2018秋八年级数学上册第五章二元一次方程组5.6二元一次方程与一次函数习题课件新版北师大版20180825174
八年级数学上册 5.6 二元一次方程与一次函数课时练 (新版)北师大版-(新版)北师大版初中八年级上

二元一次方程与一次函数【教材训练】 5分钟(1)以二元一次方程的解为坐标的点都在相应的函数图象上.(2)一次函数图象上的点的坐标都适合相应的二元一次方程.(1)方程组的解是相应的两个一次函数图象的交点坐标.(2)两个一次函数图象的交点坐标是相应的方程组的解.(1)代入消元法.(2)加减消元法.(3)图象法:要强调的是由于作图的不准确性,由图象法求得的解是近似解.(填“近似”或“准确”)先设出函数表达式,再根据所给条件确定表达式中未知的系数,从而得到函数表达式的方法.5.判断训练(打“√”或“×”)(1)二元一次方程与一次函数可以相互转化. (√)(2)都是函数y=7-2x相应的二元一次方程的解. (×)(3)点(1,1),(5,-1),(2,)都在二元一次方程x+2y=3相应一次函数的图象上.(√)(4)在一次函数y=x-3的图象上任取一点,它的坐标适合方程3x+2y=6. (×)(5)方程组的解是一次函数y=-x+3和y=2x+1图象的交点坐标.(×)【课堂达标】 20分钟训练点一:二元一次方程与一次函数1.(3分)二元一次方程的图象如图所示,则这个二元一次方程为( )A.x-3y=3B.x+3y=3C.3x-y=1D.3x+y=1【解析】选A.设直线关系式为y=kx+b,直线过点(3,0),(0,-1).代入y=kx+b,得解得即y=x-1,得到x-3y=3.所以答案A正确.2.(3分)无论m取何实数,直线y=x+3m与y=-x+1的交点不可能在第________象限.【解析】因为一次函数y=-x+1的图象经过一、二、四象限,所以,交点不会在第三象限. 答案:三3.(8分)若二元一次方程kx-y=-b的两组解为和求对应的一次函数的表达式.【解析】将x=2,y=0;x=1,y=-1分别代入kx-y=-b,得解得所以x-y=2,所以y=x-2.训练点二:用二元一次方程组确定一次函数表达式1.(4分)如果是方程组的解,则一次函数y=mx+n的表达式为( )A.y=-x+2B.y=x-2C.y=-x-2D.y=x+2【解析】代入得解得所以表达式为y=x+2.2.(3分)如图,直线AB对应的函数表达式是( )A.y=-x+3B.y=x+3C.y=-x+3D.y=x+3【解析】选A.设直线AB的表达式为y=kx+b,将(0,3),(2,0)代入上式,得解得所以y=-x+3.3.(4分)已知一次函数y=kx+b的图象经过两点A(1,1),B(2,-1),求这个函数的表达式.【解析】根据题意得解得所以函数的表达式是y=-2x+3.4.(5分)一辆警车在高速公路的A处加满油,以每小时60km的速度匀速行驶.已知警车一次加满油后,油箱内的余油量y(L)与行驶时间x(h)的函数关系的图象是如图所示的直线l上的一部分.求直线l的函数表达式.【解析】设直线l的表达式是y=kx+b(k≠0),由题意得解得所以y=-6x+60.【课后作业】 30分钟一、选择题(每小题4分,共12分)1.如图,以两条直线l1,l2的交点坐标为解的方程组是( )A. B.C. D.【解析】l1经过(2,3),(0,-1),解得函数表达式为y=2x-1;直线l2经过(2,3),(-1,0),其函数表达式为y=x+1;因此以两条直线l1,l2的交点坐标为解的方程组是,故选C.2.下面四条直线,其中直线上每个点的坐标都是二元一次方程x-2y=2的解是( )【解析】选C.二元一次方程x-2y=2变形得y=x-1,而一次函数y=x-1的图象经过(0,-1),(2,0)两个点.有无穷多组解,则2k+b2的值为( )【解析】选B.由题意知一次函数y=kx+b,y=(3k-1)x+2的一次项系数和常数项相同,即k=3k-1,且b=2,则k=,故2k+b2=2×+22=5.二、填空题(每小题4分,共12分)4.(2012·某某中考)如图,已知函数y=x-2和y=-2x+1的图象交于点P,根据图象可得方程组的解是________.【解析】因两函数图象的交点坐标是(1,-1),故是方程组的解.答案:的解的情况为________,则一次函数y=2-2x,y=5-2x的图象的位置关系是________.【解析】因方程组无解,所以,一次函数y=2-2x与y=5-2x的图象无交点,是两条平行直线.答案:无解平行的过程中,错把b看成了6,他其余的解题过程没有出错,解得此方程组的解为又已知直线y=kx+b过点(3,1),则b的正确值应该是________.【解析】把代入y=kx+6,得2=-k+6,解得k=4,把(3,1)代入y=4x+b,得1=4×3+b,即b=-11.答案:-11三、解答题(共26分)7.(8分)如图,直线l1:y=x+1与直线l2:y=mx+n相交于点P(1,b).(1)求b的值.(2)不解关于x,y的方程组请直接写出它的解.(3)直线l3:y=nx+m是否也经过点P?请说明理由.【解析】(1)因为(1,b)在直线y=x+1上,所以当x=1时,b=1+1=2.(2)方程组的解是(3)直线y=nx+m也经过点P.理由如下:因为当x=1时,y=mx+n=m+n=2,(1,2)满足函数y=nx+m的关系式,则直线经过点P.8.(8分)(2012·某某中考)甲、乙两地相距300km,一辆货车和一辆轿车先后从甲地出发驶向乙地.如图,线段OA表示货车离甲地的距离y(km)与时间x(h)之间的函数关系,折线BCDE表示轿车离甲地的距离y(km)与时间x(h)之间的函数关系.根据图象,解答下列问题:(1)线段CD表示轿车在途中停留了________h.(2)求线段DE对应的函数关系式.(3)求轿车从甲地出发后经过多长时间追上货车.【解析】(1)2.5-2=0.5(h).(2)设DE:y=kx+b.因为点D(2.5,80)和E(4.5,300)在DE上,所以解得≤x≤4.5).(3)设OA:y=mx,则300=5m,m=60,y=60x,根据题意,得解得3.9-1=2.9(h).所以轿车从甲地出发后经过2.9h追上货车.9.(10分)(能力拔高题)小颖和小亮上山游玩,小颖乘坐缆车,小亮步行,两人相约在山顶的缆车终点会合.已知小亮行走到缆车终点的路程是缆车到山顶的线路长的2倍,小颖在小亮出发后50min才乘上缆车,缆车的平均速度为180m/min.设小亮出发xmin后行走的路程为ym.图中的折线表示小亮在整个行走过程中y与x的函数关系.(1)小亮行走的总路程是______m,他途中休息了______min.(2)①当50≤x≤80时,求y与x的函数表达式;②当小颖到达缆车终点时,小亮离缆车终点的路程是多少?【解析】(1)3600 20(2)①当50≤x≤80时,设y与x的函数表达式为y=kx+b.根据题意,当x=50时,y=1950;当x=80时,y=3600.所以解得所以y与x的函数表达式为y=55x-800.②缆车到山顶的路线长为3600÷2=1800(m),缆车到达终点所需时间为1800÷180=10(min).小颖到达缆车终点时,小亮行走的时间为10+50=60(min).把x=60代入y=55x-800,得y=55×60-800=2500.所以当小颖到达缆车终点时,小亮离缆车终点的路程是3600-2500=1100(m).。
2018年八年级数学上册测试题及答案(1-6章)

