x - 5) + (x - 2) ][ (2x- 5)-( x - 2) ] -0,• •( 3x - 7) ( x - 3)- 0,贝U 3x- 7- 0 或x - 3- 0,7解得:X1-—, X2—3.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.16. 【分析】(1)设购进猕猴桃x千克,购进芒果y千克,由总价-单价x数量结合老张用1600元从水果批发市场批发猕猴桃和芒果共50千克,即可得出关于x, y的二元一次方程组,解之即可得出结论;(2)根据利润-销售收入-成本,即可求出结论.【解答】解:(1)设购进猕猴桃x千克,购进芒果y千克,根据题意得:(計尸刃|20x+40y^l600解得: 卩二20 ly=30答:购进猕猴桃20千克,购进芒果30千克.(2) 26 X 20+50 X 30 - 1600= 420 (元).答:如果猕猴桃和芒果全部卖完,他能赚420元钱.【点评】本题考查了二元一次方程组的应用,解题的关键是:( 1)找准等量关系,正确列出二元一次方程组;(2)根据数量关系,列式计算.四•解答题(共2小题,满分16分,每小题8分)17. 【分析】(1 )取n= 44与n= 43,分别计算n (n+2),即可完成表格,从而确定满足题目要求的n的值;(2)根据表格中给出的n= 50与n = 40时n( n+2)的对应值,将它们与2000比较,得出n v 45, 取n =44计算,根据此时n (n+2)> 2000,再取n= 43计算,根据43X 45= 1935 v 2000,即可求出n的值.【解答】解:(1)填表如下:由上表可得,满足条件的值为44;(2)由于门与(n+2)是连续的两个偶数,确定使代数式n ( n+2)大于2000的n的最小正整数值,因为50 X 52= 2600, 40 X 42= 1680, 2600 - 2000 = 600> 2000 - 1680 = 320,所以n v 45,取n= 44计算,发现44X46= 2024 >2000,再取n= 43计算,由于43X 45= 1935 V 2000,从而确定满足条件的n值为44.【点评】本题考查了规律型:数字的变化类,理解题意,根据表格得出n v45是解题的关键. 18.【分析】(1)延长BQ CC到B' C',使OB , OC的长度是OB OC的2倍•顺次连接三点即可;(2)从直角坐标系中,读出B'、C的坐标;(3)从这两个相似三角形坐标位置关系来看,对应点的坐标正好是原坐标乘以- 2的坐标,所以M的坐标为(x, y),写出M的对应点M的坐标为(-2x, - 2y).【解答】解:(1)(2) B' (- 6, 2), C' (- 4, - 2);(3)从这两个相似三角形坐标位置关系来看,对应点的坐标正好是原坐标乘以- 2的坐标,所以M的坐标为(x, y),写出M的对应点M的坐标为(-2x, - 2y).【点评】本题综合考查了直角坐标系和相似三角形的有关知识,注意做这类题时,性质是关键,看图也是关键•很多信息是需要从图上看出来的.五•解答题(共2小题,满分20分,每小题10分)19.【分析】由/ BAD=Z CAD AO= AQ / AOE=/ AO M 90°证厶AEd A AFQ 推出EO= FQ 得出平行四边形AEDF根据EFL AD得出菱形AEDF【解答】证明:••• AD平分/ BAC•••/ BAD=Z CAD又••• EF L AD•••/ AOE=Z AOF= 90°•••在△ AEO^ AFO中“ AO=AO ,ZAOE-ZAOF•△AEO^A AFO(ASA ,•EO= FO■/ EF垂直平分AD•EF AD相互平分,•四边形AEDF是平行四边形又EF L AD•平行四边形AEDF为菱形.【点评】本题考查了平行四边形的判定,菱形的判定,线段垂直平分线,全等三角形的性质和判定等知识点,注意:对角线互相平分的四边形是平行四边形,对角线互相垂直的平行四边形是菱形.20.【分析】(1)根据SAS即可证明△ AEF^A ABF,得到AB= AE(2)作AH L PQ垂足为H.设AE= x,在直角△ AHF,直角△ AEP中,利用三角函数表示出HE与HF,从而可得到关于x的方程,解方程即可得解.【解答】解:(1)相等.•••/ BEQ= 45°,/ BFQ= 90°,•••/ EBF=/ BEQ= 45°,••• EF= BF,又•••/ AFP= 45°,•/ BFA= 45°.在厶AEF-与^ ABF中,ZAFE=ZAFB,AF-AF•△AEF^A ABF( SAS ,•AB= AE(2)过点A作AHL PQ垂足为H.设AE= xkm则AH= x sin60 ° km HE= x cos60 ° km•HF= H^EF= x cos60 ° +2,Rt△ AHF中, AH= HF?tan60 ° ,•x sin60 ° = ( x cos60 ° +2)? tan60 ° ,解得:x = 12 : km即AB= AE= 12 _km.答:两个岛屿A与B之间的距离约为12「km【点评】此题考查了方向角问题•注意能运用了三角函数,把求线段的问题转化为方程求解的问 题是解此题的关键,注意掌握辅助线的作法,注意掌握数形结合思想与方程思想的应用.六.解答题(共1小题,满分12分,每小题12分)21 •【分析】(1 )用A 等级的频数除以它所占的百分比即可得到样本容量;(2) 用总人数分别减去 A B D 等级的人数得到 C 等级的人数,然后补全条形图; (3) 用700乘以D 等级的百分比可估计该中学八年级学生中体能测试结果为D 等级的学生数;(4) 画树状图展示12种等可能的结果数,再找出抽取的两人恰好都是男生的结果数,然后根据 概率公式求解.【解答】 解:(1) 10 - 20Q%= 50, 所以本次抽样调查共抽取了 50名学生;(2)测试结果为 C 等级的学生数为 50- 10- 20- 4= 16 (人);共有12种等可能的结果数,其中抽取的两人恰好都是男生的结果数为2,(4)画树状图为:畀 男 女 女/N /K /T\ /1\ 男女女 男女女 臭男女 男男立所以估计该中学八年级学生中体能测试结果为 D 等级的学生有56名;补全条形图如图所示:bU所以抽取的两人恰好都是男生的概率= ——='•12 6【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n再从中选出符合事件A或B的结果数目m然后利用概率公式计算事件A或事件B的概率•也考查了统计图.七.解答题(共1小题,满分12分,每小题12分)22 •【分析】(1)根据点A C的坐标,利用待定系数法即可求出抛物线及直线AC的函数关系式;(2)过点P作PE// y轴交x轴于点E,交直线AC于点F,过点C作CQ/ y轴交x轴于点Q设点P的坐标为(x, - x2-2x+3)( - 2v x v 1),则点E的坐标为(x, 0),点F的坐标为(X,- x+1),进而可得出PF的值,由点C的坐标可得出点Q的坐标,进而可得出AQ的值,禾U用三角形的面积公式可得出S^PC=- ] x2—. x+3,再利用二次函数的性质,即可解决最值问题;(3)利用二次函数图象上点的坐标特征可得出点N的坐标,利用配方法可找出抛物线的对称轴,由点C, N的坐标可得出点C, N关于抛物线的对称轴对称,令直线AC与抛物线的对称轴的交点为点M则此时△ ANM周长取最小值,再利用一次函数图象上点的坐标特征求出点M的坐标,以及利用两点间的距离公式结合三角形的周长公式求出△ANM周长的最小值即可得出结论.