结构力学课件第16结构的极限荷载详解
合集下载
结构力学结构的极限荷载

P
C
B
M u 5Pl / 32 Pl / 4
将P 代入,得
A
5Pl / 32
P
C
B
5 16 M u M u l Pl / 4 32 3l
P 2M u / 3l Pu P P 6 M u / l
P l / 4
逐渐加载法(增量法)
从受力情况,可判断出塑性铰发生的位置应为A、C。利用极限状态的 Pu 平衡可直接求出极限荷载。 Mu A B 1 l C Mu MA 0 RB ( Pu M u ) l 2 2 RB P l Pu l M u A MC 0 M u RB B 2 4 2 C
Ms s M A ydA A ydAe A s ydA p [3 ( )2 ] 2 Ms s M ——弯矩与曲率关系(非线性关系) M [3 ( )2 ] 或 s 3 2 2 Ms
e p
塑性极限状态: 截面上各点应力均达到屈服 s
§9-4
单跨超静定梁的极限荷载
超静定梁有多余约束,出现一个塑性铰后仍是几何不变体系。 A 截面先出现塑性铰,这时 M A 3Pl / 16 M u
A
P
C
B
P 16 M u / 3l
再增加荷载 l/2
3Pl / 16
A
l/2
M C 5Pl / 32 Pl / 4
令 MC Mu
只能出现一个塑性铰,所以
9M u Pu l
2 Pl 9
讨论: M C Pl / 9 1 Pl Mu Mu 9 Mu
M D 2 Pl / 9 1 Pl Mu 4M u 18 M u
结构力学极限荷载PPT课件

i 1
上式中,n是塑性铰数目。
取任一可接受荷载 FP,相应的弯矩图称为 M 图。令
此荷载及内力在上述机构位移上作虚功,虚功方程为:
由实验可知理想刚塑性材料模型能较为准确反映结构极限状态的变形。
第9页/共63页
理想弹性状态下的变形(弹性变形)
强梁弱柱
理想刚塑性状态下的变形(塑性变形)
第10页/共63页
极限荷载
塑性铰
弯矩图
极限弯矩(P266)
杆件截面所能承受的最大弯矩。
塑性铰(P267)
当截面弯矩达到极限弯矩时,两个无限靠近的相邻截面可产生有限的相 对转角,产生局部弯曲变形,这种情况与带铰的截面相似,称为塑性铰。
对称截面的形心轴 与等面积轴重合, 皆为对称中心线。
矩形截面:
1.5
Mu Wu
M s Ws
圆形截面:
16 3
薄腹工字截面: 1.1
M
M
M
弹塑性变形发展阶段
Mu Ms
M s 屈服弯矩 M u 极限弯矩
弯矩与转角的关系曲线
第17页/共63页
弯矩M与曲率r的关系曲线例
h b
h strain
例 求单跨梁的极限荷载,截面极限弯矩为Mu(P269)
1)静力法(作弯矩图):
FP
解: 结构在A、C截面出现塑性铰。 A
l/2 C
l/2
B
FPu
6M u l
Mu
FP
A
C
B
Mu
极限状态弯矩图
第29页/共63页
2)虚功法(作破坏机构图)
FP
红线为变形后的杆件,兰点为塑性铰
A
C
Mu
Mu Wu s
结构力学结构的塑性分析与极限荷载 ppt课件

屈服弯矩、极限弯矩 以理想弹塑性材料的矩形截面纯弯曲梁为例:
M
M
随着M的增大,梁截面应力的变化为:
b
s
s
h b
s
h
y0 y0
s
s
a)
b)
s c)
b
s
s
s
h
y0 y0
s
s
a)
b)
s c)
图a)弹性阶段,最外纤维处应力达到屈服极限σs ,弯矩M
为:
MS
bh2 6
s
→屈服弯矩
图b)弹塑性阶段,y0部分为弹性区,称为弹性核。
图c)塑性流动阶段,y0→0。相应的弯矩M为:
Mu
bh
s
→极限弯矩
是截面所能承受的最大弯矩。
极限弯矩的计算
Mu
bh
s