八年级上册数学评价检测试卷第一章 勾股定理班级 姓名 学号 评价等级一、选择题1.以下列各组数据为三角形三边,能构成直角三角形的是( ) (A )4cm ,8cm ,7cm (B ) 2cm ,2cm ,2cm (C ) 2cm ,2cm ,4cm (D )13cm ,12 cm ,5 cm2.一个三角形的三边长分别为15cm ,20cm ,25cm ,则这个三角形最长边上的高为( ) (A )12cm (B )10cm (C )12.5cm (D )10.5cm3.Rt ∆ABC 的两边长分别为3和4,若一个正方形的边长是∆ABC 的第三边,则这个正方形的面积是( ) (A )25 (B )7 (C )12 (D )25或74.有长度为9cm ,12cm ,15cm ,36cm ,39cm 的五根木棒,可搭成(首尾连接)直角三角形的个数为 ( )(A )1个 (B )2个 (C )3个 (D )4个5.将直角三角形的三边长扩大相同的倍数后,得到的三角形是( ) (A )直角三角形 (B )锐角三角形 (C )钝角三角形 (D )以上结论都不对 6.在△ABC 中,AB =12cm , AC =9cm ,BC =15cm ,下列关系成立的是( ) (A )B C A ∠+∠>∠ (B )B C A ∠+∠=∠ (C )B C A ∠+∠<∠ (D )以上都不对7.小刚准备测量河水的深度,他把一根竹竿插到离岸边1.5m 远的水底,竹竿高出水面0.5m ,把竹竿的顶端拉向岸边,竿顶和岸边的水平刚好相齐,河水的深度为( ) (A )2m (B )2.5cm (C )2.25m (D )3m 8.若一个三角形三边满足ab c b a 2)(22=-+,则这个三角形是( )(A )直角三角形 (B )等腰直角三角形 (C )等腰三角形 (D )以上结论都不对 9.一架250cm 的梯子斜靠在墙上,这时梯足与墙的终端距离为70cm ,如果梯子顶端沿墙下滑40cm ,那么梯足将向外滑动( ) (A )150cm(B )90cm(C )80cm(D )40cm10.三角形三边长分别为12+n 、n n 222+、1222++n n (n 为自然数),则此三角形是( ) (A )直角三角形 (B )等腰直角三角形 (C )等腰三角形 (D )以上结论都不对二、填空题11.写四组勾股数组.______,______,______,______.12.若一个直角三角形的三边为三个连续的偶数,则它的周长为____________。
北师大版八年级上册数学第五章二元一次方程与一次函数练习题(无答案)

二元一次方程与一次函数练习题1、直线()0y kx b k =+≠的表达式就是一个关于,x y 的 方程;以二元一次方程y kx b -=的解为坐标的点组成的图象就是一次函数 的图象.2、以方程25x y +=的解为坐标的所有点组成的图形与一次函数 图象相同.3、如图所示的四条直线,其中直线上每个点的坐标都是二元一次方程22x y -=的解是( )4、当12k k ≠时,两条直线()()11112222:0,:0l y k x b k l y k x b k =+≠=+≠的交点的 就是方程组1122y k x b y k x b =+⎧⎨=+⎩的 ,当1212,k k b b =≠且时,两条直线平行,则方程组1122y k x b y k x b =+⎧⎨=+⎩ . 5、如图,已知函数2y x =-和21y x =-+的图象交于点P ,根据图象可得方程组221x y x y -=⎧⎨+=⎩的解是 .6、两条直线1122y k x b y k x b =+=+和相交于点A (-2,3),则方程组1122y k x b y k x b =+⎧⎨=+⎩的解是( )A.23x y =⎧⎨=⎩B.23x y =-⎧⎨=⎩C.22x y =⎧⎨=-⎩D.32x y =⎧⎨=⎩7、方程组24122x y x y +=-⎧⎨-=-⎩的解是下面哪两个一次函数图象的交点坐标?( )A.1111242y x y x =-=-与 B. 1111242y x y x =--=+与 C. 1111242y x y x =--=-与 D. 1111242y x y x =-=+与A B C Dx -28、若一次函数1122y k x b y k x b =+=+与的图象没有交点,则方程组112200k x y b k x y b -+=⎧⎨-+=⎩的解的情况是( )A.有无数个解B.有两个解C.只有一个解D.没有解 9、用图形法解方程组2 4 1 x y x y +=⎧⎨-=⎩①②10、在同一平面直角坐标系内画出二元一次方程220x y --=和30x y -+=所对应的一次函数的图象.利用图象求:(1)方程223x x -=+的解;(2)方程组22030x y x y --=⎧⎨-+=⎩的解.12、A ,B 两地相距50km ,甲于某日下午1时骑自行车从A 地出发驶往B 地,乙也于同日下午骑摩托车从A 地出发驶往B 地,图中折线PQR 和线段MN 分别表示甲和乙所行驶的路程s 与该日下午实践t 之间的关系.(1)甲出发多少小时,乙才出发?(2)乙行驶多少小时就追上了甲,这时两人离B 地还有多少千米?11、如图,直线AB :112y x =+分别与x 轴、y 轴交于点A ,B ,直线CD :y x b =+分别与x 轴,y 轴交于点C ,D ,直线AB 与CD 相交于点P ,且点P 的横坐标为4. (1)求点D 的坐标;(2)连接AD ,求△ADP 的面积.12、为奖励在演讲比赛种获奖的同学,班主任派学习委员小明为获奖同学买奖品,要求每人一件.小明到文具店看了商品后,决定奖品在钢笔和笔记本中选择.如果买4本笔记本和2支钢笔,则需86元;如果买3本笔记本和1支钢笔,则需57元.(1)求购买每本笔记本和每支钢笔分别需要多少元?(2)售货员提示,买钢笔有优惠,具体方法是:如果买钢笔超过10支,那么超出部分可以享受8折优惠,若买()0x x >支钢笔需要1y 元,请你求出1y 与x 的函数表达式;(3)在(2)的条件下,小明决定买同一种奖品,数量超过10件,请帮小明判断买哪种奖品省钱.。
北师大版八年级数学上册第五章《二元一次方程组》综合练习题(含答案)

北师大版八年级数学上册第五章《二元一次方程组》综合练习题(含答案)一、单选题1.如果方程3x y -=与下面方程中的一个组成的方程组的解为41x y =⎧⎨=⎩,那么这个方程可以是( ) A .3416x y -= B .1254x y +=C .1382x y +=D .2()6x y y -=2.在同一平面直角坐标系中,直线4y x =-+与2y x m =+相交于点(3,)P n ,则关于x ,y 的方程组4020x y x y m +-=⎧⎨-+=⎩的解为( )A .15x y =-⎧⎨=⎩B .13x y =⎧⎨=⎩C .31x y =⎧⎨=⎩D .95x y =⎧⎨=-⎩3.已知方程组23133530.9a b a b -=⎧⎨+=⎩的解是8.31.2a b =⎧⎨=⎩,则()()()()2213313230.951x y x y ⎧-=++⎪⎨-=-+⎪⎩的解是( )A .8.31.2x y =⎧⎨=⎩B .10.32.2x y =⎧⎨=⎩C . 6.32.2x y =⎧⎨=⎩D .10.30.2x y =⎧⎨=⎩4.已知关于x ,y 的二元一次方程组24,2x y kx y -=⎧⎨+=⎩,的解为2,x y =⎧⎨=♥⎩,其中“♥”是不小心被墨水涂的,则k 的值为( ) A .1B .1-C .2D .2-5.如图,直线y =x +5和直线y =ax +b 相交于点P ,观察其图象可知方程x +5=ax +b 的解( )A .x =15B .x =25C .x =10D .x =206.