【解答】解:(1)将A (1, 0), C (- 2, 3)代入y =- x2+bx+c,得:[-l+b+c=0 “曰fb=-2,解得:* ,|-4-2b+c-3 c=3•••抛物线的函数关系式为y=- x2- 2x+3;设直线AC的函数关系式为y= mxm (0),将A (1, 0), C (- 2, 3)代入y = mx^n,得:f nH-n= 0 ",口mP-1\ n t…,解得:"、,I ~2iD+n=3 n=l•直线AC的函数关系式为y=- x+1 •(2)过点P作PE// y轴交x轴于点E,交直线AC于点F,过点C作CQ/ y轴交x轴于点Q如图1所示.设点P的坐标为(x,- x2- 2x+3) (- 2 v x v 1),则点E的坐标为(x, 0),点F的坐标为(x,-x+1),2• PE=- x - 2x+3, EF=- x+1,2 2EF= PE— EF=- x - 2x+3 -( - x+1 )=- x - x+2. •••点C的坐标为(-2, 3),•••点Q的坐标为(-2, 0),••• AQ= 1 -(- 2)= 3,S APC=AQPP- x2- x+3=- - (x+ )2+ .2 2 2 2 2 E'3•••- v 0,2•••当x =-.时,△ APC的面积取最大值,最大值为」时点p的坐标为(-;,「)2(3)当x = 0 时,y=- x2- 2x+3= 3,•••点N的坐标为(0, 3).2 2■/ y=- x - 2x+3=-(x+1)+4,•抛物线的对称轴为直线x=- 1.■点C的坐标为(-2, 3),•点C, N关于抛物线的对称轴对称.令直线AC与抛物线的对称轴的交点为点M如图2所示.•• •点C, N关于抛物线的对称轴对称,•MN= CM•AMMN= AMMC= AC•此时△ ANM周长取最小值.当x =- 1 时,y =- x+1 = 2 ,•此时点M的坐标为(-1 , 2).•••点A的坐标为(1 , 0),点C的坐标为(-2 , 3),点N的坐标为(0 , 3), •AC=yL£= 3■- , AN=讥二;.『= ,• C\ ANM= AMMNAN= A(+AN= 3^"^ + J ]匚.•在对称轴上存在一点M (- 1, 2),使厶ANM勺周长最小,△ ANM周长的最小值为【点评】本题考查了待定系数法求一次函数解析式、待定系数法求二次函数解析式、二次函数图象上点的坐标特征、一次函数图象上点的坐标特征、二次函数的性质、三角形的面积以及周长,解题的关键是:(1)根据点的坐标,利用待定系数法求出抛物线及直线AC的函数关系式;(2)利用三角形的面积公式找出S^PC=- x2- x+3;( 3)利用二次函数图象的对称性结合两点之2 2间线段最短找出点M的位置.八•解答题(共1小题,满分14分,每小题14分)23.【分析】(1)连接EM CM直角三角形斜边上的中线等于斜边的一半得EM= CM再由等腰三角形三线合一的性质得出结论;(2)证明△ AEC^A BFC 得竺辜,由AC= 2BC得AE^ 2BF;BC BF(3)证明A ACB^A AEP得婪垂? 从而知道AE= 2PE由AE= 2BF得PE= BF;根据直角三角AE EP形斜边中线等于斜边一半得OC= , EF,代入得结论.【解答】证明:(1)如图1,连接EM CM••• AE1 BE M是AB的中点,••• EM= AB CM= AB2 2•EM= CM••• N是EC的中点,•MNL EC(2)如图2,vZ ECF= 90°,/ ACB= 90° ,•/ ECA+/ ACF= 90°,/ ACf+Z FCB= 90°,•••/ ECA=/ FCB•••/ CFB=/ ECF+/CEF= 90° +/ CEF/ AEC=Z AEB+Z CE冃90° +/CEF,•••/ CFB=Z AEC•••△AEC^A BFC•、 -• :-,••• AC= 2BC••• AE= 2BF(3)如图3,过点C作CFL EC交BD于点F, •••Z AEF^Z ACB= 90°,Z BAC=Z PAE •••△ACB^A AEP•- 7 -,•/ AC= 2BC•AE=2PE•/ AE= 2BF,•PE= BF,•/ O为BP的中点,•PO=BO•EO= FO•CO= EF= ( BE- BF) = ( BE- PE)•2 2 2A圉1【点评】本题是三角形的综合题,考查了全等三角形、相似三角形的性质和判定,利用相似三角形的对应边相等得出两边的倍数关系;同时,在直角三角形中,如果有斜边上的中线,可以运用斜边上的中线性质得出两边之间的倍数关系;对于证明垂直的关系除了利用角的大小来证明外,也可以利用等腰三角形的三线合一来证明.。
【中考模拟】安徽省合肥市2019年 中考数学模拟试卷 一(含答案)

2019年中考数学模拟试卷一、选择题(本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.﹣的倒数是( )A.﹣B.C.﹣D.2.人工智能AlphaGo因在人机大战中大胜韩国围棋手李世石九段而声名显赫.它具有自我对弈学习能力,决战前已做了两千万局的训练(等同于一个人近千年的训练量).此处“两千万”用科学记数法表示为( )A.0.2×107B.2×107C.0.2×108D.2×1083.若3x=4,9y=7,则3x-2y的值为()A. B. C.-3 D.4.过正方体上底面的对角线和下底面一顶点的平面截去一个三棱锥所得到的几何体如图所示,它的俯视图为()5.下列各式由左边到右边的变形中,是分解因式的为( )A.a(x+y)=ax+ayB.x2﹣4x+4=x(x﹣4)+4C.10x2﹣5x=5x(2x﹣1)D.x2﹣16+3x=(x﹣4)(x+4)+3x6.某服装店新开张,第一天销售服装a件,第二天比第一天少销售14件,第三天的销售量是第二天的2倍多10件,则这三天销售了()件.A.3a﹣42B.3a+42C.4a﹣32D.3a+327.若关于x的方程2x2-ax+a-2=0有两个相等的实根,则a的值是()A.-4B.4C.4或-4D.28.甲、乙、丙、丁四位同学在三次数学测验中,他们成绩的平均分都是85分,方差分别是S甲2=3.8,S乙2=2.3,S丙2=6.2,S丁2=5.2,则成绩最稳定的是()A.甲 B.乙 C.丙 D.丁9.已知▱ABCD,给出下列条件:①AC=BD;②∠BAD=90°;③AB=BC;④AC⊥BD,添加其中之一能使▱ABCD成为菱形的条件是( )A.①③B.②③C.③④D.①②③10.