设塑性流动阶段截面上受压区和受拉区的面积分别为A1
和A2,并且此时受压区和受拉区的应力均为常量,又因为
梁是没有轴力的,所以:
sA1sA20
A1A2A/2
可见,塑性流动阶段的中性轴应等分截面面积。
【例17.1 】 图示为矩形截面简支梁在跨中承受集中荷载,试 求极限荷载。
FP
FPu
已知Mu
解:
FPul
Mu
FPu
Mu l
可破坏荷载: 对于任一单向破坏机构,用平衡条件求得的荷载值,称
为可破坏荷载,常用FP+ 表示。
基本定理:
(1)唯一性定理:极限荷载FPu值是唯一确定的。
(2)极小定理:极限荷载是可破坏荷载中的极小者。
由此,极限弯矩的计算方法: M u s(SS)
S、S分别为面 A、 积 A对等面积轴的静矩
M
M
随着M的增大,梁截面应力的变化为:
b
s
s
h b
s
h
y0 y0
s
s
a)
b)
s c)
b
s
s
s
h
y0 y0
s
s
a)
b)
s c)
图a)弹性阶段,最外纤维处应力达到屈服极限σs ,弯矩M
为:
MS
bh2 6
s
→屈服弯矩
图b)弹塑性阶段,y0部分为弹性区,称为弹性核。
图c)塑性流动阶段,y0→0。相应的弯矩M为:
Mu
bh
s
→极限弯矩
是截面所能承受的最大弯矩。
极限弯矩的计算
Mu
bh
s
设塑性流动阶段截面上受压区和受拉区的面积分别为A1
和A2,并且此时受压区和受拉区的应力均为常量,又因为
梁是没有轴力的,所以:
sA1sA20
A1A2A/2
可见,塑性流动阶段的中性轴应等分截面面积。
【例17.1 】 图示为矩形截面简支梁在跨中承受集中荷载,试 求极限荷载。
FP
FPu
已知Mu
解:
FPul
Mu
FPu
Mu l
可破坏荷载: 对于任一单向破坏机构,用平衡条件求得的荷载值,称
为可破坏荷载,常用FP+ 表示。
基本定理:
(1)唯一性定理:极限荷载FPu值是唯一确定的。
(2)极小定理:极限荷载是可破坏荷载中的极小者。
由此,极限弯矩的计算方法: M u s(SS)
S、S分别为面 A、 积 A对等面积轴的静矩
结构力学 结构的极限荷载与弹性稳定图文

A
B
D
C
l/3
l/3
l/3
解: AB段极限弯矩为 M u ,BC段极限弯矩为Mu。
塑性铰的可能位置:A、B、D。
A l/3
B
Mu B
l/3
FPu
DC Mu
D
l/3
§11-4 超静定结构的极限荷载计算
1)B、D截面出现塑性
FPu
铰,由弯矩图可知,只 有当 Mu 3Mu 时,此破
A l/3
B
Mu B
分析:(1) 图(a)表示截面处于弹性阶段。
该阶段的最大应力发生在截面最外纤维处,
称为屈服极限y,此时的弯矩Ms称为弹性 s a)
极限弯矩,或称为屈服弯矩。即:
s
MS
bh2 6
s
y0
(2)图(b)—截面处于弹塑性阶段,
y0
截面外边缘处成为塑性区,应力为常数, s b)
§11-2 基本概念
=s;在截面内部(|y|y0)则仍为弹性区,称为弹性
2
C l
2 4
B Mu
由We=Wi,可得 所以有1 4q源自l 24M uqu
16M l2
u
三次超静定 三个塑性铰
§11-4 超静定结构的极限荷载计算
例11-4-3 已知梁截面极限弯矩为Mu ,求极限荷载 。 解:塑性铰位置:A截面及梁上最大弯矩截面C。
q
qu
A
l
BA
Mu A
Mu C C B
l-x
x
例11-1-1 设有矩形截面简支梁在跨中承受集中荷载 作用(图a),试求极限荷载FPu 。
解:由M图知跨中截面 弯矩最大,在极限荷载作用 下,塑性铰将在跨中截面形 成,弯矩达极限值Mu(图b)。
结构力学专题十五(结构的极限荷载)

Mu W
Ms W
称为截面形状系数,其值与截面形状有关。
