2016.4九年级数学期中试卷----临沂金榜教育辅导中心
山东省临沂市九年级下学期数学期中考试试卷

山东省临沂市九年级下学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)已知方程x2+2x﹣3=0的解是x1=1,x2=﹣3,则另一个方程(x+3)2+2(x+3)﹣3=0的解是()A . x1=﹣1,x2=3B . x1=1,x2=﹣3C . x1=2,x2=6D . x1=﹣2,x2=﹣62. (2分) (2017九上·上蔡期末) 如图,在△ABC中,∠C=90°,AB=3,BC=2,则cosB的值是().A .B .C .D .3. (2分)若3x=4y(xy≠0),则下列比例式成立的是()A . =B .C .D .4. (2分)(2017·香坊模拟) 如图是由6个相同的小正方体搭成的几何体,那么这个几何体的俯视图是()A .B .C .D .5. (2分)(2017·陕西) 如图,在矩形ABCD中,AB=2,BC=3.若点E是边CD的中点,连接AE,过点B作BF⊥AE交AE于点F,则BF的长为()A .B .C .D .6. (2分)如图是二次函数y=ax2+bx+c图象的一部分,其对称轴为x=-1,且过点(-3,0).下列说法:①abc <0;②2a-b=0;③4a+2b+c<0;④3a+c=0;则其中说法正确的是().A . ①②B . ②③C . ①②④D . ②③④7. (2分)(2017·虎丘模拟) 如图,在菱形ABCD中,AB=6,∠DAB=60°,AE分别交BC、BD于点E、F,若CE=2,连接CF.以下结论:①∠BAF=∠BCF;②点E到AB的距离是2 ;③S△CDF:S△BEF=9:4;④tan∠DCF= .其中正确的有()A . 4个B . 3个C . 2个D . 1个8. (2分)如图,在△ABC中,AB=AC,∠BAC为锐角,CD为AB边上的高,I为△ACD的内切圆圆心,则∠AIB的度数是()A . 120°B . 125°C . 135°D . 150°9. (2分)小张同学说出了二次函数的两个条件:(1 )当x<1时,y随x的增大而增大;(2 )函数图象经过点(﹣2,4).则符合条件的二次函数表达式可以是()A . y=﹣(x﹣1)2﹣5B . y=2(x﹣1)2﹣14C . y=﹣(x+1)2+5D . y=﹣(x﹣2)2+2010. (2分)药品研究所开发一种抗菌素新药,经过多年的动物实验之后,首次用于临床人体试验,测得成人服药后血液中药物浓度y(微克/毫升)与服药后时间x(时)之间的函数关系如图所示,则当1≤x≤6时,y的取值范围是()A . ≤y≤B . ≤y≤8C . ≤y≤8D . 8≤y≤16二、填空题 (共6题;共6分)11. (1分)计算:2﹣2=________ .12. (1分)一种药品经过两次降价后,每盒的价格由原来的60元降到48.6元;那么平均每次降价的百分率是:________ .13. (1分)(2018·扬州) 用半径为,圆心角为的扇形纸片围成一个圆锥的侧面,则这个圆锥的底面圆半径为________ .14. (1分) (2019九上·渠县月考) 如图,O是矩形ABCD的对角线AC的中点,菱形ABEO的边长为2,则BC 的长是________.15. (1分) (2019八上·临海期中) 如图,在△ABC中,AB=5cm,AC=3cm,BC=4cm,点D.E分别在AC、AB上,且△BCD和△BED关于BD对称,则△ADE的周长为________cm.16. (1分) (2017八上·杭州期中) 如图,已知△ABC中,BC=2,AB=AC=4,点D是BC的中点,E为AC的中点,点P为AB上的动点,则点D到AC的距离为________,DP+EP的最小值等于________.三、解答题 (共8题;共82分)17. (5分)先化简,再求值:,其中a=﹣2.18. (10分)(2018·沾益模拟) 如图,点E在正方形ABCD的边AB上,连接DE,过点C作CF⊥DE于F,过点A作AG∥CF交DE于点G.(1)求证:△DCF≌△ADG.(2)若点E是AB的中点,设∠DCF=α,求sinα的值.19. (7分)(2018·潮南模拟) 2013年5月31日是第26个“世界无烟日”,校学生会书记小明同学就“戒烟方式”的了解程度对本校九年级学生进行了一次随机问卷调查,如图是他采集数据后绘制的两幅不完整的统计图(A:了解较多,B:不了解,C:了解一点,D:非常了解).请你根据图中提供的信息解答以下问题:(1)在扇形统计图中的横线上填写缺失的数据,并把条形统计图补充完整.(2) 2013年该初中九年级共有学生400人,按此调查,可以估计2013年该初中九年级学生中对戒烟方式“了解较多”以上的学生约有多少人?(3)在问卷调查中,选择“A”的是1名男生,1名女生,选择“D”的有4人且有2男2女.校学生会要从选择“A、D”的问卷中,分别抽一名学生参加活动,请你用列表法或树状图求出恰好是一名男生一名女生的概率.20. (10分) (2018九上·安陆月考) 设m是不小于﹣1的实数,关于x的方程x2+2(m﹣2)x+m2﹣3m+3=0有两个不相等的实数根x1、x2 ,(1)若x12+x22=6,求m值;(2)令T= ,求T的取值范围.21. (5分)(2019·乌鲁木齐模拟) 如图,某高速公路设计中需要测量某条江的宽度,测量人员使用无人机测量,在处测得两点的俯角分别为和,若无人机离地面的高度为米,且点在同一条水平直线上,求这条江的宽度长(结果保留根号).22. (15分)(2012·福州) 如图,AB为⊙O的直径,C为⊙O上一点,AD和过C点的切线互相垂直,垂足为D,AD交⊙O于点E.(1)求证:AC平分∠DAB;(2)若∠B=60°,CD=2 ,求AE的长.23. (15分)(2018·安徽模拟) 如图,一次函数与反比例函数的图象交于A(2,3),B (-3,n)两点.(1)求一次函数与反比例函数的表达式;(2)根据所给条件,请直接写出不等式 < 的解集;(3)过点B作BC⊥x轴,垂足为C,求S△ABC.24. (15分) (2017九下·六盘水开学考) 如图,抛物线的图象与x轴交于A(﹣1.0),B (3,0)两点,与y轴交于点C(0,﹣3),顶点为D.(1)求此抛物线的解析式.(2)求此抛物线顶点D的坐标和对称轴.(3)探究对称轴上是否存在一点P,使得以点P、D、A为顶点的三角形是等腰三角形?若存在,请求出所有符合条件的P点的坐标,若不存在,请说明理由.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共6分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共8题;共82分)17-1、18-1、18-2、19-1、19-2、19-3、20-1、20-2、21-1、22-1、23-1、23-2、23-3、24-1、24-2、24-3、。
山东省临沂市九年级上期中数学试卷含答案解析.doc

2015-2016学年山东省临沂市九年级(上)期中数学试卷一、选择题:(每小题3分,本题满分共36分,)下列每小题中有四个备选答案,其中只有一个是符合题意的,把正确答案前字母序号填在下面表格相应的题号下.1.一元二次方程x(x﹣2)=2﹣x的根是( )A.﹣1 B.2 C.1和2 D.﹣1和22.下列图形中,中心对称图形有( )A.4个B.3个C.2个D.1个3.关于x的方程x2+2kx﹣1=0的根的情况描述正确的是( )A.k为任何实数,方程都没有实数根B.k为任何实数,方程都有两个不相等的实数根C.k为任何实数,方程都有两个相等的实数根D.k取值不同实数,方程实数根的情况有三种可能4.关于x的方程ax2﹣(3a+1)x+2(a+1)=0有两个不相等的实根x1、x2,且有x1﹣x1x2+x2=1﹣a,则a的值是( )A.1 B.﹣1 C.1或﹣1 D.25.如图,将Rt△ABC(其中∠B=30°,∠C=90°)绕点A按顺时针方向旋转到△AB1C1的位置,使得点C、A、B1在同一条直线上,那么旋转角等于( )A.115°B.120°C.125°D.145°6.2011年向阳村农民人均收入为7200元,到2013年增长至8712元.这两年中,该村农民人均收入平均每年的增长率为( )A.10% B.15% C.20% D.25%7.抛物线y=ax2+bx+c与x轴的两个交点为(﹣1,0),(3,0),其形状与抛物线y=﹣2x2相同,则y=ax2+bx+c的函数关系式为( )A.y=﹣2x2﹣x+3 B.y=﹣2x2+4x+5 C.y=﹣2x2+4x+8 D.y=﹣2x2+4x+68.如图,线段AB是⊙O的直径,弦CD丄AB,∠CAB=20°,则∠AOD等于( )A.160°B.150°C.140°D.120°9.如图,△ABC的边AC与⊙O相交于C、D两点,且经过圆心O,边AB与⊙O相切,切点为B.已知∠A=30°,则∠C的大小是( )A.30°B.45°C.60°D.40°10.对于二次函数y=(x﹣1)2+2的图象,下列说法正确的是( )A.开口向下 B.对称轴是x=﹣1C.顶点坐标是(1,2)D.与x轴有两个交点2与y的部分对应值如下表:(1)ac<0;(2)当x>1时,y的值随x值的增大而减小.(3)3是方程ax2+(b﹣1)x+c=0的一个根;(4)当﹣1<x<3时,ax2+(b﹣1)x+c>0.其中正确的个数为( )A.4个B.3个C.2个D.1个12.如图,P为⊙O的直径BA延长线上的一点,PC与⊙O相切,切点为C,点D是⊙上一点,连接PD.已知PC=PD=BC.下列结论:(1)PD与⊙O相切;(2)四边形PCBD是菱形;(3)PO=AB;(4)∠PDB=120°.其中正确的个数为( )A.4个B.3个C.2个D.1个二、填空题:(每题4分,共24分)13.若关于x的一元二次方程x2﹣2x﹣k=0没有实数根,则k的取值范围是__________.14.已知一元二次方程x2﹣3x﹣3=0的两根为a与b,则的值是__________.15.如图,点A、B、P在⊙O上,∠APB=50°,若M是⊙O上的动点,则等腰△ABM顶角的度数为__________.16.如图所示,在△ABC中,∠B=40°,将△ABC绕点A逆时针旋转至△ADE处,使点B 落在BC延长线上的D点处,∠BDA=45°,则∠BDE=__________.17.如图所示,在平面直角坐标系xOy中,半径为2的⊙P的圆心P的坐标为(﹣3,0),将⊙P沿x轴正方向平移,使⊙P与y轴相切,则平移的距离为__________.18.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①b2>4ac;②abc>0;③2a﹣b=0;④8a+c<0;⑤9a+3b+c<0.其中结论正确的是__________.(填正确结论的序号)三、解答下列各题(共60分)19.解方程(1)x2﹣2x﹣1=0.(2)(x﹣1)2+2x(x﹣1)=0.20.如图,四边形ABCD是正方形,△ADF按顺时针方向旋转一定角度后得到△ABE,若AF=4.AB=7.(1)旋转中心为__________;旋转角度为__________;(2)求DE的长度;(3)指出BE与DF的关系如何?并说明理由.21.四边形ABCD是正方形,E、F分别是DC和CB的延长线上的点,且DE=BF,连接AE、AF、EF.(1)试判断△AEF的形状,并说明理由;(2)填空:△ABF可以由△ADE绕旋转中心__________ 点,按顺时针方向旋转__________度得到;(3)若BC=8,则四边形AECF的面积为__________.(直接写结果)22.如图,AD为△ABC外接圆的直径,AD⊥BC,垂足为点F,∠ABC的平分线交AD于点E,连接BD,CD.(1)求证:BD=CD;(2)请判断B,E,C三点是否在以D为圆心,以DB为半径的圆上?并说明理由.23.如图,AB是⊙O的直径,点F,C是⊙O上两点,且==,连接AC,AF,过点C作CD⊥AF交AF延长线于点D,垂足为D.(1)求证:CD是⊙O的切线;(2)若CD=2,求⊙O的半径.24.某花圃用花盆培育某种花苗,经过实验发现每盆的盈利与每盆的株数构成一定的关系.每盆植入3株时,平均单株盈利3元;以同样的栽培条件,若每盆增加1株,平均单株盈利就减少0.5元.要使每盆的盈利达到10元,每盆应该植多少株?25.如图,抛物线y=x2+bx+c经过点(1,﹣4)和(﹣2,5),请解答下列问题:(1)求抛物线的解析式;(2)若与x轴的两个交点为A,B,与y轴交于点C.在该抛物线上是否存在点D,使得△ABC 与△ABD全等?若存在,求出D点的坐标;若不存在,请说明理由注:抛物线y=ax2+bx+c的对称轴是x=﹣.2015-2016学年山东省临沂市九年级(上)期中数学试卷一、选择题:(每小题3分,本题满分共36分,)下列每小题中有四个备选答案,其中只有一个是符合题意的,把正确答案前字母序号填在下面表格相应的题号下.1.一元二次方程x(x﹣2)=2﹣x的根是( )A.﹣1 B.2 C.1和2 D.﹣1和2【考点】解一元二次方程-因式分解法.【专题】计算题.【分析】先移项得到x(x﹣2)+(x﹣2)=0,然后利用提公因式因式分解,最后转化为两个一元一次方程,解方程即可.【解答】解:x(x﹣2)+(x﹣2)=0,∴(x﹣2)(x+1)=0,∴x﹣2=0或x+1=0,∴x1=2,x2=﹣1.故选D.【点评】本题考查了运用因式分解法解一元二次方程的方法:利用因式分解把一个一元二次方程化为两个一元一次方程.2.下列图形中,中心对称图形有( )A.4个B.3个C.2个D.1个【考点】中心对称图形.【分析】根据中心对称图形的定义和各图的特点即可求解.【解答】解:第四个图只是轴对称图形,第1、第2和第3个是中心对称图形.中心对称图形有3个.故选:B.【点评】本题考查中心对称图形的概念:绕对称中心旋转180度后所得的图形与原图形完全重合.3.关于x的方程x2+2kx﹣1=0的根的情况描述正确的是( )A.k为任何实数,方程都没有实数根B.k为任何实数,方程都有两个不相等的实数根C.k为任何实数,方程都有两个相等的实数根D.k取值不同实数,方程实数根的情况有三种可能【考点】根的判别式.【分析】先计算判别式的值得到△=4k2+4,根据非负数的性质得△>0,然后根据判别式的意义进行判断.【解答】解:△=4k2﹣4×(﹣1)=4k2+4,∵4k2≥0,∴4k2+4>0∴方程有两个不相等的实数根.故选B.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.4.关于x的方程ax2﹣(3a+1)x+2(a+1)=0有两个不相等的实根x1、x2,且有x1﹣x1x2+x2=1﹣a,则a的值是( )A.1 B.﹣1 C.1或﹣1 D.2【考点】根与系数的关系;根的判别式.【专题】计算题;压轴题.【分析】根据根与系数的关系得出x1+x2=﹣,x1x2=,整理原式即可得出关于a的方程求出即可.【解答】解:依题意△>0,即(3a+1)2﹣8a(a+1)>0,即a2﹣2a+1>0,(a﹣1)2>0,a≠1,∵关于x的方程ax2﹣(3a+1)x+2(a+1)=0有两个不相等的实根x1、x2,且有x1﹣x1x2+x2=1﹣a,∴x1﹣x1x2+x2=1﹣a,∴x1+x2﹣x1x2=1﹣a,∴﹣=1﹣a,解得:a=±1,又a≠1,∴a=﹣1.故选:B.【点评】此题主要考查了根与系数的关系,由x1﹣x1x2+x2=1﹣a,得出x1+x2﹣x1x2=1﹣a是解决问题的关键.5.如图,将Rt△ABC(其中∠B=30°,∠C=90°)绕点A按顺时针方向旋转到△AB1C1的位置,使得点C、A、B1在同一条直线上,那么旋转角等于( )A.115°B.120°C.125°D.145°【考点】旋转的性质.【专题】计算题.【分析】先利用互余计算出∠BAC=60°,再根据旋转的性质得到∠BAB′等于旋转角,然后利用邻补角计算∠BAB′的度数即可.【解答】解:∵∠B=30°,∠C=90°,∴∠BAC=60°,∵Rt△ABC绕点A按顺时针方向旋转到△AB1C1的位置,使得点C、A、B1在同一条直线上,∴∠BAB′等于旋转角,且∠BAB′=180°﹣∠BAC=120°,∴旋转角等于120°.故选B.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.6.2011年向阳村农民人均收入为7200元,到2013年增长至8712元.这两年中,该村农民人均收入平均每年的增长率为( )A.10% B.15% C.20% D.25%【考点】一元二次方程的应用.