五一小长假,小华和家人到公园游玩.湖边有大小两种游船.小华发现1艘大船与2艘小船一次共可以满载游客32人,2艘大船与1艘小船一次共可以满载游客46人.则1艘大船与1艘小船一次共可以满载游客的人数为( ) A .30B .26C .24D .227.如图,直线2y x =与y kx b =+相交于点(),2P m ,则关于x 的方程2kx b +=的解是( )A .12x =B .1x =C .2x =D .4x =8.某体育比赛的门票分A 票和B 票两种,A 票每张x 元,B 票每张y 元.已知10张A 票的总价与19张B 票的总价相差320元,则( ) A .1032019xy= B .1032019yx= C .1019320x y -= D .1910320x y -=9.《九章算术》是我国古代著名的数学专著,其“方程”章中给出了“遍乘直除”的算法解方程组.比如对于方程组323923342326x y z x y z x y z ++=⎧⎪++=⎨⎪++=⎩,将其中数字排成长方形形式,然后执行如下步骤(如图);第一步,将第二行的数乘以3,然后不断地减第一行,直到第二行第一个数变为0;第二步,对第三行做同样的操作,其余步骤都类似.其本质就是在消元.那么其中的a ,b 的值分别是( )A .24,4B .17,4C .24,0D .17,010.如图,在方格纸中,点P ,Q ,M 的坐标分别记为(0,2),(3,0),(1,4).若MN ∥PQ ,则点N 的坐标可能是( )A .(2,3)B .(3,3)C .(4,2)D .(5,1)11.幻方是古老的数学问题,我国古代的《洛书》中记载了最早的幻方——九宫格.将9个数填入幻方的空格中,要求每一横行、每一竖列以及两条对角线上的3个数之和相等,例如图(1)就是一个幻方.图(2)是一个未完成的幻方,则x 与y 的和是( )A .9B .10C .11D .1212.如图,直线11y k x b =+和直线22y k x b =+相交于点2,23M ⎛⎫- ⎪⎝⎭,则关于x ,y 的方程组1122y k x b y k x b =+⎧⎨=+⎩,的解为( )A .2,32x y ⎧=⎪⎨⎪=-⎩B .2,23x y =-⎧⎪⎨=⎪⎩C .2,32x y ⎧=⎪⎨⎪=⎩D .2,23x y =-⎧⎪⎨=-⎪⎩二、填空题13.关于x 、y 的二元一次方程组2354343x y mx y m -=-⎧⎨+=+⎩的解满足55x y +=,则m 的值是______.14.若()225240x y x y +-++=,则x y -的值是________.15.某班为奖励在数学竞赛中成绩优异的同学,花费48元钱购买了甲、乙两种奖品,每种奖品至少购买1件,其中甲种奖品每件4元,乙种奖品每件3元,则有______种购买方案.16.若方程组()23312y kx y k x =-⎧⎨=-+⎩无解,则2y kx =-图象不经过第________象限.17.如图点D 、E 分别在ABC 的边AC 、AB 上,2,,3AD AE EB BD DC ==与CE 交于点F ,40ABC S =△,则AEFD S =_______.18.如图,直线3y kx =-与x 轴、y 轴分别交于点B 与点A ,13OB OA =,点C 是直线AB上的一点,且位于第二象限,当△OBC 的面积为3时,点C 的坐标为______.三、解答题19.已知点(4,0)A 及在第一象限的动点(,)P x y ,且6x y +=,O 为坐标原点,设OPA 面积为S .(1)求S 关于x 的函数解析式; (2)求x 的取值范围; (3)当6S =时,求P 点坐标.20.某商场同时购进甲、乙两种商品共100件,其进价和售价如表:商品名称甲乙进价(元/件)40 90售价(元/件)60 120设其中甲种商品购进x件,商场售完这批商品的总利润为y元.(1)写出y关于x的函数关系式;(2)若获得的利润恰好为2800元,求该商场购进甲、乙两种商品各多少件?21.如图,一次函数y=x+3的图象1l与x轴交于点B,与过点A(3,0)的一次函数的图象2l交于点C(1,m).(1)求m的值;(2)求一次函数图象2l相应的函数表达式;(3)求ABC的面积.22.已知0k ≠,将关于x 的方程0kx b +=记作方程☆. (1)当3k =,2b =-时,方程☆的解为______.(2)若方程☆的解为5x =-,写出一组满足条件的k ,b 值:k =______,b =______; (3)若方程☆的解为3x =,求关于y 的方程()250k y b --=的解.23.A ,B 两地相距300km ,甲、乙两人分别开车从A 地出发前往B 地,其中甲先出发1h ,如图是甲,乙行驶路程(km),(km)y y 甲乙随行驶时间(h)x 变化的图象,请结合图象信息.解答下列问题:(1)填空:甲的速度为___________km /h ; (2)分别求出,y y 甲乙与x 之间的函数解析式; (3)求出点C 的坐标,并写点C 的实际意义.24.数学乐园:解二元一次方程组111222a x b y c a x b y c +=⎧⎨+=⎩①②,21b ⨯-⨯①②b 得:()12211221a b a b x c b c b -=-,当12210a b a b -≠时,12211221c b c b x a b a b -=-,同理:12211221a c a c y ab a b -=-;符号a b c d称之为二阶行列式,规定:a b ad bc c d=-,设1122a b D a b =,1122x c b D c b =,1122y a c D a c =,那么方程组的解就是x y D x DD y D⎧=⎪⎪⎨⎪=⎪⎩ (1)求二阶行列式3456的值;(2)解不等式:2224x x -≥--;(3)用二阶行列式解方程组3262317x y x y -=⎧⎨+=⎩;(4)若关于x 、y 的二元一次方程组362317x my x y -=⎧⎨+=⎩无解,求m 的值.25.在新年联欢会上,同学们组织了精彩的猜谜活动,为了奖励猜对的同学,老师决定购买笔袋或彩色铅笔作为奖品,已知1个笔袋和2筒彩色铅笔原价共需44元;2个笔袋和3筒彩色铅笔原价共需73元.(1)求每个笔袋、每筒彩色铅笔的原价各多少元?(2)时逢新年期间,商店举行“优惠促销”活动,具体办法如下:笔袋“九折”优惠;彩色铅笔不超过10筒不优惠,超出10筒的部分“八折”优惠.如果买m 个笔袋需要1y 元,买n 筒彩色铅笔需要2y 元.请用含m ,n 的代数式分别表示1y 和2y ;(3)如果在(2)的条件下一共购买同一种奖品95件,请分析买哪种奖品省钱.26.如图1,在平面直角坐标xOy 中,直线1l :1y x =+与x 抽交于点A ,直线2l :33y x =-与x 轴交于点B ,与1l 相交于C 点.(1)请直接写出点A ,点B ,点C 的坐标:A _________,B ________,C _______. (2)如图2,动直线x t =分别与直线1l 、2l 交于P 、Q 两点. ①若2PQ =,求t 的值;②若存在2AQC ABC S S =△△,求出此时点Q 的坐标;若不存在,请说明理由.27.小华从家里出发到学校去上学,前15路段小华步行,其余路段小华骑自行车. 已知小华步行的平均速度为60m/min ,骑自行车的平均速度为200m/min ,小华从家里到学校一共用了22min .(1)小红同学提出问题:小华家里离学校有多少m ? 前15路段小华步行所用时间是多少min ? 请你就小红同学提出的问题直接设出未知数列方程组进行解答.(2)请你再根据题目的信息,就小华走的“路程”或“时间”,提出一个能用二元一次方程组解答但与第(1)问不完全相同的问题,并设出未知数、列出方程组。
