数学必修二Microsoft Word 文档
(完整word版)高中数学必修二_知识点、考点及典型例题解析(全),推荐文档

高中数学必修二第一章 空间几何体知识点:1、空间几何体的结构⑴常见的多面体有:棱柱、棱锥、棱台;常见的旋转体有:圆柱、圆锥、圆台、球。
⑵棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱。
⑶棱台:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分,这样的多面体叫做棱台。
2、长方体的对角线长2222c b a l ++=;正方体的对角线长a l 3=3、球的体积公式:334 R V π=,球的表面积公式:24 R S π=4、柱体h s V ⋅=,锥体h s V ⋅=31,锥体截面积比:222121h h S S =5、空间几何体的表面积与体积⑴圆柱侧面积;l r S ⋅⋅=π2侧面⑵圆锥侧面积:l r S ⋅⋅=π侧面典型例题:★例1:下列命题正确的是( )A.棱柱的底面一定是平行四边形 B.棱锥的底面一定是三角形 C.棱柱被平面分成的两部分可以都是棱柱D.棱锥被平面分成的两部分不可能都是棱锥★★例2:若一个三角形,采用斜二测画法作出其直观图,其直观图面积是原三角形面积的( ) A 21倍 B 42倍 C 2倍 D 2倍 ★例3:已知一个几何体是由上、下两部分构成的一个组合体,其三视图如下图所示,则这个组合体的上、下两部分分别是( ) A.上部是一个圆锥,下部是一个圆柱B.上部是一个圆锥,下部是一个四棱柱C.上部是一个三棱锥,下部是一个四棱柱D.上部是一个三棱锥,下部是一个圆柱★★例4:一个体积为38cm 的正方体的顶点都在球面上,则球的表面积是( )A .28cm πB 212cm π.C 216cm π.D .220cm π 二、填空题★例1:若圆锥的表面积为a 平方米,且它的侧面展开图是一个半圆,则这个圆锥的底面的直径为_______________.★例2:球的半径扩大为原来的2倍,它的体积扩大为原来的 __ 倍.第二章点、直线、平面之间的位置关系知识点:1、公理1:如果一条直线上两点在一个平面内,那么这条直线在此平面内。
高中数学必修二:第1章1.1第1课时(人教A版必修2)Word版含答案

(2)水的形状也不断变化,可以是棱柱,也可能变为棱台或棱锥,对吗? (3)如果倾斜时,不是绕着底部的一条棱,而是绕着其底部的一个顶点,试着 讨论水面和水的形状.
解:(1)不对,水面的形状就是用一个与棱 (倾斜时固定不动的棱 )平行的平面截 长方体时截面的形状,因而是矩形,不可能是其他非矩形的平行四边形.
解析: 如图,取正方形 ABCD 的中心 O,连接 VO、AO,则 VO 就是正四棱锥 V-ABCD 的高.
因为底面面积为 16,所以 AO=2 2. 因为侧棱的长为 2 11. 所以 VO= VA2- AO2= 44-8=6. 所以正四棱锥 V-ABCD 的高为 6. 答案: 6 4.(选做题 )如图,在一个长方体的容器中装有少量水,现在将容器绕着其底 部的一条棱倾斜,在倾斜的过程中,
6.下列关于棱柱的说法正确的是 ________. ①棱柱的面中,至少有两个面互相平行;②棱柱的侧棱长相等;③棱柱的侧 面是平行四边形,但它的底面一定不是平行四边形. 答案: ①②
7.已知三棱锥的底面是边长为 a 的等边三角形,则过各侧棱中点的截面的面 积为 ________.
解析: 底面积为 43a2,
形的几何体不一定是棱台;③两个互相平行的面是正方形,其余各面是四边形的
几何体一定是棱台.
其中正确的说法的序号有 ( )
A.0 个
B.1 个
C. 2 个
D.3 个
解析: 选 C.①正确,因为具有这些特征的几何体的侧棱一定不相交于一点,
故一定不是棱台; ② 正确,如图所示; ③不正确,当两个平行的正方形完全相等 时,一定不是棱台.故选 C.