【专题】增长率问题.【分析】设该村人均收入的年平均增长率为x,2011年的人均收入×(1+平均增长率)2=2013年人均收入,把相关数值代入求得年平均增长率.【解答】解:设该村人均收入的年平均增长率为x,由题意得:7200(1+x)2=8712,解得:x1=﹣2.1(不合题意舍去),x2=0.1=10%.答:该村人均收入的年平均增长率为10%.故选A.【点评】本题考查了一元二次方程的运用,应明确增长的基数,增长的次数,根据公式增长后的人均收入=增长前的人均收入×(1+增长率).7.抛物线y=ax2+bx+c与x轴的两个交点为(﹣1,0),(3,0),其形状与抛物线y=﹣2x2相同,则y=ax2+bx+c的函数关系式为( )A.y=﹣2x2﹣x+3 B.y=﹣2x2+4x+5 C.y=﹣2x2+4x+8 D.y=﹣2x2+4x+6【考点】待定系数法求二次函数解析式.【专题】压轴题.【分析】抛物线y=ax2+bx+c的形状与抛物线y=﹣2x2相同,a=﹣2.y=ax2+bx+c与x轴的两个交点为(﹣1,0),(3,0),利用交点式求表达式即可.【解答】解:根据题意a=﹣2,所以设y=﹣2(x﹣x1)(x﹣x2),求出解析式y=﹣2(x+1)(x﹣3),即是y=﹣2x2+4x+6.故选D.【点评】本题考查了抛物线的形状系数的关系,本题用交点式比较容易解.8.如图,线段AB是⊙O的直径,弦CD丄AB,∠CAB=20°,则∠AOD等于( )A.160°B.150°C.140°D.120°【考点】圆周角定理;垂径定理.【专题】压轴题.【分析】利用垂径定理得出=,进而求出∠BOD=40°,再利用邻补角的性质得出答案.【解答】解:∵线段AB是⊙O的直径,弦CD丄AB,∴=,∵∠CAB=20°,∴∠BOD=40°,∴∠AOD=140°.故选:C.【点评】此题主要考查了圆周角定理以及垂径定理等知识,得出∠BOD的度数是解题关键.9.如图,△ABC的边AC与⊙O相交于C、D两点,且经过圆心O,边AB与⊙O相切,切点为B.已知∠A=30°,则∠C的大小是( )A.30°B.45°C.60°D.40°【考点】切线的性质.【专题】计算题.【分析】根据切线的性质由AB与⊙O相切得到OB⊥AB,则∠ABO=90°,利用∠A=30°得到∠AOB=60°,再根据三角形外角性质得∠AOB=∠C+∠OBC,由于∠C=∠OBC,所以∠C=AOB=30°.【解答】解:连结OB,如图,∵AB与⊙O相切,∴OB⊥AB,∴∠ABO=90°,∵∠A=30°,∴∠AOB=60°,∵∠AOB=∠C+∠OBC,而∠C=∠OBC,∴∠C=AOB=30°.故选:A.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.10.对于二次函数y=(x﹣1)2+2的图象,下列说法正确的是( )A.开口向下 B.对称轴是x=﹣1C.顶点坐标是(1,2)D.与x轴有两个交点【考点】二次函数的性质.【专题】常规题型.【分析】根据抛物线的性质由a=1得到图象开口向上,根据顶点式得到顶点坐标为(1,2),对称轴为直线x=1,从而可判断抛物线与x轴没有公共点.【解答】解:二次函数y=(x﹣1)2+2的图象开口向上,顶点坐标为(1,2),对称轴为直线x=1,抛物线与x轴没有公共点.故选:C.【点评】本题考查了二次函数的性质:二次函数y=ax2+bx+c(a≠0)的顶点式为y=a(x﹣)2+,的顶点坐标是(﹣,),对称轴直线x=﹣b2a,当a>0时,抛物线y=ax2+bx+c(a≠0)的开口向上,当a<0时,抛物线y=ax2+bx+c(a≠0)的开口向下.2与y的部分对应值如下表:(1)ac<0;(2)当x>1时,y的值随x值的增大而减小.(3)3是方程ax2+(b﹣1)x+c=0的一个根;(4)当﹣1<x<3时,ax2+(b﹣1)x+c>0.其中正确的个数为( )A.4个B.3个C.2个D.1个【考点】二次函数的性质;二次函数图象与系数的关系;抛物线与x轴的交点;二次函数与不等式(组).【专题】压轴题;图表型.【分析】根据表格数据求出二次函数的对称轴为直线x=1.5,然后根据二次函数的性质对各小题分析判断即可得解.【解答】解:(1)由图表中数据可得出:x=1时,y=5,所以二次函数y=ax2+bx+c开口向下,a<0;又x=0时,y=3,所以c=3>0,所以ac<0,故(1)正确;(2)∵二次函数y=ax2+bx+c开口向下,且对称轴为x==1.5,∴当x≥1.5时,y的值随x值的增大而减小,故(2)错误;(3)∵x=3时,y=3,∴9a+3b+c=3,∵c=3,∴9a+3b+3=3,∴9a+3b=0,∴3是方程ax2+(b﹣1)x+c=0的一个根,故(3)正确;(4)∵x=﹣1时,ax2+bx+c=﹣1,∴x=﹣1时,ax2+(b﹣1)x+c=0,∵x=3时,ax2+(b﹣1)x+c=0,且函数有最大值,∴当﹣1<x<3时,ax2+(b﹣1)x+c>0,故(4)正确.故选:B.【点评】本题考查了二次函数的性质,二次函数图象与系数的关系,抛物线与x轴的交点,二次函数与不等式,有一定难度.熟练掌握二次函数图象的性质是解题的关键.12.如图,P为⊙O的直径BA延长线上的一点,PC与⊙O相切,切点为C,点D是⊙上一点,连接PD.已知PC=PD=BC.下列结论:(1)PD与⊙O相切;(2)四边形PCBD是菱形;(3)PO=AB;(4)∠PDB=120°.其中正确的个数为( )A.4个B.3个C.2个D.1个【考点】切线的判定与性质;全等三角形的判定与性质;菱形的判定.【专题】几何综合题.【分析】(1)利用切线的性质得出∠PCO=90°,进而得出△PCO≌△PDO(SSS),即可得出∠PCO=∠PDO=90°,得出答案即可;(2)利用(1)所求得出:∠CPB=∠BPD,进而求出△CPB≌△DPB(SAS),即可得出答案;(3)利用全等三角形的判定得出△PCO≌△BCA(ASA),进而得出CO=PO=AB;(4)利用四边形PCBD是菱形,∠CPO=30°,则DP=DB,则∠DPB=∠DBP=30°,求出即可.【解答】解:(1)连接CO,DO,∵PC与⊙O相切,切点为C,∴∠PCO=90°,在△PCO和△PDO中,,∴△PCO≌△PDO(SSS),∴∠PCO=∠PDO=90°,∴PD与⊙O相切,故(1)正确;(2)由(1)得:∠CPB=∠BPD,在△CPB和△DPB中,,∴△CPB≌△DPB(SAS),∴BC=BD,∴PC=PD=BC=BD,∴四边形PCBD是菱形,故(2)正确;(3)连接AC,∵PC=CB,∴∠CPB=∠CBP,∵AB是⊙O直径,∴∠ACB=90°,在△PCO和△BCA中,,∴△PCO≌△BCA(ASA),∴AC=CO,∴AC=CO=AO,∴∠COA=60°,∴∠CPO=30°,∴CO=PO=AB,∴PO=AB,故(3)正确;(4)∵四边形PCBD是菱形,∠CPO=30°,∴DP=DB,则∠DPB=∠DBP=30°,∴∠PDB=120°,故(4)正确;正确个数有4个,故选:A.【点评】此题主要考查了切线的判定与性质和全等三角形的判定与性质以及菱形的判定与性质等知识,熟练利用全等三角形的判定与性质是解题关键.二、填空题:(每题4分,共24分)13.若关于x的一元二次方程x2﹣2x﹣k=0没有实数根,则k的取值范围是k<﹣1.【考点】根的判别式.【分析】根据关于x的一元二次方程x2﹣2x﹣k=0没有实数根,得出△=4+4k<0,再进行计算即可.【解答】解:∵一元二次方程x2﹣2x﹣k=0没有实数根,∴△=(﹣2)2﹣4×1×(﹣k)=4+4k<0,∴k的取值范围是k<﹣1;故答案为:k<﹣1.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.14.已知一元二次方程x2﹣3x﹣3=0的两根为a与b,则的值是﹣1.【考点】根与系数的关系.【专题】计算题.【分析】根据根与系数的关系得到a+b=3,ab=﹣3,再把原式变形得到,然后利用整体代入的方法进行计算.【解答】解:根据题意得a+b=3,ab=﹣3,所以原式===﹣1.故答案为﹣1.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程的两根为x1,x2,则x1+x2=﹣,x1•x2=.15.如图,点A、B、P在⊙O上,∠APB=50°,若M是⊙O上的动点,则等腰△ABM顶角的度数为50°或80°或130°.【考点】圆周角定理;等腰三角形的性质.【分析】首先连接AM,BM,分别从若点M在优弧APB上与若点M在劣弧AB上,根据圆周角定理与等腰三角形的性质,即可求得等腰△ABM顶角的度数.【解答】解:连接AM,BM,①若点M在优弧APB上,∴∠M=∠APB=50°,若AM=BM,则等腰△ABM顶角的度数为50°;若AM=AB或BM=AB,则等腰△ABM顶角的度数为:180°﹣2∠M=80°;②若点M在劣弧AB上,则∠M=180°﹣∠APB=130°,此时∠M是顶角.∴等腰△ABM顶角的度数为:50°或80°或130°.故答案为:50°或80°或130°.【点评】此题考查了圆周角定理、等腰三角形的性质以及圆的内接四边形的性质.此题难度适中,注意掌握辅助线的作法,注意数形结合思想与分类讨论思想的应用.16.如图所示,在△ABC中,∠B=40°,将△ABC绕点A逆时针旋转至△ADE处,使点B 落在BC延长线上的D点处,∠BDA=45°,则∠BDE=85°.【考点】旋转的性质.【专题】计算题.【分析】根据旋转的性质得∠ADE=∠B=40°,然后计算∠BDA+∠ADE即可.【解答】解:∵△ABC绕点A逆时针旋转至△ADE处,使点B落在BC延长线上的D点处,∴∠ADE=∠B=40°,∴∠BDE=∠BDA+∠ADE=45°+40°=85°.故答案为85°.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.17.如图所示,在平面直角坐标系xOy中,半径为2的⊙P的圆心P的坐标为(﹣3,0),将⊙P沿x轴正方向平移,使⊙P与y轴相切,则平移的距离为1或5.【考点】直线与圆的位置关系;坐标与图形性质;平移的性质.【分析】平移分在y轴的左侧和y轴的右侧两种情况写出答案即可.【解答】解:当⊙P位于y轴的左侧且与y轴相切时,平移的距离为1;当⊙P位于y轴的右侧且与y轴相切时,平移的距离为5.故答案为:1或5.【点评】本题考查了直线与圆的位置关系,解题的关键是了解当圆与直线相切时,点到圆心的距离等于圆的半径.18.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①b2>4ac;②abc>0;③2a﹣b=0;④8a+c<0;⑤9a+3b+c<0.其中结论正确的是①②⑤.(填正确结论的序号)【考点】二次函数图象与系数的关系.【专题】压轴题.【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【解答】解:①由图知:抛物线与x轴有两个不同的交点,则△=b2﹣4ac>0,∴b2>4ac,故①正确;②抛物线开口向上,得:a>0;抛物线的对称轴为x=﹣=1,b=﹣2a,故b<0;抛物线交y轴于负半轴,得:c<0;所以abc>0;故②正确;③∵抛物线的对称轴为x=﹣=1,b=﹣2a,∴2a+b=0,故2a﹣b=0错误;④根据②可将抛物线的解析式化为:y=ax2﹣2ax+c(a≠0);由函数的图象知:当x=﹣2时,y>0;即4a﹣(﹣4a)+c=8a+c>0,故④错误;⑤根据抛物线的对称轴方程可知:(﹣1,0)关于对称轴的对称点是(3,0);当x=﹣1时,y<0,所以当x=3时,也有y<0,即9a+3b+c<0;故⑤正确;所以这结论正确的有①②⑤.故答案为:①②⑤.【点评】此题主要考查了图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b 的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.三、解答下列各题(共60分)19.解方程(1)x2﹣2x﹣1=0.(2)(x﹣1)2+2x(x﹣1)=0.【考点】解一元二次方程-因式分解法;解一元二次方程-配方法.【分析】(1)方程常数项移到右边,两边加上1变形后,开方即可求出解;(2)方程左边分解因式后,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.【解答】解:(1)方程移项得:x2﹣2x=1,配方得:x2﹣2x+1=2,即(x﹣1)2=2,开方得:x﹣1=±,则x1=1+,x2=1﹣;(2)分解因式得:(x﹣1)[(x﹣1)+2x]=0,可得x﹣1=0或3x﹣1=0,解得:x1=1,x2=.【点评】此题考查了解一元二次方程﹣因式分解法,以及配方法,熟练掌握各种解法是解本题的关键.20.如图,四边形ABCD是正方形,△ADF按顺时针方向旋转一定角度后得到△ABE,若AF=4.AB=7.(1)旋转中心为点A;旋转角度为90°;(2)求DE的长度;(3)指出BE与DF的关系如何?并说明理由.【考点】旋转的性质;正方形的性质.【分析】(1)根据旋转的性质,点A为旋转中心,对应边AB、AD的夹角为旋转角;(2)根据旋转的性质可得AE=AF,AD=AB,然后根据DE=AD﹣AE计算即可得解;(3)根据旋转可得△ABE和△ADF全等,根据全等三角形对应边相等可得BE=DF,全等三角形对应角相等可得∠ABE=∠ADF,然后求出∠ABE+∠F=90°,判断出BE⊥DF.【解答】解:(1)旋转中心为点A,旋转角为∠BAD=90°;(2)∵△ADF按顺时针方向旋转一定角度后得到△ABE,∴AE=AF=4,AD=AB=7,∴DE=AD﹣AE=7﹣4=3;(3)BE、DF的关系为:BE=DF,BE⊥DF.理由如下:∵△ADF按顺时针方向旋转一定角度后得到△ABE,∴△ABE≌△ADF,∴BE=DF,∠ABE=∠ADF,∵∠ADF+∠F=180°﹣90°=90°,∴∠ABE+∠F=90°,∴BE⊥DF,∴BE、DF的关系为:BE=DF,BE⊥DF.【点评】本题考查了旋转的性质,正方形的性质,是基础题,熟记旋转变换只改变图形的位置不改变图形的形状与大小是解题的关键.21.四边形ABCD是正方形,E、F分别是DC和CB的延长线上的点,且DE=BF,连接AE、AF、EF.(1)试判断△AEF的形状,并说明理由;(2)填空:△ABF可以由△ADE绕旋转中心A 点,按顺时针方向旋转90度得到;(3)若BC=8,则四边形AECF的面积为64.(直接写结果)【考点】旋转的性质;全等三角形的判定与性质;正方形的性质.【分析】(1)根据正方形性质得出AB=AD,∠DAB=∠ABF=∠D=90°,证△ADE≌△ABF,推出AE=AF,∠DAE=∠FAB即可.(2)根据全等三角形性质和旋转的性质得出即可.(3)求出四边形AECF的面积等于正方形ABCD面积,求出正方形的面积即可.【解答】解:(1)△AEF是等腰直角三角形,理由是:∵四边形ABCD是正方形,F是BC延长线上一点,∴AB=AD,∠DAB=∠ABF=∠D=90°,在△ADE和△ABF中,,∴△ADE≌△ABF(SAS)∴AE=AF,∠DAE=∠FAB,∵∠DAB=∠DAE+∠BAE=90°,∴∠FAE=∠DAB=90°,即△AEF是等腰直角三角形.(2)△ABF可以由△ADE绕旋转中心A点,按顺时针方向旋转90°得到的,故答案为:A,90.(3)∵△ADE≌△ABF,∴S ADE=S△ABF,∴四边形AECF的面积S=S四边形ABCE+S△ABF=S四边形ABCE+S△ADE=S正方形ABCD=8×8=64,故答案为:64.【点评】本题考查了旋转性质,全等三角形的性质和判定,正方形性质的应用,主要考查学生的推理能力.22.如图,AD为△ABC外接圆的直径,AD⊥BC,垂足为点F,∠ABC的平分线交AD于点E,连接BD,CD.(1)求证:BD=CD;(2)请判断B,E,C三点是否在以D为圆心,以DB为半径的圆上?并说明理由.【考点】确定圆的条件;圆心角、弧、弦的关系.【专题】证明题;探究型.【分析】(1)利用等弧对等弦即可证明.(2)利用等弧所对的圆周角相等,∠BAD=∠CBD再等量代换得出∠DBE=∠DEB,从而证明DB=DE=DC,所以B,E,C三点在以D为圆心,以DB为半径的圆上.【解答】(1)证明:∵AD为直径,AD⊥BC,∴由垂径定理得:∴根据圆心角、弧、弦之间的关系得:BD=CD.(2)解:B,E,C三点在以D为圆心,以DB为半径的圆上.