生态学课件_生态学

合集下载

生态学课件第五章 生态系统生态学

生态学课件第五章 生态系统生态学

生态系统分解作用
• 3、分解作用测定 • 网袋法: • 一般通过埋放装有残落物的网袋以观察土壤动物 的分解作用。 • 网袋具有不同孔径,允许不同大小的土壤动物出 入,从而可估计小型、中型和大型土壤动物对分 解的相对作用,并观察受异化、淋溶和碎裂三个 基本过程所导致的残落物失重量。
生态系统分解作用
P= R × C × 3.7 k
• P=浮游植物的净初级生产力;R=相对光合速率; k=光强度随水深度而减弱的衰变系数;C=水中的 叶绿素含量。
生态系统初级生产
• • • • • • 4、初级生产量的测定方法 收获量测定法 氧气测定法 CO2测定法 放射性标记物测定法 叶绿素测定法
生态系统次级生产
食物链与营养级
• 2、食物网(food web) • 食物链彼此交错连结,形成一个网状结构。
食物链与营养级
• 3、营养级(trophic levels)
• 营养级是指处于食物链某一环节所有生物种的 总和。 • 生态系统中的营养级一般只有四、五级,很少 有超过六级的。
营养级(trophic levels)
• 分解作用过程包括碎裂、异化和淋溶。
生态系统分解作用
•ห้องสมุดไป่ตู้2、分解者
• 细菌、真菌和土壤动物。 • • 动物分四个类群: • ①小型土壤动物(microfauna):包括原生动物、线虫、 轮虫、最小的弹尾和螨; • ②中型土壤动物(mesofauna):包括弹尾、螨、线蚓、 双翅目幼虫和小型甲虫; • ③大型(macrofauna)土壤动物:包括千足虫、等足目 和端足目,蛞蝓、蜗牛; • ④巨型(megafauna)土壤动物:包括蚯蚓等。
• 能量锥体或金字塔(pyramid of energy)

生态学课件第5章种内种间关系

生态学课件第5章种内种间关系

生物多样性的形成与维持
生物多样性是指在一定区域内生物种类的丰富程度,包括基因多样性、物种多样性 和生态系统多样性。
种间关系是生物多样性的重要基础,不同物种之间通过竞争、共生、捕食和被捕食 等关系,共同形成和维持了生物多样性。
种间关系的复杂性和动态性使得生物多样性得以维持,同时也有助于增强生态系统 的稳定性和适应性。
竞争关系
竞争关系
是指两种或多种生物生活在同一环境中,为了争夺相同的资源而产生的一种相互制约的关系。例如,两种不同的 植物可能会竞争阳光、水分和养分等资源,从而影响它们的生长和繁殖。
总结
竞争关系是一种相互制约的关系,两种或多种生物为了争夺相同的资源而展开竞争,从而影响各自的生存和繁衍。
寄生关系
寄生关系
总结词
狼捕食兔子以获取食物,而兔子为了生 存则尽可能避免被捕食。
VS
详细描述
狼是兔子的天敌,通常会捕食健康的成年 兔子。兔子为了生存,进化出了敏锐的感 知和快速的反应能力,以便及时发现并逃 避狼的捕食。这种关系促进了双方的进化 ,维持了生态平衡。
森林中树木间的竞争关系
总结词
树木之间为了争夺阳光、水分和营养物质而 相互竞争,导致优胜劣汰。
种群增长是指在一定时间内种群数量的变化情况,受到出生率、死亡率、迁入 率和迁出率等因素的影响。
02 种间关系
互利共生关系
互利共生关系
是指两种生物生活在一起,彼此都有利,但两者分开后,各自也能独立生活。例 如,蜜蜂和花朵之间存在互利共生关系,蜜蜂通过花朵获得食物,同时帮助花朵 授粉。
总结
互利共生关系是一种相互依赖的关系,两种生物彼此提供对方所需的好处,共同 生存和繁衍。
是指一种生物寄居在另一种生物的体内或体表,从寄主身上获取营养,对寄主造成一定的危害。例如 ,某些昆虫寄生在其他昆虫体内,吸取寄主的营养物质,导致寄主死亡。