由题意知
(word完整版)高一数学必修二知识点,推荐文档

高一数学必修二知识点第一部分:立体几何、多面体• 1•多面体——由若干个平面多边形围成的几何体叫做多面体。
多面体有几个面就称为几面体。
棱柱棱锥棱台疋由一个平面多边形沿某一方当棱柱的一个底面收缩为一棱锥被一个平行于底面的平义向平移形成的空间几何体。
点时,得到的几何体。
面所截后,截面和底面之间的部分。
(1)两个底面与平行于底面(1)底面是多边形;(1)两个底面是相似多边形;的截面是对应边互相平行的(2)平行于底面的截面与底(2)两个底面以及平行于底性全等多边形;面相似;面的截面是对应边互相平行质(2)侧面都是平行四边形,(3)侧面是有一个公共顶点的相似多边形;侧棱都相等;(3)过棱柱不相邻的两条侧棱的截面都是平行四边形。
的三角形。
(3)侧面都是梯形。
• 2.二、中心投影和平行投影•1.投影一一是光线(投射线)通过物体,向选定的面(投影面)投射,并在该面上得到图形的方法。
投射线交于一点的投影称为中心投影。
投射线相互平行的投影称为平行投影。
平行投影按投射方向是否正对着投影面,可分为斜投影和正投影。
•2.视图一一物体按正投影向投影面投射所得的图形。
光线从物体的前面向后投射所得的投影称为主视图或正视图,自上向下的称为俯视图,自左向右的称为左视图。
正视图、俯视图、左视图称为三视图;作图关键:按“长对正、高平齐、宽相等”。
•3.空间几何体画在纸上,要体现立体感,底面常用斜二侧画法,画岀它的直观图。
三角形ABC的面积为S,用斜二测画法画得它的直观图三角形ABC的面积为S,贝U S -4 S。
作图关键:倾斜45,横“等”纵“半”。
四、空间两条不重合的直线的位置关系•1.空间两条直线有三种位置关系:(1)相交直线;(2)平行直线;(3)异面直线•2.若从有无公共点角度看,可分两类:有且只有一个公共点一一相交直线'平行直线没有公共点Y、异面直线•3.若从是否共面的角度看,可分为两类:「相交直线在同一平面内■*-平行直线不同在任一平面内一一异面直线•4.异面直线(1)定义:不同在任何一个平面内的两条直线叫做异面直线。
word高中数学必修二教案

word高中数学必修二教案课时安排:40课时教学目标:1. 了解函数和导数的概念,掌握导数的求法和应用;2. 掌握解析几何和空间解析几何的相关知识,包括平面坐标系、直线、圆、锥曲线等的性质和方程;3. 熟练掌握向量的定义和运算,了解向量的变化规律和几何意义;4. 掌握三角函数的定义和基本性质,能灵活运用三角函数计算相关问题。
教学内容及安排:第一课时:函数与导数- 函数的概念和性质- 导数的定义和求法- 导数的几何意义和物理意义第二课时:导数的求导法则- 常用导数的求法和性质- 导数的运算法则和应用第三至五课时:平面解析几何- 平面直角坐标系的性质和应用- 直线的性质和方程- 圆的性质和方程第六至八课时:空间解析几何- 空间直角坐标系的引入- 空间直线和平面的性质和方程- 空间曲线的性质和方程第九至十一课时:向量- 向量的概念和表示- 向量的基本运算和性质- 向量的夹角和投影第十二至十四课时:解三角函数- 三角函数的概念和性质- 三角函数的基本关系和恒等式- 三角函数的变换和应用教学方法:1. 讲解结合实例,注重示范和逻辑推理;2. 引导学生思考和讨论,激发学生的学习兴趣;3. 实践操作和练习,巩固知识点和提高解题能力。
教学评价:1. 定期进行小测验和作业,及时反馈学生学习情况;2. 督促学生参与课堂讨论和答疑,培养学生的思维能力和合作意识;3. 定期进行期中期末考试,评估学生的学习成绩和水平。
以上教案仅供参考,具体教学内容和安排可根据实际情况进行调整和修改。
高中数学必修二教案word

高中数学必修二教案word
课题:高中数学必修二
主题:函数的性质
教学目标:
1. 了解函数的概念和性质。
2. 掌握函数的单调性和奇偶性的判断方法。
3. 能够应用函数的性质解决相关问题。
教学重点:
1. 函数的概念和性质。
2. 函数的单调性和奇偶性的判断方法。
教学难点:
1. 函数性质的运用。
2. 函数性质的证明。
教具准备:
1. 教材《高中数学必修二》
2. 黑板、彩色粉笔
3. 讲义、作业
教学过程:
1. 导入(5分钟):教师引入函数的概念,让学生通过实例理解函数的性质。
2. 讲解(15分钟):教师讲解函数的单调性和奇偶性的判断方法,引导学生掌握相关概念。
3. 练习(20分钟):教师设计相关练习,让学生在实践中运用函数性质进行推理和分析。
4. 拓展(10分钟):教师引导学生探讨函数性质在实际问题中的应用,拓展学生的思维。
5. 总结(5分钟):教师总结本节课的重点和难点,巩固学生的学习成果。
6. 作业布置(5分钟):教师布置相关作业,帮助学生进一步巩固所学内容。
教学反思:
本节课设计了多种教学方法,让学生在探索中学习函数的性质。
通过引导学生进行实践和讨论,让他们更好地理解并掌握相关知识。
在今后的教学中,要继续注重学生的实践能力培养,激发他们的学习兴趣。
人教A版高中数学必修二:全书word