如图,二次函数y=ax2+bx+c(a≠0)的图象经过点(1,2)且与x轴交点的横坐标分别为x1,x2,其中﹣1<x1<0.1<x2<2.下列结论:4a+2b+c<0;2a+b<0;b2+8a>4ac;a<﹣1;其中结论正确的有()A.1个B.2个C.3个D.4个二、填空题(本大题共4小题,每小题5分,共20分)11.不等式11﹣3x>1的所有非负整数解的和为.12.如图,一宽为2cm的刻度尺在圆上移动,当刻度尺的一边与圆相切时,另一边与圆两个交点处的读数恰好为“2”和“8”(单位:cm),则该圆的半径为cm.13..菱形OABC的顶点O是原点,顶点B在y轴上,菱形的两条对角线的长分别是8和6(AC>BO),反比例函数的图像经过C,则k的值为.14.如图,正方形ABCD的边长为1,对角线AC,BD相交于点O,P是BC延长线上一点,AP交BD于E,交CD于H,OP交CD于F,若EF∥AC,则OF的长为_____________.三、解答题(本大题共9小题,共90分)15.(8分)计算:.16.(8分)两车从相距100千米的两地同时出发,同向行驶,慢车的速度是50千米/小时,快车的速度是70千米/小时,那么多少小时后,快车追上慢车.17.(8分)阅读下列材料:由以上三个等式相加,可得:1×2+2×3+3×4=×3×4×5=20读完以上材料,请你计算下列各题:(1)1×2+2×3+3×4+…+10×11(写出过程)(2)1×2+2×3+3×4+…+n×(n+1)= ;(3)1×2×3+2×3×4+3×4×5+…+9×10×11= 18.(8分)周末,小明一家去东昌湖划船,当船划到湖中C点处时,湖边的路灯A位于点C的北偏西64°方向上,路灯B位于点C的北偏东44°方向上,已知每两个路灯之间的距离是50米,求此时小明一家离岸边的距离是多少米?(精确到1米)(参考数据:sin64°≈0.9,cos64°≈0.4,tan64°≈2.1,sin44°≈0.7,cos44°≈0.7,tan44°≈1.0)19.(10分)如图,已知AB为⊙O的直径,CD为⊙O的弦,与直径相交于点E,tan∠D=0.5.(1)求tan∠ABC;(2)若D为半圆中点,CE=4,DE=5,求BC及⊙O的半径.20.(10分)中学生上学带手机的现象越来越受到社会的关注,为此媒体记者随机调查了某校若干名学生上学带手机的目的,分为四种类型:A接听电话;B收发短信;C查阅资料;D游戏聊天.并将调查结果绘制成图1和图2的统计图(不完整),请根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共调查了名学生;(2)将图1、图2补充完整;(3)现有4名学生,其中A类两名,B类两名,从中任选2名学生,求这两名学生为同一类型的概率(用列表法或树状图法).21.(12分)文具店新到一种计算器,进价为25元,营销时发现:当销售单价定为30元时,每天的销售量为150件,若销售单价每上涨1元,每天的销售量就会减少10件.(1)写出商店销售这种计算器,每天所得的销售利润w(元)与销售单价x(元)之间的函数关系式;(2)求销售单价定为多少元时,每天的销售利润最大?最大值是多少?(3)商店的营销部结合上述情况,提出了A、B两种营销方案:方案A:为了让利学生,该计算器的销售利润不超过进价的24%;方案B:为了满足市场需要,每天的销售量不少于120件.请比较哪种方案的最大利润更高,并说明理由.22.(12分)如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).(1)画出△ABC向左平移5个单位长度后得到的△A1B1C1;(2)请画出△ABC关于原点对称的△A2B2C2,并写出点A2、B2、C2坐标;(3)请画出△ABC绕原点O逆时针旋转90°后△A3B3C3,并写出点A3、B3、C3坐标.23.(14分)在锐角△ABC中,AB=4,BC=5,∠ACB=45°,将△ABC绕点B按逆时针方向旋转,得到△A1BC1.(1)如图1,当点C1在线段CA的延长线上时,求∠CC1A1的度数;(2)如图2,连接AA1,CC1.若△ABA1的面积为4,求△CBC1的面积;(3)如图3,点E为线段AB中点,点P是线段AC上的动点,在△ABC绕点B按逆时针方向旋转过程中,点P的对应点是点P1,求线段EP1长度的最大值与最小值.答案1.C.2.B;3.A.4.B5.C6.C.7.B.8.B.9.C10.D11.答案为:6;12.答案为:3.25cm.13.答案为:k=﹣12.14.答案为:10;615.解:原式=;16.解:设x小时快车追上慢车,根据题意得:70x-50x=100,解得:x=5,因此,5小时后,快车追上慢车.17. (1)1×2+2×3+3×4+…+10×11= (1×2×3-0×1×2)+ (2×3×4-1×2×3)+...+ (10×11×12-9×10×11)= (10×11×12-0×1×2)=440(2)1×2+2×3+3×4+…+n×(n+1)= (1×2×3-0×1×2)+ (2×3×4-1×2×3)+...+[n×(n+1)×(n+2)-(n-1)×n×(n+1)]= [n×(n+1)×(n+2)-0×1×2]= n×(n+1)×(n+2)(3)1×2×3=(1×2×3×4-0×1×2×3);2×3×4=(2×3×4×5-1×2×3×4);3×4×5=(3×4×5×6-2×3×4×5);…7×8×9=(7×8×9×10-6×7×8×9);∴1×2×3+2×3×4+3×4×5+…+9×10×11=(1×2×3×4-0×1×2×3)+(2×3×4×5-1×2×3×4)+(3×4×5×6-2×3×4×5)+…+(9×10×11×12-8×9×10×11)=(9×10×11×12)=2970.18.解:如图,过点C作CD⊥AB于点D,设CDx米,在Rt△ACD中,∵∠ACD=64°,∴AD=CD•tan64°=tan64°x(米),在Rt△BCD中,∴∠DCB=44°,∴BD=CD•tan44°=tan44°x(米),∵AB=AD+BD,∴AB=tan64°x+tan44°x=50×2=100,解得:x≈32,答:此时小明一家离岸边的距离约32米.19.解:(1)连接AC,tan∠ABC=2;(2)证明△BCE∽△DCB,BC2=CE×CD,BC=6,半径r=6.20.解:21.解:(1)由题意得,销售量=150﹣10(x﹣30)=﹣10x+450,[来源:学科网] 则w=(x﹣25)(﹣10x+450)=﹣10x2+700x﹣11250;(2)w=﹣10x2+700x﹣11250=﹣10(x﹣35)2+1000,∵﹣10<0,∴函数图象开口向下,w有最大值,当x=35时,w最大=1000元,故当单价为35元时,该计算器每天的利润最大;(3)B方案利润高.理由如下:A方案中:∵25×24%=6,此时w A=6×(150﹣10)=840元,B方案中:每天的销售量为120件,单价为33元,∴最大利润是120×(33﹣25)=960元,此时w B=960元,∵w B>w A,∴B方案利润更高.22.