理由:由(1)知:,∴∠1=∠2,又∵∠2=∠3,∴∠1=∠3,∴∠DBE=∠3+∠4,∠DEB=∠1+∠5,∵BE是∠ABC的平分线,∴∠4=∠5,∴∠DBE=∠DEB,∴DB=DE.由(1)知:BD=CD∴DB=DE=DC.∴B,E,C三点在以D为圆心,以DB为半径的圆上.【点评】本题主要考查等弧对等弦,及确定一个圆的条件.23.如图,AB是⊙O的直径,点F,C是⊙O上两点,且==,连接AC,AF,过点C作CD⊥AF交AF延长线于点D,垂足为D.(1)求证:CD是⊙O的切线;(2)若CD=2,求⊙O的半径.【考点】切线的判定;三角形三边关系;圆周角定理.【专题】几何图形问题.【分析】(1)连结OC,由=,根据圆周角定理得∠FAC=∠BAC,而∠OAC=∠OCA,则∠FAC=∠OCA,可判断OC∥AF,由于CD⊥AF,所以OC⊥CD,然后根据切线的判定定理得到CD是⊙O的切线;(2)连结BC,由AB为直径得∠ACB=90°,由==得∠BOC=60°,则∠BAC=30°,所以∠DAC=30°,在Rt△ADC中,利用含30度的直角三角形三边的关系得AC=2CD=4,在Rt△ACB中,利用含30度的直角三角形三边的关系得BC=AC=4,AB=2BC=8,所以⊙O的半径为4.【解答】(1)证明:连结OC,如图,∵=,∴∠FAC=∠BAC,∵OA=OC,∴∠OAC=∠OCA,∴∠FAC=∠OCA,∴OC∥AF,∵CD⊥AF,∴OC⊥CD,∴CD是⊙O的切线;(2)解:连结BC,如图,∵AB为直径,∴∠ACB=90°,∵==,∴∠BOC=×180°=60°,∴∠BAC=30°,∴∠DAC=30°,在Rt△ADC中,CD=2,∴AC=2CD=4,在Rt△ACB中,BC=AC=×4=4,∴AB=2BC=8,∴⊙O的半径为4.【点评】本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了圆周角定理和含30度的直角三角形三边的关系.24.某花圃用花盆培育某种花苗,经过实验发现每盆的盈利与每盆的株数构成一定的关系.每盆植入3株时,平均单株盈利3元;以同样的栽培条件,若每盆增加1株,平均单株盈利就减少0.5元.要使每盆的盈利达到10元,每盆应该植多少株?【考点】一元二次方程的应用.【分析】根据已知假设每盆花苗增加x株,则每盆花苗有(x+3)株,得出平均单株盈利为(3﹣0.5x)元,由题意得(x+3)(3﹣0.5x)=10求出即可.【解答】解:设每盆花苗增加x株,则每盆花苗有(x+3)株,平均单株盈利为:(3﹣0.5x)元,由题意得:(x+3)(3﹣0.5x)=10.化简,整理,的x2﹣3x+2=0.解这个方程,得x1=1,x2=2,则3+1=4,2+3=5,答:每盆应植4株或者5株.【点评】此题考查了一元二次方程的应用,根据每盆花苗株数×平均单株盈利=总盈利得出方程是解题关键.25.如图,抛物线y=x2+bx+c经过点(1,﹣4)和(﹣2,5),请解答下列问题:(1)求抛物线的解析式;(2)若与x轴的两个交点为A,B,与y轴交于点C.在该抛物线上是否存在点D,使得△ABC与△ABD全等?若存在,求出D点的坐标;若不存在,请说明理由注:抛物线y=ax2+bx+c的对称轴是x=﹣.【考点】二次函数综合题.【分析】(1)由抛物线y=x2+bx+c经过点(1,﹣4)和(﹣2,5),利用待定系数法即可求得此抛物线的解析式;(2)首先由抛物线y=ax2+bx+c的对称轴是x=﹣,即可求得此抛物线的对称轴,根据轴对称的性质,点C关于x=1的对称点D即为所求,利用SSS即可判定△ABC≌△BAD,又由抛物线的与y轴交于点C,即可求得点C的坐标,由对称性可求得D点的坐标.【解答】解:(1)∵抛物线y=x2+bx+c经过点(1,﹣4)和(﹣2,5),∴,解得:.故抛物线的解析式为:y=x2﹣2x﹣3.(2)存在.∵抛物线y=x2﹣2x﹣3的对称轴为:x=﹣=1,∴根据轴对称的性质,点C关于x=1的对称点D即为所求,此时,AC=BD,BC=AD,在△ABC和△BAD中,∵,∴△ABC≌△BAD(SSS).在y=x2﹣2x﹣3中,令x=0,得y=﹣3,则C(0,﹣3),D(2,﹣3).【点评】此题考查了待定系数法求二次函数的解析式、二次函数的性质、全等三角形的判定与二次函数的对称性.此题难度适中,注意掌握数形结合思想与方程思想的应用.。
山东省临沂市九年级上学期数学期中考试试卷

山东省临沂市九年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分) (2015八下·农安期中) 下面的函数是反比例函数的是()A . y=3x+lB . y=x2+2xC . y=D . y=2. (2分)(2018·本溪) 反比例函数的图象经过点(-2,3),则该反比例函数图象在()A . 第一、三象限B . 第二、四象限C . 第二、三象限D . 第一、二象限3. (2分) (2016九上·呼和浩特期中) 下列方程中,关于x的一元二次方程有()①x2=0;②ax2+bx+c=0;③ x2﹣3= x;④a2+a﹣x=0;⑤(m﹣1)x2+4x+ =0;⑥ + =;⑦ =2;⑧(x+1)2=x2﹣9.A . 2个B . 3个C . 4个D . 5个4. (2分)设一元二次方程7x2-x-5=0的两个根分别是x1、x2 ,则下列等式正确的是()A . x1+x2=B . x1+x2=-C . x1+x2=D . x1+x2=5. (2分)已知关于x的方程:(1)ax2+bx+c=0;(2)x2﹣4x=8+x2;(3)1+(x﹣1)(x+1)=0;(4)(k2+1)x2+kx+1=0中,一元二次方程的个数为()个.A . 1C . 3D . 46. (2分)某市为了改善城市容貌,绿化环境,计划过两年时间,绿地面积增加44%,这两年平均每年绿地面积的增长率是()A . 19%B . 20%C . 21%D . 22%7. (2分)关于x的一元二次方程x2+2(m﹣1)x+m2=0的两个实数根分别为x1 , x2 ,且x1+x2>0,x1x2>0,则m的取值范围是()A . m≤B . m≤ 且m≠0C . m<1D . m<1且m≠08. (2分)关于x的一元二次方程x2+(k2-4)x+k+1=0的两实数根互为相反数,则k的值()A . -1B . ±2C . 2D . -29. (2分)方程3x2-x=2的两根之和与两根之积分别是()A . 1和2B . -1和-2C . 和D . 和10. (2分)若,则的值等于().A .B .C .11. (2分)如图,已知直线a∥b∥c,直线m交直线a,b,c于点A,B,C,直线n交直线a,b,c于点D,E,F,若 = ,则 =()A .B .C .D . 112. (2分)如图,E为平行四边形ABCD的边CB的延长线上一点,DE交AB于点F,则图中与△ADF相似的三角形共有()A . 1个B . 2个C . 3个D . 4个二、填空题 (共6题;共6分)13. (1分) (2020九上·息县期末) 若点,在反比例函数的图象上,则________ .(填“>”“<”或“=”)14. (1分)如图,点P在△ABC的边AC上,请你添加一个条件,使得△ABP∽△ACB,这个条件可以是________ .15. (1分) (2020九上·覃塘期末) 若,则的值是________.16. (1分)长度为2cm、3cm、6cm、7cm、8cm的五条线段,若以其中的三条线段为边构成三角形,可以构成不同的三角形共有________个.17. (1分)已知方程x2﹣2x﹣1=0的两根为m和n,则代数式m3﹣2m2﹣n+ ﹣mn2=________.18. (1分) (2017九上·十堰期末) 如图,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y= 在第一象限的图象经过点B,则△OAC与△BAD的面积之差S△OAC-S△BAD为________.三、解答题 (共8题;共91分)19. (5分) (2017九上·江门月考) 解方程:x2+4x﹣5=020. (10分)(2014·台州) 已知反比例函数y= ,当x=2时,y=3.(1)求m的值;(2)当3≤x≤6时,求函数值y的取值范围.21. (15分)(2016·内江) 已知抛物线C:y=x2﹣3x+m,直线l:y=kx(k>0),当k=1时,抛物线C与直线l只有一个公共点.(1)求m的值;(2)若直线l与抛物线C交于不同的两点A,B,直线l与直线l1:y=﹣3x+b交于点P,且 + = ,求b的值;(3)在(2)的条件下,设直线l1与y轴交于点Q,问:是否在实数k使S△APQ=S△BPQ?若存在,求k的值,若不存在,说明理由.22. (15分) (2019九上·浦东期中) 已知:在梯形ABCD中,AD//BC , AC=BC=10,,点E在对角线AC上,且CE=AD , BE的延长线与射线AD、射线CD分别相交于点F、G .设AD=x ,△AEF的面积为y .(1)求证:∠DCA=∠EBC;(2)如图,当点G在线段CD上时,求y关于x的函数解析式,并写出它的定义域;(3)如果△DFG是直角三角形,求△AEF的面积.23. (15分) (2017九上·滦县期末) 如图,抛物线L:y=﹣(x﹣t)(x﹣t+4)(常数t>0)与x轴从左到右的交点为B,A,过线段OA的中点M作MP⊥x轴,交双曲线y= (k>0,x>0)于点P,且OA•MP=12.(1)求k的值;(2)当t=1时,求AB长,并求直线MP与L对称轴之间的距离;(3)把L在直线MP左侧部分的图象(含与直线MP的交点)记为G,用t表示图象G最高点的坐标.24. (6分) (2017九上·平舆期末) 如图①,矩形ABCD中,AB=2,BC=5,BP=1,∠MPN=90°,将∠MPN绕点P从PB处开始按顺时针方向旋转,PM交边AB(或AD)于点E,PN交边AD(或CD)于点F,当PN旋转至PC处时,∠MPN的旋转随即停止.(1)特殊情形:如图②,发现当PM过点A时,PN也恰巧过点D,此时,△ABP________△PCD(填“≌”或“~”);(2)类比探究:如图③,在旋转过程中,的值是否为定值?若是,请求出该定值;若不是,请说明理由.25. (15分) (2016九上·威海期中) 已知:抛物线的对称轴为x=﹣1,与x轴交于A,B两点,与y轴交于点C,其中A(﹣3,0)、C(0,﹣2).(1)求这条抛物线的函数表达式.(2)已知在对称轴上存在一点P,使得△PBC的周长最小.请求出点P的坐标.(3)若点D是线段OC上的一个动点(不与点O、点C重合).过点D作DE∥PC交x轴于点E.连接PD、PE.设CD的长为m,△PDE的面积为S.求S与m之间的函数关系式.试说明S是否存在最大值,若存在,请求出最大值;若不存在,请说明理由.26. (10分)某商场以每件280元的价格购进一批商品,当每件商品售价为360元时,每月可售出60件,为了扩大销售,商场决定采取适当降价的方式促销,经调查发现,如果每件商品降价1元,那么商场每月就可以多售出5件.(1)降价前商场每月销售该商品的利润是多少元?(2)要使商场每月销售这种商品的利润达到7200元,且更有利于减少库存,则每件商品应降价多少元?参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共6题;共6分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共8题;共91分)19-1、20-1、20-2、21-1、21-2、21-3、22-1、22-2、22-3、23-1、23-2、23-3、24-1、24-2、25-1、25-2、25-3、26-1、26-2、。
临沂市九年级上学期期中数学试卷

临沂市九年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)若tanA=,则sinA的值是()A .B .C . 3D .2. (2分)已知△ABC,D、E分别为AC、AB中点,BD和CE交于点O,BD和CE是一元二次方程x2﹣kx+24=0的两个不等实根,则△BOE面积的最大值为()A .B . 2C .D . 43. (2分)(2017·邢台模拟) 关于x的一元二次方程x2﹣x+cosα=0有两个相等的实数根,则锐角a 等于()A . 0°B . 30°C . 45°D . 60°4. (2分)(2016·潍坊) 关于x的一元二次方程x2﹣x+sinα=0有两个相等的实数根,则锐角α等于()A . 15°B . 30°C . 45°D . 60°5. (2分)(2017·平邑模拟) 已知点M(1﹣2m,m﹣1)关于x轴的对称点在第一象限,则m的取值范围在数轴上表示正确的是()A .B .C .D .6. (2分)下列说法正确的是()A . 圆内接正六边形的边长与该圆的半径相等B . 在平面直角坐标系中,不同的坐标可以表示同一点C . 一元二次方程ax2+bx+c=0(a≠0)一定有实数根D . 将△ABC绕A点按顺时针方向旋转60°得△ADE,则△ABC与△ADE不全等7. (2分) (2011七下·广东竞赛) 已知点A(3-p,2+p)先向x轴负方向平移2个单位,再向y轴负方向平移3个单位得点B(p,-p),则点B的具体坐标为()A .B .C .D .8. (2分) (2011七下·广东竞赛) 将点B(5,-1)向上平移2个单位得到点A(a+b, a-b)。
则()A . a=2, b=3B . a=3, b=2C . a=-3, b=-2D . a=- 2, b=-39. (2分)如图:二次函数y=ax2+bx+2的图象与x轴交于A、B两点,与y轴交于C点,若AC⊥BC,则a 的值为()A . ﹣B . ﹣C . ﹣1D . ﹣210. (2分)已知α是锐角,且点A(, a),B(sinα+cosα,b), C(-m2+2m-2,c)都在二次函数y=-x2+x+3的图象上,那么a、b、c的大小关系是()A . a<b<cB . a<c<C . b<c<aD . c<b<a二、填空题 (共8题;共8分)11. (1分)已知x=1是一元二次方程x2+ax+b=0的一个根,则代数式a2+b2+2ab的值是________12. (1分)(2018·遵义) 现有古代数学问题:“今有牛五羊二值金八两;牛二羊五值金六两,则一牛一羊值金________两.13. (1分)已知点P的坐标是(a+2,3a﹣6),且点P到两坐标轴的距离相等,则点P的坐标是________.14. (1分) (2020七下·新洲期中) 以方程组的解为坐标的点在第________象限.15. (1分)(2019·江岸模拟) 已知直线与抛物线交于A ,B两点,则 ________.16. (1分)已知点,现将点先向左平移个单位,之后又向下平移个单位,得到点,则 ________.17. (1分)(2019·资阳) 给出以下命题:①平分弦的直径垂直于这条弦;②已知点、、均在反比例函数的图象上,则;③若关于x的不等式组无解,则;④将点向左平移3个单位到点,再将绕原点逆时针旋转90°到点,则的坐标为.其中所有真命题的序号是________.18. (1分) (2016八上·海门期末) 若点P(1﹣m,2+m)关于x轴对称的点的坐标在第一象限,则m的取值范围是________.三、解答题 (共8题;共82分)19. (10分)关于x的一元二次方程(m﹣1)x2﹣x﹣2=0(1)若x=﹣1是方程的一个根,求m的值及另一个根.(2)当m为何值时方程有两个不同的实数根.20. (10分) (2017九上·诸城期末) 解方程、求值.(1)解方程:x2﹣4x﹣5=0(2)求值:sin30°+tan60°﹣cos45°+tan30°.21. (10分)(2017·海珠模拟) 抛物线y=ax2+c与x轴交于A、B两点(A在B的左边),与y轴交于点C,抛物线上有一动点P(1)若A(﹣2,0),C(0,﹣4)①求抛物线的解析式;②在①的情况下,若点P在第四象限运动,点D(0,﹣2),以BD、BP为邻边作平行四边形BDQP,求平行四边形BDQP面积的取值范围.(2)若点P在第一象限运动,且a<0,连接AP、BP分别交y轴于点E、F,则问是否与a,c 有关?若有关,用a,c表示该比值;若无关,求出该比值.22. (5分) (2016九上·大石桥期中) 如图,要设计一副宽20cm、长30cm的图案,其中有两横两竖的彩条,横、竖彩条的宽度比为2:3,如果要使彩条所占面积是图案面积的,应如何设计彩条的宽度?23. (10分) (2016九上·大石桥期中) 如图,一位篮球运动员跳起投篮,球沿抛物线y=﹣ x2+3.5运行,然后准确落入篮框内.已知篮框的中心离地面的距离为3.05米.(1)球在空中运行的最大高度为多少米?(2)如果该运动员跳投时,球出手离地面的高度为2.25米,请问他距离篮框中心的水平距离是多少?24. (15分) (2016九上·赣州期中) 某文具店购进一批纪念册,每本进价为20元,出于营销考虑,要求每本纪念册的售价不低于20元且不高于28元,在销售过程中发现该纪念册每周的销售量y(本)与每本纪念册的售价x(元)之间满足一次函数关系:当销售单价为22元时,销售量为36本;当销售单价为24元时,销售量为32本.(1)请直接写出y与x的函数关系式;(2)当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是多少元?(3)设该文具店每周销售这种纪念册所获得的利润为w元,将该纪念册销售单价定为多少元时,才能使文具店销售该纪念册所获利润最大?最大利润是多少?25. (7分) (2016九上·大石桥期中) 如图1,在四边形ABCD中,AB=AD,∠BAD=60°,∠ABC=∠ADC=90°,点E、F分別在线段BC、CD上,∠EAF=30°,连接EF.(1)如图2,将△ABE绕点A逆时针旋转60°后得到△A′B′E′(A′B′与AD重合),那么①∠E′AF度数________②线段BE、EF、FD之间的数量关系________(2)如图3,当点E、F分别在线段BC、CD的延长线上时,其他条件不变,请探究线段BE、EF、FD之间的数量关系,并说明理由.26. (15分) (2016九上·大石桥期中) 如图,抛物线y=x2﹣3x+ 与x轴相交于A、B两点,与y轴相交于点C,点D是直线BC下方抛物线上一点,过点D作y轴的平行线,与直线BC相交于点E(1)求A、B的坐标;(2)求直线BC的解析式;(3)当线段DE的长度最大时,求点D的坐标.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共8题;共8分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共8题;共82分)19-1、19-2、20-1、20-2、21-1、21-2、22-1、23-1、23-2、24-1、24-2、24-3、25-1、25-2、26-1、26-2、26-3、。
