安培定则应用

合集下载

安培定则、左手定则和右手定则

安培定则、左手定则和右手定则

06
在物理学中的应用
电磁学领域应用
判断通电直导线周围的磁场方向
01
应用安培定则,可以通过电流方向和导线环绕方向,判断磁场
方向。
判断通电螺线管内部的磁场方向
02
使用安培定则,结合电流方向和螺线管绕向,可以确定磁场方
向。
判断洛伦兹力和安培力的方向
03
在电磁学中,左手定则用于判断洛伦兹力和安培力的方向,涉
04
右手定则
定义与原理
右手定则定义
右手定则是用于确定感应电流方向的一种法则,其原理基于磁场、导线和电流之间的相对方向。
原理详解
当导线在磁场中做切割磁感线运动时,会在导线中产生感应电流。右手定则规定,伸开右手,使大拇 指与其余四指垂直,并且都与手掌在同一平面内。让磁感线从掌心进入,大拇指指向导线运动方向,Βιβλιοθήκη 则四指所指的方向就是感应电流的方向。
学术研究
对于物理学、电气工程等专业的学 者和研究人员,深入理解和掌握这 些定则有助于推动相关领域的学术 发展。
适用范围
电流与磁场关系
感应电动势与磁场
安培定则用于判断电流与其产生的磁 场之间的关系。
右手定则用于确定导线在磁场中运动 时产生的感应电动势方向。
洛伦兹力与运动电荷
左手定则用于确定运动电荷在磁场中 所受的洛伦兹力方向。
电动机工作原理分析
左手定则可以用于解释电动机的工作 原理,即通电导体在磁场中受力运动 。
示例与解析
示例
一通电直导线垂直于磁感线方向放置,电流方向向右,磁感线方向从里向外,试判断导线所受安培力的方向。
解析
根据左手定则,伸开左手,使拇指与其余四个手指垂直,并且都与手掌在同一平面内;让磁感线从掌心进入(即 掌心向里),并使四指指向电流的方向(即指向右边),这时拇指所指的方向(即竖直向上)就是通电导线在磁 场中所受安培力的方向。

简述安培定则

简述安培定则

简述安培定则
安培定则是电流定律的一种形式,描述了电流、电荷和时间之间的关系。

它由法国物理学家安德烈·安培于1826年发现,是电学中最基本
的定律之一。

安培定则表述为:通过任何截面的电流大小等于该截面上所有电荷的
总量与时间的乘积。

数学表达式为I = Q/t,其中I表示电流强度,Q
表示通过截面的总电荷量,t表示通过截面所需的时间。

安培定则可以用来计算任何导体中的电流强度。

例如,在一个导线中,如果我们知道该导线上通过截面的总电荷量和所需时间,则可以使用
安培定则计算出该导线中的电流强度。

此外,安培定则还可以用来推导其他重要的物理公式。

例如,在磁场
中运动的带电粒子受到洛伦兹力作用时,其加速度与其所受力成正比。

因此,我们可以使用安培定则推导出洛伦兹力公式F = qvBsinθ,其
中F表示所受力大小,q表示带电粒子的电荷量,v表示粒子速度大小,B表示磁场强度大小,θ表示速度方向与磁场方向之间的夹角。

总之,安培定则是电学中最基本的定律之一,描述了电流、电荷和时
间之间的关系。

它不仅可以用来计算导体中的电流强度,还可以用来
推导其他重要的物理公式。

在实际应用中,我们经常使用安培定则来解决各种电学问题,因此深入理解和掌握这个定律对于学习电学和应用电学知识都非常重要。

考点一安培定则的应用和磁场的叠加

考点一安培定则的应用和磁场的叠加

第一讲磁场和安培力考点一安培定则的应用和磁场的叠加1. 三根平行的长直通电导线,分别通过一个直角三角形的三个顶点且与三角形所在平面垂直,如图所示,3O0, O为斜边的中点。