例:已知材料的屈服极限 s 240 MPa ,
求图示截面的极限弯矩。
80mm
Mu s (S1 S2 ) 27.36kN.m
20mm
2、塑性较 当截面弯矩达到极限弯矩时,在保持弯矩不变的前
提下,截面纤维将无限地伸长和缩短,因此在该小段内, 两个无限靠近的截面可以发生相对转动,这种情况与带 铰截面相似,称这种截面为“塑性铰”。
A
(1)平衡弯矩法
(2)机动法
(3)增量法
F
B
l/2
l/2
例5:求图示等截面梁的极限荷载。 已知梁的极限弯矩为Mu。
A
q
B
l
例6:求图示结构的极限荷载, 材料极限弯矩为Mu。
M
AC
B
1m
3m
三、变截面超静定梁
例7:求图示结构的极限荷载,
已知 Mu Mu
A Mu
Mu F
D
BC
l ll
作业:
思考题 16—2 、16—4、16—5; 习题: 16—1。
塑性铰与普通铰的区别:
(1)普通铰不能承受弯矩,而塑性铰能承受弯矩Mu。 (2)普通铰是双向铰,而塑性铰是单向铰。
3、弹性极限荷载、极限荷载、破坏机构(极限状态)
(1)对弹于性特阶定段的结构,随着荷载的逐渐增加:
各截面弯矩不超过 “屈服弯矩”Ms ;
(2)弹性阶段终止
当某个截面弯矩首先达到“屈服弯矩”Ms时,弹性阶段终止, 此时的荷载称为“弹性极限荷载”Fps;
加载
E S
S
S
弹性
塑性 s
卸载 E
弹性
s
Ms W
称为截面形状系数,其值与截面形状有关。
例:已知材料的屈服极限 s 240 MPa ,
求图示截面的极限弯矩。
80mm
Mu s (S1 S2 ) 27.36kN.m
20mm
2、塑性较 当截面弯矩达到极限弯矩时,在保持弯矩不变的前
提下,截面纤维将无限地伸长和缩短,因此在该小段内, 两个无限靠近的截面可以发生相对转动,这种情况与带 铰截面相似,称这种截面为“塑性铰”。
A
(1)平衡弯矩法
(2)机动法
(3)增量法
F
B
l/2
l/2
例5:求图示等截面梁的极限荷载。 已知梁的极限弯矩为Mu。
A
q
B
l
例6:求图示结构的极限荷载, 材料极限弯矩为Mu。
M
AC
B
1m
3m
三、变截面超静定梁
例7:求图示结构的极限荷载,
已知 Mu Mu
A Mu
Mu F
D
BC
l ll
作业:
思考题 16—2 、16—4、16—5; 习题: 16—1。
塑性铰与普通铰的区别:
(1)普通铰不能承受弯矩,而塑性铰能承受弯矩Mu。 (2)普通铰是双向铰,而塑性铰是单向铰。
3、弹性极限荷载、极限荷载、破坏机构(极限状态)
(1)对弹于性特阶定段的结构,随着荷载的逐渐增加:
各截面弯矩不超过 “屈服弯矩”Ms ;
(2)弹性阶段终止
当某个截面弯矩首先达到“屈服弯矩”Ms时,弹性阶段终止, 此时的荷载称为“弹性极限荷载”Fps;
加载
E S
S
S
弹性
塑性 s
卸载 E
弹性
s
结构力学-稳定计算

ε
θ
FRB=kΔ
B
弹簧的反力 FRB k kl sin(θ ) sin
sin 所以:Fp kl cos 1 sin( ) 求极值
dFP cos ( ) kl sin( ) sin 1 0 2 d sin ( )
Δ Fp C
临界荷载
0
Fpcr 3EI 2 l
A
MAC= SAB
A y SABθ
MAB=SAB
l
θ
结构力学(2)
A y1 B k y2 C k
浙大宁波理工学院土建学院
pcr
Fp
y
kl
kl O
达到临界荷载时,位移不断增大而承载力反 而减小,所以位移增大的路径是不稳定的。 结论:红兰两条路径均不稳定
结构力学(2) 2. 按小挠度理论
浙大宁波理工学院土建学院
x
单自由度完善体系的分支点失稳
Δ
Fp
kΔ
M
A
0
,