解:(1)如图,△AB1C1为所作;1(2)如图,△A2B2C2为所作,点A2、B2、C2坐标分别为((﹣1,﹣1),(﹣4,﹣2),(﹣3,﹣4);(3)如图,△A3B3C3为所作,点A3、B3、C3坐标分别为(﹣1,1),(﹣2,4),(﹣4,3).23.解:(1)由旋转的性质可得∠AC1B =∠ACB =45°,BC=BC1∴∠CC1B =∠C1CB =45°1∴∠CC1A1=∠CC1B+∠A1C1B=45°+45°=90°(2)∵△ABC≌△A1BC1∴BA=BA1,BC=BC1,∠ABC=∠A1BC1∴,∠ABC+∠ABC1=∠A1BC1+∠ABC1 ∴∠ABA1=∠CBC1∴△ABA1∽△CBC1∴∵∴(3)过点B作BD⊥AC,D为垂足∵△ABC为锐角三角形∴点D在线段AC上Rt△BCD中,BD=BC×sin45°=P在AC上运动至垂足点D,△ABC绕点B旋转,使点P的对应点P1在线段AB上时,EP1最小,最小值为-2②当P在AC上运动至点C,△ABC绕点B旋转,使点P的对应点P1在线段AB的延长线上时,EP1最大,最大值为2+5=7 。
2019年安徽省合肥市名校中考模拟数学试卷和参考答案(word版)

2019年中考模拟试题数学试卷题号 一 二 三 四 五 六 七 八 总分 得分1.数学试卷6页,八大题,共23小题,满分150分,考试时间120分钟.2.请你仔细核对每页试卷下方页码和题数,核实无误后再答题.考试时间共120分钟,请合理分配时间.3.请你仔细思考、认真答题,不要过于紧张,祝考试顺利!一、选择题(本大题共10小题,每小题4分,满分40分)1.12-的相反数是:A.12B. 12-C. 2D. -22.据初步统计,2017年春节期间,安徽省累计接待游客2681.52万人次,实现旅游总收入142亿 元,其中142亿用科学记数法表示为:A.1.42×108B.1.42×109C.1.42×1010D.1.42×10113.如图是一个水平放置的由圆柱体和正方体组成的几何体,它的俯视图是: A.B. C. D.4.下列计算的结果是a 6的为:A. a 12÷a 2B.a 7-aC. a 2·a 4D.(- a 2) 35.下列四张扑克牌图案,属于中心对称图形的是: A.B.C.D.6.“保护水资源,节约用水”应成为每个公民的义务.下表是某个小区随机抽查到的10户家庭的 月用水量(吨) 4 5 6 9 户数(户) 3 4 2 15.3吨7.已知△ABC (AB <AC <BC ),用尺规作图的方法在BC 上取一点P ,使P A +PC =BC ,下列选项 正确的是: A.B.C.D.8.若m 、n (n <m )是关于x 的一元二次方程1-(x -a )(x -b )=0的两个根,且b <a ,则m ,n , b ,a 的大小关系是:A.m <a <b <nB.a <m <n <bC.b <n <m <aD.n <b <a <m 9.如图,在矩形ABCD 中,点E 是边AD 上一点,过点E 作EF ⊥BC ,垂足为 点F ,将△BEF 绕着点E 逆时针旋转,使点B 落在边BC 上的点N 处,点F 落在边DC 上的点M 处,若点M 恰好是边CD 的中点,那么ADAB的值是: A.233 B.34 C.534 D.3610.如图,在平面直角坐标系中,反比例函数(0)ky x x=>的图象与边长是6的正方形OABC 的两边AB ,BC 分别相交于M ,N 两点.△OMN 的面积为10.若动点P 在x 轴上,则PM +PN 的最小值是: A.62 B.10 C.26D.29题号 1 2 3 4 5 6 7 8 9 10 答案二、填空题(本大题4小题,每小题5分,满分20分)11.函数2y x =-x 的取值范围是 . 12.如图,AB 是O 的直径,CD 是弦,如果AC AD =,C ∠比D ∠大40︒,则A ∠为 度.第12题图 第13题图 第14题图13.如图1,点P 从△ABC 的顶点B 出发,沿B →C →A 匀速运动到点A ,图2是点P 运动时,线段BP 的长度y 随时间x 变化的函数关系图象,其中M 为曲线部分的最低点,则△ABC 的面积是 . 14.如图,已知平行四边形ABCD 中,AD =6,AB =3245A ∠=︒.过点B 、D 分别做BE ⊥AD , DF ⊥BC ,交AD 、BC 与点E 、F .点Q 为DF 边上一点,30DEQ ∠=︒,点P 为EQ 的中点, AD 、BC 相交于点M 、N .若MN =EQ ,则EM 的长等于 .三、(本大题共1小题,共12分)15.计算:02315(21)()273---+-+-.得 分 评卷人得分 评卷人 得 分 评卷人四、(本大题共8小题,共78分)大江东去浪淘尽,千古风流数人物;而立之年督东吴,早逝英年两位数;十位恰小个位三,个位平方与寿符;哪位学子算得快,多少年华属周瑜?17.某县教育局为了丰富初中学生的大课间活动,要求各学校开展形式多样的阳光体育活动.某中学就“学生体育活动兴趣爱好”的问题,随机调查了本校某班的学生,并根据调查结果绘制成如下的不完整的扇形统计图和条形统计图:(1)在这次调查中,喜欢篮球项目的同学有人,在扇形统计图中,“乒乓球”的百分比为%,如果学校有800名学生,估计全校学生中有人喜欢篮球项目;(2)请将条形统计图补充完整;(3)在被调查的学生中,喜欢篮球的有2名女同学,其余为男同学。
【附5套中考模拟试卷】安徽省合肥市2019-2020学年中考数学一模考试卷含解析

50≤x≤54
55≤x≤59
人数
(说明:每分钟仰卧起坐个数达到49个及以上时在中考体育测试中可以得到满分)
(2)分析数据:样本数据的平均数、中位满分率
46.8
47.5
45%
得出结论:①估计该校九年级女生在中考体育测试中1分钟“仰卧起坐”项目可以得到满分的人数为;
(2)甲、乙分别投放了一袋垃圾,求恰好是同一类型垃圾的概率.
收集数据:抽取20名女生的1分钟仰卧起坐测试成绩(个)如下:
38 46 42 52 55 43 59 46 25 38
35 45 51 48 57 49 47 53 58 49
(1)整理、描述数据:请你按如下分组整理、描述样本数据,把下列表格补充完整:
范围
25≤x≤29
30≤x≤34
35≤x≤39
40≤x≤44
A. B. C. D.
8.函数y=ax2与y=﹣ax+b的图象可能是( )
A. B.
C. D.
9.平面直角坐标系中的点P(2﹣m, m)在第一象限,则m的取值范围在数轴上可表示为()
A. B.
C. D.
10.3的倒数是()
A. B. C. D.
11.在同一直角坐标系中,二次函数y=x2与反比例函数y= (x>0)的图象如图所示,若两个函数图象上有三个不同的点A(x1,m),B(x2,m),C(x3,m),其中m为常数,令ω=x1+x2+x3,则ω的值为( )
②该中心所在区县的九年级女生的1分钟“仰卧起坐”总体测试成绩如下:
平均数
中位数
满分率
45.3
49
51.2%
请你结合该校样本测试成绩和该区县总体测试成绩,为该校九年级女生的1分钟“仰卧起坐”达标情况做一下评估,并提出相应建议.
