第二节命题及其关系-充分条件必要条件复习
理科数学学霸笔记02命题及其关系、充分条件与必要条件

考点02命题及其关系、充分条件与必要条件一、命题及其关系1.命题的概念在数学中用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.其中判断为真的语句叫真命题,判断为假的语句叫假命题.2.四种命题及其关系(1)四种命题原命题:若p,则q逆命题:若q,则p否命题:若非p则非q;逆否命题:若非q则非p(2)四种命题间的关系(3)常见的否定词语正面词语:=、>(<)、是、都是、任意(所有)的、任两个、至多有1(n)个、至少有1个否定词:≠、≤(≥)、不是、不都是、某个、某两个、至少有2(n+1)个、1个也没有3.四种命题的真假关系(1)两个命题互为逆否命题,它们有相同的真假性;(2)两个命题互为逆命题或互为否命题,它们的真假性没有关系.提醒:当一个命题有大前提而要写出其他三种命题时,必须保留大前提,也就是大前提不动.二、充分条件与必要条件1.充分条件与必要条件的概念(1)若p⇒q,则p是q的充分条件,q是p的必要条件;(2)若p⇒q且q/⇒p,则p是q的充分不必要条件;(3)若p/⇒q且q⇒p,则p是q的必要不充分条件;(4)若p⇔q,则p是q的充要条件;(5)若p/⇒q且q/⇒p,则p是q的既不充分也不必要条件.2.必记结论(1)等价转化法判断充分条件、必要条件①p是q的充分不必要条件⇔非q是非p的充分不必要条件;②p是q的必要不充分条件⇔非q是非p的必要不充分条件;③p是q的充要条件⇔非q是非p的充要条件;④p是q的既不充分也不必要条件⇔非q是非p的既不充分也不必要条件.例2:设a,b∈R,则“(a-b)a2<0”是“a<b”的()A.充分不必要条件B.充要条件C.必要不充分条件D.既不充分也不必要条件答案:A解析:由(a-b)a2<0可知a2≠0,则一定有a-b<0,即a<b;但a<b即a-b<0时,有可能a=0,所以(a-b)a2<0不一定成立,故“(a-b)a2<0”是“a<b”的充分不必要条件,故选 A.。
高考数学专题知识突破:考点2 命题及其关系、充分条件与必要条件

考点二命题及其关系、充分条件与必要条件知识梳理1.命题的概念可以判断真假、用文字或符号表述的语句,叫作命题.其中判断为真的语句叫真命题,判断为假的语句叫假命题.2.四种命题及相互关系(1) 四种命题命题表述形式原命题若p,则q逆命题若q,则p否命题若非p,则非q逆否命题若非q,则非p(2) 四种命题间的逆否关系3.四种命题的真假关系(1)两个命题互为逆否命题,它们有相同的真假性;(2)两个命题互为逆命题或互为否命题,它们的真假性没有关系.4.充分条件与必要条件(1)如果p⇒q,则p是q的充分条件,q是p的必要条件;(2)如果p⇒q,q⇒p,则p是q的充要条件.(3) 如果p q,q p,那么称p是q的充分不必要条件.(4) 如果q p,p q,那么称p是q的必要不充分条件.(5) 如果p q,且q p,那么称p是q的既不充分也不必要条件.典例剖析题型一四种命题及其相互关系例1命题“若一个数是负数,则它的平方是正数”的逆命题是()A.“若一个数是负数,则它的平方不是正数”B.“若一个数的平方是正数,则它是负数”C.“若一个数不是负数,则它的平方不是正数”D.“若一个数的平方不是正数,则它不是负数”答案 B解析将原命题的条件与结论互换即得逆命题,故原命题的逆命题为“若一个数的平方是正数,则它是负数”.变式训练命题“若x,y都是偶数,则x+y也是偶数”的逆否命题是()A.若x+y是偶数,则x与y不都是偶数B.若x+y是偶数,则x与y都不是偶数C.若x+y不是偶数,则x与y不都是偶数D.若x+y不是偶数,则x与y都不是偶数答案 C解析由于“x,y都是偶数”的否定表达是“x,y不都是偶数”,“x+y是偶数”的否定表达是“x +y不是偶数”,故原命题的逆否命题为“若x+y不是偶数,则x,y不都是偶数”,故选C.解题要点 1.写一个命题的其他三种命题时,需注意:①对于不是“若p,则q”形式的命题,需先改写;②若命题有大前提,写其他三种命题时需保留大前提.2.一些常见词语的否定例2有下列几个命题:①“若a>b,则a2>b2”的否命题;②“若x+y=0,则x,y互为相反数”的逆命题;③“若x2<4,则-2<x<2”的逆否命题.其中真命题的序号是________.答案②③解析①原命题的否命题为“若a≤b,则a2≤b2”,错误.②原命题的逆命题为:“若x,y互为相反数,则x+y=0”,正确.③原命题的逆否命题为“若x≥2或x≤-2,则x2≥4”,正确.变式训练下列有关命题的说法正确的是________.(填序号)①命题“若x2=1,则x=1”的否命题为“若x2=1,则x≠1”;②若一个命题是真命题,则其逆命题也是真命题;③命题“存在x∈R,使得x2+x+1<0”的否定是“对任意x∈R,均有x2+x+1<0”;④命题“若x=y,则sin x=sin y”的逆否命题为真命题.答案 ④解析 命题“若x 2=1,则x =1”的否命题为“若x 2≠1,则x ≠1”,所以①不正确;原命题与逆命题不等价,所以②不正确;命题“存在x ∈R ,使得x 2+x +1<0”的否定是“对任意x ∈R ,均有x 2+x +1≥0”,所以③不正确;命题“若x =y ,则sin x =sin y ”是真命题,所以逆否命题为真命题,④正确.解题要点 1.判断一个命题为真命题,要给出推理证明;判断一个命题是假命题,只需举出反例.2.根据“原命题与逆否命题是等价的,逆命题与否命题也是等价的”这一性质,当一个命题直接判断不易进行时,可转化为判断其等价命题的真假.题型二 充分条件与必要条件例3 已知p :“a ,b ,c 成等比数列”,q :“b =ac ”,那么p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 D解析 若a ,b ,c 成等比数列,则有b 2=ac ,所以b =±ac ,所以充分性不成立.