初中数学《二元一次方程与一次函数》练习题

§5.6 二元一次方程与一次函数学习目标:1、体会二元一次方程与一次函数的关系。
2、能从形的角度理解二元一次方程和二元一次方程组。
动手做一做1、方程5+=的解有个,请写出其中几个。
x y2、在直角坐标系内分别描出以这些解为坐标的点,它们在一次函数5=-的y x图象上吗?3、在一次函数5+=吗?x yy x=-的图象上任意取一点,它的坐标适合方程5动脑想一想1、以方程5y x=-的图象+=的解为坐标的所有点组成的图象与一次函数5x y相同吗?为什么呢?2、上述发现可以推广到一般吗?用心听一听观看微课。
大胆说一说你能否借助身边的事物来演示二元一次方程与一次函数的关系?问题① 二元一次方程与一次函数有什么关系?体现了什么数学思想?问题② 在同一直角坐标系中分别画出函数5y x =-和21y x =-的图象,这两个图像有交点吗?交点坐标是 。
方程组521x y x y +=⎧⎨-=⎩的解是 。
你有什么发现吗?((备用图)问题③ 两条直线的位置关系除了相交还有什么?你能写出两平行直线的解析式吗?相应的二元一次方程组解的情况如何?A 组1、下面四条直线,其中直线上每个点的坐标都是二元一次方程22x y -=的解的是( ).A B C D2、如果一次函数36y x =+和24y x =-的交点坐标为(,)a b ,则下面方程组中的解为x a y b⎧⎪⎨⎪⎩==的是( )36A.24y x x y ⎧⎪⎨⎪⎩-=+=- 360B.240x y x y ⎧⎪⎨⎪⎩++=--= 36C.240x y x y ⎧⎪⎨⎪⎩-=---= 36D.24x y x y ⎧⎪⎨⎪⎩-=-=3、如图,一次函数11y k x b =+的图象1l 与22y k x b =+的图象2l 相交于点P ,则方程组1122y k x b y k x b ⎧⎪⎨⎪⎩=+=+的解是 。
B 组4、一次函数35y x =-与2y x b =+的交点坐标为(1,2)-,试确定方程组352y x y x b⎧⎪⎨⎪⎩=-=+的解和b 的值。
2018秋北师大版八年级上册数学习题课件:5.6二元一次方程与一次函数

5.6 二元一次方程与一次函数
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
知识点 1 二元一次方程与一次函数的关系
1.以关于x,y的二元一次方程y-kx=b(k≠0)的解为坐 标的点组成的图象就是一次函数__y_=__k_x_+__b_(k_≠_0_)_的 图象.直线y=kx+b(k≠0)对应的函数表达式就是一 个关于x,y的____________方程. 二元一次
返回
7.(中考•贵阳)若直线y=-x+a与直线y=x+b的交点坐标为(Leabharlann ,8),则a-b的值为( )B
A.2 B.4
C.6
D.8
返回
8.已与知y=--cxc+axx++y=dy=d的b交,点的坐解标为为(xy==12,,) 则直线y=ax+b
A
A.(1,2)
B.(-1,2)
C.(1,-2)
解:(1)观察图象,可知政府没出台补贴政策前,该种 蔬菜的种植面积为800亩,每亩的收益额为3 000元,所以种植这种蔬菜的收益额为
3 000×800=2 400 000(元). (2)根据题意,设y与x的函数表达式为y=kx+b. 把点(0,800)和点(50,1 200)的坐标分别代入上式,
返回
题型 2 一次函数的图象交点坐标在求解中的应用
13.已知一次函数y=3x+6与y=2x+b(b为常数)的图象
的交点为P(-10,-24),求方程组 y=3x+6,
的解和b的值.
y=2
x+b
解:由题意,可得方程组
y=3x+6,
(典型题)初中数学八年级数学上册第五单元《二元一次方程组》测试(有答案解析)

一、选择题1.已知关于x 、y 的方程组1427x y a x y a +=+⎧⎨-=--⎩得出下列结论,正确的是( ) ①当0a =时,方程组的解也是方程1x y +=的解;②当x y =时,52a =-;③不论a 取什么实数,3x y -的值始终不变:④不存在a 使得23x y =成立;A .①②③B .①②④C .①③④D .②③④ 2.已知关于x ,y 的方程组35225x y a x y a -=⎧⎨-=-⎩,则下列结论中正确的个数有( ) ①当10a =时,方程组的解是155x y =⎧⎨=⎩;②当x ,y 的值互为相反数时,20a =;③不存在一个实数a 使得x y =;④若35x a -=,则5a =. A .1个 B .2个C .3个D .4个 3.长方形ABCD 可以分割成如图所示的七个正方形.若10AB =,则AD 等于( )A .252B .353C .14011D .150114.为了研究吸烟对肺癌是否有影响,某研究机构随机调查了8000人,结果显示:在吸烟者中患肺癌的比例是3%,在不吸烟者中患肺癌的比例是0.5%,吸烟者患肺癌的人数比不吸烟者患肺癌的人数多33人.在这8000人中,设吸烟者患肺癌的人数为x ,不吸烟者患肺癌的人数为y .所列方程组正确的是( )A .333%0.5%8000x y x y -=⎧⎨⨯+⨯=⎩B .80003%0.5%22x y x y +=⎧⎨⨯-⨯=⎩C .3380003%0.5%x y x y -=⎧⎪⎨+=⎪⎩D .8000333%0.5%x y x y +=⎧⎪⎨-=⎪⎩ 5.小明的妈妈在菜市场买回2斤萝卜、1斤排骨共花了41.4元,而两个月前买同重量的这两样菜只要36元,与两个月前相比,这次萝卜的单价下降了10%,但排骨单价却上涨了20%,设两个月前买的萝卜和排骨的单价分别为x 元/斤,y 元/斤,则可列方程为( )A .()()2362110%120%41.4x y x y +=⎧⎨⨯-++=⎩B .()()241.42110%120%36x y x y +=⎧⎨⨯-++=⎩C .()()241.4110%2120%36x y x y +=⎧⎨-+⨯+=⎩D .()()236110%2120%41.4x y x y +=⎧⎨-+⨯+=⎩6.已知关于x ,y 的方程组72x my mx y m +=⎧⎨-=+⎩①②,将此方程组的两个方程左右两边分别对应相加,得到一个新的方程,当m 每取一个值时,就有一个方程,这些方程有一个公共解,这个公共解为( )A .54x y =⎧⎨=-⎩B .14x y =⎧⎨=-⎩C .41x y =⎧⎨=-⎩D .-54x y =⎧⎨=⎩7.已知方程组512x y ax by +=⎧⎨+=⎩和521613x y bx ay +=⎧⎨+=⎩的解相同,则a 、b 的值分别是( ) A .2,3 B .3,2 C .2,4 D .3,48.如图,在两个形状、大小完全相同的大长方形内,分别互不重叠地放入四个如图③的小长方形后得图①、图②,已知大长方形的长为2a ,两个大长方形未被覆盖部分分别用阴影表示,则图①阴影部分周长与图②阴影部分周长的差是( )(用a 的代数式表示)A .﹣aB .aC .12a D .﹣12a 9.已知代数式x a ﹣b y 2与xy 2a +b 是同类项,则a 与b 的值分别是( )A .a =0,b =1B .a =2,b =1C .a =1,b =0D .a =0,b =2 10.