安徽省合肥市2019年中考数学模拟试卷(附答案)

安徽省合肥市2019年中考数学模拟试卷(含答案)一.选择题(满分40分,每小题4分)1.二次函数y=x2+2x+3的图象的开口方向为()A.向上B.向下C.向左D.向右2.如图,在△ABC中,∠A=90°.若AB=12,AC=5,则cos C的值为()A.B.C.D.3.如图,在△ABC中,∠ACB=90°,CD是AB边上的高.如果BD=4,CD=6,那么BC:AC 是()A.3:2 B.2:3 C.D..4.下列四个立体图形中,其主视图是轴对称图形但不是中心对称图形的是()A.B.C.D.5.若点A(x1,2)、B(x2,5)都在反比例函数y=的图象上,则一定正确的是()A.x1<x2<0 B.x1<0<x2C.x2<x1<0 D.x2<0<x16.如图,四边形ABCD内接于⊙O,若∠A:∠C=5:7,则∠C=()A.210°B.150°C.105°D.75°7.如图,AB是⊙O的直径,CD是⊙O的弦.若∠BAD=24°,则∠C的度数为()A.24°B.56°C.66°D.76°8.如图,隧道的截面由抛物线和长方形OABC构成,长方形的长OA是12m,宽OC是4m.按照图中所示的平面直角坐标系,抛物线可以用y=﹣x2+bx+c表示.在抛物线型拱璧上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m.那么两排灯的水平距离最小是()A.2m B.4m C.4m D.4m9.如图,正方形ABCD的边长为2,点P和点Q分别从点B和点C出发,沿射线BC向右运动,且速度相同,过点Q作QH⊥BD,垂足为H,连接PH,设点P运动的距离为x(0<x ≤2),△BPH的面积为S,则能反映S与x之间的函数关系的图象大致为()A.B.C.D.10.如图,在Rt△ABC中,∠C=90°,AD=BD,CE=2BE.过B作BF∥CD交AE的延长线为F.当BF=1时,AB的长为()A.4 B.5 C.6 D.7二.填空题(满分20分,每小题5分)11.已知二次函数y=x2﹣2mx(m为常数),当﹣1≤x≤2时,函数值y的最小值为﹣2,则m的值是.12.一个不透明布袋里共有5个球(只有颜色不同),其中3个是黑球,2个是白球,从中随机摸出一个球,记下颜色后放回、搅匀,再随机摸出一个球,则两次摸出的球是一黑一白的概率是.13.已知点P在反比例函数y=图象的第二象限上,PM⊥x轴,PN⊥y轴,M、N为垂足,矩形PMON的面积为2,则k=.14.如图,⊙O是△ABC的外接圆,∠BAC=60°,OD⊥BC于点D,若BC=2,则劣弧BC 的长为(结果保留π)三.解答题(满分16分,每小题8分)15.(8分)计算:﹣(﹣2)0+|1﹣|+2cos30°.16.(8分)如图1是一种折叠台灯,将其放置在水平桌面上,图2是其简化示意图.测得其灯臂AB长为28cm,灯罩BC长为15cm,底座AD厚度为3cm,根据使用习惯,灯臂AB 的倾斜角∠DAB固定为60°.(1)当BC转动到与桌面平行时,求点C到桌面的距离;(2)在使用过程中发现,当BC转到至∠ABC=145°时,光线效果最好,求此时灯罩顶端C到桌面的高度(参考数据:≈1.7,sin25°≈0.4,cos25°≈0.9,tan25°≈0.5,结果精确到个位).四.解答题(满分16分,每小题8分)17.(8分)如图所示,在边长为1个单位长度的小正方形组成的网格中,△ABC的顶点A,B,C在格点(网格线的交点)上.(1)将△ABC绕点B逆时针旋转90°,得到△A1BC1,画出△A1BC1;(2)以点A为位似中心放大△ABC,得到△AB2C2,使放大前后的三角形面积之比为1:4,请你在网格内画出△AB2C2.18.(8分)如图,甲分为三等分数字转盘,乙为四等分数字转盘,自由转动转盘.(1)转动甲转盘,指针指向的数字小于3的概率是;(2)同时自由转动两个转盘,用列举的方法求两个转盘指针指向的数字均为奇数的概率.五.解答题(满分20分,每小题10分)19.(10分)如图,在△AOB中,∠ABO=90°,OB=4,AB=8,反比例函数y=在第一象=4.限内的图象分别交OA,AB于点C和点D,且△BOD的面积S△BOD(1)求反比例函数解析式;(2)求点C的坐标.20.(10分)如图,已知⊙O的直径AB=10,弦AC=6,∠BAC的平分线交⊙O于点D,过点D作DE⊥AC交AC的延长线于点E.(1)求证:DE是⊙O的切线;(2)求DE的长.六.解答题21.(12分)某种小商品的成本价为10元/kg,市场调查发现,该产品每天的销售量w(kg)与销售价x(元/kg)有如下关系w=﹣2x+100,设这种产品每天的销售利润为y(元).(1)求y与x之间的函数关系式;(2)当售价定为多少元时,每天的销售利润最大?最大利润是多少?七.解答题22.(12分)在平面直角坐标系xOy中,若抛物线y=x2+bx+c顶点A的横坐标是﹣1,且与y轴交于点B(0,﹣1),点P为抛物线上一点.(1)求抛物线的表达式;(2)若将抛物线y=x2+bx+c向下平移4个单位,点P平移后的对应点为Q.如果OP=OQ,求点Q的坐标.八.解答题23.(14分)在△ABC中,∠ABC=120°,线段AC绕点C顺时针旋转60°得到线段CD,连接BD.(1)如图1,若AB=BC,求证:BD平分∠ABC;(2)如图2,若AB=2BC,①求的值;=时,直接写出四边形ABCD的面积为.②连接AD,当S△ABC参考答案一.选择题1.解:∵二次函数y =x 2+2x +3中a =1>0,∴二次函数y =x 2+2x +3的图象的开口向上,故选:A .2.解:根据勾股定理得,BC ===13, 所以,cos C ==. 故选:A .3.解:∵∠ACB =90°,CD 是AB 边上的高,∴∠ADC =∠CDB =∠ACB =90°,∵∠A +∠B =90°,∠A +∠ACD =90°, ∴∠ACD =∠B ,∴△ACD ∽△CBD , ∴=== ∴=,故选:B .4.解:A 、是轴对称图形,也是中心对称图形.故错误;B 、是轴对称图形,也是中心对称图形.故错误;C 、是轴对称图形,不是中心对称图形.故正确;D 、是轴对称图形,也是中心对称图形.故错误.故选:C .5.解:根据反比例函数图象性质,k =﹣4<0,函数在二、四象限,函数y 随x 的增大而增大,即y 越大,x 越大,所以x 1<x 2,由于函数在二、四象限,而A 、B 两点y 值都大于0,所以A 、B 两点在第二象限, 所以x 1、x 2都小于0,故选:A .6.解:∵∠A +∠C =180°,∠A :∠C =5:7,∴∠C =180°×=105°.故选:C . 7.解:∵AB 是⊙O 的直径,∴∠ADB =90°,∴∠B =90°﹣∠BAD =90°﹣24°=66°,∴∠C =∠B =66°.