1.1.1棱柱、棱锥、棱台的结构特征课前自主预习知识点一空间几何体的定义、分类及相关概念1.空间几何体的定义2.空间几何体的分类3.相关概念知识点二棱柱的结构特征1.棱柱的定义、图形及相关概念2.棱柱的分类(1)依据:□6底面多边形的边数.(2)举例:三棱柱(底面是三角形)、四棱柱(底面是四边形)……知识点三棱锥的结构特征1.棱锥的定义、图形及相关概念2.棱锥的分类(1)依据:□6底面多边形的边数.(2)举例:□7三棱锥(底面是三角形)□8四棱锥(底面是四边形)……知识点四棱台的结构特征1.棱台的定义、图形及相关概念2.棱台的分类(1)依据:□5由几棱锥截得.(2)举例:□6三棱台(由三棱锥截得)、四棱台(由四棱锥截得)……判断棱柱、棱锥、棱台形状的方法(1)棱柱:①两个面互相平行;②其余各面是四边形;③相邻两个四边形的公共边互相平行.(2)棱锥:①只有一个面是多边形,此面即为底面;②侧棱相交于一点.(3)棱台:①两个互相平行的面,即为底面;②侧棱延长后相交于一点.1.判一判(正确的打“√”,错误的打“×”)(1)棱柱的侧面可以不是平行四边形.()(2)各面都是三角形的多面体是三棱锥.()(3)(教材改编,P8,T1(2))棱台的上下底面互相平行,且各侧棱延长线相交于一点.()答案(1)×(2)×(3)√2.做一做(请把正确的答案写在横线上)(1)面数最少的多面体的面的个数是________.(2)三棱锥的四个面中可以作为底面的有________个.(3)四棱台有________个顶点,________个面,________条边.答案(1)四(2)四(3)八六十二3.(教材改编,P7,T2)有两个面平行的多面体不可能是()A.棱柱B.棱锥C.棱台D.以上都错答案 B课堂互动探究探究1对棱柱、棱锥、棱台概念的理解例1下列命题中,真命题有________.①棱柱的侧面都是平行四边形;②棱锥的侧面为三角形,且所有侧面都有一个公共点;③棱台的侧面有的是平行四边形,有的是梯形;④棱台的侧棱所在直线均相交于同一点;⑤多面体至少有四个面.解析棱柱是由一个平面多边形沿某一方向平移而形成的几何体,因而侧面是平行四边形,故①对.棱锥是由棱柱的一个底面收缩为一个点而得到的几何体,因而其侧面均是三角形,且所有侧面都有一个公共点,故②对.棱台是棱锥被平行于底面的平面所截后,截面与底面之间的部分,因而其侧面均是梯形,且所有的侧棱延长后均相交于一点(即原棱锥的顶点),故③错④对.⑤显然正确.因而真命题有①②④⑤.答案①②④⑤拓展提升关于棱柱、棱锥、棱台结构特征问题的解题方法(1)根据几何体的结构特征的描述,结合棱柱、棱锥、棱台的定义进行判断,注意判断时要充分发挥空间想象能力,必要时做几何模型通过演示进行准确判断.(2)解决该类题目需准确理解几何体的定义,要真正把握几何体的结构特征,并且学会通过举反例对概念类的命题进行辨析,即要说明一个命题是错误的,设法举出一个反例即可.【跟踪训练1】下列关于棱锥、棱台的说法:①棱台的侧面一定不会是平行四边形;②由四个平面围成的封闭图形只能是三棱锥;③棱锥被平面截成的两部分不可能都是棱锥.其中正确说法的序号是________.答案①②解析①正确,棱台的侧面一定是梯形,而不是平行四边形;②正确,由四个平面围成的封闭图形只能是三棱锥;③错误,如图所示四棱锥被平面截成的两部分都是棱锥.探究2对棱柱、棱锥、棱台的识别与判断例2如图长方体ABCD-A1B1C1D1,(1)这个长方体是棱柱吗?如果是,是几棱柱?为什么?(2)用平面BCEF把这个长方体分成两部分,各部分的几何体还是棱柱吗?解(1)是棱柱.是四棱柱,因为长方体中相对的两个面是平行的,其余的每个面都是矩形(四边形),且每相邻的两个矩形的公共边都平行,符合棱柱的结构特征,所以是棱柱.(2)截后的各部分都是棱柱,分别为棱柱BB1F-CC1E和棱柱ABF A1-DCED1.[条件探究]若本例(2)中将平面BCEF改为平面ABC1D1,则分成的两部分各是什么体?解截后的两部分分别为棱柱ADD1-BCC1和棱柱AA1D1-BB1C1.拓展提升棱柱判断的方法判断棱柱,依据棱柱的定义,先确定两个平行的面——底面,再判断其余面——侧面是否为四边形及侧棱是否平行.【跟踪训练2】判断下图甲、乙、丙所示的多面体是不是棱台?解根据棱台的定义,可以得到判断一个多面体是不是棱台的标准有两个:一是共点,二是平行,即各侧棱延长线要交于一点,上、下两个底面要平行,二者缺一不可.据此,在图甲中多面体侧棱延长线不相交于同一点,不是棱台;图乙中多面体不是由棱锥截得的,不是棱台;图丙中多面体虽是由棱锥截得的,但截面与底面不平行,因此也不是棱台.探究3空间几何体的展开图问题例3如下图是三个几何体的侧面展开图,请问各是什么几何体?解由几何体的侧面展开图的特点,结合棱柱,棱锥,棱台的定义,可把侧面展开图还原为原几何体,如图所示:所以(1)为五棱柱,(2)为五棱锥,(3)为三棱台.拓展提升空间几何体的展开图(1)解答空间几何体的展开图问题要结合多面体的结构特征发挥空间想象能力和动手能力.(2)若给出多面体画其展开图,常常给多面体的顶点标上字母,先把多面体的底面画出来,然后依次画出各侧面.(3)若是给出表面展开图,则按上述过程逆推.【跟踪训练3】根据如下图所给的平面图形,画出立体图.解将各平面图折起来的空间图形如下图所示.1.正确理解多面体的概念对多面体概念的理解,注意以下两个方面:(1)多面体是由平面多边形围成的,不是由圆面或其他曲面围成,也不是由空间多边形围成.(2)我们所说的多边形包括它内部的部分,故多面体是一个“封闭”的几何体.2.正确理解棱柱的定义可以从以下三个方面理解棱柱:(1)棱柱的两个主要结构特征:①有两个面平行;②各侧棱都平行,各侧面都是平行四边形.通俗地讲,棱柱“两头一样平,上下一样粗”.(2)有两个面互相平行,并不表明只有两个面互相平行,如长方体,有三组对面互相平行,其中任意一组对面都可以作为底面.(3)从运动的观点来看,棱柱也可以看成是一个平面多边形从一个位置沿一条不与其共面的直线运动到另一位置时,其运动轨迹所形成的几何体.3.