山东省临沂市九年级数学上学期期中统考试题 新人教版

山东省临沂市2016届九年级数学上学期期中统考试题(满分:120 时间:90分)一、选择题(每题3分,共30分,把正确选项涂在答题卡上)1、在下列四个图案中,既是轴对称图形,又是中心对称图形的是2、方程x²-2(3x-2)+(x+1)=0的一般形式是A.x²-5x+5=0B.x²+5x+5=0C.x²+5x-5=0D.x²+5=03、一元二次方程x²-2x-m=0,用配方法解该方程,配方后的方程为A.(x-1)²=m2+1B.(x-1)²=m-1C.(x-1)²=1-mD.(x-1)²=m+14、某经济开发区今年一月份工业产值达50亿元,第一季度总产值175亿元,问二、三月份平均每月增长率是多少?设平均每月增长率为百分之x,则A.50(1+x)²=175B.50+50(1+x)²=175C.50(1+x)+50(1+x)²=175D.50+50(1+x)+50(1+x)²=175把抛物线y=x²+bx+c的图象向右平移3个单位,再向下平移2个单位,所得图象的解析式是y=x²-3x+5,则有A.b=3,c=7 B.b=-9,c=-15 C.b=3,c=3 D.b=-9,c=216、已知函数2y ax bx c=++的图象如图所示,那么关于x的方程220ax bx c+++=的根的情况是A.无实数根 B.有两个相等实数根C.有两个异号实数 D.有两个同号不等实数根7、如图,A、B、C、D是⊙O上的三点,∠BAC=30°,则∠BOC的大小是A.60°B.45°C.30°D.15°8、如图,Oe内切于ABC△,切点分别为 D、E、F.已知50B∠=°,60C∠=°,连结OE OF DE DF,,,,那么EDF∠等于A.40°B.55°C.65°D.70°9、已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①a+b+c<0;②a-b+c<0;③b+2a<0;④abc>0,其中所有正确结论的序号是A.③④ B.②③ C.①④ D.①②③10、在△ABC 中,BC =4,以点A为圆心、2为半径的⊙A与BC相切于点D,交AB于E,交 AC于F,6题xy3-7题DOAFE8题点P是⊙A上的一点,且∠EPF=40°,则图中阴影部分的面积是A.4-94π B.4-98π C.8-94π D.8-98π二、填空题(每小题3分,共24分)11、关于x的方程(a+1)x122--aa+x-5=0是一元二次方程,则a=_________.12、如图,若将△ABC绕点O顺时针旋转180°后得到△A'B'C',则A点的对应点A'点的坐标是___.13、已知x2+4x-2=0,那么3x2+12x+2000的值为 ____________方程2630x x++=的两实数根,则2112x xx x+的值为14、已知1x,2x是______15、如图,一宽为2cm的刻度尺在圆上移动,当刻度尺的一边与圆相切时,另一边与圆两个交点处的读数恰好为“2”和“8”(单位:cm),则该圆的半径为_____________cm.16、已知,如图:AB为⊙O的直径,AB=AC,BC交⊙O于点D,AC交⊙O于点E,∠BAC=450。
山东省临沂市兰 九年级(上)期中数学试卷-(含答案)

九年级(上)期中数学试卷一、选择题(本大题共10小题,共30.0分)1.下列图形中,是中心对称图形的是()A. B. C. D.2.用配方法解方程x2-2x-5=0时,原方程应变形为()A. B. C. D.3.一元二次方程x2-2x-1=0的根的情况为()A. 有两个相等的实数根B. 有两个不相等的实数根C. 只有一个实数根D. 没有实数根4.⊙O的半径为5,圆心O的坐标为(0,0),点P的坐标为(4,2),则点P与⊙O的位置关系是()A. 点P在⊙内B. 点P的⊙上C. 点P在⊙外D. 点P在⊙上或⊙外5.我市计划用未来两年的时间,将城镇居民的住房面积由现在的人均约10m2提高到12.1m2.若每年的年增长率相同,则年增长率为()A. B. C. D.6.将抛物线y=2(x-7)2+3平移,使平移后的函数图象顶点落在y轴上,则下列平移正确的是()A. 向上平移3个单位B. 向下平移3个单位C. 向左平移7个单位D. 向右平移7个单位7.已知点A(1,2),O是坐标原点,将线段OA绕点O逆时针旋转90°,点A旋转后的对应点是A1,则点A1的坐标是()A. B. C. D.8.2则该函数图象的对称轴是()A. 直线B. 直线C. 直线D. 直线9.如图,点A、B、C在⊙O上,AO∥BC,∠OAC=20°,则∠AOB的度数是()A.B.C.D.10.如图是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点坐标为(1,5)且与x轴的一个交点在(3,0)和(4,0)之间,则下列结论:①a-b+c>0;②2a+b=0;③b2-4ac>0;④一元二次方程ax2+bx+c=5有两个不相等的实数根.其中正确结论的个数是()A. 1B. 2C. 3D. 4二、填空题(本大题共6小题,共18.0分)11.抛物线y=-x2+2x-3顶点坐标是______;对称轴是______.12.蔬菜基地圆弧形蔬菜大棚的剖面如图所示,已知AB=16m,半径OA=10m,则高度CD为______m.13.如图所示,AB,AC与⊙O相切于点B,C,∠A=50°,点P是圆上异于B,C的一动点,则∠BPC的度数是______.14.如图,要拧开一个边长为a=12mm的六角形螺帽,扳手张开的开口b至少要______mm.15.如图是一个横断面为抛物线形状的拱桥,当水面宽4米时,拱顶(拱桥洞的最高点)离水面2米,水面下降1米时,水面的宽度为______米.16.如图,一段抛物线y=-x(x-3)(0≤x≤3),记为C1,它与x轴交于点O,A1;将C1绕A1旋转180°得到C2,交x轴于A2;将C2绕A2旋转180°得到C3,交x轴于A3;…如此进行下去,直至得C13.若点P(37,m)在第13段抛物线C13上,则m=______.三、计算题(本大题共1小题,共11.0分)17.如图,在△ABC中,∠C=90°,点O在AC上,以OA为半径的⊙O交AB于点D,BD的垂直平分线交BC于点E,交BD于点F,连接DE.(1)判断直线DE与⊙O的位置关系,并说明理由;(2)若AC=6,BC=8,OA=2,求线段DE的长.四、解答题(本大题共4小题,共41.0分)18.用适当的方法解下列方程:(1)x(x-2)=x-2;(2)2x2+1=3x.19.如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(1,-2),B(3,-1),C(1,-1).(1)在图中画出△ABC绕原点O逆时针旋转90°后得到的△A1B1C1,并写出A的对应点A1的坐标;(2)求(1)中点A所走过的路线长.20.如图,某小区规划在一个长30m、宽20m的长方形ABCD上修建三条同样宽的通道,使其中两条与AB平行,另一条与AD平行,其余部分种花草.要使每一块花草的面积都为78m2,那么通道的宽应设计成多少m?21.如图,在直角坐标系中,抛物线经过点A(0,4),B(1,0),C(5,0),其对称轴与x轴相交于点M.(1)求抛物线的解析式和对称轴;(2)在抛物线的对称轴上是否存在一点P,使△PAB的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由.答案和解析1.【答案】C【解析】解:A、不是中心对称图形,故本选项不符合题意;B、不是中心对称图形,故本选项不符合题意;C、是中心对称图形,故本选项符合题意;D、不是中心对称图形,故本选项不符合题意;故选:C.根据中心对称图形的定义逐个判断即可.本题考查了对中心对称图形的定义,能熟知中心对称图形的定义是解此题的关键.2.【答案】C【解析】解:由原方程移项,得x2-2x=5,方程的两边同时加上一次项系数-2的一半的平方1,得x2-2x+1=6∴(x-1)2=6.故选:C.配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.3.【答案】B【解析】解:根据题意△=(-2)2-4×(-1)=8>0,所以方程有两个不相等的实数根.故选:B.先计算判别式得到△=(-2)2-4×(-1)=8>0,然后根据判别式的意义判断方程根的情况.本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.4.【答案】A【解析】解:∵圆心O的坐标为(0,0),点P的坐标为(4,2),∴OP==<5,因而点P在⊙O内.故选:A.根据点到圆心的距离与圆的半径之间的关系:“点到圆心的距离为d,则当d=r 时,点在圆上;当d>r时,点在圆外;当d<r时,点在圆内”来求解.本题考查了对点与圆的位置关系的判断.设点到圆心的距离为d,则当d=r时,点在圆上;当d>r时,点在圆外;当d<r时,点在圆内.5.【答案】B【解析】解:设每年的增长率为x,根据题意得10(1+x)2=12.1,解得x=0.1或x=-(舍去).故选:B.如果设每年的增长率为x,则可以根据“住房面积由现在的人均约为10m2提高到12.1m2”作为相等关系得到方程10(1+x)2=12.1,解方程即可求解.本题考查数量平均变化率问题.原来的数量(价格)为a,平均每次增长或降低的百分率为x的话,经过第一次调整,就调整到a(1±x),再经过第二次调整就是a(1±x)(1±x)=a(1±x)2.增长用“+”,下降用“-”.6.【答案】C【解析】解:依题意可知,原抛物线顶点坐标为(7,3),平移后抛物线顶点坐标为(0,t)(t为常数),则原抛物线向左平移7个单位即可.故选:C.抛物线y=2(x-7)2+3的顶点坐标为(7,3),使平移后的函数图象顶点落在y轴上,所得的抛物线的顶点坐标为(0,t),根据顶点式可确定所得抛物线解析式.主要考查了函数图象的平移,抛物线与坐标轴的交点坐标的求法,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.会利用方程求抛物线与坐标轴的交点.7.【答案】A【解析】解:如图,根据旋转的性质可知,OB1=OB=1,A1B1=AB=2,可知点A1的坐标是(-2,1),故选:A.根据题意画出图形利用旋转的性质即可解答.本题考查了坐标与图形的变化--旋转,熟悉旋转的性质是解题的关键.8.【答案】B【解析】解:∵x=-3和-1时的函数值都是-3相等,∴二次函数的对称轴为直线x=-2.故选:B.根据二次函数的对称性确定出二次函数的对称轴,然后解答即可.本题考查了二次函数的性质,主要利用了二次函数的对称性,仔细观察表格数据确定出对称轴是解题的关键.9.【答案】C【解析】解:∵AO∥BC∴∠ACB=∠OAC=20°由圆周角定理,得:∠AOB=2∠ACB=2×20°=40°.故选:C.由AO∥BC,可得出内错角∠A和∠C相等;然后利用圆周角和圆心角的关系,可求出∠AOB的度数.本题主要考查了圆周角定理和平行线的性质.10.【答案】C【解析】解:由图象可知,x=-1时,y>0,∴a-b+c>0,故①正确.∵抛物线的对称轴x=1,∴-=1,∴-b=2a,∴2a+b=0.故②正确.∵抛物线与x轴有两个交点,∴△>0,∴b2-4ac>0,故③正确.∵抛物线的顶点坐标为(1,5),∴直线y=5与抛物线的只有一个交点,∴一元二次方程ax2+bx+c=5有相等的实数根,∴④错误.故选:C.①正确.根据x=-1时,y>0,即可判断.②正确.根据对称轴x=-=1,即可判断.③正确.根据抛物线与x轴有两个交点,可知△>0,即可判断.④错误.根据抛物线的顶点坐标为(1,5),直线y=5与抛物线的只有一个交点,推出一元二次方程ax2+bx+c=5有相等的实数根,由此即可判断.本题考查二次函数与x轴的交点、二次函数的图象与系数的关系等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.11.【答案】(1,-2);x=1【解析】解:由题意可知:y=-(x-1)2-2顶点坐标为:(1,-2),对称轴为x=1,故答案为:(1,-2),x=1将抛物线配方后即可求出顶点坐标,以及对称轴.本题考查二次函数的性质,解题的关键是将一般是配方为顶点式,本题属于基础题型.12.【答案】4【解析】解:∵CD垂直平分AB,∴AD=8.∴OD==6m,∴CD=OC-OD=10-6=4(m).故答案为:4.根据垂径定理和勾股定理求解.此题考查了垂径定理的应用与勾股定理.此题比较简单,注意数形结合思想的应用.13.【答案】65°或115°【解析】解:分别连接O、C;O、B;B、P1;B、P2;C、P1;C、P2各点(1)当∠BPC为锐角,也就是∠BP1C时:∵AB,AC与⊙O相切于点B,C两点∴OC⊥AC,OB⊥AB,∵∠A=50°,∴在△ABC中,∠COB=130°,∵在⊙O中,∠BP1C为圆周角,∴∠BP1C=65°,(2)如果当∠BPC为钝角,也就是∠BP2C时∵四边形BP1CP2为⊙O的内接四边形,∵∠BP1C=65°,∴∠BP2C=115°此题分为两种情况,如图p点的位置有两个,所以∠BPC可能是锐角,也有可能是钝角,分别连接O、C;O、B;B、P1;B、P2;C、P1;C、P2各点(1)当∠BPC为锐角,也就是∠BP1C时,根据AB,AC与⊙O相切,结合已知条件,在△ABC中,即可得出圆心角∠COB的度数,根据同弧所对的圆周角为圆心角的一半,即可得出∠BP1C的度数(2)如果当∠BPC为钝角,也就是∠BP2C 时,根据⊙O的内接四边形的性质,即可得出∠BP2C的度数.本题考查圆的切线性质,在解题过程中还要注意对圆的内接四边形、圆周角、圆心角的有关性质的综合应用14.【答案】12【解析】解:如图所示:设正多边形的中心是O,其一边是AB,∴∠AOB=∠BOC=60°,∴OA=OB=AB=OC=BC,∴四边形ABCO是菱形,∵AB=12mm,∠AOB=60°,∴cos∠BAC=,∴AM=12×=6,∵OA=OC,且∠AOB=∠BOC,∴AM=MC=AC,∴AC=2AM=12mm.故答案为:12.根据题意,即是求该正六边形的边心距的2倍.