Fp (l sin ) FRB (l cos ) 0
1.2
Fpcr
ε=0.01 ε=0
1.2 1 0.8 0.6 0.4
1
kl
0.8
0.6
ε=0.1 ε=0.2
0.4
0.2
0 0 0.2 0.4 0.6 0.8 1 1.2 1.4
1.6 1.8
0.2 0 0 0.05 0.1 0.15 0.2 0.25 0.3
0.35
sin Fp kl cos 1 sin( )
θ
FRB=kΔ
B
弹簧的反力 FRB k kl sin(θ ) sin
sin 所以:Fp kl cos 1 sin( ) 求极值
dFP cos ( ) kl sin( ) sin 1 0 2 d sin ( )
Δ Fp C
临界荷载
0
Fpcr 3EI 2 l
A
MAC= SAB
A y SABθ
MAB=SAB
l
θ
结构力学(2)
A y1 B k y2 C k
浙大宁波理工学院土建学院
pcr
Fp
y
kl
kl O
达到临界荷载时,位移不断增大而承载力反 而减小,所以位移增大的路径是不稳定的。 结论:红兰两条路径均不稳定
结构力学(2) 2. 按小挠度理论
浙大宁波理工学院土建学院
x
单自由度完善体系的分支点失稳
Δ
Fp
kΔ
M
A
0
,
Fp (l sin ) FRB (l cos ) 0
1.2
Fpcr
ε=0.01 ε=0
1.2 1 0.8 0.6 0.4
1
kl
0.8
0.6
ε=0.1 ε=0.2
0.4
0.2
0 0 0.2 0.4 0.6 0.8 1 1.2 1.4
1.6 1.8
0.2 0 0 0.05 0.1 0.15 0.2 0.25 0.3
0.35
sin Fp kl cos 1 sin( )
结构力学讲义ppt课件

x y
x
结点自由度
y
φ
x
y
x
刚片自由度
2)一个刚片在平面内有三个自由度,因为确定 该刚片在平面内的位置需要三个独立的几何参
数x、y、φ。
4. 约束
凡是能减少体系自由度的装置就称为约束。
6
约束的种类分为:
1)链杆
简单链杆 仅连结两个结点的杆件称为简单 链杆。一根简单链杆能减少一个自由度,故一 根简单链杆相当于一个约束。
FyA
特点: 1) 结构在支座截面可以绕圆柱铰A转动 ; 2) x、y方向的反力通过铰A的中心。
29
3. 辊轴支座
A
A
FyA
特点: 1) 杆端A产生垂直于链杆方向的线位移; 2) 反力沿链杆方向作用,大小未知。
30
4. 滑动支座(定向支座)
A 实际构造
A
MA
FyA
A
MA
FyA
特点: 1)杆端A无转角,不能产生沿链杆方向的线 位移,可以产生垂直于链杆方向的线位移;
16
A
I
II
c)
B III C
形成瞬铰B、C的四根链杆相互平行(不等 长),故铰B、C在同一无穷远点,所以三个 铰A、 B、C位于同一直线上,故体系为瞬变 体系(见图c)。
17
二、举例
解题思路: 基础看作一个大刚片;要区分被约束的刚片及
提供的约束;在被约束对象之间找约束;除复 杂链杆和复杂铰外,约束不能重复使用。
高等教育出版社
4
第一章 绪 论
§1-1 结构力学的内容和学习方法
§1-2 结构计算简图
5
§1-1 结构力学的内容和学习方法
一、结构
建筑物或构筑物中 承受、传递荷载而起 骨架作用的部分称为 结构。如:房屋中的 框架结构、桥梁、大 坝等。
x
结点自由度
y
φ
x
y
x
刚片自由度
2)一个刚片在平面内有三个自由度,因为确定 该刚片在平面内的位置需要三个独立的几何参
数x、y、φ。
4. 约束
凡是能减少体系自由度的装置就称为约束。
6
约束的种类分为:
1)链杆