已知直线电流在某点产生的磁场,其磁感应强度B的大小与电流强度成正比,与点到通电导线的距离r成反比,已知l3 2|1 2|2, |1在。

点产生的磁场磁感应强度大小为B,则关于O点的磁感应强度,下列说法正确的是:A. 2B,沿OC方向 B . 2B,垂直AC向右C. 2扼B,垂直AC向右D . 0 /2. 丹麦物理学家奥斯特在1820年通过实验发现电流磁效应现象,下列说法/ I十…n' 一滴&正确的是:()A. 奥斯特在实验中观察到电流磁效应,揭示了电磁感应定律B. 将直导线沿东西方向水平放置,把小磁针放在导线的正下方,给导线通以足够大电流,小磁针一定会转动C. 将直导线沿南北方向水平放置,把小磁针放在导线的正下方,给导线通以足够大电流,小磁针一定会转动D. 将直导线沿南北方向水平放置,把铜针(用铜制成的指针)放在导线的正下方,给导线通以足够大电流,铜针一定会转动3. 欧姆在探索通过导体的电流、电压、电阻的关系时因无电源和电流表,他利用金属在冷水和热水中产生电动势代替电源,用小磁针的偏转检测电流。

具体做法是:在地磁场作用下处于水平静止的小磁针上方,平行于小磁针水平放置一直导线,当该导线中通有电流时,小磁针会发生偏转;当通过该导线电流为I时,小磁针偏转了30。

;当他发现小磁针偏转了45。

,则通过该直导线的电流为(直导线在某点产生的磁感应强度与通过直导线的电流成正比):A. I B . 2I C . 431 D .无法确定考点二判断通电导体(或磁铁)在安培力作用下运动的常用方法4. 如图所示,用绝缘细线悬挂一个导线框,导线框是由两同心半圆弧导线和直导线ab、cd (ab、cd在同一条水平直线上)连接而成的闭合回路,导线框中通有图示方向的电流,处于静止状态。

九年级物理《安培定则》教案、教学设计

九年级物理《安培定则》教案、教学设计
二、学情分析
九年级的学生在物理学习方面已经具备了一定的基础,掌握了电流、磁场等基本概念,并了解了一些电磁现象。在此基础上,学生对安培定则的学习将更加深入地探讨电磁关系,有助于培养他们的抽象思维和逻辑推理能力。然而,学生在此阶段的认知水平和动手操作能力仍存在差异,需要针对不同学生进行因材施教。此外,部分学生对物理学习的兴趣和动机有待提高,教师应关注学生的情感需求,激发他们的学习兴趣。在本章节的教学中,教师应充分了解学生的学情,运用适当的教学策略,帮助他们顺利掌握安培定则,为后续学习电磁学知识打下坚实基础。
3.分步骤讲解安培定则,结合实际例子,使学生逐步掌握判断磁场方向的方法。
a.简单电流产生的磁场方向判断。
b.复杂电流产生的磁场方向判断,如螺线管、环形电流等。
4.设计课堂互动环节,让学生自主探究、分享学习心得,提高课堂参与度。
a.学生分组讨论,总结安培定则的应用技巧。
b.教师提问,检验学生对安培定则的理解程度。
三、教学重难点和教学设想
(一)教学重难点
1.重点:安培定则的内容及其应用,判断电流产生的磁场方向。
2.难点:理解安培定则的物理意义,运用安培定则解决实际问题。
(二)教学设想
1.采用导入式教学,引发学生思考:如何判断电流产生的磁场方向?从而引出安培定则的学习。
2.利用实物演示和动画模拟,让学生直观地感受安培定则的应用,降低理解难度。
1.培养学生对物理现象的好奇心和探索精神,激发学习物理的兴趣。
2.培养学生的实证意识,使学生明白科学理论来源于实践,又能指导实践。
3.培养学生尊重客观事实、严谨治学的态度,认识到科学研究的艰辛和乐趣。
4.使学生了解物理学在科技发展和人类生活中的重要作用,树立正确的价值观。

安培定则相关知识点总结

安培定则相关知识点总结

安培定则相关知识点总结安培定则的基本表达式是:\[ \oint \vec{B} \cdot d\vec{l} = \mu_0 I_{\text{enc}} \]其中,\[ \oint \vec{B} \cdot d\vec{l} \] 代表对路径上的磁场强度的积分;\[ \mu_0 \] 代表真空中的磁导率,其数值约为4π×10^-7 H/m;\[ I_{\text{enc}} \] 则代表路径内的总电流。