构造一个由半径、半边、边心距组成的直角三角形,且其半边所对的角是30度,再根据锐角三角函数的知识求解.本题考查了正多边形和圆的知识、三角函数;构造一个由半径、半边、边心距组成的直角三角形,熟练运用锐角三角函数进行计算是解决问题的关键.15.【答案】【解析】解:建立平面直角坐标系,设横轴x通过AB,纵轴y通过AB中点O且通过C 点,则通过画图可得知O为原点,抛物线以y轴为对称轴,且经过A,B两点,OA和OB可求出为AB的一半2米,抛物线顶点C坐标为(0,2),通过以上条件可设顶点式y=ax2+2,其中a可通过代入A点坐标(-2,0),到抛物线解析式得出:a=-0.5,所以抛物线解析式为y=-0.5x2+2,当水面下降1米,通过抛物线在图上的观察可转化为:当y=-1时,对应的抛物线上两点之间的距离,也就是直线y=-1与抛物线相交的两点之间的距离,可以通过把y=-1代入抛物线解析式得出:-1=-0.5x2+2,解得:x=,所以水面宽度增加到米,故答案为:.根据已知得出直角坐标系,进而求出二次函数解析式,再通过把y=-1代入抛物线解析式得出水面宽度,即可得出答案.此题主要考查了二次函数的应用,根据已知建立坐标系从而得出二次函数解析式是解决问题的关键.16.【答案】2【解析】解:∵一段抛物线:y=-x(x-3)(0≤x≤3),∴图象与x轴交点坐标为:(0,0),(3,0),∵将C1绕点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3,交x轴于点A3;…如此进行下去,直至得C13.∴C13的解析式与x轴的交点坐标为(36,0),(39,0),且图象在x轴上方,∴C13的解析式为:y13=-(x-36)(x-39),当x=37时,y=-(37-36)×(37-39)=2.故答案为:2.根据图象的旋转变化规律以及二次函数的平移规律得出平移后解析式,进而求出m的值.此题主要考查了二次函数的平移规律,根据已知得出二次函数旋转后解析式是解题关键.17.【答案】解:(1)直线DE与⊙O相切,理由如下:连接OD,∵OD=OA,∴∠A=∠ODA,∵EF是BD的垂直平分线,∴EB=ED,∴∠B=∠EDB,∵∠C=90°,∴∠A+∠B=90°,∴∠ODA+∠EDB=90°,∴∠ODE=180°-90°=90°,∴直线DE与⊙O相切;(2)连接OE,设DE=x,则EB=ED=x,CE=8-x,∵∠C=∠ODE=90°,∴OC2+CE2=OE2=OD2+DE2,∴42+(8-x)2=22+x2,解得:x=4.75,则DE=4.75.【解析】(1)直线DE与圆O相切,理由如下:连接OD,由OD=OA,利用等边对等角得到一对角相等,等量代换得到∠ODE为直角,即可得证;(2)连接OE,设DE=x,则EB=ED=x,CE=8-x,在直角三角形OCE中,利用勾股定理列出关于x的方程,求出方程的得到x的值,即可确定出DE的长.此题考查了直线与圆的位置关系,以及线段垂直平分线定理,熟练掌握直线与圆相切的性质是解本题的关键.18.【答案】解:(1)∵x(x-2)-(x-2)=0,∴(x-2)(x-1)=0,则x-2=0或x-1=0,解得:x=2或x=1;(2)∵2x2-3x+1=0,∴(x-1)(2x-1)=0,则x-1=0或2x-1=0,解得:x=1或x=0.5.【解析】(1)因式分解法求解可得;(2)因式分解法求解可得.本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.19.【答案】解:(1)如图,△A1B1C1为所作,A的对应点A1的坐标为(2,1);(2)OA==,所以点A所走过的路线长==π.【解析】(1)利用网格特点和旋转的性质画出A、B、C的对应点A1、B1、C1,从而得到△A1B1C1,然后写出A的对应点A1的坐标;(2)由于点A所走过的路线是以点O为圆心,OA为半径,圆心角为90°所对的弧,然后根据弧长公式求解.本题考查了作图-旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.20.【答案】解:设道路的宽为xm,由题意得:(30-2x)(20-x)=6×78,整理得:(x-2)(x-33)=0,解得x=2或x=33舍去),答:通道应设计成2米.【解析】此题主要考查了一元二次方程的应用,掌握长方形的面积公式,求得6块草地平移为一个长方形的长和宽是解决本题的关键.设道路的宽为xm,将6块草地平移为一个长方形,长为(30-2x)m,宽为(20-x)m.根据长方形面积公式即可列方程(30-2x)(20-x)=6×78.21.【答案】解:(1)∵抛物线经过点B(1,0),C(5,0),∴可以假设抛物解析式为y=a(x-1)(x-5),把A(0,4)代入得4=5a,∴a=,∴抛物线解析式为y=(x-1)(x-5)=x2-x+4.由图象可知抛物线对称轴x=3.(2)连接AC与对称轴的交点即为点P,此时△PAB周长最小.设直线AC的解析式为y=kx+b,则,解得,∴直线AC解析式为y=-x+4,和对称轴的交点P为(3,).【解析】(1)因为抛物线经过点B(1,0),C(5,0),可以假设抛物解析式为y=a(x-1)(x-5),把A(0,4)代入即可解决问题,对称轴根据图象即可解决.(2)连接AC与对称轴的交点即为点P,此时△PAB周长最小.求出直线AC的解析式即可解决问题.本题考查二次函数综合题、两点之间线段最短、一次函数、待定系数法等知识,解题的关键是灵活应用这些知识解决问题,学会利用对称解决最短问题,属于中考常考题型.。
山东省临沂市 九年级(上)期中数学试卷

九年级(上)期中数学试卷一、选择题(本大题共14小题,共42.0分)1.下列图形中,既是轴对称图形,又是中心对称图形的是()A. B.C. D.2.一元二次方程2x2-3x-1=0的二次项系数是2.则一次项系数是()A. 3B. 1C. −3D. −13.设a、b是方程x2+x-2018=0的两个实数根,则a2+2a+b的值是()A. 2016B. 2017C. 2018D. 20194.抛物线y=-3x2向左平移2个单位,再向上平移5个单位,所得抛物线解析式为()A. y=−3(x−2)2+5B. y=−3(x−2)2−5C. y=−3(x+2)2−5D. y=−3(x+2)2+55.二次函数y=x2-6x-4的顶点坐标为()A. (3,5)B. (3,−13)C. (3,−5)D. (3,13)6.某机械厂七月份生产零件50万个,九月份生产零件72万个.设该厂八九月份平均每月的增长率为x,那么x满足的方程是()A. 500(1+x)2=72B. 50(1+x)=72C. 50(1+x)2=72D. 50(1+2x)=727.平面内有一点P到圆上最远的距离是6,最近的距离是2,则圆的半径是()A. 2B. 4C. 2 或4D. 88.若关于x的方程kx2-6x+9=0有实数根,则k的取值范围是()A. k<1B. k≤1C. k<1且k≠0D. k≤1且k≠09.2则该函数图象的对称轴是()A. 直线x=−3B. 直线x=−2C. 直线x=−1D. 直线x=010.如图,P是等边三角形ABC内的一点,且PA=3,PB=4,PC=5,将△ABP绕点B顺时针旋转60°到△CBQ位置.连接PQ,则以下结论错误的是()A. ∠QPB=60∘B. ∠PQC=90∘C. ∠APB=150∘D. ∠APC=135∘11.如图A,B,C是⊙O上的三个点,若∠AOC=100°,则∠ABC等于()A. 50∘B. 80∘C. 100∘D. 130∘12.已知抛物线y=x2+bx+c的部分图象如图所示,若y<0,则x的取值范围是()A. −1<x<4B. −1<x<3C. x<−1或x>4D. x<−1或x>313.如图,在平面直角坐标系中,⊙M与x轴相切于点A(8,0),与y轴分别交于点B(0,4)和点C(0,16),则圆心M到坐标原点O的距离是()A. 10B. 82C. 413D. 24114.已知二次函数y=ax2+bx+c(a≠0)图象如图所示,下列结论:①abc<0;②2a-b<0;③b2>(a+c)2;④点(-3,y1),(1,y2)都在抛物线上,则有y1>y2.其中正确的结论有()A. 4个B. 3个C. 2个D. 1个二、填空题(本大题共5小题,共15.0分)15.一元二次方程x2=6x的根是______.16.在直角坐标系中,点M(5,7)关于原点O对称的点N的坐标是(x,y),则x+y=______.17.如图,△ABC中,若AC=4,BC=3,AB=5,则△ABC的内切圆半径R=______.18.点P1(-1,y1),P2(3,y2),P3(5,y3)均在二次函数y=-x2+2x+c的图象上,则y1,y2,y3的大小关系是______.19.如图,已知⊙P的半径为2,圆心P在抛物线y=12x2-1上运动,当⊙P与x轴相切时,圆心P的坐标为______.三、解答题(本大题共7小题,共63.0分)20.用适当的方法解下列方程(1)2x2-4x-5=0;(2)x(5x+4)=5x+421.如图,在平面直角坐标系中,△ABC的三个顶点坐标都在格点上,且△A1B1C1与△ABC关于原点O成中心对称,C点坐标为(-2,1).(1)请直接写出A1的坐标______;并画出△A1B1C1.(2)P(a,b)是△ABC的AC边上一点,将△ABC平移后点P的对称点P'(a+2,b-6),请画出平移后的△A2B2C2.(3)若△A1B1C1和△A2B2C2关于某一点成中心对称,则对称中心的坐标为______.22.如图,已知二次函数y=ax2+2x+c图象经过点A(1,4)和点C(0,3).(1)求该二次函数的解析式;(2)结合函数图象,直接回答下列问题:①当-1<x<2时,求函数y的取值范围:______.②当y≥3时,求x的取值范围:______.23.如图,某中学准备用长为20m的篱笆围成一个长方形生物园ABCD饲养小兔,生物园的一面靠墙(围墙MN最长可利用15m)试设计一种围法,使生物园的面积为32m2.24.如图,在Rt△ABC中,∠B=90°,∠A的平分线交BC于D,E为AB上一点,DE=DC,以D为圆心,以DB的长为半径画圆.求证:(1)AC是⊙D的切线;(2)AB+EB=AC.25.为了落实国务院副总理李克强同志到恩施考察时的指示精神,最近,州委州政府又出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农副产品,已知这种产品的成本价为20元/千克.市场调查发现,该产品每天的销售量w(千克)与销售价x(元/千克)有如下关系:w=-2x+80.设这种产品每天的销售利润为y(元).(1)求y与x之间的函数关系式;(2)当销售价定为多少元时,每天的销售利润最大?最大利润是多少?(3)如果物价部门规定这种产品的销售价不得高于28元/千克,该农户想要每天获得150元的销售利润,销售价应定为多少元?26.如图,已知抛物线y=-x2+bx+c与一直线相交于A(-1,0)、C(2,3)两点,与y轴交于点N,其顶点为D.(1)求抛物线及直线AC的函数关系式;(2)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值及此时点P的坐标;(3)设点M(3,n),求使MN+MD取最小值时n的值.答案和解析1.【答案】C【解析】解:A、是轴对称图形,不是中心对称图形,故A不符合题意;B、既不是轴对称图形,不是中心对称图形,故B不符合题意;C、既是轴对称图形,又是中心对称图形,故C符合题意;D、不是轴对称图形,是中心对称图形,故D不符合题意;故选:C.根据轴对称图形与中心对称图形的概念求解.本题考查了中心对称图形与轴对称图形,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.【答案】C【解析】解:一元二次方程2x2-3x-1=0的二次项系数是2.则一次项系数是-3,故选:C.根据一元二次方程的一般形式解答.本题考查的是一元二次方程的一般形式,一般地,任何一个关于x的一元二次方程经过整理,都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫一元二次方程的一般形式,a叫做二次项系数;b叫做一次项系数;c叫做常数项.3.【答案】B【解析】解:∵a,b是方程x2+x-2018=0的两个实数根,∴a2+a=2018,a+b=-1,∴a2+2a+b=(a2+a)+(a+b)=2018-1=2017.故选:B.根据一元二次方程的解及根与系数的关系可得出a2+a=2018、a+b=-1,将其代入a2+2a+b=(a2+a)+(a+b)中即可求出结论.本题考查了根与系数的关系以及一元二次方程的解,根据一元二次方程的解及根与系数的关系找出a2+a=2018、a+b=-1是解题的关键.4.【答案】D【解析】解:抛物线y=-3x2的顶点坐标为(0,0),点(0,0)向左平移2个单位,再向上平移5个单位所得对应点的坐标为(-2,5),所以平移后的抛物线解析式为y=-3(x+2)2+5.故选:D.先确定抛物线y=-3x2的顶点坐标为(0,0),再利用点平移的规律得到点(0,0)平移所得对应点的坐标为(-2,5),然后根据顶点式写出平移后的抛物线解析式.本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.5.【答案】B【解析】解:∵y=x2-6x-4=(x-3)2-13,∴该函数的顶点坐标为(3,-13),故选:B.将题目中的函数解析式化为顶点式,即可求得该函数的顶点坐标,从而可以解答本题.本题考查二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答.6.【答案】C【解析】解:设该厂八九月份平均每月的增长率为x,根据题意得:50(1+x)2=72.故选:C.设该厂八九月份平均每月的增长率为x,根据该厂7、9月份生产零件的数量,即可得出关于x的一元二次方程,此题得解.本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.7.【答案】C【解析】解:∵点P到⊙O的最近距离为2,最远距离为6,则:当点在圆外时,则⊙O的直径为6-2=4,半径是2;当点在圆内时,则⊙O的直径是6+2=8,半径为4,故选:C.分两种情况:点在圆外,直径等于两个距离的差;点在圆内,直径等于两个距离的和.本题考查了点与圆的位置关系,注意此题的两种情况.从过该点和圆心的直线中,即可找到该点到圆的最小距离和最大距离.8.【答案】B【解析】解:(1)当k=0时,-6x+9=0,解得x=;(2)当k≠0时,此方程是一元二次方程,∵关于x的方程kx2-6x+9=0有实数根,∴△=(-6)2-4k×9≥0,解得k≤1,由(1)、(2)得,k的取值范围是k≤1.故选:B.由于k的取值范围不能确定,故应分k=0和k≠0两种情况进行解答.本题考查的是根的判别式,解答此题时要注意分k=0和k≠0两种情况进行讨论.9.【答案】B【解析】解:∵x=-3和-1时的函数值都是-3相等,∴二次函数的对称轴为直线x=-2.故选:B.根据二次函数的对称性确定出二次函数的对称轴,然后解答即可.本题考查了二次函数的性质,主要利用了二次函数的对称性,仔细观察表格数据确定出对称轴是解题的关键.10.【答案】D【解析】解:∵△ABC是等边三角形,∴∠ABC=60°,∵将△ABP绕点B顺时针旋转60°到△CBQ位置,∴△BQC≌△BPA,∴∠BPA=∠BQC,BP=BQ=4,QC=PA=3,∠ABP=∠QBC,∴∠PBQ=∠PBC+∠CBQ=∠PBC+∠ABP=∠ABC=60°,∴△BPQ是等边三角形,∴PQ=BP=4,∵PQ2+QC2=42+32=25,PC2=52=25,∴PQ2+QC2=PC2,∴∠PQC=90°,即△PQC是直角三角形,故B正确,∵△BPQ是等边三角形,∴∠QPB=∠BPQ=∠BQP=60°,故A正确,∴∠BPA=∠BQC=60°+90°=150°,故C正确,∴∠APC=360°-150°-60°-∠QPC=150°-∠QPC,∵∠PQC=90°,PQ≠QC,∴∠QPC≠45°,即∠APC≠135°,故选项D错误.故选:D.根据等边三角形性质以及勾股定理的逆定理,即可判断B;依据△BPQ是等边三角形,即可得到∠QPB=∠BPQ=∠BQP=60°,进而得出∠BPA=∠BQC=60°+90°=150°,求出∠APC+∠QPC=150°和PQ≠QC即可判断D 选项.本题考查了等边三角形的性质和判定,勾股定理的逆定理的应用,主要考查学生综合运用定理进行推理的能力.11.