正确认识棱锥的结构特征棱锥是一种非常重要的多面体,它有两个本质特征:(1)有一个面是多边形;(2)其余各面都是有一个公共顶点的三角形.4.正确认识棱台的结构特征(1)上底面与下底面是互相平行的相似多边形;(2)侧面都是梯形;(3)侧棱延长线必相交于一点.5.立体图形的展开和平面图形的折叠立体图形的展开或平面图形的折叠是培养空间立体感的较好方法,解此类问题可以结合常见几何体的定义和结构特征,进行空间想象或亲自动手制作侧面展开图进行实践.课堂达标自测1.下列说法中,正确的是()A.棱柱中所有的侧棱都相交于一点B.棱柱中互相平行的两个面叫做棱柱的底面C.棱柱的侧面是平行四边形,而底面不是平行四边形D.棱柱的侧棱相等,侧面是平行四边形答案 D解析A选项不符合棱柱的特点;B选项中,如图①,构造四棱柱ABCD-A1B1C1D1,令四边形ABCD是梯形,可知平面ABB1A1∥平面DCC1D1,但这两个面不能作为棱柱的底面;C选项中,如图②,底面ABCD可以是平行四边形;D选项是棱柱的特点.故选D.2.下列三种叙述,正确的有()①用一个平面去截棱锥,棱锥底面和截面之间的部分是棱台;②两个底面平行且相似,其余各面都是梯形的多面体是棱台;③有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台.A.0个B.1个C.2个D.3个答案 A解析本题考查棱台的结构特征.①中的平面不一定平行于底面,故①错;②③可用如图的反例检验,故②③不正确.故选A.3.下列图形中,不是三棱柱展开图的是()答案 C解析本题考查三棱柱展开图的形状.显然C无法将其折成三棱柱,故选C.4.下列说法中,正确的是()①棱锥的各个侧面都是三角形;②有一个面是多边形,其余各面都是三角形,由这些面围成的几何体是棱锥;③四面体的任何一个面都可以作为棱锥的底面;④棱锥的各侧棱长相等.A.①②B.①③C.②③D.②④答案 B解析由棱锥的定义,知棱锥的各侧面都是三角形,故①正确;有一个面是多边形,其余各面都是三角形,如果这些三角形没有一个公共顶点,那么这个几何体就不是棱锥,故②错误;四面体就是由四个三角形所围成的几何体,因此四面体的任何一个面作底面的几何体都是三棱锥,故③正确;棱锥的侧棱长可以相等,也可以不相等,故④错误.5.一个棱柱有10个顶点,所有的侧棱长的和为60 cm,则每条侧棱长为________cm.答案12解析由n棱柱有2n个顶点,于是知此棱柱为五棱柱,故有5条侧棱.又每条侧棱长都相等,且和为60 cm,可知每条侧棱长为12 cm.课后课时精练A级:基础巩固练一、选择题1.下列几何体中,柱体有()A.1个B.2个C.3个D.4个答案 D解析根据棱柱的定义知,这4个几何体都是棱柱.2.下列图形经过折叠可以围成一个棱柱的是()答案 D解析图A缺少一个面;图B有五个侧面而两底面是四边形,多了一个侧面;图C也是多一个侧面,故选D.3.具有下列哪个条件的多面体是棱台()A.两底面是相似多边形的多面体B.侧面是梯形的多面体C.两底面平行的多面体D.两底面平行,侧棱延长后交于一点的多面体答案 D解析棱台是由棱锥截得的,因此一个几何体要是棱台应具备两个条件:一是上、下底面平行,二是各侧棱延长后必须交于一点,选项C只具备一个条件,选项A,B则两条件都不具备.4.某同学制作了一个对面图案相同的正方体礼品盒(如图),则这个正方体礼品盒的表面展开图应该为()答案 A解析两个☆不能并列相邻,B、D错误;两个※不能并列相邻,C错误,故选A.也可通过实物制作检验来判定.5.下列三种叙述,其中正确的有()①两个底面平行且相似,其余的面都是梯形的多面体是棱台;②如图所示,截正方体所得的几何体是棱台;③有两个面互相平行,其余四个面都是梯形的六面体是棱台.A.0个B.1个C.2个D.3个答案 A解析①不正确,因为不能保证各侧棱的延长线交于一点;②不正确,因为侧棱延长后不交于一点;③不正确,因为它们的侧棱延长后不一定交于一点,用一个平行于楔形底面的平面去截楔形,截得的几何体虽有两个面平行,其余各面是梯形,但它不是棱台.二、填空题6.对棱柱而言,下列说法正确的序号是________.①有两个平面互相平行,其余各面都是平行四边形;②所有的棱长都相等;③棱柱中至少有2个面的形状完全相同;④相邻两个面的交线叫做侧棱.答案①③解析①正确,根据棱柱的定义可知;②错误,因为侧棱与底面上的棱长不一定相等;③正确,根据棱柱的特征知,棱柱中上下两个底面一定是全等的,棱柱中至少有两个面的形状完全相同;④错误,因为底面和侧面的交线不是侧棱.7.如图,正方形ABCD中,E,F分别为CD,BC的中点,沿AE,AF,EF将其折成一个多面体,则此多面体是________.答案三棱锥(或四面体)解析此多面体由四个面构成,故为三棱锥,也叫四面体.8.长方体AC1的长、宽、高分别为3、2、1,从A到C1沿长方体的表面的最短距离为________.答案3 2解析如图,在长方体ABCD-A1B1C1D1中,AB=3,BC=2,BB1=1.如图(1)所示,将侧面ABB1A1和侧面BCC1B1展开,则有AC1=52+12=26,即经过侧面ABB1A1和侧面BCC1B1时的最短距离是26;如图(2)所示,将侧面ABB1A1和底面A1B1C1D1展开,则有AC1=32+32=32,即经过侧面ABB1A1和底面A1B1C1D1时的最短距离是32;如图(3)所示,将侧面ADD1A1和底面A1B1C1D1展开,则有AC1=42+22=25,即经过侧面ADD1A1和底面A1B1C1D1时的最短距离是2 5.由于32<25,32<26,所以由A到C1在长方体表面上的最短距离为3 2.三、解答题9.