这个表达式说明了路径上的磁场强度(B)的积分等于路径内的总电流的数量(μ0Ienc)。

这意味着,通过一定面积内的总电流会产生一个环绕该电流的磁场,这一磁场的大小与该电流的大小成正比。

这一定律进一步揭示了电流和磁场之间的密切关系,为我们理解电磁现象提供了重要的基础。

安培定则的一些重要应用包括了计算直导线、螺线管等导线产生的磁场;利用安培环路定理可推导出磁场的环形模式分布,以及估算电流的大小和方向。

在实际应用中,安培定则广泛应用于工程领域,如电动机、变压器、感应加热器等设备的设计和运行。

此外,安培定则也被应用于医学领域,如磁共振成像(MRI)等仪器的研发。

在接下来的内容中,将对安培定则的相关知识点作进一步总结和详细讨论。

一、安培定则的基本原理1. 安培环路定理在真空中,通过一定曲线(或称为环路)的总磁场(B)等于环路内的总电流(Ienc)乘以磁导率(μ0),即:\[ \oint \vec{B} \cdot d\vec{l} = \mu_0 I_{\text{enc}} \]其中,\[ \oint \vec{B} \cdot d\vec{l} \] 代表对路径上的磁场强度的积分;\[ \mu_0 \] 代表真空中的磁导率,其数值约为4π×10^-7 H/m;\[ I_{\text{enc}} \] 则代表路径内的总电流。