【答案】D【解析】解:如图,在优弧上取点D,连接AD,CD,∵∠AOC=100°,∴∠ADC=∠AOC=50°,∴∠ABC=180°-∠ADC=130°.故选:D.首先在上取点D,连接AD,CD,由圆周角定理即可求得∠D的度数,然后由圆的内接四边形的性质,求得∠ABC的度数.本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.12.【答案】B【解析】解:由图象知,抛物线与x轴交于(-1,0),对称轴为x=1,∴抛物线与x轴的另一交点坐标为(3,0),∵y<0时,函数的图象位于x轴的下方,且当-1<x<3时函数图象位于x轴的下方,∴当-1<x<3时,y<0.故选:B.根据抛物线与x轴的交点坐标及对称轴求出它与x轴的另一交点坐标,求当y <0,x的取值范围就是求函数图象位于x轴的下方的图象相对应的自变量x的取值范围.本题考查了二次函数的图象的性质及学生的识图能力,是一道不错的考查二次函数图象的题目.13.【答案】D【解析】【分析】本题考查切线的性质、坐标与图形的性质、垂径定理、勾股定理等知识,解题的关键是正确添加辅助线,构造直角三角形.如图连接BM、OM,AM,作MH⊥BC于H,先证明四边形OAMH是矩形,根据垂径定理求出HB,在RT△AOM中求出OM即可.【解答】解:如图连接BM、OM,AM,作MH⊥BC于H.∵⊙M与x轴相切于点A(8,0),∴AM⊥OA,OA=8,∴∠OAM=∠MHO=∠HOA=90°,∴四边形OAMH是矩形,∴AM=OH,∵MH⊥BC,∴HC=HB=6,∴OH=AM=10,在RT△AOM中,OM===2.故选D.14.【答案】B【解析】解:∵抛物线开口向上,∴a>0,∵-<0,∴b>0,∵抛物线交y轴于负半轴,∴c<0,∴abc<0,故①正确,∵->-1,a>0,∴b<2a,∴2a-b>0,故②错误,∵x=1时,y>0,∴a+b+c>0,∴a+c>-b,∵x=-1时,y<0,∴a-b+c<0,∴(a+c)2-b2=(a+b+c)(a-b+c)<0,∴b2>(a+c)2,故③正确,∵点(-3,y1),(1,y2)都在抛物线上,观察图象可知y1>y2,故④正确.故选:B.观察图象判断出a、b、c的符号,即可得出结论①正确,利用对称轴公式x>-1,可得结论②错误;利用平方差公式,可得结论③正确,利用图象法可以判断出④正确;本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置.当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点位置:抛物线与y轴交于(0,c).抛物线与x轴交点个数由△决定:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.15.【答案】x1=0,x2=6【解析】解:x2=6x则x(x-6)=0,解得:x1=0,x2=6,故答案为:x1=0,x2=6.直接利用提取公因式法分解因式进而得出答案.此题主要考查了因式分解法解方程,正确分解因式是解题关键.16.【答案】-12【解析】解:点M(5,7)关于原点O对称的点N的坐标是(x=-5,-7),∴x=-5,y=-7,则x+y=-12,故答案为:-12.根据关于原点对称的点的坐标特点求出x、y,计算即可.本题考查的是关于原点对称的点的坐标特点,两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点O的对称点是P′(-x,-y).17.【答案】1【解析】解:∵AC=4,BC=3,AB=5,∴AC2+BC2=AB2,∴△ABC为直角三角形,∠ACB=90°,∴△ABC的内切圆半径R===1.故答案为1.先利用勾股定理的逆定理得到△ABC为直角三角形,∠ACB=90°,然后利用△ABC的内切圆半径R=进行计算.本题考查了三角形内切圆与内心:与三角形各边都相切的圆叫三角形的内切圆,三角形的内切圆的圆心叫做三角形的内心.也考查了勾股定理的逆定理.18.【答案】y1=y2>y3【解析】解:∵y=-x2+2x+c,∴对称轴为x=1,P2(3,y2),P3(5,y3)在对称轴的右侧,y随x的增大而减小,∵3<5,∴y2>y3,根据二次函数图象的对称性可知,P1(-1,y1)与(3,y1)关于对称轴对称,故y1=y2>y3,故答案为y1=y2>y3.根据函数解析式的特点,其对称轴为x=1,图象开口向下,在对称轴的右侧,y 随x的增大而减小,据二次函数图象的对称性可知,P1(-1,y1)与(3,y1)关于对称轴对称,可判断y1=y2>y3.本题考查了函数图象上的点的坐标与函数解析式的关系,同时考查了函数的对称性及增减性.19.【答案】(6,2)或(-6,2)【解析】解:依题意,可设P(x,2)或P(x,-2).①当P的坐标是(x,2)时,将其代入y=x2-1,得2=x2-1,解得x=±,此时P(,2)或(-,2);②当P的坐标是(x,-2)时,将其代入y=x2-1,得-2=x2-1,即-1=x2无解.综上所述,符合条件的点P的坐标是(,2)或(-,2);故答案是:(,2)或(-,2).当⊙P与x轴相切时,点P的纵坐标是2或-2,把点P的纵坐标代入函数解析式,即可求得相应的横坐标.本题考查了直线与圆的位置关系,二次函数图象上点的坐标特征.解题时,为了防止漏解或错解,一定要分类讨论.20.【答案】解:(1)2x2-4x-5=0,a=2,b=-4,c=-5,∵△=b2-4ac=16+40=56>0∴方程有两个不相等的实数根,x=−b±b2−4ac2a=2±142,∴x1=2+142,x2=2−142;(2)x(5x+4)=5x+4,x(5x+4)-(5x+4)=0,(5x+4)(x-1)=0,5x+4=0,x-1=0,x1=−45,x2=1.【解析】(1)先求出b2-4ac的值,再代入公式求出即可;(2)移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.本题考查了解一元二次方程,能选择适当的方法解一元二次方程是解此题的关键,注意:解一元一次方程的方法有:直接开平方法,公式法,配方法,因式分解法等.21.【答案】(3,-4)(1,-3)【解析】解:(1)如图所示:△A1B1C1,即为所求;A1的坐标为(3,-4),故答案为:(3,-4).(2)如图所示:△A2B2C2,即为所求;(3)△A1B1C1和△A2B2C2关于某一点成中心对称,则对称中心的坐标为:(1,-3).故答案为:(1,-3).(1)直接利用旋转的性质得出对应点位置位置,进而得出答案;(2)直接利用平移的性质得出对应点位置进而得出答案;(3)连接各对应点,进而得出对称中心的坐标.此题主要考查了旋转变换以及平移变换,正确得出对应点位置是解题关键.22.【答案】0<9≤4 0≤x≤2【解析】解:(1)将点A和点C的坐标代入函数解析式,得,解得,二次函数的解析式为y=-x2+2x+3;(2)由图象知,①当-1<x<2时,求函数y的取值范围:0<y≤4.②当y≥3时,求x的取值范围:0≤x≤2.故答案为:0<y≤4,0≤x≤2.(1)根据待定系数法,可得函数解析式;(2)根据函数图象即可得到结论.此题考查了待定系数法求二次函数解析式的知识及二次函数的顶点坐标的知识,属于基础题,解答本题的关键是待定系数法的运用.23.【答案】解:设BC的长为x米,则AB的长为20−x2米,根据题意得:x×20−x2=32解得:x1=4,x2=16∵x≤15∴x=4答:围成BC为4米,AB为8米的长方形.【解析】设BC的长为x米,则AB的长为米,根据等量关系列出方程求解即可.本题考查了一元二次方程的应用,根据等量关系列出方程是本题的关键.24.【答案】证明:(1)过点D作DF⊥AC于F;(1分)∵AB为⊙D的切线,AD平分∠BAC,∴BD=DF,(3分)∴AC为⊙D的切线.(4分)(2)∵AC为⊙D的切线,∴∠DFC=∠B=90°,在Rt△BDE和Rt△FCD中;∵BD=DF,DE=DC,∴Rt△BDE≌Rt△FCD(HL),(6分)∴EB=FC.(8分)∵AB=AF,∴AB+EB=AF+FC,即AB+EB=AC.(10分)【解析】(1)过点D作DF⊥AC于F,求出BD=DF等于半径,得出AC是⊙D的切线.(2)先证明△BDE≌△FCD(HL),根据全等三角形对应边相等及切线的性质的AB=AF,得出AB+EB=AC.本题考查的是切线的判定:经过半径的外端且垂直于这条半径的直线是圆的切线;及全等三角形的判断,全等三角形的对应边相等.25.【答案】解:(1)y=(x-20)w=(x-20)(-2x+80)=-2x2+120x-1600,∴y与x的函数关系式为:y=-2x2+120x-1600;(3分)(2)y=-2x2+120x-1600=-2(x-30)2+200,∴当x=30时,y有最大值200,∴当销售价定为30元/千克时,每天可获最大销售利润200元;(6分)(3)当y=150时,可得方程:-2(x-30)2+200=150,解这个方程,得x1=25,x2=35,(8分)根据题意,x2=35不合题意,应舍去,∴当销售价定为25元/千克时,该农户每天可获得销售利润150元.(10分)【解析】依据“利润=售价-进价”可以求得y与x之间的函数关系式,然后利用函数的增减性确定“最大利润”.本题是函数思想的具体运用,构建二次函数关系式,利用二次函数的最大值确定销售的最大利润.26.【答案】解:(1)∵将点A和点C的坐标代入抛物线的解析式得:−1−b+c=0−4+2b+c=3,解得:b=2,c=3.∴抛物线的解析式为y═-x2+2x+3.设直线AC的解析式为y=kx+b.∵将点A和点C的坐标代入得−k+b=02k+b=3,解得k=1,b=1.∴直线AC的解析式为y=x+1.(2)如图,设点P(m,-m2+2m+3),∴Q(m,m+1),∴PQ=(-m2+2m+3)-(m+1)=-m2+m+2=-(m-12)2+94,∴S△APC=12PQ×|x C-x A|=12[-(m-12)2+94]×3=-32(m-12)2+278,∴当m=12时,S△APC最大=278,y=-m2+2m+3=154,∴P(12,154);(3)如图1所示,过点N与直线x=3的对称点N′,连接DN′,交直线x=3与点M.∵当x=0时y═3,∴N(0,3).∵点N与点N′关于x=3对称,∴N′(6,3).∵y═-x2+2x+3=-(x-1)2+4,∴D(1,4).设DN的解析式为y=kx+b.将点N′与点D的坐标代入得:6k+b=3k+b=4,解得:k=-15,b=215.∴直线DN′的解析式为y=-15x+215.当x=3时,n=−35+215=185.【解析】(1)将点A和点C的坐标代入抛物线的解析式可求得b,c的值,从而得到抛物线的解析式,设直线AC的解析式为y=kx+b.将点A和点C的坐标代入可求得k、b的值,从而得到直线AC的解析式;(2)设点P的坐标,进而表示出PQ,进而得出S△APC=-(m-)2+,即可得出结论;(3)过点N与直线x=3的对称点N′,连接DN′,交直线x=3与点M.先求得点N的坐标,然后可得到点N′的坐标,接下来求得DN′的解析式,然后将x=3代入直线DN′的解析式可求得点M的纵坐标此题是二次函数综合题,主要考查的了待定系数法求一次函数、二次函数的解析式、轴对称路径最短、平行四边形的判定定理,明确点D、M、N′在一条直线上时,MN+DM有最小值是解答问题(3)的关键.第21页,共21页。
人教版九年级数学上册山东省临沂市届期中试卷【解析版】.docx

初中数学试卷鼎尚图文**整理制作2015-2016学年山东省临沂市九年级(上)期中数学试卷一、选择题:(每小题3分,本题满分共36分,)下列每小题中有四个备选答案,其中只有一个是符合题意的,把正确答案前字母序号填在下面表格相应的题号下.1.一元二次方程x(x﹣2)=2﹣x的根是( )A.﹣1 B.2 C.1和2 D.﹣1和22.下列图形中,中心对称图形有()A.4个B.3个C.2个D.1个3.关于x的方程x2+2kx﹣1=0的根的情况描述正确的是( )A.k为任何实数,方程都没有实数根B.k为任何实数,方程都有两个不相等的实数根C.k为任何实数,方程都有两个相等的实数根D.k取值不同实数,方程实数根的情况有三种可能4.关于x的方程ax2﹣(3a+1)x+2(a+1)=0有两个不相等的实根x1、x2,且有x1﹣x1x2+x2=1﹣a,则a的值是( )A.1 B.﹣1 C.1或﹣1 D.25.如图,将Rt△ABC(其中∠B=30°,∠C=90°)绕点A按顺时针方向旋转到△AB1C1的)位置,使得点C、A、B1在同一条直线上,那么旋转角等于(A.115°B.120°C.125°D.145°6.2011年向阳村农民人均收入为7200元,到2013年增长至8712元.这两年中,该村农民人均收入平均每年的增长率为( )A.10% B.15% C.20% D.25%7.抛物线y=ax2+bx+c与x轴的两个交点为(﹣1,0),(3,0),其形状与抛物线y=﹣2x2相同,则y=ax2+bx+c的函数关系式为( )A.y=﹣2x2﹣x+3 B.y=﹣2x2+4x+5 C.y=﹣2x2+4x+8 D.y=﹣2x2+4x+68.如图,线段AB是⊙O的直径,弦CD丄AB,∠CAB=20°,则∠AOD等于( )A.160°B.150°C.140°D.120°9.如图,△ABC的边AC与⊙O相交于C、D两点,且经过圆心O,边AB与⊙O相切,切点为B.已知∠A=30°,则∠C的大小是( )A.30°B.45°C.60°D.40°10.对于二次函数y=(x﹣1)2+2的图象,下列说法正确的是( )A.开口向下 B.对称轴是x=﹣1C.顶点坐标是(1,2)D.与x轴有两个交点11.二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)中的x与y的部分对应值如下表:X ﹣1 0 1 3y ﹣1 3 5 3下列结论:(1)ac<0;(2)当x>1时,y的值随x值的增大而减小.(3)3是方程ax2+(b﹣1)x+c=0的一个根;(4)当﹣1<x<3时,ax2+(b﹣1)x+c>0.其中正确的个数为( )A.4个B.3个C.2个D.1个12.如图,P为⊙O的直径BA延长线上的一点,PC与⊙O相切,切点为C,点D是⊙上一点,连接PD.已知PC=PD=BC.下列结论:(1)PD与⊙O相切;(2)四边形PCBD是菱形;(3)PO=AB;(4)∠PDB=120°.其中正确的个数为( )A.4个B.3个C.2个D.1个二、填空题:(每题4分,共24分)13.若关于x的一元二次方程x2﹣2x﹣k=0没有实数根,则k的取值范围是__________.14.已知一元二次方程x2﹣3x﹣3=0的两根为a与b,则的值是__________.15.如图,点A、B、P在⊙O上,∠APB=50°,若M是⊙O上的动点,则等腰△ABM顶角的度数为__________.16.如图所示,在△ABC中,∠B=40°,将△ABC绕点A逆时针旋转至△ADE处,使点B 落在BC延长线上的D点处,∠BDA=45°,则∠BDE=__________.17.如图所示,在平面直角坐标系xOy中,半径为2的⊙P的圆心P的坐标为(﹣3,0),将⊙P沿x轴正方向平移,使⊙P与y轴相切,则平移的距离为__________.18.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①b2>4ac;②abc>0;③2a﹣b=0;④8a+c<0;⑤9a+3b+c<0.其中结论正确的是__________.(填正确结论的序号)三、解答下列各题(共60分)19.解方程(1)x2﹣2x﹣1=0.(2)(x﹣1)2+2x(x﹣1)=0.20.如图,四边形ABCD是正方形,△ADF按顺时针方向旋转一定角度后得到△ABE,若AF=4.AB=7.(1)旋转中心为__________;旋转角度为__________;(2)求DE的长度;(3)指出BE与DF的关系如何?并说明理由.21.四边形ABCD是正方形,E、F分别是DC和CB的延长线上的点,且DE=BF,连接AE、AF、EF.(1)试判断△AEF的形状,并说明理由;(2)填空:△ABF可以由△ADE绕旋转中心__________ 点,按顺时针方向旋转__________度得到;(3)若BC=8,则四边形AECF的面积为__________.(直接写结果)22.如图,AD为△ABC外接圆的直径,AD⊥BC,垂足为点F,∠ABC的平分线交AD于点E,连接BD,CD.