简单链杆 仅连结两个结点的杆件称为简单 链杆。一根简单链杆能减少一个自由度,故一 根简单链杆相当于一个约束。
FyA
特点: 1) 结构在支座截面可以绕圆柱铰A转动 ; 2) x、y方向的反力通过铰A的中心。
29
3. 辊轴支座
A
A
FyA
特点: 1) 杆端A产生垂直于链杆方向的线位移; 2) 反力沿链杆方向作用,大小未知。
30
4. 滑动支座(定向支座)
A 实际构造
A
MA
FyA
A
MA
FyA
特点: 1)杆端A无转角,不能产生沿链杆方向的线 位移,可以产生垂直于链杆方向的线位移;
16
A
I
II
c)
B III C
形成瞬铰B、C的四根链杆相互平行(不等 长),故铰B、C在同一无穷远点,所以三个 铰A、 B、C位于同一直线上,故体系为瞬变 体系(见图c)。
17
二、举例
解题思路: 基础看作一个大刚片;要区分被约束的刚片及
提供的约束;在被约束对象之间找约束;除复 杂链杆和复杂铰外,约束不能重复使用。
高等教育出版社
4
第一章 绪 论
§1-1 结构力学的内容和学习方法
§1-2 结构计算简图
5
§1-1 结构力学的内容和学习方法
一、结构
建筑物或构筑物中 承受、传递荷载而起 骨架作用的部分称为 结构。如:房屋中的 框架结构、桥梁、大 坝等。
结构力学第16章---结构的极限荷载

极限荷载同时满足平衡条件、内力局限条件和单向机构条件; 极限荷载既是可破坏荷载, 又是可接受荷载。
(1)基本定理: 可破坏荷载 FP 恒不小于可接受荷载 FP ,即 FP FP
(2)唯一性定理: 极限荷载值是唯一确定的。
(3)上限定理(极小定理):可破坏荷载是极限荷载的上限; 即极限荷载是可破坏荷载中的极小值。 FPu FP
qu
6.4
Mu l2
§16-4 比例加载时判定极限荷载的一般定理
比例加载: 所有荷载变化时都彼此保持固定的比例,可用一个 参数FP表示; 荷载参数FP只是单调增大,不出现卸载现象。
假设条件: 材料是理想弹塑性的; 截面的正极限弯矩与负极限弯矩的绝对值相等; 忽略轴力和剪力对极限弯矩的影响。
结构的极限受力状态应满足的条件: (1)平衡条件: 结构的整体或任一局部都能维持平衡; (2)内力局限条件: 任一截面弯矩绝对值都不超过其极限弯矩; (3)单向机构条件: 结构成为机构能够沿荷载方向作单向运动。
11.7
Mu l2
§16-5 刚架的极限荷载
基本假设: (1)当出现塑性铰时,塑性区退化为一个截面(塑性铰处的
截面),其余部分仍为弹性区。 (2)荷载按比例增加,且为结点荷载,塑性铰只出现在结点
处。 (3)每个杆件的极限弯矩为常数,各杆的极限弯矩可不同。 (4)忽略轴力和剪力对极限弯矩的影响。
1. 增量变刚度法的基本思路: 把非线性问题转化为分阶段的几
0 0
k
e 1
2
0 EA
l 0
0 0 0
0 0 0
0 EA
l 0
0 0 0 0 0 0
0 0 0 0 0 0
3. 计算步骤-求刚架极限荷载(比例加载, 荷载用荷载参数FP表示)
(1)基本定理: 可破坏荷载 FP 恒不小于可接受荷载 FP ,即 FP FP
(2)唯一性定理: 极限荷载值是唯一确定的。
(3)上限定理(极小定理):可破坏荷载是极限荷载的上限; 即极限荷载是可破坏荷载中的极小值。 FPu FP
qu
6.4
Mu l2
§16-4 比例加载时判定极限荷载的一般定理
比例加载: 所有荷载变化时都彼此保持固定的比例,可用一个 参数FP表示; 荷载参数FP只是单调增大,不出现卸载现象。
假设条件: 材料是理想弹塑性的; 截面的正极限弯矩与负极限弯矩的绝对值相等; 忽略轴力和剪力对极限弯矩的影响。