如图,长方形ABCD 被分割成3个正方形和2个长方形后仍是中心对称图形,设长方形ABCD 的周长为l ,若图中3个正方形和2个长方形的周长之和为94l ,则标号为①正方形的边长为( )A .112lB .116lC .516lD .118l 11.已知 xyz≠0,且4520430x y z x y z -+=⎧⎨+-=⎩,则 x :y :z 等于( )A .3:2:1B .1:2:3C .4:5:3D .3:4:5 12.《九章算术》中记载:“今有共买鸡,人出八,盈三;人出七,不足四.问人数、鸡价各几何?”译文:“今天有几个人共同买鸡,每人出8钱,多余3钱,每人出7钱,还缺4钱.问人数和鸡的价钱各是多少?”设人数有x 人,鸡的价钱是y 钱,可列方程组为( ).A .7384x y x y -=⎧⎨+=⎩B .7384x y x y +=⎧⎨-=⎩C .8374x y x y -=⎧⎨+=⎩D .8374x y x y +=⎧⎨-=⎩二、填空题 13.有一个蓄水池,池内原有水60m 3,现在向蓄水池注水,已知池内总水量y 与注水时间x 具有如下关系:式为_____.14.定义一种新的运算:2a b a b =-☆,例如:()()312317-=⨯--=☆,那么 (1)若()216b -=-☆,那么b =______;(2)若0a b =☆,且关于x ,y 的二元一次方程()1520a x by a -++-=,当a ,b 取不同值时,方程都有一个公共解,那么公共解为_________.15.已知012x y =⎧⎪⎨=-⎪⎩是方程组522x b y x a y -=⎧⎨+=⎩的解,则a b +的值为_______ . 16.已知方程组2300x y ax y c -+=⎧⎨-+=⎩的解为11x y =-⎧⎨=⎩,则一次函数y =2x +3与y =ax +c 的图象的交点坐标是_____________.17.如果实数m ,n 满足方程组212m n m n -=⎧⎨+=⎩,那么2021(2)m n -=______. 18.若关于,x y 的方程组275x y k x y k+=+⎧⎨-=⎩ 的解互为相反数,则k =_____. 19.若x 3m ﹣2﹣2y n ﹣1=5是二元一次方程,则m+n =_____.20.已知434m n m x y -与5n x y 是同类项,则m n +的值是_______.三、解答题21.着中国传统节日“端午节”的临近,永旺超市决定开展“欢度端午,回馈顾客”的让利促销活动,对部分品牌粽子进行打折销售,其中甲品牌粽子打八折,乙品牌粽子打七五折,已知打折前,买1盒甲品牌粽子和2盒乙品牌粽子需230元:打折后,买50盒甲品牌粽子和40盒乙品牌粽子需要5200元.(1)打折前甲、乙两种品牌粽子每盒分别为多少元?(2)阳光敬老院需购买甲品牌粽子80盒,乙品牌粽子100盒,问打折后购买这批粽子比不打折节省了多少钱?22.用白铁皮做罐头盒,每张铁皮可制作24个盒身,或制作32个盒底,一个盒身与两个盒底配成一套罐头盒,现有40张白铁皮请用二元一次方程组的知识解答下列问题. (1)问用多少张制作盒身,多少张制作盒底可以使盒身与盒底正好配套?(2)已知一张白铁皮的成本为120元,每张制作盒底的加工费为30元/张,而制作盒身的加工方式有横切和纵切两种,横切的加工费为20元/张,纵切的加工费为25元/张,问在(1)的结论下,若想要总费用控制在5900元,应安排多少张横切,多少张纵切? 23.在手工制作课上,老师组织班级同学用硬纸制作圆柱形茶叶筒.全班共有学生50人,其中男生x 人,女生y 人,男生人数比女生人数少2人.已知每名同学每小时剪筒身40个或剪筒底120个.(1)求这个班男生、女生各有多少人?(2)原计划男生负责剪筒底,女生负责剪筒身,若要求一个筒身配两个筒底,请说明每小时剪出的筒身与筒底能否配套?如果不配套,请说明如何调配人员,才能使每小时剪出的筒身与筒底刚好配套?24.解方程(组):(1)()()221342x x +--=(2)35821x y x y ⋅+=⎧⎨-=⎩25.为了保护学生的视力,课桌的高度cm y 与椅子的高度cm x (不含靠背)都是按y 是x 的一次函数关系配套设计的,下表列出了两套符合条件课桌椅的高度:(2)现有一把高42.0cm 的椅子和一张高78.2cm 的课桌,它们是否配套?请通过计算说明理由.26.已知y 与x-1成正比例,并且当x=3时,y=-4.(1)求y 与x 之间的函数关系式;(2)如果函数图象经过点P (m ,6),求m 的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】①把a 看做已知数表示出方程组的解,把a=0代入求出x 与y 的值,代入方程检验即可;②令x=y 求出a 的值,即可作出判断;③把x 与y 代入3x-y 中计算得到结果,判断即可;④令2x=3y 求出a 的值,判断即可.【详解】解:1427x y a x y a +=+⎧⎨-=--⎩①②, ①+②得:3x=3a-6,解得:x=a-2,把x=a-2代入①得:y=3a+3,当a=0时,x=-2,y=3,把x=-2,y=3代入x+y=1得:左边=-2+3=1,右边=1,是方程的解;当x=y 时,a-2=3a+3,即a=52-; 3x-y=3a-6-3a-3=-9,无论a 为什么实数,3x-y 的值始终不变,为-9;令2x=3y ,即2a-4=9a+9,即a=137-,存在, 则正确的结论是①②③,故选A .【点睛】此题考查了二元一次方程组的解,二元一次方程的解,以及解二元一次方程组,熟练掌握运算法则是解本题的关键. 2.D解析:D【分析】①把a=10代入方程组求出解,即可做出判断;②根据题意得到x+y=0,代入方程组求出a 的值,即可做出判断;③假如x=y ,得到a 无解,即可做出判断;④根据题中等式x-3a=5,代入方程组求出a 的值,即可做出判断.【详解】解:①把10a =代入方程组得:352025x y x y -=⎧⎨-=⎩, 解得:155x y =⎧⎨=⎩,本选项正确; ②由x 与y 互为相反数,得到0x y +=,即y x =-,代入方程组解得:20a =,本选项正确;③若x y =,则有225x a x a -=⎧⎨-=-⎩,可得5a a =-,矛盾, 故不存在一个实数a 使得x y =,本选项正确; ④方程组解得:2515x a y a =-⎧⎨=-⎩, ∵35x a -=,把2515x a y a =-⎧⎨=-⎩代入得:2535a a --=, 解得:5a =,本选项正确,故选:D .【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.3.D解析:D【分析】根据题意,设DE=x ,EF=y ,然后由边长的数量关系列出方程组,解方程组求出x 、y ,即可得到答案.【详解】解:如图:设DE=x ,EF=y ,根据题意,则32()10y x y x y =⎧⎨++=⎩, 解得:10113011x y ⎧=⎪⎪⎨⎪=⎪⎩, ∴103015010111111AD =++=; 故选:D .本题考查了二元一次方程组的应用,解二元一次方程组,解题的关键是熟练掌握题意,正确列出方程组进行解题.4.C解析:C【分析】根据吸烟者患肺癌的人数比不吸烟者患肺癌的人数多33人且该研究机构共调查了8000人,即可得出关于x ,y 的二元一次方程,此题得解.【详解】解:依题意得:3380003%0.5%x y x y -=⎧⎪⎨+=⎪⎩. 故选:C .