(1)求证:BD=CD;(2)请判断B,E,C三点是否在以D为圆心,以DB为半径的圆上?并说明理由.23.如图,AB是⊙O的直径,点F,C是⊙O上两点,且==,连接AC,AF,过点C作CD⊥AF交AF延长线于点D,垂足为D.(1)求证:CD是⊙O的切线;(2)若CD=2,求⊙O的半径.24.某花圃用花盆培育某种花苗,经过实验发现每盆的盈利与每盆的株数构成一定的关系.每盆植入3株时,平均单株盈利3元;以同样的栽培条件,若每盆增加1株,平均单株盈利就减少0.5元.要使每盆的盈利达到10元,每盆应该植多少株?25.如图,抛物线y=x2+bx+c经过点(1,﹣4)和(﹣2,5),请解答下列问题:(1)求抛物线的解析式;(2)若与x轴的两个交点为A,B,与y轴交于点C.在该抛物线上是否存在点D,使得△ABC 与△ABD全等?若存在,求出D点的坐标;若不存在,请说明理由注:抛物线y=ax2+bx+c的对称轴是x=﹣.2015-2016学年山东省临沂市九年级(上)期中数学试卷一、选择题:(每小题3分,本题满分共36分,)下列每小题中有四个备选答案,其中只有一个是符合题意的,把正确答案前字母序号填在下面表格相应的题号下.1.一元二次方程x(x﹣2)=2﹣x的根是( )A.﹣1 B.2 C.1和2 D.﹣1和2【考点】解一元二次方程-因式分解法.【专题】计算题.【分析】先移项得到x(x﹣2)+(x﹣2)=0,然后利用提公因式因式分解,最后转化为两个一元一次方程,解方程即可.【解答】解:x(x﹣2)+(x﹣2)=0,∴(x﹣2)(x+1)=0,∴x﹣2=0或x+1=0,∴x1=2,x2=﹣1.故选D.【点评】本题考查了运用因式分解法解一元二次方程的方法:利用因式分解把一个一元二次方程化为两个一元一次方程.2.下列图形中,中心对称图形有( )A.4个B.3个C.2个D.1个【考点】中心对称图形.【分析】根据中心对称图形的定义和各图的特点即可求解.【解答】解:第四个图只是轴对称图形,第1、第2和第3个是中心对称图形.中心对称图形有3个.故选:B.【点评】本题考查中心对称图形的概念:绕对称中心旋转180度后所得的图形与原图形完全重合.3.关于x的方程x2+2kx﹣1=0的根的情况描述正确的是( )A.k为任何实数,方程都没有实数根B.k为任何实数,方程都有两个不相等的实数根C.k为任何实数,方程都有两个相等的实数根D.k取值不同实数,方程实数根的情况有三种可能【考点】根的判别式.【分析】先计算判别式的值得到△=4k2+4,根据非负数的性质得△>0,然后根据判别式的意义进行判断.【解答】解:△=4k2﹣4×(﹣1)=4k2+4,∵4k2≥0,∴4k2+4>0∴方程有两个不相等的实数根.故选B.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.4.关于x的方程ax2﹣(3a+1)x+2(a+1)=0有两个不相等的实根x1、x2,且有x1﹣x1x2+x2=1﹣a,则a的值是( )A.1 B.﹣1 C.1或﹣1 D.2【考点】根与系数的关系;根的判别式.【专题】计算题;压轴题.【分析】根据根与系数的关系得出x1+x2=﹣,x1x2=,整理原式即可得出关于a的方程求出即可.【解答】解:依题意△>0,即(3a+1)2﹣8a(a+1)>0,即a2﹣2a+1>0,(a﹣1)2>0,a≠1,∵关于x的方程ax2﹣(3a+1)x+2(a+1)=0有两个不相等的实根x1、x2,且有x1﹣x1x2+x2=1﹣a,∴x1﹣x1x2+x2=1﹣a,∴x1+x2﹣x1x2=1﹣a,∴﹣=1﹣a,解得:a=±1,又a≠1,∴a=﹣1.故选:B.【点评】此题主要考查了根与系数的关系,由x1﹣x1x2+x2=1﹣a,得出x1+x2﹣x1x2=1﹣a是解决问题的关键.5.如图,将Rt△ABC(其中∠B=30°,∠C=90°)绕点A按顺时针方向旋转到△AB1C1的位置,使得点C、A、B1在同一条直线上,那么旋转角等于( )A.115°B.120°C.125°D.145°【考点】旋转的性质.【专题】计算题.【分析】先利用互余计算出∠BAC=60°,再根据旋转的性质得到∠BAB′等于旋转角,然后利用邻补角计算∠BAB′的度数即可.【解答】解:∵∠B=30°,∠C=90°,∴∠BAC=60°,∵Rt△ABC绕点A按顺时针方向旋转到△AB1C1的位置,使得点C、A、B1在同一条直线上,∴∠BAB′等于旋转角,且∠BAB′=180°﹣∠BAC=120°,∴旋转角等于120°.故选B.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.6.2011年向阳村农民人均收入为7200元,到2013年增长至8712元.这两年中,该村农民人均收入平均每年的增长率为( )A.10% B.15% C.20% D.25%【考点】一元二次方程的应用.【专题】增长率问题.【分析】设该村人均收入的年平均增长率为x,2011年的人均收入×(1+平均增长率)2=2013年人均收入,把相关数值代入求得年平均增长率.【解答】解:设该村人均收入的年平均增长率为x,由题意得:7200(1+x)2=8712,解得:x1=﹣2.1(不合题意舍去),x2=0.1=10%.答:该村人均收入的年平均增长率为10%.故选A.【点评】本题考查了一元二次方程的运用,应明确增长的基数,增长的次数,根据公式增长后的人均收入=增长前的人均收入×(1+增长率).7.抛物线y=ax2+bx+c与x轴的两个交点为(﹣1,0),(3,0),其形状与抛物线y=﹣2x2相同,则y=ax2+bx+c的函数关系式为( )A.y=﹣2x2﹣x+3 B.y=﹣2x2+4x+5 C.y=﹣2x2+4x+8 D.y=﹣2x2+4x+6【考点】待定系数法求二次函数解析式.【专题】压轴题.【分析】抛物线y=ax2+bx+c的形状与抛物线y=﹣2x2相同,a=﹣2.y=ax2+bx+c与x轴的两个交点为(﹣1,0),(3,0),利用交点式求表达式即可.【解答】解:根据题意a=﹣2,所以设y=﹣2(x﹣x1)(x﹣x2),求出解析式y=﹣2(x+1)(x﹣3),即是y=﹣2x2+4x+6.故选D.【点评】本题考查了抛物线的形状系数的关系,本题用交点式比较容易解.8.如图,线段AB是⊙O的直径,弦CD丄AB,∠CAB=20°,则∠AOD等于( )A.160°B.150°C.140°D.120°【考点】圆周角定理;垂径定理.【专题】压轴题.【分析】利用垂径定理得出=,进而求出∠BOD=40°,再利用邻补角的性质得出答案.【解答】解:∵线段AB是⊙O的直径,弦CD丄AB,∴=,∵∠CAB=20°,∴∠BOD=40°,∴∠AOD=140°.故选:C.【点评】此题主要考查了圆周角定理以及垂径定理等知识,得出∠BOD的度数是解题关键.9.如图,△ABC的边AC与⊙O相交于C、D两点,且经过圆心O,边AB与⊙O相切,切点为B.已知∠A=30°,则∠C的大小是( )A.30°B.45°C.60°D.40°【考点】切线的性质.【专题】计算题.【分析】根据切线的性质由AB与⊙O相切得到OB⊥AB,则∠ABO=90°,利用∠A=30°得到∠AOB=60°,再根据三角形外角性质得∠AOB=∠C+∠OBC,由于∠C=∠OBC,所以∠C=AOB=30°.【解答】解:连结OB,如图,∵AB与⊙O相切,∴OB⊥AB,∴∠ABO=90°,∵∠A=30°,∴∠AOB=60°,∵∠AOB=∠C+∠OBC,而∠C=∠OBC,∴∠C=AOB=30°.故选:A.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.10.对于二次函数y=(x﹣1)2+2的图象,下列说法正确的是( )A.开口向下 B.对称轴是x=﹣1C.顶点坐标是(1,2)D.与x轴有两个交点【考点】二次函数的性质.【专题】常规题型.【分析】根据抛物线的性质由a=1得到图象开口向上,根据顶点式得到顶点坐标为(1,2),对称轴为直线x=1,从而可判断抛物线与x轴没有公共点.【解答】解:二次函数y=(x﹣1)2+2的图象开口向上,顶点坐标为(1,2),对称轴为直线x=1,抛物线与x轴没有公共点.故选:C.【点评】本题考查了二次函数的性质:二次函数y=ax2+bx+c(a≠0)的顶点式为y=a(x﹣)2+,的顶点坐标是(﹣,),对称轴直线x=﹣b2a,当a>0时,抛物线y=ax2+bx+c(a≠0)的开口向上,当a<0时,抛物线y=ax2+bx+c(a≠0)的开口向下.11.二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)中的x与y的部分对应值如下表:X ﹣1 0 1 3y ﹣1 3 5 3下列结论:(1)ac<0;(2)当x>1时,y的值随x值的增大而减小.(3)3是方程ax2+(b﹣1)x+c=0的一个根;(4)当﹣1<x<3时,ax2+(b﹣1)x+c>0.其中正确的个数为( )A.4个B.3个C.2个D.1个【考点】二次函数的性质;二次函数图象与系数的关系;抛物线与x轴的交点;二次函数与不等式(组).【专题】压轴题;图表型.【分析】根据表格数据求出二次函数的对称轴为直线x=1.5,然后根据二次函数的性质对各小题分析判断即可得解.【解答】解:(1)由图表中数据可得出:x=1时,y=5,所以二次函数y=ax2+bx+c开口向下,a<0;又x=0时,y=3,所以c=3>0,所以ac<0,故(1)正确;(2)∵二次函数y=ax2+bx+c开口向下,且对称轴为x==1.5,∴当x≥1.5时,y的值随x值的增大而减小,故(2)错误;(3)∵x=3时,y=3,∴9a+3b+c=3,∵c=3,∴9a+3b+3=3,∴9a+3b=0,∴3是方程ax2+(b﹣1)x+c=0的一个根,故(3)正确;(4)∵x=﹣1时,ax2+bx+c=﹣1,∴x=﹣1时,ax2+(b﹣1)x+c=0,∵x=3时,ax2+(b﹣1)x+c=0,且函数有最大值,∴当﹣1<x<3时,ax2+(b﹣1)x+c>0,故(4)正确.故选:B.【点评】本题考查了二次函数的性质,二次函数图象与系数的关系,抛物线与x轴的交点,二次函数与不等式,有一定难度.熟练掌握二次函数图象的性质是解题的关键.12.如图,P为⊙O的直径BA延长线上的一点,PC与⊙O相切,切点为C,点D是⊙上一点,连接PD.已知PC=PD=BC.下列结论:(1)PD与⊙O相切;(2)四边形PCBD是菱形;(3)PO=AB;(4)∠PDB=120°.其中正确的个数为( )A.4个B.3个C.2个D.1个【考点】切线的判定与性质;全等三角形的判定与性质;菱形的判定.【专题】几何综合题.【分析】(1)利用切线的性质得出∠PCO=90°,进而得出△PCO≌△PDO(SSS),即可得出∠PCO=∠PDO=90°,得出答案即可;(2)利用(1)所求得出:∠CPB=∠BPD,进而求出△CPB≌△DPB(SAS),即可得出答案;(3)利用全等三角形的判定得出△PCO≌△BCA(ASA),进而得出CO=PO=AB;(4)利用四边形PCBD是菱形,∠CPO=30°,则DP=DB,则∠DPB=∠DBP=30°,求出即可.【解答】解:(1)连接CO,DO,∵PC与⊙O相切,切点为C,∴∠PCO=90°,在△PCO和△PDO中,,∴△PCO≌△PDO(SSS),∴∠PCO=∠PDO=90°,∴PD与⊙O相切,故(1)正确;(2)由(1)得:∠CPB=∠BPD,在△CPB和△DPB中,,∴△CPB≌△DPB(SAS),∴BC=BD,∴PC=PD=BC=BD,∴四边形PCBD是菱形,故(2)正确;(3)连接AC,∵PC=CB,∴∠CPB=∠CBP,∵AB是⊙O直径,∴∠ACB=90°,在△PCO和△BCA中,,∴△PCO≌△BCA(ASA),∴AC=CO,∴AC=CO=AO,∴∠COA=60°,∴∠CPO=30°,∴CO=PO=AB,∴PO=AB,故(3)正确;(4)∵四边形PCBD是菱形,∠CPO=30°,∴DP=DB,则∠DPB=∠DBP=30°,∴∠PDB=120°,故(4)正确;正确个数有4个,故选:A.【点评】此题主要考查了切线的判定与性质和全等三角形的判定与性质以及菱形的判定与性质等知识,熟练利用全等三角形的判定与性质是解题关键.二、填空题:(每题4分,共24分)13.若关于x的一元二次方程x2﹣2x﹣k=0没有实数根,则k的取值范围是k<﹣1.【考点】根的判别式.【分析】根据关于x的一元二次方程x2﹣2x﹣k=0没有实数根,得出△=4+4k<0,再进行计算即可.【解答】解:∵一元二次方程x2﹣2x﹣k=0没有实数根,∴△=(﹣2)2﹣4×1×(﹣k)=4+4k<0,∴k的取值范围是k<﹣1;故答案为:k<﹣1.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.14.已知一元二次方程x2﹣3x﹣3=0的两根为a与b,则的值是﹣1.【考点】根与系数的关系.【专题】计算题.【分析】根据根与系数的关系得到a+b=3,ab=﹣3,再把原式变形得到,然后利用整体代入的方法进行计算.【解答】解:根据题意得a+b=3,ab=﹣3,所以原式===﹣1.故答案为﹣1.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程的两根为x1,x2,则x1+x2=﹣,x1•x2=.15.如图,点A、B、P在⊙O上,∠APB=50°,若M是⊙O上的动点,则等腰△ABM顶角的度数为50°或80°或130°.【考点】圆周角定理;等腰三角形的性质.【分析】首先连接AM,BM,分别从若点M在优弧APB上与若点M在劣弧AB上,根据圆周角定理与等腰三角形的性质,即可求得等腰△ABM顶角的度数.【解答】解:连接AM,BM,①若点M在优弧APB上,∴∠M=∠APB=50°,若AM=BM,则等腰△ABM顶角的度数为50°;若AM=AB或BM=AB,则等腰△ABM顶角的度数为:180°﹣2∠M=80°;②若点M在劣弧AB上,则∠M=180°﹣∠APB=130°,此时∠M是顶角.∴等腰△ABM顶角的度数为:50°或80°或130°.故答案为:50°或80°或130°.【点评】此题考查了圆周角定理、等腰三角形的性质以及圆的内接四边形的性质.此题难度适中,注意掌握辅助线的作法,注意数形结合思想与分类讨论思想的应用.16.如图所示,在△ABC中,∠B=40°,将△ABC绕点A逆时针旋转至△ADE处,使点B 落在BC延长线上的D点处,∠BDA=45°,则∠BDE=85°.【考点】旋转的性质.【专题】计算题.【分析】根据旋转的性质得∠ADE=∠B=40°,然后计算∠BDA+∠ADE即可.【解答】解:∵△ABC绕点A逆时针旋转至△ADE处,使点B落在BC延长线上的D点处,∴∠ADE=∠B=40°,∴∠BDE=∠BDA+∠ADE=45°+40°=85°.故答案为85°.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.17.如图所示,在平面直角坐标系xOy中,半径为2的⊙P的圆心P的坐标为(﹣3,0),将⊙P沿x轴正方向平移,使⊙P与y轴相切,则平移的距离为1或5.【考点】直线与圆的位置关系;坐标与图形性质;平移的性质.【分析】平移分在y轴的左侧和y轴的右侧两种情况写出答案即可.【解答】解:当⊙P位于y轴的左侧且与y轴相切时,平移的距离为1;当⊙P位于y轴的右侧且与y轴相切时,平移的距离为5.故答案为:1或5.【点评】本题考查了直线与圆的位置关系,解题的关键是了解当圆与直线相切时,点到圆心的距离等于圆的半径.18.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①b2>4ac;②abc>0;③2a﹣b=0;④8a+c<0;⑤9a+3b+c<0.其中结论正确的是①②⑤.(填正确结论的序号)【考点】二次函数图象与系数的关系.【专题】压轴题.【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【解答】解:①由图知:抛物线与x轴有两个不同的交点,则△=b2﹣4ac>0,∴b2>4ac,故①正确;②抛物线开口向上,得:a>0;抛物线的对称轴为x=﹣=1,b=﹣2a,故b<0;抛物线交y轴于负半轴,得:c<0;所以abc>0;故②正确;③∵抛物线的对称轴为x=﹣=1,b=﹣2a,∴2a+b=0,故2a﹣b=0错误;④根据②可将抛物线的解析式化为:y=ax2﹣2ax+c(a≠0);由函数的图象知:当x=﹣2时,y>0;即4a﹣(﹣4a)+c=8a+c>0,故④错误;⑤根据抛物线的对称轴方程可知:(﹣1,0)关于对称轴的对称点是(3,0);当x=﹣1时,y<0,所以当x=3时,也有y<0,即9a+3b+c<0;故⑤正确;所以这结论正确的有①②⑤.