《生态系统生态学》课件

《生态系统生态学》课件

通过生态学的研究和分析,可以帮助制定环境保护政策和可持续资源管理策略。
3
生态学与可持续发展的关系
生态学的原则是可持续发展的基础,通过合理利用资源和保护环境实现经济与环 境的平衡发展。
案例研究
通过案例研究,我们将深入了解生态系统生态学的应用。这些案例涵盖了不同类型的生态系统,以及生 态学在解决实际问题中的作用。
《生态系统生态学》PPT 课件
欢迎来到《生态系统生态学》课件!本课程将介绍生态系统的定义、重要性 以及生态学的基本概念。让我们一起探索生态系统的组成和功能,以及生物 多样性和生态学的应用。
生态系统组成和功能
生态因子与生态位
生态因子对生态系统的有机体生存和发展起着 重要作用。生态位是有机体在生态系统中所扮 演的角色。
生物多样性的测量方法
通过物种丰富度、物种均匀度和物种多样性指数等方法来测量生物多样性。
生物多样性的保护与管理
保护和管理生物多样性是保护生态系统健康、维持生态平衡的重要措施。
生态学应用
1
应用生态学的概念和范围
应用生态学将生态学的原理和方法应用于环境保护、资源管理和生态系统修复等 领域。
2
生态学在环境保护和资源管理中的应用
共生与拮抗
共生是不同物种之间相互依赖的关系,而拮抗 是物种之间相互竞争的关系。
能量流动和物质循环
能量在生态系统中通过食物链传递,而物质循 环则包括水循环、碳循环等。
生态系统的稳定性
生态系统的稳定性取决于物种多样性、生态位 多样性和生态过程的平衡。
生态系统的生物多种多样性是指生态系统中不同物种的数量和多样性,对维持生态平衡和生态系统功能至关 重要。

《生态学基础知识》PPT课件

《生态学基础知识》PPT课件

精选ppt
18
三、种间关系
1.种间竞争
➢ 高斯假说——在一个稳定的环境中,由于竞争的结果, 完全的竞争者不能共存。在进化过程中,由于激烈的 竞争,可能向两个方向发展。一是一个物种完全排斥 另一物种;二是两个物种之间必须出现栖息地、食性、 活动时间或其它特征上的生态位分化。
➢ 生态位是指生物种在生物群落或生态系统中的地位和 作用。
精选ppt
21
二、群落的结构
第二章 生态学基础知识
生态学是研究生物与其周围环境之
间相互关系及其机理的科学。环境 科学则是以人类为中心,把人类生 活与环境的相互影响作为一个整体 来研究的一门学科。因此,生态学 作为环境科学的基础理论,可以指 导人们研究人类生存、发展与环境 的相互关系。
精选ppt
1
本章的主要内容
第一节 生物与环境 第二节 种群生态学 第三节 群落生态学 第四节 生态系统生态学 第五节 生态系统稳定性与生态平衡
I型——凸型存活曲线。表示种群在达到生理寿命之 前只有少数个体死亡,如人类和一些大型哺乳动物。
II型——对角线存活曲线。表示种群各年龄期的死 亡率基本相同,如鸟类、大多数爬行动物和一些小 型哺乳动物。
III型——凹型存活曲线。表示种群幼体的死亡率很 高,只有极少数个体能够活到生理寿命,如大多数 鱼类,两栖类、海洋无脊椎动物等。
0.014
0
0.014
2.0
0
-----
精选ppt
死亡率 qx
0.563 0.452 0.412 0.225 0.290 0.409 0.692 0.000 1.000 -----
Lx
Tx
102
22ቤተ መጻሕፍቲ ባይዱ