【点睛】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.5.A解析:A【分析】根据题目中设的两个月前的萝卜和排骨的单价,先列出两个月前的式子236x y +=,再根据降价和涨价列出现在的式子()()2110%120%41.4x y ⨯-++=,得到方程组.【详解】解:两个月前买菜的情况列式:236x y +=,现在萝卜的价格下降了10%,就是()110%x -,排骨的价格上涨了20%,就是()120%y +,那么这次买菜的情况列式:()()2110%120%41.4x y ⨯-++=,∴方程组可以列为()()2362110%120%41.4x y x y +=⎧⎨⨯-++=⎩. 故选:A .【点睛】本题考查二元一次方程组的应用,解题的关键是根据题意找到等量关系列出方程组. 6.A解析:A【分析】由这组公共解与m 无关,所以把两个方程相加变形为:()190,x y m x y +-+--=从而【详解】解:①+②得:9,mx x my y m ++-=+90,mx x my y m ∴++---=()190,x y m x y ∴+-+--=结合题意得:1090x y x y +-=⎧⎨--=⎩解得:54x y =⎧⎨=-⎩, 所以这个公共解为54x y =⎧⎨=-⎩. 故选A .【点睛】本题考查的是二元一次方程组的公共解与字母系数无关的问题,掌握与该字母无关,则含有该字母的项合并后系数为零是解题的关键.7.B解析:B【分析】由于这两个方程组的解相同,所以可以把这两个方程组中的第一个方程联立再组成一个新的方程组,然后求出x 、y 的解,把求出的解代入另外两个方程,得到关于a ,b 的方程组,即可求出a 、b 的值.【详解】根据题意,得:55216x y x y +=⎧⎨+=⎩, 解得:23x y =⎧⎨=⎩, 将2x =、3y =代入1213ax by bx ay +=⎧⎨+=⎩, 得:23122313a b b a +=⎧⎨+=⎩, 解得:32a b =⎧⎨=⎩, ∴a 、b 的值分别是3、2.故选:B .【点睛】本题主要考查了二元一次方程组的解,理解方程组的解即为能使方程组中两方程都成立的未知数的值是解题的关键.8.A解析:A【分析】设图③小长方形的长为m ,宽为n ,则由已知可以求得m 、n 关于a 的表达式,从而可以用a 表示出图①阴影部分周长与图②阴影部分周长,然后即可算得二者之差.【详解】解:设图③小长方形的长为m ,宽为n ,则由图①得m=2n ,m+2n=2a , ∴2a m a n ==,, ∴图①阴影部分周长=22245a n a a a ⨯+=+=,图②阴影部分周长=()2322126n n n n a ++==,∴图①阴影部分周长与图②阴影部分周长的差是:5a-6a=-a ,故选A .【点睛】本题考查二元一次方程组的几何应用,设图③小长方形的长为m ,宽为n ,并用a 表示出m 和n 是解题关键.9.C解析:C【分析】根据同类项的定义可得关于a 、b 的方程组,解方程组即得答案.【详解】解:由同类项的定义,得122a b a b -=⎧⎨+=⎩,解得:10a b =⎧⎨=⎩. 故选:C .【点睛】本题考查了同类项的定义和二元一次方程组的解法,属于基本题目,正确理解题意、掌握解答的方法是解题的关键.10.B解析:B【分析】设两个大正方形边长为x ,小正方形的边长为y ,由图可知周长和列方程和方程组,解答即可.【详解】 解:长方形ABCD 被分成3个正方形和2个长方形后仍是中心对称图形,∴两个大正方形相同、2个长方形相同.设小正方形边长为x ,大正方形的边长为y ,∴小长方形的边长分别为()y x -、()x y +,大长方形边长为()2y z -、()2y x +.长方形周长l =,即:()()222y x y x l -++⎤⎣⎦=⎡, 8y l ∴=,18y l ∴=. 3个正方形和2个长方形的周长和为94l , ()()9244224y x x y y x l ∴⨯++⨯⨯+⎤⎣⎦=⎡+-,91644y x l ∴+=, 116x l ∴=. ∴标号为①的正方形的边长116l . 故选:B .【点睛】此题主要考查了二元一次方程组的应用,关键是正确理解题意,要明确中心对称的性质,找出题目中的等量关系,列出方程组.注意各个正方形的边长之间的数量关系. 11.B解析:B【分析】由4520430x y z x y z -+⎧⎨+-⎩=①=②,①×3+②×2,得出x 与y 的关系式,①×4+②×5,得出x 与z 的关系式,从而算出xyz 的比值即可.【详解】∵4520430x y z x y z -+⎧⎨+-⎩=①=②, ∴①×3+②×2,得2x=y ,①×4+②×5,得3x=z ,∴x :y :z=x :2x :3x=1:2:3,故选B .【点睛】本题考查了三元一次方程组的解法,用含有x 的代数式表示y 与z 是解此题的关键. 12.C解析:C【分析】设人数有x 人,鸡的价钱是y 钱,依据题意列方程组,即可完成求解.【详解】设人数有x 人,鸡的价钱是y 钱依据题意得:8374x y x y -=⎧⎨+=⎩即8374x y x y -=⎧⎨+=⎩故选:C .【点睛】本题考查了二元一次方程组的知识;解题的关键是熟练掌握二元一次方程组的性质,从而完成求解.二、填空题13.y=12x+60【分析】设直线的解析式为y=kx+b 从表中任意选取两点代入解析式转化为方程求解即可【详解】解:设直线的解析式为y=kx+b 把(060)和(172)分别代入解析式得解得∴直线的解析式为解析:y=12x+60.【分析】设直线的解析式为y=kx+b ,从表中任意选取两点代入解析式,转化为方程求解即可.【详解】解:设直线的解析式为y=kx+b ,把(0,60)和(1,72)分别代入解析式,得6072b k b =⎧⎨+=⎩, 解得1260k b =⎧⎨=⎩, ∴直线的解析式为y=12x+60,故答案为:y=12x+60.【点睛】本题考查了待定系数法确定一次函数的解析式,熟练掌握待定系数法,灵活求解二元一次方程组是解题的关键.14.【分析】(1)根据新定义代入数据计算即可求解;(2)根据新定义可得b=2a 代入方程得到(a-1)x+2ay+5-2a=0则(x+2y-2)a=x-5根据当ab 取不同值时方程都有一个公共解得到方程组解解析:51.5x y =⎧⎨=-⎩【分析】(1)根据新定义代入数据计算即可求解;(2)根据新定义可得b=2a,代入方程得到(a-1)x+2ay+5-2a=0,则(x+2y-2)a=x-5,根据当a,b取不同值时,方程都有一个公共解,得到方程组22050x yx+-=⎧⎨-=⎩,解方程组即可求解.【详解】解:(1)∵(-2)☆b=-16,∴2×(-2)-b=-16,解得b=12;(2)∵a☆b=0,∴2a-b=0,∴b=2a,则方程(a-1)x+by+5-2a=0可以转化为(a-1)x+2ay+5-2a=0,则(x+2y-2)a=x-5,∵当a,b取不同值时,方程都有一个公共解,∴22050x yx+-=⎧⎨-=⎩,解得51.5 xy=⎧⎨=-⎩,故这个公共解为51.5 xy=⎧⎨=-⎩.【点睛】本题考查了新定义,二元一次方程的解,关键是熟练掌握新定义运算.15.【分析】将代入方程组求出a和b的值即可求解【详解】将代入方程组得:解得:∴故答案为:【点睛】本题考查了二元一次方程组的解方程组的解即为能使方程组中两方程都成立的未知数的值解析:0【分析】将12xy=⎧⎪⎨=-⎪⎩代入方程组522x b yx a y-=⎧⎨+=⎩,求出a和b的值,即可求解.【详解】将12xy=⎧⎪⎨=-⎪⎩代入方程组522x b yx a y-=⎧⎨+=⎩,得:121222b a ⎧-=-⎪⎪⎨⎛⎫⎪=⨯- ⎪⎪⎝⎭⎩, 解得:1212a b ⎧=-⎪⎪⎨⎪=⎪⎩, ∴11022a b +=-+=. 