故答案为:①②⑤.【点评】此题主要考查了图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b 的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.三、解答下列各题(共60分)19.解方程(1)x2﹣2x﹣1=0.(2)(x﹣1)2+2x(x﹣1)=0.【考点】解一元二次方程-因式分解法;解一元二次方程-配方法.【分析】(1)方程常数项移到右边,两边加上1变形后,开方即可求出解;(2)方程左边分解因式后,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.【解答】解:(1)方程移项得:x2﹣2x=1,配方得:x2﹣2x+1=2,即(x﹣1)2=2,开方得:x﹣1=±,则x1=1+,x2=1﹣;(2)分解因式得:(x﹣1)[(x﹣1)+2x]=0,可得x﹣1=0或3x﹣1=0,解得:x1=1,x2=.【点评】此题考查了解一元二次方程﹣因式分解法,以及配方法,熟练掌握各种解法是解本题的关键.20.如图,四边形ABCD是正方形,△ADF按顺时针方向旋转一定角度后得到△ABE,若AF=4.AB=7.(1)旋转中心为点A;旋转角度为90°;(2)求DE的长度;(3)指出BE与DF的关系如何?并说明理由.【考点】旋转的性质;正方形的性质.【分析】(1)根据旋转的性质,点A为旋转中心,对应边AB、AD的夹角为旋转角;(2)根据旋转的性质可得AE=AF,AD=AB,然后根据DE=AD﹣AE计算即可得解;(3)根据旋转可得△ABE和△ADF全等,根据全等三角形对应边相等可得BE=DF,全等三角形对应角相等可得∠ABE=∠ADF,然后求出∠ABE+∠F=90°,判断出BE⊥DF.【解答】解:(1)旋转中心为点A,旋转角为∠BAD=90°;(2)∵△ADF按顺时针方向旋转一定角度后得到△ABE,∴AE=AF=4,AD=AB=7,∴DE=AD﹣AE=7﹣4=3;(3)BE、DF的关系为:BE=DF,BE⊥DF.理由如下:∵△ADF按顺时针方向旋转一定角度后得到△ABE,∴△ABE≌△ADF,∴BE=DF,∠ABE=∠ADF,∵∠ADF+∠F=180°﹣90°=90°,∴∠ABE+∠F=90°,∴BE⊥DF,∴BE、DF的关系为:BE=DF,BE⊥DF.【点评】本题考查了旋转的性质,正方形的性质,是基础题,熟记旋转变换只改变图形的位置不改变图形的形状与大小是解题的关键.21.四边形ABCD是正方形,E、F分别是DC和CB的延长线上的点,且DE=BF,连接AE、AF、EF.(1)试判断△AEF的形状,并说明理由;(2)填空:△ABF可以由△ADE绕旋转中心A 点,按顺时针方向旋转90度得到;(3)若BC=8,则四边形AECF的面积为64.(直接写结果)【考点】旋转的性质;全等三角形的判定与性质;正方形的性质.【分析】(1)根据正方形性质得出AB=AD,∠DAB=∠ABF=∠D=90°,证△ADE≌△ABF,推出AE=AF,∠DAE=∠FAB即可.(2)根据全等三角形性质和旋转的性质得出即可.(3)求出四边形AECF的面积等于正方形ABCD面积,求出正方形的面积即可.【解答】解:(1)△AEF是等腰直角三角形,理由是:∵四边形ABCD是正方形,F是BC延长线上一点,∴AB=AD,∠DAB=∠ABF=∠D=90°,在△ADE和△ABF中,,∴△ADE≌△ABF(SAS)∴AE=AF,∠DAE=∠FAB,∵∠DAB=∠DAE+∠BAE=90°,∴∠FAE=∠DAB=90°,即△AEF是等腰直角三角形.(2)△ABF可以由△ADE绕旋转中心A点,按顺时针方向旋转90°得到的,故答案为:A,90.(3)∵△ADE≌△ABF,∴S ADE=S△ABF,∴四边形AECF的面积S=S四边形ABCE+S△ABF=S四边形ABCE+S△ADE=S正方形ABCD=8×8=64,故答案为:64.【点评】本题考查了旋转性质,全等三角形的性质和判定,正方形性质的应用,主要考查学生的推理能力.22.如图,AD为△ABC外接圆的直径,AD⊥BC,垂足为点F,∠ABC的平分线交AD于点E,连接BD,CD.(1)求证:BD=CD;(2)请判断B,E,C三点是否在以D为圆心,以DB为半径的圆上?并说明理由.【考点】确定圆的条件;圆心角、弧、弦的关系.【专题】证明题;探究型.【分析】(1)利用等弧对等弦即可证明.(2)利用等弧所对的圆周角相等,∠BAD=∠CBD再等量代换得出∠DBE=∠DEB,从而证明DB=DE=DC,所以B,E,C三点在以D为圆心,以DB为半径的圆上.【解答】(1)证明:∵AD为直径,AD⊥BC,∴由垂径定理得:∴根据圆心角、弧、弦之间的关系得:BD=CD.(2)解:B,E,C三点在以D为圆心,以DB为半径的圆上.理由:由(1)知:,∴∠1=∠2,又∵∠2=∠3,∴∠1=∠3,∴∠DBE=∠3+∠4,∠DEB=∠1+∠5,∵BE是∠ABC的平分线,∴∠4=∠5,∴∠DBE=∠DEB,∴DB=DE.由(1)知:BD=CD∴DB=DE=DC.∴B,E,C三点在以D为圆心,以DB为半径的圆上.【点评】本题主要考查等弧对等弦,及确定一个圆的条件.23.如图,AB是⊙O的直径,点F,C是⊙O上两点,且==,连接AC,AF,过点C作CD⊥AF交AF延长线于点D,垂足为D.(1)求证:CD是⊙O的切线;(2)若CD=2,求⊙O的半径.【考点】切线的判定;三角形三边关系;圆周角定理.【专题】几何图形问题.【分析】(1)连结OC,由=,根据圆周角定理得∠FAC=∠BAC,而∠OAC=∠OCA,则∠FAC=∠OCA,可判断OC∥AF,由于CD⊥AF,所以OC⊥CD,然后根据切线的判定定理得到CD是⊙O的切线;(2)连结BC,由AB为直径得∠ACB=90°,由==得∠BOC=60°,则∠BAC=30°,所以∠DAC=30°,在Rt△ADC中,利用含30度的直角三角形三边的关系得AC=2CD=4,在Rt△ACB中,利用含30度的直角三角形三边的关系得BC=AC=4,AB=2BC=8,所以⊙O的半径为4.【解答】(1)证明:连结OC,如图,∵=,∴∠FAC=∠BAC,∵OA=OC,∴∠OAC=∠OCA,∴∠FAC=∠OCA,∴OC∥AF,∵CD⊥AF,∴OC⊥CD,∴CD是⊙O的切线;(2)解:连结BC,如图,∵AB为直径,∴∠ACB=90°,∵==,∴∠BOC=×180°=60°,∴∠BAC=30°,∴∠DAC=30°,在Rt△ADC中,CD=2,∴AC=2CD=4,在Rt△ACB中,BC=AC=×4=4,∴AB=2BC=8,∴⊙O的半径为4.【点评】本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了圆周角定理和含30度的直角三角形三边的关系.24.某花圃用花盆培育某种花苗,经过实验发现每盆的盈利与每盆的株数构成一定的关系.每盆植入3株时,平均单株盈利3元;以同样的栽培条件,若每盆增加1株,平均单株盈利就减少0.5元.要使每盆的盈利达到10元,每盆应该植多少株?【考点】一元二次方程的应用.【分析】根据已知假设每盆花苗增加x株,则每盆花苗有(x+3)株,得出平均单株盈利为(3﹣0.5x)元,由题意得(x+3)(3﹣0.5x)=10求出即可.【解答】解:设每盆花苗增加x株,则每盆花苗有(x+3)株,平均单株盈利为:(3﹣0.5x)元,由题意得:(x+3)(3﹣0.5x)=10.化简,整理,的x2﹣3x+2=0.解这个方程,得x1=1,x2=2,则3+1=4,2+3=5,答:每盆应植4株或者5株.【点评】此题考查了一元二次方程的应用,根据每盆花苗株数×平均单株盈利=总盈利得出方程是解题关键.25.如图,抛物线y=x2+bx+c经过点(1,﹣4)和(﹣2,5),请解答下列问题:(1)求抛物线的解析式;(2)若与x轴的两个交点为A,B,与y轴交于点C.在该抛物线上是否存在点D,使得△ABC 与△ABD全等?若存在,求出D点的坐标;若不存在,请说明理由注:抛物线y=ax2+bx+c的对称轴是x=﹣.【考点】二次函数综合题.【分析】(1)由抛物线y=x2+bx+c经过点(1,﹣4)和(﹣2,5),利用待定系数法即可求得此抛物线的解析式;(2)首先由抛物线y=ax2+bx+c的对称轴是x=﹣,即可求得此抛物线的对称轴,根据轴对称的性质,点C关于x=1的对称点D即为所求,利用SSS即可判定△ABC≌△BAD,又由抛物线的与y轴交于点C,即可求得点C的坐标,由对称性可求得D点的坐标.【解答】解:(1)∵抛物线y=x2+bx+c经过点(1,﹣4)和(﹣2,5),∴,解得:.故抛物线的解析式为:y=x2﹣2x﹣3.(2)存在.∵抛物线y=x2﹣2x﹣3的对称轴为:x=﹣=1,∴根据轴对称的性质,点C关于x=1的对称点D即为所求,此时,AC=BD,BC=AD,在△ABC和△BAD中,∵,∴△ABC≌△BAD(SSS).在y=x2﹣2x﹣3中,令x=0,得y=﹣3,则C(0,﹣3),D(2,﹣3).【点评】此题考查了待定系数法求二次函数的解析式、二次函数的性质、全等三角形的判定与二次函数的对称性.此题难度适中,注意掌握数形结合思想与方程思想的应用.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015—2016学年度下学期期中学业水平质量调研试题
九年级数学
(时间:120分钟 满分:120分) 2016.04 注意事项:
1.答题前,请先将自己的姓名、考号、座号在答题纸的相应位置填写清楚;
2.选择题答案用2B 铅笔涂在答题卡上,非选择题用0.5mm 黑色中性笔直接写在答题纸上.
一、选择题(本大题共14小题,每小题3分,共42分). 1.1
2-的相反数是: A .
12 B .1
2
- C .2 D .2- 2.下列运算正确的是: A . ()
62
3
a a -=- B .842a a a ÷=
C . 2
22)(b a b a -=- D .235a a a ⋅=
3.南海是我国固有领海,面积超过东海、黄海、渤海面积的总和,约为360万平方千 米,360万用科学记数法可表示为: A .3.6×102 B .360×104 C .3.6×104 D .3.6×106
4.如图是一架婴儿车的平面示意图,其中AB //CD ,∠1=130°,∠3=40°,那么∠2的度数
为:
A .80°
B .90°
C .100°
D .102°
5.如图是某工厂要设计生产的正六棱柱形密封罐的立体图形,它的主视图是:
A .
B .
C .
D .
A
B
1
3 2
1 C D
F E 第4题图
第5题图
6.不等式组32>2(4)x x
x +⎧⎨--⎩≥1
的解集在数轴上表示正确的是:
7.如图,一只蚂蚁在树枝上寻觅食物,假定蚂蚁在每个岔路口都会随机地选择一条路径,则它获得食物的概率是: A .
12
B .
13 C .14 D .16
8
A .85和85
B .85和80
C .95和85
D .85和87.5
9.化简22211
21
a a a a a a +-÷--+的结果是: A .
1a B .a C .11a a +- D .1
1a a -+
10.速录员小明打2500个字和小刚打3000个字所用的时间相同,已知小刚每分钟比小明多打50个字,求两人的打字速度.设小刚每分钟打x 个字,根据题意列方程,正确的是: A .
x 2500=503000-x B . x 2500=503000
+x C . 502500-x =x 3000 D . 502500+x =x
3000
11.如图,在平面直角坐标系中,已知点A (2,0),B (0,3),如果将线段AB 绕点B 顺时针旋转90°至CB ,那么点C 的坐标是
A .(﹣3,2)
B .(﹣3,1)
C .(2,1)
D .(﹣2,1)
12.如图,在⊙O 中,弦AC ∥OB ,∠BOC =50°,则∠OAB 的度数为: A .25° B .50° C .60° D .30° 13.小明在做数学题时,发现下面有趣的结果:
3﹣2=1
8+7﹣6﹣5=4
15+14+13﹣12﹣11﹣10=9
24+23+22+21﹣20﹣19﹣18﹣17=16 … …
根据以上规律可知第10行左起第一个数是:
A .100
B .121
C .120
D .82 14.在平面直角坐标系中,直线y =-x +2与反比例函数1
y x
=
的图象有唯一公共点. 若直线y =-x +b 与反比例函数1
y x
=
的图象没有公共点,则b 的取值范围是: A . b >2 B . -2<b <2 C . b >2或b <-2 D . b <-2
二、填空题(本题1大题,5小题,每小题3分,共15分)
15.(1)已知实数a 、b 满足ab=1,a =2﹣b ,则a 2b +ab 2 =
(2)若n (其中n ≠0)是关于x 的方程x 2+mx +2n =0的根,则m +n 的值为 (3)如图,平行于BC 的直线DE 把△ABC 分成的两部分面积相等,则AD
AB
=
第15(3)题图
第15(4)题图 D
A
B C
第7题图
(4)如图,在菱形ABCD 中,DE ⊥AB ,3
cos 5
A =
,AE =3,则tan ∠DBE 的值是 (5)规定:sin (x +y )=sin x •cos y +cos x •sin y .根据初中学过的特殊角的三角函数值,求得
sin75°的值为 三、解答题(共63分) 16.(本小题满分7分)
计算:48tan30°
-(π﹣3.14)0
17.(本小题满分7分)
为了解学生体育训练的情况,某市从全市九年级学生中随机抽取部分学生进行了一次体育科目测试(把测试结果分为四个等级:A 级、B 级、C 级、D 级),并将测试结果绘成了如下两幅不完整的统计图.请根据统计图中的信息解答下列问题:
(1)本次抽样测试的学生人数是 ;
(2)扇形图中∠α的度数是 ,并把条形统计图补充完整; (3)对A ,B ,C ,D 四个等级依次赋分为90,75,65,55(单位: 分),比如:等级为
A 级的同学体育得分为90分,…,依此类推.该市九年级共有学生32000名,如果全部参加这次体育测试,则不及格(即60分以下)的有多少人?
体育测试各等级学生人数条形图体育测试各等级学生人数扇形图
第17题图
如图,一楼房AB 后有一假山,山坡斜面CD 与水平面夹角为30°,坡面上点E 处有一亭子,测得假山坡脚C 与楼房水平距离BC =10米,与亭子距离CE =20米,小丽从楼房顶测得点E 的俯角为45°.求楼房AB 的高(结果保留根号).
19.(本小题满分9分)
在□ABCD 中,过点D 作DE ⊥AB 于点E ,点F 在边CD 上,DF =BE ,连接AF ,BF 。
(1)求证:四边形BFDE 是矩形;
(2)若CF =3,BF =4,DF =5,求证:AF 平分∠DAB
20.(本小题满分9分)
已知△ABC 内接于⊙O ,AC 是⊙O 的直径,D 是AB ︵
的中点.过点D 作CB 的垂线,分别交CB 、CA 延长线于点F 、E .
(1)判断直线EF 与⊙O 的位置关系,并说明理由; (2)若CF =6,∠ACB =60°,求阴影部分的面积.
E
C
A
B
D
O
F
如图(1),一等腰直角三角尺GEF 的两条直角边与正方形ABCD 的两条边分别重合在一起.现正方形ABCD 保持不动,将三角尺GEF 绕斜边EF 的中点O (点O 也是BD 中点)按顺时针方向旋转. (1)如图(2),当EF 与AB 相交于点M ,GF 与BD 相交于点N 时,通过观察或测量BM ,FN 的长度,猜想BM ,FN 满足的数量关系,并证明你的猜想;
(2)若三角尺GEF 旋转到如图(3)的位置时,线段FE 的延长线与AB 的延长线相交于点M ,线段BD 的延长线与GF 的延长线相交于点N ,此时,(1)中的猜想还成立吗?若成立,请证明;若不成立,请说明理由.
22.(本小题满分13分)
如图,抛物线y =-x 2
+bx +c 与直线1
22
y x =
+交于C 、D 两点,其中点C 在y 轴上,点D 的坐标为(3,72
).点P 是y 轴右侧的抛物线上一动点,过点P 作PE ⊥x 轴于点E ,交CD 于点F ,设点P 的横坐标为m . (1)求抛物线的解析式;
(2)当m 为何值时,以O 、C 、P 、F 为顶点的四边形是平行四边形?请说明理由. (3)若点P 在直线CD 上方,则四边形PCOD 的面积最大时,求点P 的坐标.
(2)
(3)
(1) A (
B ( E ) 第22题图。