《生态学基础》课件

《生态学基础》课件
总结词
减少碳排放和增加碳汇是减缓全球气候变化的重要措施。
详细描述
通过采取节能减排、发展可再生能源、植树造林等措施,可以减少碳排放并增加 碳汇,从而减缓全球气候变化的影响。同时,还需要加强国际合作,共同应对气 候变化带来的挑战,保护地球生态系统的健康和可持续性。
05
CATALOGUE
人类活动对生态系统的影响
生态系统的物质循环
总结词
物质循环是生态系统中的另一个核心过程,它描述了生态系统中的物质如何被循环利用。
详细描述
生态系统中的物质循环包括水、碳、氮、磷等元素的循环。这些元素在生物体之间循环利用,通过生 产者的光合作用、消费者的摄食和排泄、以及分解者的分解作用等过程实现。物质循环的平衡对维持 生态系统的稳定性和生物多样性至关重要。
详细描述
生态学主要关注生物与环境之间的相互作用、生物多样性、生态系统的结构和功能以及 生态平衡等方面。它研究生物种群如何适应环境、种群之间的相互关系以及种群与环境 之间的相互影响。此外,生态学还研究生物群落的组成、结构、演化和分布,以及生态
系统中的能量流动和物质循环等。
生态学的发展历程
总结词
生态学的发展经历了古代朴素的生态观、近代生态学的形成与发展以及现代生态学的研究与应用三个阶段。
种群的特征
种群具有空间特征、时间特征、 遗传特征和数量特征。
种间关系的类型与机制
竞争
指两个或多个物种在资源利用上发生冲突, 导致生长受抑或死亡的现象。
寄生
指一个物种寄生于另一个物种体内或体表, 摄取寄主的养分以维持生活。
捕食
指一个物种以另一个物种为食的现象。
互利共生
指两个物种通过相互合作,彼此都能获得益 处的现象。

(2024年)全新生态学ppt课件

(2024年)全新生态学ppt课件

02
01
倡导全球共治
积极倡导全球共治理念,推动构建公平合理 、合作共赢的全球环境治理体系。
04
03
2024/3/26
32
2024/3/26
谢谢聆听
33
03
温室气体排放趋势
随着全球工业化进程的加速,温室气体排放量持续增加 ,对气候的影响日益严重。
9
极端气候事件频发原因分析
2024/3/26
气候变化导致极端天气事件增加
01
全球变暖使得极端高温、干旱、洪涝等天气事件频发。
人类活动对极端天气事件的影响
02
城市化进程、土地利用变化等人类活动加剧了极端天气事件的
1
城市化进程加速,导致自然生态系统破坏和生境 丧失。
2
城市扩张占用大量农田和绿地,导致生态服务功 能下降。
3
城市人口集聚,资源消耗和废弃物排放增加,环 境压力加大。
2024/3/26
19
城市绿地系统规划与建设实践
绿地系统规划原则
生态优先、因地制宜、均衡布局、功能多样。
绿地建设实践
公园绿地、街头绿地、生态廊道、居住区绿地等 。
政策支持
政府加大对有机农业和绿色食品产业的扶持力度,推动产业快速发 展。
技术创新
通过技术创新和集成应用,提高有机农业和绿色食品产业的生产效率 和经济效益。
2024/3/26
25
农业废弃物资源化利用途径
畜禽粪便
通过堆肥发酵、生产有机肥等方式,实现畜禽粪便的资源化利用 。
农作物秸秆
推广秸秆还田、生产生物质燃料等技术,提高农作物秸秆的利用率 。
固体废弃物分类
生活垃圾、建筑垃圾、工业固体废物等。

4基础生态学 全套课件

4基础生态学 全套课件

与密度有关的单种群连续增长模型
– Logistic增长
– dN/dt=rN· (1-N/K)= rN· [(K-N)/K] – Nt=K/(1+eα-rt) – 环境容量K – 相邻压力:N/K
– 剩余空间: 1-N/K
与密度有关的种群增长模型

时滞问题
Nt+1=〔1.0-B(Nt-1-K)〕Nt
– 其共存的相似性极限多大? d/w=1
种间竞争

植物种间竞争的特殊性
– 对少数资源的共同需求 – 不可移动性
– 他感作用—相互干涉性竞争
种间竞争
植物种间竞争的特殊性-Tilman模型
种间竞争
植物种间竞争的特殊性-Tilman模型
种间竞争
种间竞争策略
– 竞争型
– 压力容忍型 – 干扰容忍型
具年龄结构