结构的极限受力状态应满足的条件: (1)平衡条件: 结构的整体或任一局部都能维持平衡; (2)内力局限条件: 任一截面弯矩绝对值都不超过其极限弯矩; (3)单向机构条件: 结构成为机构能够沿荷载方向作单向运动。
11.7
Mu l2
§16-5 刚架的极限荷载
基本假设: (1)当出现塑性铰时,塑性区退化为一个截面(塑性铰处的
截面),其余部分仍为弹性区。 (2)荷载按比例增加,且为结点荷载,塑性铰只出现在结点
处。 (3)每个杆件的极限弯矩为常数,各杆的极限弯矩可不同。 (4)忽略轴力和剪力对极限弯矩的影响。
1. 增量变刚度法的基本思路: 把非线性问题转化为分阶段的几
0 0
k
e 1
2
0 EA
l 0
0 0 0
0 0 0
0 EA
l 0
0 0 0 0 0 0
0 0 0 0 0 0
3. 计算步骤-求刚架极限荷载(比例加载, 荷载用荷载参数FP表示)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
p
机构4
p
q 2p
1.2 p
Mu
Mu
2
依 上 限 定 理 : pu 1.33
Mu a
第16章
例题3 求图示结构的极限荷载。
p
p
q 2p
a
1.2 p
解:试算法
A
E
F
B
C
D
试取机构( 1) p1 2a p1 a M u M u 3 p1 1.33 Mu a
p
矩形截面:
B
A
C
M u A1 s y1 A2 s y2 h h bh2 2 (b ) s s 2 4 4
A1 s A1 s A1 s
Mu
y1 y2
A1 s
h
A
C
b
A2 s
A2 s
A2 s
A2 s
第16章
2a
a
1.1 p
Mu 机构(3)
a
p
a
Mu
(b)当M为 负 值 时 , 曲 率 为 正 。 值
x
M
M
y
(2)分析弯矩与荷载集度 (q)关系:
d 2M q dx2 (a )当q为 正 值 (向 下 ) 时 , 曲 率 为 负 ; 值 (b)当q为 负 值 (向 上 ) 时 , 曲 率 为 正 。 值
机构( 3)
Mu a
Mu
p
机构2
p M u
2
q 2p
a
1.2 p
p
机构3
Mu
3
p
qMu
2
a
Mu
1.2 p
2 p3 dx x M u M u M u 2 0 a M p3 2 u a 机构( 4) 2
a
1.2 p4 a M u M u 2 p1 2.5 Mu a
第16章
例题1 试用机动法求图示结构的极限荷载。 p 1.1 p
解:
2a
a
1.1 p
Mu
a
a
p
机构( 1) 1.1p1 2a M u 3 M u 2 p1 2.27 Mu a
2
Mu
3
机构( 2) p2 a M u M u 2
机构(1)
ql 2 12 ql 2 12
ql 2 24
q u1
Mu
q u1 l Mu 12
q u1 l 2 M u 24 2
2
Mu
q u1 l 2 Mu 12
(1)弹性阶段
qs
qs l 2 12 qs l 2 12
qs l 2 24
(3)梁两端出现塑性铰
qu 2 q u1
(2)弹性阶段末
Mu
可得: qu 2 4Mu l2
q
l
qu
A
x
Mu x
l 2
2
B
dx C
Mu
Mu
临 界 状 态 时 , 由 虚 功程 方: 2 x qu dx M u M u M u 2
1 2 l qu 4 M u 4 16M u qu l2
l 2 0
第16章
3、确定单跨梁极限荷载的静力法
p1
Mu Mu
p2
B
Mu
p1
p2
B
p1
p2
B
Mu
机构(一)
Mu
机构(一)M 图情况
Mu
p1
p2
B
Mu
p1
p2
B
机构(二)
Mu
Mu
机构(二)M 图情况
Mu
p1
机构(三)
p2
B
M u2
不可能出现,为什么?