2. 安培环路定理的推导安培环路定理可以通过对任意闭合环路应用法拉第定律推导而来。

专题四:图解安培定则-左手定则-右手定则-楞次定律的综合应用复习过程

专题四:图解安培定则-左手定则-右手定则-楞次定律的综合应用复习过程

专题四:图解安培定则-左手定则-右手定则-楞次定律的综合应用专题复习安培定则、右手定则、左手定则、楞次定律的综合应用1、安培定则、左手定则、右手定则、楞次定律应用于不同的现象:(1)安培定则:(2)右手定则(3)左手定则(4)楞次定律2、右手定则与左手定则区别:抓住“因果关系”分析才能无误.“因动而电”——用右手;“因电而动”——用左手,3、运用楞次定律处理问题的思路运用楞次定律判定感应电流方向的基本思路可归结为:“一原、二感、三电流”,即为:①明确原磁场:弄清原磁场的方向及磁通量的变化情况.②确定感应磁场:即根据楞次定律中的"阻碍"原则,结合原磁场磁通量变化情况,确定出感应电流产生的感应磁场的方向:原磁通量增加,则感应磁场与原磁场方向相反;原磁通量减少,则感应磁场与原磁场方向相同——“增反减同”.③判定电流方向:即根据感应磁场的方向,运用安培定则判断出感应电流方向.(见例1)据原磁场(B原方向及ΔΦ情况)确定感应磁场(B感方向)−−−−→−安培定则判断感应电流(I感方向)−−−−→−左手定则导体受力及运动趋势.基本现象应用的定则或定律运动电荷、电流产生的磁场安培定则磁场对运动电荷、电流的作用(安培力)左手定则电磁感应部分导体做切割磁感线运动右手定则闭合电路磁通量变化楞次定律收集于网络,如有侵权请联系管理员删除例1一平面线圈用细杆悬于P点,开始时细杆处于水平位置,释放后让它在如图所示的匀强磁场中运动,已知线圈平面始终与纸面垂直,当线圈第一次通过位置Ⅰ和位置Ⅱ时,顺着磁场的方向看去,线圈中的感应电流的方向分别为()A.逆时针方向;逆时针方向 B.逆时针方向;顺时针方向C.顺时针方向;顺时针方向 D.顺时针方向;逆时针方向例2如图所示,闭合线圈上方有一竖直放置的条形磁铁,磁铁的N极朝下. 当磁铁向下运动时(但未插入线圈内部),()A.线圈中感应电流的方向与图中箭头方向相同,磁铁与线圈相互吸引B.线圈中感应电流的方向与图中箭头方向相同,磁铁与线圈相互排斥C. 线圈中感应电流的方向与图中箭头方向相反,磁铁与线圈相互吸引D.线圈中感应电流的方向与图中箭头方向相反,磁铁与线圈相互排斥例3在水平放置的光滑绝缘杆ab上,挂在两个金属环M和N,两环套在一个通电密绕长螺线管的中部,如图所示,螺线管中部区域的管外磁场可以忽略;当变阻器的滑动接头向左移动时,两环将怎样运动()A.两环一起向左移动 B.两环一起向右移动C.两环互相靠近 D.两环互相离开例4一直升飞机停在南半球的地磁极上空. 该处地磁场的方向竖直向上,磁感应强度为B. 直升飞机螺旋桨叶片的长度为l,螺旋桨转动的频率为f,顺着地磁场的方向看螺旋桨,螺旋桨按顺时针方向转动. 螺旋桨叶片的近轴端为a,远轴端为b,如图所示. 如果忽略a到转轴中心线的距离,用ε表示每个叶片中的感应电动势,则()A.ε=πfl2B,且a点电势低于b点电势B.ε=2πfl2B,且a点电势低于b点电势C.ε=πfl2B,且a点电势高于b点电势D.ε=2πfl2B,且a点电势高于b点电势专项练习1.如图,在一水平、固定的闭合导体圆环上方.有一条形磁铁(N极朝上,S极朝下)由静止开始下落,磁铁从圆环中穿过且不与圆环接触,关于圆环中感应电流的方向(从上向下看),下列说法正确的是()A.总是顺时针B.总是逆时针C.先顺时针后逆时针D.先逆时针后顺时针2.法拉第圆盘发电机的示意图如图所示.铜圆盘安装在竖直的铜轴上,两铜片P、Q分别于圆盘的边缘和铜轴接触,圆盘处于方向竖直向上的匀强磁场B中,圆盘旋转时,关于流过电阻R的电流,下列说法正确的是()A.若圆盘转动的角速度恒定,则电流大小恒定B.若从上往下看,圆盘顺时针转动,则电流沿a到b的方向流动C.若圆盘转动方向不变,角速度大小发生变化,则电流方向可能发生变化SNB收集于网络,如有侵权请联系管理员删除D.若圆盘转动的角速度变为原来的2倍,则电流在R上的热功率也变为原来的2倍3.图中装置可演示磁场对通电导线的作用.电磁铁上下两磁极之间某一水平面内固定两条平行金属导轨,L是置于导轨上并与导轨垂直的金属杆.当电磁铁线圈两端a、b,导轨两端e、f,分别接到两个不同的直流电源上时,L便在导轨上滑动.下列说法正确的是()A.若a接正极,b接负极,e接正极,f接负极,则L向右滑动B.若a接正极,b接负极,e接负极,f接正极,则L向右滑动C.若a接负极,b接正极,e接正极,f接负极,则L向左滑动D.若a接负极,b接正极,e接负极,f接正极,则L向左滑动4.如图,在水平光滑桌面上,两相同的矩形刚性小线圈分别叠放在固定的绝缘矩形金属框的左右两边上,且每个小线圈都各有一半面积在金属框内,在金属框接通逆时针方向电流的瞬间()A.两小线圈会有相互靠拢的趋势B.两小线圈会有相互远离的趋势C.两小线圈中感应电流都沿顺时针方向D.左边小线圈中感应电流沿顺时针方向,右边小线圈中感应电流沿逆时针方向4.在图中MN和PQ是两条在同一水平面内平行的光滑金属导轨,ef和cd 为两根导体棒,整个装置放在广大的匀强磁场中,如果ef在外力作用下,沿导轨运动,回路产生了感应电流,于是cd在磁场力作用下向右运动,那么,感应电流方向以及ef的运动方向分别为()(A)c到d,向右(B)c到d,向左(C)d到c,向右(D)d到c,向左5、(多选)如图所示,水平放置的两条光滑轨道上有可自由移动的金属棒PQ、MN,MN的左边有一闭合电路,当PQ在外力的作用下运动时,MN向右运动,则PQ所做的运动可能是() A.向右加速运动B.向左加速运动C.向右减速运动D.向左减速运动6、(多选)如图所示,两个线圈套在同一个铁芯上,线圈的绕向在图中已经标出。

中考物理安培定则

中考物理安培定则

中考物理安培定则
【安培定则的定义】
首先我们来说一下什么是安培定则。

安培定则又名右手螺旋定则,用来判定电流和磁场关系的定则。

【安培定则的应用】
一、用手握住通电直导线,大拇指指向电流方向,四指环握表示磁场方向。

二、用手握住通电螺旋管,四指环握指向电流方向,大拇N极
三,安培定则的应用可以正向应用,也同样可以反向应用,也就是说可以在已知电流方向判断磁场,也同样可以根据磁场判断电流方向。