观察下列四张图片,结合所学知识说出这四个建筑物主要的结构特征.解(1)上海世博园中国馆,其主体结构是四棱台.(2)法国卢浮宫,其主体结构是四棱锥.(3)国家游泳中心“水立方”,其主体结构是四棱柱.(4)美国五角大楼,其主体结构是五棱柱.B级:能力提升练10.在一个长方体的容器中,里面装有少量水,现将容器绕着其底部的一条棱倾斜,在倾斜的过程中.(1)水面的形状不断变化,可能是矩形,也可能变成不是矩形的平行四边形,对吗?(2)水的形状也不断变化,可以是棱柱,也可能变为棱台或棱锥,对吗?(3)如果倾斜时,不是绕着底部的一条棱,而是绕着其底部的一个顶点,上面的第(1)题和第(2)题对不对?解(1)不对;水面的形状就是用一个与棱(倾斜时固定不动的棱)平行的平面截长方体时截面的形状,因而可以是矩形,但不可能是其他非矩形的平行四边形.(2)不对;水的形状就是用与棱(将长方体倾斜时固定不动的棱)平行的平面将长方体截去一部分后,剩余部分的几何体,此几何体是棱柱,水比较少时,是三棱柱,水多时,可能是四棱柱,或五棱柱;但不可能是棱台或棱锥.(3)用任意一个平面去截长方体,其截面形状可以是三角形,四边形,五边形,六边形,因而水面的形状可以是三角形,四边形,五边形,六边形;水的形状可以是棱锥,棱柱,但不可能是棱台.故此时(1)对,(2)不对.1.1.2圆柱、圆锥、圆台、球和简单组合体的结构特征课前自主预习知识点一圆柱、圆锥和圆台的结构特征1.圆柱的定义、图形及表示2.圆锥的定义、图形及表示3.圆台的定义、图形及表示知识点二球的结构特征知识点三组合体1.概念:由□1简单几何体组合而成的几何体叫做简单组合体.常见的简单组合体大多是由具有柱、锥、台、球等几何结构特征的物体组成的.2.基本形式:一种是由简单几何体□2拼接而成的简单组合体;另一种是由简单几何体□3截去或□4挖去一部分而成的简单组合体.1.圆柱、圆锥、圆台的关系如图所示.2.处理台体问题常采用还台为锥的补体思想.3.处理组合体问题常采用分割思想.4.重视圆柱、圆锥、圆台的轴截面在解决几何量中的特殊作用,切实体会并运用空间几何平面化的思想.1.判一判(正确的打“√”,错误的打“×”)(1)到定点的距离等于定长的点的集合是球.()(2)用平面去截圆锥、圆柱和圆台,得到的截面都是圆.()(3)(教材改编,P9,T2)用平面截球,无论怎么截,截面都是圆面.()答案(1)×(2)×(3)√2.做一做(请把正确的答案写在横线上)(1)图①中的几何体叫做________,O叫它的________,OA叫它的________,AB叫它的________.(2)(教材改编,P9,T3)图②的组合体是由________和________构成.(3)图③中的几何体有________个面.答案(1)球球心半径直径(2)圆柱圆锥(3)三3.圆锥的母线有()A.1条B.2条C.3条D.无数条答案 D课堂互动探究探究1旋转体的概念例1下列命题:(1)以直角三角形的一边为轴旋转一周所得的旋转体是圆锥;(2)以直角梯形的一腰为轴旋转一周所得的旋转体是圆台;(3)圆柱、圆锥、圆台的底面都是圆;(4)用一个平面截圆锥,得到一个圆锥和一个圆台.其中正确命题的个数为()A.0 B.1 C.2 D.3解析根据圆柱、圆锥、圆台的概念不难做出判断.(1)以直角三角形的一条直角边为轴旋转才可以得到圆锥;(2)以直角梯形垂直于底边的一腰为轴旋转才可以得到圆台;(3)圆柱、圆锥、圆台的底面都是圆面;(4)用平行于圆锥底面的平面截圆锥,才可得到一个圆锥和一个圆台.故4个均不正确.答案 A[条件探究]若本例中(2)改为以直角梯形的各边为轴旋转,得到的几何体是由哪些简单几何体组成的?解①以垂直于底边的腰为轴旋转得到圆台;②以较长的底为轴旋转得到的几何体为一圆柱加上一个圆锥;③以较短的底为轴旋转得到的几何体为一圆柱挖去一个同底圆锥;④以斜腰为轴旋转得到的几何体为圆锥加上一个圆台挖去一个小圆锥.拓展提升平面图形旋转形成的几何体的结构特征圆柱、圆锥、圆台和球都是由平面图形绕着某条轴旋转而成的,平面图形不同,得到的旋转体也不同,即使是同一平面图形,所选轴不同,得到的旋转体也不一样.判断旋转体,要抓住定义,分清哪条线是轴,什么图形,怎样旋转,旋转后生成什么样的几何体.【跟踪训练1】一个有30°角的直角三角尺绕其各条边所在直线旋转所得几何体是圆锥吗?如果以斜边上的高所在的直线为轴旋转180°得到什么几何体?旋转360°又得到什么几何体?解如图(1)和(2)所示,绕其直角边所在直线旋转一周围成的几何体是圆锥;如图(3)所示,绕其斜边所在直线旋转一周围成的几何体是两个同底相对的圆锥.如图(4)所示,绕其斜边上的高所在直线旋转180°围成的几何体是两个半圆锥,旋转360°围成的几何体是一个圆锥.探究2简单组合体的结构特征例2描述下图几何体的结构特征.解图(1)中的几何体是由一个四棱柱和一个四棱锥拼接而成的组合体.图(2)中的几何体是在一个圆台中挖去一个圆锥后得到的组合体.图(3)中的几何体是在一个圆柱中挖去一个三棱柱后得到的组合体.图(4)中的几何体是由两个同底的四棱锥拼接而成的简单组合体.拓展提升简单组合体的两种构成方法(1)简单组合体的构成一般有两种基本形式:一种是由简单几何体拼接而成,一种是由简单几何体截去或挖去一部分而成.(2)识别或运用几何体的结构特征,要从几何体的概念入手,掌握画图或识图的方法,并善于运用身边的特殊几何体进行判断、比较、分析.【跟踪训练2】观察下列几何体,并分析它们是由哪些基本几何体组成的.解图(1)是由一个圆柱中挖去一个圆台形成的.图(2)是由一个球、一个四棱柱和一个四棱台组合而成的.