与密度有关的单种群离散增长模型
– 种群增长率与密度的线性函数关系 – Nt+1=λNt=〔1.0-B(Nt-K)〕Nt – 环境容量K – 不同B值种群有不同表现
与密度有关的 种群连续增长模型
环境容量有限 没有迁入迁出 世代重叠 具年龄结构

与密度有关的 种群连续增长模型
– 植物也有(化学信息为主) 也有物理信息—含羞草、捕蝇草
种内关系
密度制约----调节的内因 – 非密度制约是特例 密度制约的三个阶段 – 负竞争(逆密度制约)
– 分摊竞争(非密度制约)
– 争夺竞争
种内竞争与合作

稳定的种群(成熟或超成熟)有相当比 例的分摊竞争
– 中国、欧洲 – 老鼠、吸血蝙蝠
种群系统的过程
——种群内部的活动
基本概念

生态学基础生态系统ppt课件

生态学基础生态系统ppt课件
8
二、热力学定律
生态系统的能量转换符合两大定律: 1)热力学第一定律(能量转化和守恒) 能量既不能消失,也不能凭空产生,它只能以严格的当量比例, 由一种形式转化为另一种形式。 2)热力学第二定律(能量衰变定律或能量逸散定律) 生态系统的能量在转化、流转过程中总存在衰变、逸散的现象, 即总有一部分从浓缩的有效态变为稀释的不能利用的状态。 能量沿食物链方向流动,逐级递减。 每经一个营养级的剩余能 量为原有能量的1/10,其余的都消耗了。
食物链中每一个生物成员称为营养级。 食物链类型 1)捕食食物链:指一种活的生物取食另一种活的生物所构
成的食物链。食物链以生产者为起点。 2)腐生性食物链:以动、植物的遗体或粪便为食物链起点,
也称分解链。 如动植物遗体或粪便→ 真菌、细菌→ 原生动物→ 土壤动
物→ 节肢动ቤተ መጻሕፍቲ ባይዱ。 3)寄生性食物链:生物间以寄生物与寄主的关系而构成食
(3)补加能源的作用。 添加太阳能以外的其他形式的辅助能,可提高作物对光能的
利用,从而增加初级生产力。
24
二、生态系统的次级生产
次级生产量的概念及生产 次级生产量:生态系统中初级生产以外的生物生产,
即消费者利用初级生产的产品进行新陈代谢,经过 同化作用形成异类生物自身物质的生产量,称为次 级生产量,亦称第二性生产量。 I = FU+R+P P = I-FU-R 同化效率 = A / I ; 生长效率 = P / A I- 摄取量; A-同化量; R-呼吸量; P-生产量; FU-粪尿能量。
密不可分的。 能量在生态系统中是被消耗、单向流动,不可逆的。
而物质循环是可逆多向的,可返回原来的化学形态, 并可逃循、脱离生态系统。
四、生物地球化学循环的类型 (1)气相型:其贮存库是大气和海洋。气相循环把大
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