故选:C .8.解:根据题意,得OA =12,OC =4.所以抛物线的顶点横坐标为6, 即﹣==6,∴b =2,∵C (0,4),∴c =4,所以抛物线解析式为:y =﹣x 2+2x +4 =﹣(x ﹣6)2+10当y =8时,8=﹣(x ﹣6)2+10,解得x 1=6+2,x 2=6﹣2. 则x 1﹣x 2=4. 所以两排灯的水平距离最小是4. 故选:D .9.解:过点H 作HE ⊥BC ,垂足为E .∵BD是正方形的对角线∴∠DBC=45°∵QH⊥BD∴△BHQ是等腰直角三角形.∵BQ•HE=BH•HQ∴HE=∴△BPH的面积S=BP•HE=x=∴S与x之间的函数关系是二次函数,且二次函数图象开口方向向上;因此,选项中只有A选项符合条件.故选:A.10.证明:如图,∵BF∥CD,∴△CEO∽△BEF,∴,且BF=1,CE=2BE,∴CO=2,∵BF∥CD,∴,且AD=BD,∴OD=BF=,∴CD=CO+OD=,∵∠C=90°,AD=BD,∴AB=2CD=5,故选:B.二.填空题11.解:由二次函数y=x2﹣2mx(m为常数),得到对称轴为直线x=m,抛物线开口向上,当m≥2时,由题意得:当x=2时,y最小值为﹣2,代入得:4﹣4m=﹣2,即m=1.5<2,不合题意,舍去;当﹣1≤m≤2时,由题意得:当x=m时,y最小值为﹣2,代入得:﹣m2=﹣2,即m=或m=﹣(舍去);当m<﹣1时,由题意得:当x=﹣1时,y最小值为﹣2,代入得:1+2m=﹣2,即m=﹣1.5,综上,m的值是﹣1.5或,故答案为:﹣1.5或12.解:设黑球为A、B、C;白球为1,2,列树状图为:所有可能情况有25种,其中两次摸出的球是一黑一白的结果有12,两次摸出的球是一黑一白的概率为=,故答案为:.13.解:由题意k<0,|k|=2,∴k=﹣2,故答案为﹣214.解:如图,连接OB,OC∵∠BOC=2∠BAC,且∠BAC=60°,∴∠BOC=120°∵O D⊥BC,OB=OC∴BD=CD=BC=,∠BOD=∠BOC=60°∴OB=2∴劣弧BC的长==故答案为:三.解答题15.解:原式=3﹣1+﹣1+2×,=3﹣1+﹣1+,=5﹣2.16.解:(1)当BC转动到与桌面平行时,如图2所示:作CM⊥EF于M,BP⊥AD于P,交EF于N,则CM=BN,PN=3,∵∠DAB=60°,∴∠ABP=30°,∴AP=AB=14,BP=AP=14,∴CM=BN=BP+PN=14+3≈14×1.7+3≈27(cm),即点C到桌面的距离为27cm;(2)作CM⊥EF于M,作BQ⊥CM于Q,BP⊥AD于P,交EF于N,如图3所示:则∠QBN=90°,CM=BN,PN=3,由(1)得:QM=BN=26.8,∵∠DAB=60°,∴∠ABP=30°,∵∠ABC=145°,∴∠CBQ=145°﹣90°﹣30°=25°,在Rt△BCQ中,sin∠CBQ=,∴CQ=BC×sin25°≈15×0.4=6,∴CM=CQ+QM≈6+27=33(cm),即此时灯罩顶端C到桌面的高度约为33cm.四.解答题17.解:(1)如图所示,△A1BC1即为所求.(2)如图所示,△AB2C2即为所求.18.解:(1)甲转盘共有1,2,3三个数字,其中小于3的有1,2,∴P(转动甲转盘,指针指向的数字小于3)=,故答案为.(2)树状图如下:由树状图知,共有12种等可能情况,其中两个转盘指针指向的数字为奇数的有4种情况,所以两个转盘指针指向的数字均为奇数的概率P==.五.解答题=4,19.解:(1)∵∠ABO=90°,S△BOD∴×k=4,解得k=8,∴反比例函数解析式为y=;(2)∵∠ABO=90°,OB=4,AB=8,∴A点坐标为(4,8),设直线OA的解析式为y=kx,把A(4,8)代入得4k=8,解得k=2,∴直线OA的解析式为y=2x,解方程组得或,∵C在第一象限,∴C点坐标为(2,4).20.证明:(1)连接OD,∵AD平分∠BAC,∴∠DAE=∠DAB,∵OA=OD,∴∠ODA=∠DAO,∴∠ODA=∠DAE,∴OD∥AE,∵DE⊥AC,∴OD⊥DE,∴DE是⊙O切线.(2)过点O作OF⊥AC于点F,∴AF=CF=3,∴OF==4.∵∠OFE=∠DEF=∠ODE=90°,∴四边形OFED是矩形,∴DE=OF=4.六.解答21.解:(1)根据题意得y=w(x﹣10)=(﹣2x+100)(x﹣10)=﹣2x2+120x﹣1000;(2)∵y=﹣2x2+120x﹣1000=﹣2(x﹣30)2+800,∴当x=30时,y取得最大值,最大值为800,答:当售价定为30元时,每天的销售利润最大,最大利润是800元.七.解答22.解:(1)∵抛物线y=x2+bx+c顶点A的横坐标是﹣1,∴x=﹣=﹣1,即=﹣1,解得b=2.∴y=x2+2x+c.将B(0,﹣1)代入得:c=﹣1,∴抛物线的解析式为y=x2+2x﹣1.(2)∵抛物线向下平移了4个单位.∴平移后抛物线的解析式为y=x2+2x﹣5,PQ=4.∵OP=OQ,∴点O在PQ的垂直平分线上.又∵QP∥y轴,∴点Q与点P关于x轴对称.∴点Q的纵坐标为﹣2.将y=﹣2代入y=x2+2x﹣5得:x2+2x﹣5=﹣2,解得:x=﹣3或x=1.∴点Q的坐标为(﹣3,﹣2)或(1,﹣2).八.解答23.(1)证明:连接AD,由题意知,∠ACD=60°,CA=CD,∴△ACD是等边三角形,∴CD=AD,又∵AB=CB,BD=BD,∴△ABD≌△CBD(SSS),∴∠CBD=∠ABD,∴BD平分∠ABC;(2)解:①连接AD,作等边三角形ACD的外接圆⊙O,∵∠ADC=60°,∠ABC=120°,∴∠ADC+∠ABC=180°,∴点B在⊙O上,∵AD=CD,∴,∴∠CBD=∠CAD=60°,在BD上截取BM,使BM=BC,则△BCM为等边三角形,∴∠CMB=60°,∴∠CMD=120°=∠CBA,又∵CB=CM,∠BAC=∠BDC,∴△CBA≌△CMD(AAS),∴MD=AB,设BC=BM=1,则AB=MD=2,∴BD=3,过点C作CN⊥BD于N,在Rt△BCN中,∠CBN=60°,∴∠BCN=30°,∴BN=BC=,CN=BC=,∴ND=BD﹣BN=,在Rt△CN D中,CD===,∴AC=,∴==;②如图3,分别过点B,D作AC的垂线,垂足分别为H,Q,设CB=1,AB=2,CH=x,则由①知,AC=,AH=﹣x,在Rt△BCH与Rt△BAH中,BC2﹣CH2=AB2﹣AH2,即1﹣x2=22﹣(﹣x)2,解得,x=,∴BH==,在Rt△ADQ中,DQ=AD=×=,∴==,∵AC为△ABC与△ACD的公共底,∴==,∵S=,△ABC=,∴S△ACD∴S=+=,四边形ABCD故答案为:.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