探究3旋转体的计算问题例3一个圆台的母线长为12 cm,两底面面积分别为4π cm2和25π cm2.求:(1)圆台的高;(2)截得此圆台的圆锥的母线长.解(1)如图,圆台的轴截面是等腰梯形ABCD,由已知可得上底面半径O1A=2 cm,下底面半径OB=5 cm,又腰长AB=12 cm,所以圆台的高为AM=122-(5-2)2=315(cm).(2)设截得此圆台的圆锥的母线长为l,则由△SAO1∽△SBO可得l -12l =25,所以l =20(cm).故截得此圆台的圆锥的母线长为20 cm. 拓展提升旋转体中的计算问题及截面性质(1)圆柱、圆锥和圆台中的计算问题,一要结合它们的形成过程,分辨清轴、母线及底面半径与旋转前平面图形量的关系;二要切实体现轴截面的作用.解题时,可把轴截面从旋转体中分离出来,以平面图形的计算解决立体问题.(2)球中的计算应注意一个重要的直角三角形,设球的半径为R ,截面圆的半径为r ,球心到截面的距离为d ,则R 2=d 2+r 2.(3)用平行于底面的平面去截柱、锥、台等几何体,注意抓住截面的性质(与底面全等或相似),同时结合旋转体中的经过旋转轴的截面(轴截面)的性质,利用相似三角形中的相似比,构设相关几何变量的方程组而得解.【跟踪训练3】 圆台的两底面面积分别为1,49,平行于底面的截面面积的2倍等于两底面面积之和,求圆台的高被截面分成的两部分的比.解 将圆台还原为圆锥,如图所示.O 2,O 1,O 分别是圆台上底面、截面和下底面的圆心,V 是圆锥的顶点,令VO 2=h ,O 2O 1=h 1,O 1O =h 2,设上底面的面积为S 1,半径为r 1,则S 1=πr 21=1,下底面的面积为S 2,半径为r 2,则S 2=πr 22=49,截面的面积为S =S 1+S 22=25,半径为r 3,则S =πr 23.由三角形相似得⎩⎪⎨⎪⎧ h +h 1h =49+121,h +h 1+h 2h =491,所以⎩⎨⎧ h 1=4h ,h 2=2h ,即h 1∶h 2=2∶1. 探究4 圆柱、圆锥、圆台侧面展开图的应用例4 如图所示,已知圆柱的高为 80 cm ,底面半径为10 cm ,轴截面上有P ,Q 两点,且P A =40 cm ,B 1Q =30 cm ,若一只蚂蚁沿着侧面从P 点爬到Q 点,问:蚂蚁爬过的最短路径长是多少?解 将圆柱侧面沿母线AA 1展开,得如图所示矩形.则=12·2πr =πr =10π(cm).过点Q 作QS ⊥AA 1于点S ,在Rt △PQS 中,PS =80-40-30=10(cm),QS =A 1B 1=10π(cm).∴PQ =PS 2+QS 2=10π2+1(cm).即蚂蚁爬过的最短路径长是10π2+1 cm.拓展提升求圆柱、圆锥、圆台侧面上两点间最短距离都要转化到侧面展开图中,“化曲为直”是求几何体表面上两点间最短距离的好方法.【跟踪训练4】 国庆节期间,要在一圆锥形建筑物上挂一宣传标语,经测量得圆锥的母线长为3米,高为22米,如图所示.为了美观需要,在底面圆周上找一点M拴系彩绸的一端,沿圆锥的侧面绕一周挂彩绸,彩绸的另一端仍回到原处M,则彩绸最短要多少米?解把圆锥的侧面沿过点M的母线剪开,并铺平得扇形MOM1,如图所示.这样把空间问题转化为平面问题,易知彩绸的最短长度即为线段MM1的长度,由母线长为3米,高为22米,得底面半径为1米,所以扇形的圆心角为120°,所以MM1=33米,即彩绸最短要33米.1.透析圆柱的结构特征(1)圆柱有两个互相平行的面且这两个面是等圆;(2)有无数条母线,长度相等且都与轴平行;(3)圆柱上底面圆周上一点和下底面圆周上一点的连线不一定是圆柱的母线,只有这两点连线平行于轴时才是母线.2.透析圆锥的结构特征(1)底面是圆面;(2)侧面是由无数条母线组成的,且母线长均相等.3.透析圆台的结构特征(1)圆台上、下底面是相似的圆;(2)有无数条母线且等长,各母线的延长线交于一点.圆台可以由直角梯形以垂直于底边的腰所在直线为旋转轴,旋转而形成.4.透析球的概念球也是旋转体,球的表面是旋转形成的曲面,球是由球面及其内部空间组成的几何体.根据球的定义,铅球是一个球,而足球、乒乓球、篮球、排球等,虽然它们的名字中有“球”字,但它们是空心的,不符合球的定义,都不是真正的球.5.柱体、锥体、台体之间的关系课堂达标自测1.下列几何体中不是旋转体的是()答案 D解析正方体不可能是旋转体.2.一个等腰三角形绕它的底边所在直线旋转360°形成的曲面所围成的几何体是()A.球体B.圆柱C.圆台D.两个共底面的圆锥的组合体答案 D解析过等腰三角形的顶点向底边作垂线,得到两个有一条公共边的全等直角三角形,而直角三角形以一条直角边为轴旋转得到的几何体是圆锥,故选D.3.下列几何体中是旋转体的是()①圆柱;②六棱锥;③正方体;④球体;⑤四面体.A.①和⑤B.①C.③和④D.①和④答案 D解析根据旋转体的概念知①④正确.4.指出如图(1)(2)所示的图形是由哪些简单几何体构成的.解分割图形,使它的每一部分都是简单几何体.图(1)是由一个三棱柱和一个四棱柱拼接而成的简单组合体.图(2)是由一个圆锥和一个四棱柱拼接而成的简单组合体.5.圆台的两底面圆的半径分别为2,5,母线长是310,求其轴截面的面积.解 如图,在轴截面内过点A 作AB ⊥O 1A 1,垂足为B .由已知OA =2,O 1A 1=5,AA 1=310,∴A 1B =3.∴AB =AA 21-A 1B 2=90-9=9.∴S 轴截面=12(2OA +2O 1A 1)·AB =12×(4+10)×9=63(cm 2).