【安培定则的解释说明】
安培定则适用于通电直导线和通电螺旋管,也同样适用于一小段的直线电流,通电螺旋管同样可以看成一小段一小段直线电流共同作用的结果,所以说,安培定则其实是直线电流的定侧,而通电螺旋管也可以通过拆分成许多不同的短的通电直导线,通过这些导线的共同作用,形成通电螺旋管的磁场。

安培定则对于单一电荷的移动也同样有效,正电荷移动的方向就是电流的方向,负电荷移动的反方向就是电流的方向。

【(安培定则的发现过程】
其实安培定则解释说明的也就是电流的磁交效应,电流的磁效应最开始是由于奥斯特在做实验是偶然发现的,但是当时奥斯特只是发现了通电导线周围有磁场。

没有深入探究得出某一结论。

之后安培深入研究了这一现象,发现这一现象的存在一定的共通性。

经过总结得出安培定则。

通过这篇文章的学习,我们学会了有关安培定则的定义、应用、以及来源。

在学习了这篇文章之后我们一定要熟练掌握并应用安培定则,在考试中可以取得一个优异的成绩。

安培定则的应用及磁场的叠加

安培定则的应用及磁场的叠加

安培定则的应用及磁场的叠加
磁场叠加问题的一般解题思路
图1
(1)确定磁场场源,如通电导线.
(2)定位空间中需求解磁场的点,利用安培定则判定各个场源在这一点上产生的磁场的大小和方向.如图1所示为M、N在c点产生的磁场.
(3)应用平行四边形定则进行合成,如图中的合磁场.
例1如图2所示,a、b两根垂直纸面的直导线通有等值的电流,两导线旁有一点P,P 点到a、b距离相等,关于P点的磁场方向,以下判断正确的是()
图2
A.a中电流方向向纸外,b中电流方向向纸里,则P点的磁场方向向右
B.a中电流方向向纸外,b中电流方向向纸里,则P点的磁场方向向左
C.a中电流方向向纸里,b中电流方向向纸外,则P点的磁场方向向右
D.a中电流方向向纸外,b中电流方向向纸外,则P点的磁场方向向左
①直导线通有等值的电流;②P点到a、b距离相等.
答案A
解析若a中电流方向向纸外,b中电流方向向纸里,根据安培定则判断可知:
a在P处产生的磁场B a方向垂直于aP连线斜向上,如图所示.b在P处产生的磁场B b方向垂直于bP连线斜向下,根据平行四边形定则进行合成,P点的磁感应强度方向水平向右.故A正确,B错误.若a中电流方向向纸里,b中电流方向向纸外,则可得P点的磁感应强度方向水平向左.故C错误.若a、b中电流方向均向纸外,同理可知,P点的磁感应强度方向竖直向上.故D错误.
第1页共1页。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3极名和小磁针的磁极名。 Nhomakorabea题
S
N
SN


根据极性判定周围小磁针的指向
安培定则的应用

4





根据极性画出导线的绕法
安培定则的应用
为使图中A、B两个螺线管通电后能够相互 排斥,螺线管B应怎样绕?在图中画出。
4

NN


根据极性画出导线的绕法
选择=结果
汇报结束 谢谢观看! 欢迎提出您的宝贵意见!
安培定则的应用
0
博山区域城镇中心学校 徐增学
安培定则的应用
0

右手 直握住导线。

四指环 指电流方向,
拇指 指向北极方向。
安培定则的应用

1
题 型 一
根据电流方向判定极性
安培定则的应用

1
题 型 一
根据电流方向判定极性
安培定则的应用
1




根据电流方向判定极性
安培定则的应用
下图所示,相互吸引的螺线管是(AD)
NS
N SS
1


SS N
NS

根据电流方向判定极性
安培定则的应用
2


题 型 二
根据极性判定电流方向
安培定则的应用
在下图中小磁针静止,标出通电螺 线管的N、S极和电源的正负极. 2

N
S


+—
根据极性判定电流方向
安培定则的应用
图为通电螺线管和一小磁针静止时的情形,
请在图中标出电流方向、通电螺线管的磁
相关文档
最新文档