安徽省合肥市2019年中考数学模拟试卷(含答案)一.选择题(满分40分,每小题4分)1.二次函数y=x2+2x+3的图象的开口方向为()A.向上B.向下C.向左D.向右2.如图,在△ABC中,∠A=90°.若AB=12,AC=5,则cos C的值为()A.B.C.D.3.如图,在△ABC中,∠ACB=90°,CD是AB边上的高.如果BD=4,CD=6,那么BC:AC 是()A.3:2 B.2:3 C.D..4.下列四个立体图形中,其主视图是轴对称图形但不是中心对称图形的是()A.B.C.D.5.若点A(x1,2)、B(x2,5)都在反比例函数y=的图象上,则一定正确的是()A.x1<x2<0 B.x1<0<x2C.x2<x1<0 D.x2<0<x16.如图,四边形ABCD内接于⊙O,若∠A:∠C=5:7,则∠C=()A.210°B.150°C.105°D.75°7.如图,AB是⊙O的直径,CD是⊙O的弦.若∠BAD=24°,则∠C的度数为()A.24°B.56°C.66°D.76°8.如图,隧道的截面由抛物线和长方形OABC构成,长方形的长OA是12m,宽OC是4m.按照图中所示的平面直角坐标系,抛物线可以用y=﹣x2+bx+c表示.在抛物线型拱璧上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m.那么两排灯的水平距离最小是()A.2m B.4m C.4m D.4m9.如图,正方形ABCD的边长为2,点P和点Q分别从点B和点C出发,沿射线BC向右运动,且速度相同,过点Q作QH⊥BD,垂足为H,连接PH,设点P运动的距离为x(0<x ≤2),△BPH的面积为S,则能反映S与x之间的函数关系的图象大致为()A.B.C.D.10.如图,在Rt△ABC中,∠C=90°,AD=BD,CE=2BE.过B作BF∥CD交AE的延长线为F.当BF=1时,AB的长为()A.4 B.5 C.6 D.7二.填空题(满分20分,每小题5分)11.已知二次函数y=x2﹣2mx(m为常数),当﹣1≤x≤2时,函数值y的最小值为﹣2,则m的值是.12.一个不透明布袋里共有5个球(只有颜色不同),其中3个是黑球,2个是白球,从中随机摸出一个球,记下颜色后放回、搅匀,再随机摸出一个球,则两次摸出的球是一黑一白的概率是.13.已知点P在反比例函数y=图象的第二象限上,PM⊥x轴,PN⊥y轴,M、N为垂足,矩形PMON的面积为2,则k=.14.如图,⊙O是△ABC的外接圆,∠BAC=60°,OD⊥BC于点D,若BC=2,则劣弧BC 的长为(结果保留π)三.解答题(满分16分,每小题8分)15.(8分)计算:﹣(﹣2)0+|1﹣|+2cos30°.16.(8分)如图1是一种折叠台灯,将其放置在水平桌面上,图2是其简化示意图.测得其灯臂AB长为28cm,灯罩BC长为15cm,底座AD厚度为3cm,根据使用习惯,灯臂AB 的倾斜角∠DAB固定为60°.(1)当BC转动到与桌面平行时,求点C到桌面的距离;(2)在使用过程中发现,当BC转到至∠ABC=145°时,光线效果最好,求此时灯罩顶端C到桌面的高度(参考数据:≈1.7,sin25°≈0.4,cos25°≈0.9,tan25°≈0.5,结果精确到个位).四.解答题(满分16分,每小题8分)17.(8分)如图所示,在边长为1个单位长度的小正方形组成的网格中,△ABC的顶点A,B,C在格点(网格线的交点)上.(1)将△ABC绕点B逆时针旋转90°,得到△A1BC1,画出△A1BC1;(2)以点A为位似中心放大△ABC,得到△AB2C2,使放大前后的三角形面积之比为1:4,请你在网格内画出△AB2C2.18.(8分)如图,甲分为三等分数字转盘,乙为四等分数字转盘,自由转动转盘.(1)转动甲转盘,指针指向的数字小于3的概率是;(2)同时自由转动两个转盘,用列举的方法求两个转盘指针指向的数字均为奇数的概率.五.解答题(满分20分,每小题10分)19.(10分)如图,在△AOB中,∠ABO=90°,OB=4,AB=8,反比例函数y=在第一象=4.限内的图象分别交OA,AB于点C和点D,且△BOD的面积S△BOD(1)求反比例函数解析式;(2)求点C的坐标.20.(10分)如图,已知⊙O的直径AB=10,弦AC=6,∠BAC的平分线交⊙O于点D,过点D作DE⊥AC交AC的延长线于点E.(1)求证:DE是⊙O的切线;(2)求DE的长.六.解答题21.(12分)某种小商品的成本价为10元/kg,市场调查发现,该产品每天的销售量w(kg)与销售价x(元/kg)有如下关系w=﹣2x+100,设这种产品每天的销售利润为y(元).(1)求y与x之间的函数关系式;(2)当售价定为多少元时,每天的销售利润最大?最大利润是多少?七.解答题22.(12分)在平面直角坐标系xOy中,若抛物线y=x2+bx+c顶点A的横坐标是﹣1,且与y轴交于点B(0,﹣1),点P为抛物线上一点.(1)求抛物线的表达式;(2)若将抛物线y=x2+bx+c向下平移4个单位,点P平移后的对应点为Q.如果OP=OQ,求点Q的坐标.八.解答题23.(14分)在△ABC中,∠ABC=120°,线段AC绕点C顺时针旋转60°得到线段CD,连接BD.(1)如图1,若AB=BC,求证:BD平分∠ABC;(2)如图2,若AB=2BC,①求的值;=时,直接写出四边形ABCD的面积为.②连接AD,当S△ABC参考答案一.选择题1.解:∵二次函数y =x 2+2x +3中a =1>0,∴二次函数y =x 2+2x +3的图象的开口向上,故选:A .2.解:根据勾股定理得,BC ===13, 所以,cos C ==. 故选:A .3.解:∵∠ACB =90°,CD 是AB 边上的高,∴∠ADC =∠CDB =∠ACB =90°,∵∠A +∠B =90°,∠A +∠ACD =90°, ∴∠ACD =∠B ,∴△ACD ∽△CBD , ∴=== ∴=,故选:B .4.解:A 、是轴对称图形,也是中心对称图形.故错误;B 、是轴对称图形,也是中心对称图形.故错误;C 、是轴对称图形,不是中心对称图形.故正确;D 、是轴对称图形,也是中心对称图形.故错误.故选:C .5.解:根据反比例函数图象性质,k =﹣4<0,函数在二、四象限,函数y 随x 的增大而增大,即y 越大,x 越大,所以x 1<x 2,由于函数在二、四象限,而A 、B 两点y 值都大于0,所以A 、B 两点在第二象限, 所以x 1、x 2都小于0,故选:A .6.解:∵∠A +∠C =180°,∠A :∠C =5:7,∴∠C =180°×=105°.故选:C . 7.