16.3 超静定梁的极限荷载
一、确定极限荷载的二种方法 1、机动法
2、试算法
二、机动法 1、依据:机动法是以上限定理为依据的。 2、步骤:先假设出所有的破坏机构,而后利用虚位移原理计算出 各机构相应的极限荷载。这些可破坏荷载中的最小者即为极限荷载。 二、试算法 1、依据:试算法是以单值定理为依据的。 2、步骤:先试算出相应于某一破坏机构的可破坏荷载,而后验算 该荷载是否满足屈服条件,若满足,该荷载即为极限荷载。
q u1
qu 2
Mu Mu
M u Wu s
Mu
Mu
2、不同结构,只要材料、截面积、截面形状相同,塑性弯矩一定相同。
3、材料、截面积、截面形状相同的不同结构,qu不一定相同。
q u1
qu 2
Mu1
M u1 M u 2 qu1 qu 2
Mu2 Mu2
第16章
四、如何确定单跨梁的极限荷载 1、机理 q
M图
第16章
例题3 求图示结构的极限荷载。
p
解: 机构( 1) p1 2a p1 a M u M u 3 p1 1.33 Mu a
p
q 2p
a
1.2 p
A
E
F
B
C
D
a
p
机构1
2
a
a
p Mu
3
2a
q 2p a
a
a
1.2 p
机构( 2) p2 a p2 2a M u 2 M u 3 p1 1.67
第16章
一、弹性分析
梁和刚架的极限荷载
16.1 概述
材料在比例极限内的结构分析(利用弹性分析计算内力),以许 用应力为依据确定截面或进行验算的方法。 q
A s e p
A
B b h
l
1、设计:
ql2/8
o
s———流动极限(屈服极限) e———弹性极限 p———比例极限
2、验算:
3、弹性分析缺陷:
2、小变形假设(几何线形),变形后仍用变形前的几何尺寸。 3、略去弹性变形(弹塑性材料,刚塑性变形。)
qu 2
Mu
Mu 4、不计剪力、轴力对极限荷载的影响
5、正负极限弯矩值相等
Mu Mu
dM Q( x ) dx
ql 2
M 0
Q( x )
Q
x
ql 2 8 ql 1 M ( x) x q x 2 2 2
d 2M q( x ) 2 dx
M
第16章
例题2 试用试算法求图示结构的极限荷载。 p 解 法1 : 1.1 p
A D B E
C
试取机构( 1) 1.1p1 2a M u 3 M u 2 Mu a 绘出与 机构( 1) 相应的 M图, p1 2.27
1.1 p
p
2
p2 3
Mu a
Mu
Mu
Mu 依 上 限 定 理 : pu 2.27 a
机构(2)
第16章
例题1 试用机动法求图示结构的极限荷载。 (1)分析弯矩与曲率的关系 : p 1.1 p
A D B E
C
1
y
M EI
(a )当M为 正 值 时 , 曲 率 为 负 ; 值
二、塑性铰 1、塑性铰的概念
qu
B A C
Mu
C
2、塑性铰的特点(与机械铰的区别) (1)普通铰不能承受弯矩,塑性铰能够承受弯矩;
(2)普通铰双向转动,塑性铰单向转动;
(3)卸载时机械铰不消失;当q<qu,塑性铰消失。
第15章
三、破坏机构 由于足够多的塑性铰的出现,使原结构成为机构(几何可变体系), 失去继续承载的能力,该几何可变体系称为“机构”。 1、不同结构在荷载作用下,成为机构,所需塑性铰的数目不同。
y
卸载时有残余变形
三、塑性分析
按照极限状态进行结构设计的方法。结构破坏瞬时对应的荷载称 为“极限荷载”;相应的状态称为“极限状态”。
q
h
ql2/8
b
应 力
s
s
s
应 变
s
塑性区
第16章
16.2 极限弯矩、塑性铰、破坏机构
一、屈服弯矩与极限弯矩 1、屈服弯矩(Ms): 截面最外侧纤维的应力达到流动极限时对应的弯矩。
矩 形 截 面 : M s ( ) bdy y 2b s y h 3
h 3 2 h 2 h 2 h 2 h 2 h 2
y bydy s h 2
s
b
h 2 h 2
bh2 s 6
s
dy
y
x
圆 形 截 面 :M s
Mu
p
p
机构1 Mu q 2p
a
1.2 p
Mu
MG
MH
经验算各截面弯矩值足 满屈服条件, M pu 2.27 u a
作业 • 16-1(a) • 16-3 • 16-6 • 16-9
第16章
16.3 确定极限荷载的几个定理
一、几点假设 1、比例加载
a ) p1 1 p, p2 2 p, , pn n p b) q1 1q, q2 2q , , qn nq
q
A
C
B
l
Mu
Mu
Mu
极限状态弯矩图
Mu
C
qu
l 2
B
y0
Mu
VB
qu l 2
MB 0
l l M u M u qu 0 2 4