故答案为:0.【点睛】 本题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.16.【分析】函数图象交点坐标为两函数解析式组成的方程组的解据此即可求解【详解】解:∵关于xy 的二元一次方程组的解为∴一次函数y =2x +3与y =ax +c 的图象的交点坐标为(-11)故答案为:(-11)【点解析:()1,1-【分析】函数图象交点坐标为两函数解析式组成的方程组的解,据此即可求解.【详解】解:∵关于x ,y 的二元一次方程组2300x y ax y c -+=⎧⎨-+=⎩的解为11x y =-⎧⎨=⎩, ∴一次函数y =2x +3与y =ax +c 的图象的交点坐标为(-1,1).故答案为:(-1,1).【点睛】本题考查了一次函数与二元一次方程组,方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.17.1【分析】方程组中的两个方程相减可得然后整体代入所求式子计算即可【详解】解:对方程组①-②得所以故答案为:﹣1【点睛】本题考查了二元一次方程组的解法和代数式求值灵活应用整体的思想是解题的关键解析:-1【分析】方程组中的两个方程相减可得21m n -=-,然后整体代入所求式子计算即可.【详解】解:对方程组21{2m n m n -=+=①②,①-②,得21m n -=-,所以()()20212021211m n -=-=-. 故答案为:﹣1.【点睛】 本题考查了二元一次方程组的解法和代数式求值,灵活应用整体的思想是解题的关键. 18.【分析】由方程组的解互为相反数得到代入方程组计算即可求出的值【详解】由题意得:代入方程组得由①得:③③代入②得:解得:故答案为:【点睛】本题考查了二元一次方程组的解方程组的解即为能使方程组中两方程都解析:6-【分析】由方程组的解互为相反数,得到y x =-,代入方程组计算即可求出k 的值.【详解】由题意得:y x =-,代入方程组得275x x k x x k -=+⎧⎨+=⎩①②, 由①得:7x k =--③,③代入②得:426k k --=,解得:6k =-,故答案为:6-.【点睛】本题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.19.3【分析】二元一次方程满足的条件:含有2个未知数未知数的项的次数是1的整式方程【详解】解:由x3m ﹣2﹣2yn ﹣1=5是二元一次方程得3m ﹣2=1n ﹣1=1解得m =1n =2m+n =1+2=3故答案为解析:3【分析】二元一次方程满足的条件:含有2个未知数,未知数的项的次数是1的整式方程.【详解】解:由x 3m ﹣2﹣2y n ﹣1=5是二元一次方程,得3m ﹣2=1,n ﹣1=1.解得m =1,n =2.m+n =1+2=3,故答案为:3.【点睛】本题考查了二元一次方程的概念,要求熟悉二元一次方程的形式及其特点:含有2个未知数,未知数的项的次数是1的整式方程.20.5【分析】由同类项的定义可得关于mn的方程组解方程组即可求出mn的值然后把mn的值代入所求式子计算即可【详解】解:由题意得:解得:∴故答案为:5【点睛】本题考查了同类项的定义和二元一次方程组的解法属解析:5【分析】由同类项的定义可得关于m、n的方程组,解方程组即可求出m、n的值,然后把m、n的值代入所求式子计算即可.【详解】解:由题意得:431m nn m=⎧⎨-=⎩,解得:14mn=⎧⎨=⎩,∴145m n+=+=.故答案为:5.【点睛】本题考查了同类项的定义和二元一次方程组的解法,属于常考题型,熟练掌握基本知识是解题的关键.三、解答题21.(1)甲品牌粽子每盒70元,乙品牌粽子每盒80元;(2)3120元【分析】(1)设打折前甲品牌粽子每盒x元,乙品牌粽子每盒y元,根据“打折前,买1盒甲品牌粽子和2盒乙品牌粽子需230元;打折后,买50盒甲品牌粽子和40盒乙品牌粽子需要5200元”,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)根据节省钱数=甲品牌粽子节省的钱数+乙品牌粽子节省的钱数,即可求出节省的钱数.【详解】解:(1)设打折前甲品牌粽子每盒x元,乙品牌粽子每盒y元,题意得:2230500.8400.755200 x yx y+=⎧⎨⨯+⨯=⎩,解得:7080 xy=⎧⎨=⎩,∴甲品牌粽子每盒70元,乙品牌粽子每盒80元.(2)80×70×(1-80%)+100×80×(1-75%)=3120(元).答:打折后购买这批粽子比不打折节省了3120元.【点睛】本题考查了二元一次方程组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据数量关系,列式计算.22.(1)用16张制盒身,24张制盒底可以使盒身与盒底正好配套;(2)应安排4张横切,12张纵切才能使总费用控制在5900元.【分析】(1)设用x 张制盒身,y 张制盒底可以使盒身与盒底正好配套,根据共有40张白铁皮且制作的盒底总数是制作的盒身的2倍,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)设安排m 张横切,则安排(16−m )张纵切,根据总费用=40张白铁皮的成本+总加工费,列出关于m 的方程,即可解决问题.【详解】解:(1)设用x 张制盒身,y 张制盒底可以使盒身与盒底正好配套,依题意,得:4022432x y x y +⎧⎨⨯⎩==,解得:1624x y ⎧⎨⎩==, 答:用16张制盒身,24张制盒底可以使盒身与盒底正好配套;(2)设安排m 张横切,则安排(16−m )张纵切,120×40+30×24+20m +25(16−m )=5900解得:m=4,答:在(1)的结论下,应安排4张横切,12张纵切才能使总费用控制在5900元.【点睛】本题考查了二元一次方程组的应用、一元一次方程的应用,解题的关键是:找准等量关系,正确列出二元一次方程组或一元一次方程.23.(1)这个班有男生有24人,女生有26人;(2)原计划男生负责剪筒底,女生负责剪筒身,每小时剪出的筒身与筒底不能配套;男生应向女生支援4人时,才能使每小时剪出的筒身与筒底配套.【分析】(1)由题意列出方程组,解方程组解可;(2)分别计算出24名男生和26名女生剪出的筒底和筒身的数量,可得不配套;设男生应向女生支援y 人,根据制作筒底的数量=筒身的数量×2,根据等量关系列出方程,再解即可.【详解】解:(1)由题意得:502x y x y +=⎧⎨=-⎩, 解得:2426x y =⎧⎨=⎩, 答:这个班有男生有24人,女生有26人;(2)男生剪筒底的数量:24×120=2880(个),女生剪筒身的数量:26×40=1040(个),因为一个筒身配两个筒底,2880:1040≠2:1,所以原计划男生负责剪筒底,女生负责剪筒身,每小时剪出的筒身与筒底不能配套, 设男生应向女生支援a 人,由题意得:120(24-a)=(26+a)×40×2,解得:a=4,答:原计划男生负责剪筒底,女生负责剪筒身,每小时剪出的筒身与筒底不能配套;男生应向女生支援4人时,才能使每小时剪出的筒身与筒底配套.【点睛】本题考查了二元一次方程组的应用、一元一次方程的应用,解题的关键是正确理解题意,找出题目中的等量关系,列出方程或方程组.24.(1)x=-4;(2)11x y =⎧⎨=⎩【分析】(1)去括号,移项,合并同类项,系数化成1即可;(2)方程组运用加减消元法求解即可.