that remove nutrients from the system. Release may
be direct to the atmosphere or via bacterial action (as in the case of methane). For many elements, the most
Habitat
Multidimensional niche space
基础生态位
在没竞争和捕食条件下,有机体的生态位空间叫做基 础生态位(fundamental niche)。
实际生态位
当有竞争和捕食出现时,有机体所占有的生态位空间 是实际生态位(realized niche),实际生态位始终是基 础生态位的一个子集。
Realized niche
Related topics
The nature of competition (11) partitioning(13)
Resource
Intraspecific competition (12)
G1 资源与循环
要 点
群落以形形色色的方式获得和损失营养物。机械风化、 化学腐蚀,特别是碳酸化作用,都是重要的过程。矿
Nutrient sources
AND CYCLES
Nutrients are gained and lost by communities in a variety of ways. Mechanical weathering, chemical weathering, particularly carbonation, are important processes. Simple dissolution of minerals in water also makes nutrients available from rock and soil. Water may carry nutrients in watercourses providing an important source in downstream areas. Atmospheric gases provide nutrient sources too, particularly carbon dioxide and nitrogen. Other nutrients from the atmosphere become available to communities as wetfall (rain, snow and fog) and dryfall (settling of particles during dry periods).
生 态 位
栖 息 地
多维生态位空间
B3 THE NICHE
Key Notes
Niche The ecological niche of an organism is the position it fills in its environment, comprising the conditions under which it is found, the resources it utilizes and the time it occurs there. The habitat of an organism is the physical environment it is found in, for example, a temperate broad-leaved woodland. Each habitat provides. Each condition or resource which defines the niche of an organism contributes one dimension to the space in which the organism’s niche, and is the multidimensional niche space, or’n-dimensional hypervolume’.
学。
Geochemistry
The pools of chemical elements on earth exist in
various compartments: in rocks (the lithosphere),
and soil water, streams, lakes or oceans (whish, combined, constitute the hydrosphere). In all these cases, the chemical elements exist in the inorganic form. In contrast, living organisms and dead and decaying organic matter are compartments which contain elements in the organic form. Studies of the chemical processes occurring within these compartments and the flux of elements between them (which are fundamentally altered and affected by biotic processes) is termed
contain warm suface waters, where most plant life is
found and cold deep waters (which make up 90% of the total water volume). Nutrients in the suraface waters come from two sources: (i) upwelling from deep water (which comprise over 95% of the nutrient budget),and (ii) river input.
water is a major factor. Commonly, phases of fast
inorganic nutrient displacement alternate with periods when the nutrient is locked in biomass. In lakes, plankton play a key role in nutrient cycling. Oceans
B3 生 态 位Байду номын сангаас
要 点
有机体的生态位(niche)是它在它的环境中所处的位 置,包括它发现的各种条件、所利用的资源和在那里 的时间。 有机体的栖息地(habitat,或译生境)是它所处的物理 环境,例如,温带阔叶林。每一个栖息地提供许多生 态位。 定义有机体生态位的每一个条件和资源,对于有机体 能出现的空间提供一个维度。一起考虑所有维度,全 面确定的有机体的生态位,是多维生态位空间,或“n维超体积”。
biogeochemistry.
全球生物地化 循环
陆地植物利用空气中CO2作为光合作用的碳源,而水生 植物使用溶解的碳酸化合物(水圈的碳)。呼吸作用 把固定在光合产物中的碳,再释放到气圈和水圈的碳
圈层中。在全球氮循环中,气相是占优势的,其中,
氮的固定和微生物的脱氮作用特别重要。磷主要储存 在土壤水、河流、湖泊、岩石和海洋沉淀物中,而硫 储存在大气和岩石的组分中。
相关主题
竞争的性质(见I1) 种内竞争(见I2)
资源分配(见I3)
Fundamental niche
The niche space an organism can fill in the absence of
competition or predation is known as the fundamental niche. The niche space occupied by an organism when competition and predation occur is the realized niche, which is always a subset of the fundamental niche.
陆地群落营 养物预算
有机体吸收的特定营养物微粒可连续地循环,直到营 养物最终损失,这是通过许多过程中的任一个过程把 营养物从系统中除去。营养物释放可直接到达空气或 通过细菌作用(如甲烷)。对于许多元素来说,最重 要的是丢失途径是在水流中。营养物损失的其他途径 包括火灾、庄稼的收获和森林砍伐。
Nutrient budgets in terrestrial communities
Nutrient budgets in aquatic communities
Aquatic systems obtain the bulk of their supply of nutrients from streamflow. In streams, rivers and lakes with a stream outflow, export in outgoing stream
地球化学
地球上的化学元素库存在于各种圈层(compartments) 中:在岩石(岩圈)和土壤水、溪流、湖泊或海洋 (可组合构成水圈)中。在上述情况下,化学元素以 无机形式存在。同时,生命有机体和已死亡及腐烂的 有机物质是在含有有机元素的圈层里。研究在这些区 域内发生的化学过程和圈层间元素的流动(通过生物 过程产生了功能性的改变和影响),称为生物地球化
A particular nutrient atom taken up by an organism may cycle continuously until eventually the nutrient will be lost through any one of a number of processes
相关文档
最新文档