解:∵AB 是⊙O 的直径,∴∠ADB =90°,∴∠B =90°﹣∠BAD =90°﹣24°=66°,∴∠C =∠B =66°.故选:C .8.解:根据题意,得OA =12,OC =4.所以抛物线的顶点横坐标为6, 即﹣==6,∴b =2,∵C (0,4),∴c =4,所以抛物线解析式为:y =﹣x 2+2x +4 =﹣(x ﹣6)2+10当y =8时,8=﹣(x ﹣6)2+10,解得x 1=6+2,x 2=6﹣2. 则x 1﹣x 2=4. 所以两排灯的水平距离最小是4. 故选:D .9.解:过点H 作HE ⊥BC ,垂足为E .∵BD是正方形的对角线∴∠DBC=45°∵QH⊥BD∴△BHQ是等腰直角三角形.∵BQ•HE=BH•HQ∴HE=∴△BPH的面积S=BP•HE=x=∴S与x之间的函数关系是二次函数,且二次函数图象开口方向向上;因此,选项中只有A选项符合条件.故选:A.10.证明:如图,∵BF∥CD,∴△CEO∽△BEF,∴,且BF=1,CE=2BE,∴CO=2,∵BF∥CD,∴,且AD=BD,∴OD=BF=,∴CD=CO+OD=,∵∠C=90°,AD=BD,∴AB=2CD=5,故选:B.二.填空题11.解:由二次函数y=x2﹣2mx(m为常数),得到对称轴为直线x=m,抛物线开口向上,当m≥2时,由题意得:当x=2时,y最小值为﹣2,代入得:4﹣4m=﹣2,即m=1.5<2,不合题意,舍去;当﹣1≤m≤2时,由题意得:当x=m时,y最小值为﹣2,代入得:﹣m2=﹣2,即m=或m=﹣(舍去);当m<﹣1时,由题意得:当x=﹣1时,y最小值为﹣2,代入得:1+2m=﹣2,即m=﹣1.5,综上,m的值是﹣1.5或,故答案为:﹣1.5或12.解:设黑球为A、B、C;白球为1,2,列树状图为:所有可能情况有25种,其中两次摸出的球是一黑一白的结果有12,两次摸出的球是一黑一白的概率为=,故答案为:.13.解:由题意k<0,|k|=2,∴k=﹣2,故答案为﹣214.解:如图,连接OB,OC∵∠BOC=2∠BAC,且∠BAC=60°,∴∠BOC=120°∵O D⊥BC,OB=OC∴BD=CD=BC=,∠BOD=∠BOC=60°∴OB=2∴劣弧BC的长==故答案为:三.解答题15.解:原式=3﹣1+﹣1+2×,=3﹣1+﹣1+,=5﹣2.16.解:(1)当BC转动到与桌面平行时,如图2所示:作CM⊥EF于M,BP⊥AD于P,交EF于N,则CM=BN,PN=3,∵∠DAB=60°,∴∠ABP=30°,∴AP=AB=14,BP=AP=14,∴CM=BN=BP+PN=14+3≈14×1.7+3≈27(cm),即点C到桌面的距离为27cm;(2)作CM⊥EF于M,作BQ⊥CM于Q,BP⊥AD于P,交EF于N,如图3所示:则∠QBN=90°,CM=BN,PN=3,由(1)得:QM=BN=26.8,∵∠DAB=60°,∴∠ABP=30°,∵∠ABC=145°,∴∠CBQ=145°﹣90°﹣30°=25°,在Rt△BCQ中,sin∠CBQ=,∴CQ=BC×sin25°≈15×0.4=6,∴CM=CQ+QM≈6+27=33(cm),即此时灯罩顶端C到桌面的高度约为33cm.四.解答题17.解:(1)如图所示,△A1BC1即为所求.(2)如图所示,△AB2C2即为所求.18.解:(1)甲转盘共有1,2,3三个数字,其中小于3的有1,2,∴P(转动甲转盘,指针指向的数字小于3)=,故答案为.(2)树状图如下:由树状图知,共有12种等可能情况,其中两个转盘指针指向的数字为奇数的有4种情况,所以两个转盘指针指向的数字均为奇数的概率P==.五.解答题=4,19.解:(1)∵∠ABO=90°,S△BOD∴×k=4,解得k=8,∴反比例函数解析式为y=;(2)∵∠ABO=90°,OB=4,AB=8,∴A点坐标为(4,8),设直线OA的解析式为y=kx,把A(4,8)代入得4k=8,解得k=2,∴直线OA的解析式为y=2x,解方程组得或,∵C在第一象限,∴C点坐标为(2,4).20.证明:(1)连接OD,∵AD平分∠BAC,∴∠DAE=∠DAB,∵OA=OD,∴∠ODA=∠DAO,∴∠ODA=∠DAE,∴OD∥AE,∵DE⊥AC,∴OD⊥DE,∴DE是⊙O切线.(2)过点O作OF⊥AC于点F,∴AF=CF=3,∴OF==4.∵∠OFE=∠DEF=∠ODE=90°,∴四边形OFED是矩形,∴DE=OF=4.六.解答21.解:(1)根据题意得y=w(x﹣10)=(﹣2x+100)(x﹣10)=﹣2x2+120x﹣1000;(2)∵y=﹣2x2+120x﹣1000=﹣2(x﹣30)2+800,∴当x=30时,y取得最大值,最大值为800,答:当售价定为30元时,每天的销售利润最大,最大利润是800元.七.解答22.解:(1)∵抛物线y=x2+bx+c顶点A的横坐标是﹣1,∴x=﹣=﹣1,即=﹣1,解得b=2.∴y=x2+2x+c.将B(0,﹣1)代入得:c=﹣1,∴抛物线的解析式为y=x2+2x﹣1.(2)∵抛物线向下平移了4个单位.∴平移后抛物线的解析式为y=x2+2x﹣5,PQ=4.∵OP=OQ,∴点O在PQ的垂直平分线上.又∵QP∥y轴,∴点Q与点P关于x轴对称.∴点Q的纵坐标为﹣2.将y=﹣2代入y=x2+2x﹣5得:x2+2x﹣5=﹣2,解得:x=﹣3或x=1.∴点Q的坐标为(﹣3,﹣2)或(1,﹣2).八.解答23.(1)证明:连接AD,由题意知,∠ACD=60°,CA=CD,∴△ACD是等边三角形,∴CD=AD,又∵AB=CB,BD=BD,∴△ABD≌△CBD(SSS),∴∠CBD=∠ABD,∴BD平分∠ABC;(2)解:①连接AD,作等边三角形ACD的外接圆⊙O,∵∠ADC=60°,∠ABC=120°,∴∠ADC+∠ABC=180°,∴点B在⊙O上,∵AD=CD,∴,∴∠CBD=∠CAD=60°,在BD上截取BM,使BM=BC,则△BCM为等边三角形,∴∠CMB=60°,∴∠CMD=120°=∠CBA,又∵CB=CM,∠BAC=∠BDC,∴△CBA≌△CMD(AAS),∴MD=AB,设BC=BM=1,则AB=MD=2,∴BD=3,过点C作CN⊥BD于N,在Rt△BCN中,∠CBN=60°,∴∠BCN=30°,∴BN=BC=,CN=BC=,∴ND=BD﹣BN=,在Rt△CN D中,CD===,∴AC=,∴==;②如图3,分别过点B,D作AC的垂线,垂足分别为H,Q,设CB=1,AB=2,CH=x,则由①知,AC=,AH=﹣x,在Rt△BCH与Rt△BAH中,BC2﹣CH2=AB2﹣AH2,即1﹣x2=22﹣(﹣x)2,解得,x=,∴BH==,在Rt△ADQ中,DQ=AD=×=,∴==,∵AC为△ABC与△ACD的公共底,∴==,∵S=,△ABC=,∴S△ACD∴S=+=,四边形ABCD故答案为:.。