【详解】解:(1)()()221342x x +--=去括号得,423+42x x +-=移项,合并同类项得,x=-4; (2)35821x y x y ⋅+=⎧⎨-=⎩①② ①+②×5得,13x=13解得,x=1把x=1代入②得,2-y=1解得,y=1所以,方程组的解为:11x y =⎧⎨=⎩【点睛】本题考查了解二元一次方程组和解一元一次方程,能正确根据等式的性质进行变形是解(1)的关键,能把二元一次方程组转化成一元一次方程是解(2)的关键.25.(1) 1.611y x =+;(2)是,理由见解析【分析】(1)根据题意和表格中的数据可以计算出y 与x 的函数关系式;(2)将x=42.0代入(1)中的函数解析式,然后与78.2作比较,即可解答本题.【详解】解:(1)设y 与x 的函数关系式为y kx b =+,把40x =,75y =和37x =,70.2y =代入y kx b =+中,得40753770.2k b k b +=⎧⎨+=⎩,解得 1.611k b =⎧⎨=⎩所以 1.611y x =+(2)把42x =代入 1.611y x =+得 1.6421178.2y =⨯+=答:是配套的.【点睛】本题考查一次函数的应用,解答此类问题的关键是明确题意,求出相应的函数解析式. 26.(1)y=-2x+2;(2)m=-2.【分析】(1)利用正比例的定义,设y=k (x-1),然后利用待定系数法,把已知的一组对应值代入,求出k 即可;(2)把P (m ,6)代入(1)中的表达式,得到关于m 的方程,解方程即可.【详解】解:(1)根据y 与 x-1 成正比例,可设y=k ( x-1),当 x=3 时,y=-4.原式化为:-4=2k ,则k=-2,所以y=-2x+2;(2)由题意知函数y=-2x+2图象经过点P (m ,6),原式化为:-2m+2=6,所以m=-2.【点睛】本题考查考查了待定系数法求一次函数解析式:先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b ;再将自变量x 的值及与它对应的函数值y 的值代入所设的解析式,得到关于待定系数的方程或方程组;然后解方程或方程组,求出待定系数的值,进而写出函数解析式.。
北师大版八年级数学上册第五章《二元一次方程与一次函数》课时练习题(含答案)

北师大版八年级数学上册第五章《6.二元一次方程与一次函数》课时练习题(含答案)一、单选题1.直线2y x =与直线5y x =-+的交点为( )A .()5,10B .510,33⎛⎫ ⎪⎝⎭C .()4,8D .47,33⎛⎫ ⎪⎝⎭ 2.一次函数26y x =-+的图象与两坐标轴围成的三角形的面积是( )A .6B .9C .12D .183.已知关于x ,y 的方程组32y x b y x =-+⎧⎨=-+⎩的解是1x y m=-⎧⎨=⎩,则直线y x b =-+与32y x =-+的交点在( )A .第一象限B .第二象限C .第三象限D .第四象限 4.在同一平面直角坐标系中,一次函数y ax b =+与()0y mx n a m =+<<的图象如图所示,小星根据图象得到如下结论:①在一次函数y mx n =+的图象中,y 的值随着x 值的增大而增大;②方程组y ax b y mx n-=⎧⎨-=⎩的解为32x y =-⎧⎨=⎩; ③方程0mx n +=的解为2x =;④当0x =时,1ax b +=-.其中结论正确的个数是( )A .1B .2C .3D .45.若直线21y x =+与y x b =-+的交点在第一象限,则b 的值可以是( )A .2B .1C .0D .1-6.如图所示,在直角坐标系中的两条直线分别是1y x =-+和25y x =-,那么方程组251y x y x =-⎧⎨=-+⎩的解是( )A .21x y =⎧⎨=-⎩B .12x y =-⎧⎨=⎩C .01x y =⎧⎨=⎩D .10x y =⎧⎨=⎩7.若直线1l 经过点()0,4,2l 经过点()3,2,且1l 与2l 关于x 轴对称,则1l 与2l 的交点坐标为( )A .()2,0-B .()2,0C .()6,0-D .()6,08.如图,在平面直角坐标系中,点()3,A a 是直线2y x =与直线y x b =+的交点,点B 是直线y x b =+与y 轴的交点,点P 是x 轴上的一个动点,连接P A ,PB ,则PA PB +的最小值是( )A .6B .35C .9D .310二、填空题9.在平面直角坐标系中,O 为坐标原点,若直线y =x +3分别与x 轴,直线y =-2x 交于点A ,B ,则△AOB 的面积为 _____.10.在平面直角坐标系中,一次函数y =kx +b 和y =mx +n 相交于点(2,﹣1),则关于x ,y的方程组y kx b y mx n =+⎧⎨=+⎩的解是______. 11.如果直线y =12x +n 与直线y =mx -1的交点坐标为(1,-2),那么m =________,n =________.12.如图,在同一平面直角坐标系中,直线l 1:y 14=x 12+与直线l 2:y =kx +3相交于点A ,则方程组11423y x y kx ⎧=+⎪⎨⎪=+⎩的解为 ___.13.已知二元一次方程组522x y x y -=-⎧⎨+=-⎩的解为41x y =-⎧⎨=⎩,则在同一平面直角坐标系中,直线l 1:y =x +5与直线l 2:y =-12x -1的交点坐标为____.三、解答题14.在同一平面直角坐标系中画出正比例函数y =x 和一次函数y =﹣x +2的图象,并求出这两个函数图象与x 轴围成的三角形面积.x+2,且l1与x轴交于点A,直线l2经过定点B(4,15.如图,直线l1的函数表达式为y=120),C(﹣1,5),直线l1与l2交于点D.(1)求直线l2的函数表达式;(2)求△ADB的面积;(3)在x轴上是否存在一点E,使△CDE的周长最短?若存在,请直接写出点E的坐标;若不存在,请说明理由.16.如图,一次函数y=x+2的图象经过点A(2,4),B(n,﹣1).(1)求n的值;(2)请判断点P(﹣2,4)在不在该直线上.(3)连接OA,OB,求△OAB的面积.x+1,与x轴、y轴分别交于A,B两点,以线段17.如图,已知直线m的解析式为y=﹣12AB为直角边在第一象限内作等腰Rt△ABC,且∠BAC=90°,点P为直线x=1上的动点,且△ABP的面积与△ABC的面积相等.(1)求△ABC 的面积;(2)求点P 的坐标.18.如图1,在平面直角坐标xOy 中,直线1l :1y x =+与x 抽交于点A ,直线2l :33y x =-与x 轴交于点B ,与1l 相交于C 点.(1)请直接写出点A ,点B ,点C 的坐标:A _________,B ________,C _______. (2)如图2,动直线x t =分别与直线1l 、2l 交于P 、Q 两点.①若2PQ =,求t 的值;②若存在2AQC ABC S S =△△,求出此时点Q 的坐标;若不存在,请说明理由.19.如图1,在平面直角坐标系中,直线AB与x轴交于点A,与y轴交于点B,与直线OC:y=x交于点C.(1)若直线AB解析式为y=﹣2x+12,求:①求点C的坐标;②求△OAC的面积.(2)在(1)的条件下,若P是x轴上的一个动点,直接写出当△POC是等腰三角形时P的坐标.(3)如图2,作∠AOC的平分线OF,若AB OF⊥,垂足为E,OA=4,P是线段AC上的动点,过点P作OC,OA的垂线,垂足分别为M,N,试问PM+PN的值是否变化,若不变,求出PM+PN的值;若变化,请说明理由。