故圆台轴截面的面积为63 cm 2.课后课时精练A 级:基础巩固练一、选择题1.下列几何体是简单组合体的是( )答案 D解析 A 项中的几何体是圆锥,B 项中的几何体是圆柱,C 项中的几何体是球,D 项中的几何体是一个圆台中挖去一个圆锥,是简单组合体.2.给出下列命题:①圆柱的底面是圆;②经过圆柱任意两条母线的截面是一个矩形;③连接圆柱上、下底面圆周上两点的线段是圆柱的母线;④圆柱的任意两条母线互相平行.其中正确命题的个数为( )A .1B .2C .3D .4答案 B解析 本题的判断依据是圆柱的定义及结构特征.①中圆柱的底面是圆面,而不是圆,故①错;②和④中,圆柱有无数条母线,它们平行且相等,并且母线都与底面垂直,②和④正确;③中连接圆柱上、下底面圆周上两点的线段不一定与圆柱的轴平行,故③错.故选B.3.如图所示的平面中阴影部分绕中间轴旋转一周,形成的几何体。
(word版)高中数学必修2知识点,文档

90,180高中数学必修2知识点一、直线与方程〔1〕直线的倾斜角定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。
特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为度。
因此,倾斜角的取值范围是0°≤α180<°〔2〕直线的斜率①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。
直线的斜率常用k表示。
即反映直线与轴的倾斜程度。
当时,k0。
当时,k0;当ktan。
斜率90时,k不存在。
②过两点的直线的斜率公式:ky2y1(x1x 2)x2x1注意下面四点:(1)当x1x2时,公式右边无意义,直线的斜率不存在,倾斜角为90°;(2)k与P1、P2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。
〔3〕直线方程①点斜式:y y1k(x x1)直线斜率k,且过点x1,y1注意:当直线的斜率为0°时,k=0,直线的方程是y=y1。
当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1。
②斜截式:y kx b,直线斜率为k,直线在y轴上的截距为b③两点式:〔x y y〕直线两点x1,y1x2,y22,90④截矩式:其中直线l与x轴交于点(a,0),与y轴交于点(0,b),即l与x轴、y轴的截距分别为a,b。
⑤一般式:Ax By C 0〔A,B不全为0〕1注意:○各式的适用范围2轴的直线:yb〔b为常数〕;平行于y轴的直线:xa〔a为常数〕;○特殊的方程如:平行于x〔4〕直线系方程:即具有某一共同性质的直线〔一〕平行直线系平行于直线000〔A,B是不全为0的常数〕的直线系:A0xB0yC0〔C 为常数〕AxByC0〔二〕过定点的直线系〔ⅰ〕斜率为k 的直线系:yy0x,直线过定点x,y;〔ⅱ〕过两条直线l1:A1xB1yC10,l2:A2xB2yC20的交点的直线系方程为1122〔为参数〕,其中直线2不在直线系中。
(完整word版)高一数学必修二各章知识点总结

1.多面体的面积和体积公式2.旋转体的面积和体积公式表中I 、3、平面的特征:平的,无厚度,可以无限延展4、平面的基本性质:公理1、若一条直线上的两点在一个平面内,那么这条直线在此平面内 I, I,公理2、过不在一条直线上的三点,有且只有一个平面,,C 三点不共线有且只有一个平面,使 ,,C公理3、若两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.I I I 且 I推论1、经过一条直线和直线外的一点,有且只有一个平面 推论2、经过两条相交直线,有且只有一个平面 . 推论3、经过两条平行直线,有且只有一个平面.数学必修2知识点R 表示半径。
a//b,b//c a//c 公理4、平行于同一条直线的两条直线互相平行5、 等角定理:空间中若两个角的两边分别对应平行,那么这两个角相等或互补推论:若两条相交直线和另两条相交直线分别平行,那么这两组直线所成的锐角(或直角)相等6、 直线与平面平行的判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行数学付号表示:a ,b ,a//b a//直线与平面平行的性质定理:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行 数学付号表示: a// ,a , I b a//b数学符号表示:a ,b ,aI b,a 〃,b 〃//面面平行的性质定理:(1 )若两个平面平行,那么其中一个平面内的任意直线均平行于另一个平面(2)若两个平行平面同时和第三个平面相交,那么它们的交线平行8直线与平面垂直的判定定理:(1)一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直数学符号表示: m ,n ,ml n ,1 m,l n I (2)若两条平行直线中一条垂直于一个平面,那么另一条也垂直于这个平面 a//b,a b(3)若一条直线垂直于两个平行平面中一个,那么该直线也垂直于另一个平面// ,a a 直线与平面垂直的性质定理:垂直于同一个平面的两条直线平行a ,ba//b9、两个平面垂直的判定定理:一个平面过另一个平面的垂线,则这两个平面垂直.a ,a平面与平面垂直的性质定理:两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直 数学付号表示:,Ib,a ,a b a10、直线的倾斜角和斜率:(1)设直线的倾斜角为0°180° ,斜率为k ,则k tan2 .当2时,斜率不存在(2)当 0° 90°时, k 0 ;当 90° 180时,k 0.(3)过 R^,%),F 2(X 2,y 2)的直线斜率 k 宜4(X 2 xj .(2)垂直于同一条直线的两个平面平行符号表示:a ,a//(3)平行于同一个平面的两个平面平行符号表示: // ,//// // ,a a//// , I a, I b a//bX 2X11、两直线的位置关系: 两条直线11 : y k ,x b 1 , l 2 : y k 2x b 2斜率都存在,则:(1) l 1 // l 2 k 1k 2 且 b 1b 2k 1 k 2 1 (当11的斜率存在12的斜率不存在时h I 2)(3) I 1与12重合12、直线方程的形式:13、直线的交点坐标: 设 h :A|X By C | 0,I 2: A ,xB 2y q 0,原点 0,0与任一点x, y 的距离 OPx 217、过直线 l 1: A 1x B 1 y c 1 0与 l 2 : A 2x B 2y c 2 0交点的直线方程为(1) 点斜式: y y o x X 0 (定点,斜率存在)(2)斜截式:y kx b (斜率存在,在 y 轴上的截距)(3) 两点式: y y 1 y 2 y 1x x 1 x 2 x 1(y 2 y 1 ,x 2 x 1)(两点)(4) 一般式:x0 A 2 B 2 0(5) 截距式:(在x 轴上的截距,在 y 轴上的截距)(1)I 1与J 相交 △旦;(2) l 1 // I 2A 2B 2鱼A 2BI fl ;( 37 与l 2重合A A2 旦B 2C 1 C 214、两点R (x 1,yJ , P 2(X 2,y 2)间的距离公式RP2.© xj 2 (y 2 yj 215、点 P °(x 0,y 0)到直线 I: C 0的距离Ax 0 By 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学(必修2)第一章、第二章水平检测题(A )
一、选择题(本大题共12个小题,每小题5分,共60分)
1.对于用“斜二侧画法”画平面图形的直观图,下列说法正确的是 ( )
A.等腰三角形的直观图仍是等腰三角形
B.梯形的直观图可能不是梯形
C.正方形的直观图为平行四边形
D.正三角形的直观图一定是等腰三角形
2.如图,一个空间几何体的直观图的正视图、侧视图、俯视图为全等的等腰直角三角形,如果直角三角形的直角边等
1,那么这个几何体的体积为 ( )
A.1
B.21
C.31
D.6
1 4.关于“两底面直径之差等于母线长”的圆台,下面判断中正确的是 ( ) A.是不存在的 B.其母线与底面必成060角
C.其高与母线成0
60角 D.其母线与下底面所成的角不是定植
5.两条直线b a ,分别和异面直线d c ,都相交,则直线b a ,的位置关系是 ( )
A.一定是异面直线
B.一定是相交直线
C.可能是平行直线
D.可能是异面直线,也可能是异面直线
6.以下命题(其中b a ,表示直线,α表示平面)
①若αα//,,//a b b a 则⊂ ②若b a b a //,//,//则αα
③若αα//,//,//a b b a 则④若b a b a //,,//则αα⊂
其中正确命题的个数是 ( )
A.3个
B.2个
C.1个
D.0个
7.在正方体1111D C B A ABCD -中,下列几种说法正确的是 ( )
A.AD C A ⊥11
B.AB C D ⊥11
C.0145成与DC AC 角
D.011160成与C B C A 角
8.下列命题中:(1)平行于同一直线的两个平面平行;(2)平行于同一平面的两个平面平行;(3)垂直于同一直线的两直线平行;(4)垂直于同一平面的两直线平行。
其中正确的个数有 ( )
A.1
B.2
C.3
D.4
9.在空间四边形ABCD 各边DA CD BC AB 、、、上分别取H G F E 、、、四点,如果GH EF 、能相交于点P ,那么 ( ) 正视图 侧视图 俯视图
A.点P 必在直线AC 上
B.点P 必在直线BD 上
C.点P 必在平面ABC 内
D.点P 必在平面ABC 外
11.直线m l 、与平面βα、满足βα⊂⊥m l ,,以下四个命题:
①m l b a ⊥⇒//;②m l //⇒⊥βα;③βα⊥⇒m l //;④βα//⇒⊥m l
其中正确的两个命题是 ( )
A.①②
B.③④
C.②④
D.①③
二、填空题(本大题共14个小题,每小题4分,共16分,将答案直接写在横线上)
12.两个半径为1的铁球,熔化成一个球,这个球的半径是_________。
13.c b a ,,是三条直线,α是平面,若αα⊂⊂⊥⊥b a b c a c ,,,,且_________(填上一个条件即可),则有a c ⊥。
14.正方体1111D C B A ABCD -中,平面11D AB 和平面D BC 1的位置关系是_________。
15.已知PA 垂直平行四边形ABCD 所在平面,若BD PC ⊥,则平行四边形ABCD 一定是_________。
三、解答题(本大题共6个小题,共74分,请写出必要的文字说明,推理和计算过程)
16.(本小题满分12分)已知正三棱锥侧棱两两垂直,且都等于a ,求棱锥的体积。
17.(本小题满分12分)设ABCD 是空间四边形,CD CB AD AB ==,,求证:BD AC ⊥。