当a =b =c =0时,b =ac 成立,但此时a ,b ,c 不成等比数列,所以必要性不成立,所以p 是q 的既不充分也不必要条件.变式训练 在△ABC 中,角A ,B ,C 所对应的边分别为a ,b ,c ,则“a ≤b ”是“sin A ≤sin B ”的( )A .充分必要条件B .充分非必要条件C .必要非充分条件D .非充分非必要条件答案 A解析 由正弦定理,知a ≤b ⇔2R sin A ≤2R sin B (R 为△ABC 外接圆的半径)⇔sin A ≤sinB . 例4 设函数f (x )=log 2x ,则“a >b ”是“f (a )>f (b )”的________(填“充分不必要”“必要不充分”“充要”或“既不充分又不必要”)条件.答案 必要不充分解析 因为f (x )=log 2x 在区间(0,+∞)上是增函数,所以当a >b >0时,f (a )>f (b );反之,当f (a )>f (b )时,a >b .故“a >b ”是“f (a )>f (b )”的必要不充分条件.变式训练 设x ∈R ,则“x >1”是“220x x +->”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 答案 A解析 由不等式220x x +->得(2)(1)0x x +->,即2x <-或1x >,所以由1x >可以得到不等式220x x +->成立,故充分性成立;但由220x x +->不一定得到1x >,所以必要性不成立,即“x >1”是“220x x +->”的充分而不必要条件.解题要点 1.充要条件问题应首先弄清问题中条件是什么,结论是什么,再进一步判断条件与结论的关系,解题过程分为三步:①确定条件是什么,结论是什么;②尝试从条件推结论,从结论推条件;③确定条件和结论是什么关系.2.充要条件的三种判断方法(1) 定义法:根据p q ,q p 进行判断; (2) 集合法:根据p 、q 成立的对象的集合之间的包含关系进行判断;(3) 等价转化法:根据一个命题与其逆否命题的等价性,把判断的命题转化为其逆否命题进行判断.当堂练习1. 设p :1<x <2,q :2x >1,则p 是q 成立的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件2.设,a b ∈R , 则 “2()0a b a -<”是“a b <”的 ( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件3.已知m ,n 是两条不同直线,α,β是两个不同平面,则下列命题正确的是( )A .若α,β垂直于同一平面,则α与β平行B .若m ,n 平行于同一平面,则m 与n 平行C .若α,β不平行,则在α内不存在与β平行的直线D .若m ,n 不平行,则m 与n 不可能垂直于同一平面4.已知i 是虚数单位,a ,b ∈R ,得“a =b =1”是“(a +b i)2=2i ”的 条件.5.U 为全集,A ,B 是集合,则“存在集合C 使得A ⊆C ,B ⊆∁U C ”是“A ∩B =∅” 条件.课后作业一、 选择题1.下列语句中命题的个数是( )①2<1;②x <1;③若x <2,则x <1;④函数f (x )=x 2是R 上的偶函数.A.0B.1C.2D.32.“x =1”是“x 2-2x +1=0”的( )A .充要条件B .充分而不必要条件C .必要而不充分条件D .既不充分也不必要条件3.“1<x <2”是“x <2”成立的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件4.设p :x <3,q :-1<x <3,则p 是q 成立的( )A .充分必要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件5.下列结论错误的是( )A .命题“若x 2-3x -4=0,则x =4”的逆否命题为“若x ≠4,则x 2-3x -4≠0”B .“x =4”是“x 2-3x -4=0”的充分条件C .命题“若m >0,则方程x 2+x -m =0有实根”的逆命题为真命题D .命题“若m 2+n 2=0,则m =0且n =0”的否命题是“若m 2+n 2≠0,则m ≠0或n ≠0”6.若m ∈R, 命题“若m >0,则方程x 2+x -m =0有实根”的逆否命题是( )A .若方程x 2+x -m =0有实根,则m >0B .若方程x 2+x -m =0有实根,则m ≤0C .若方程x 2+x -m =0没有实根,则m >0D .若方程x 2+x -m =0没有实根,则m ≤07.已知命题p :若x =-1,则向量a =(1,x )与b =(x +2,x )共线,则在命题p 的原命题、逆命题、否命题、逆否命题中,真命题的个数为( )A .0B .2C .3D .48.设α,β是两个不同的平面,m 是直线且m ⊂α.“m ∥β”是“α∥β”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件二、填空题9.x ≠3或y ≠5是x +y ≠8的____________条件.(选填“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”)10.“若a ≤b ,则ac 2≤bc 2”,则命题的原命题、逆命题、否命题和逆否命题中真命题的个数是________.11.(1)“x >y >0”是“1x <1y”的________条件. (2) 设a ,b ∈R ,则“a >b ”是“a |a |>b |b |”的________条件.12.下列命题:①“若k >0,则方程x 2+2x +k =0有实根”的否命题;②“若1a >1b,则a <b ”的逆命题;③“梯形不是平行四边形”的逆否命题,其中是假命题的是________.13.“m <14”是“一元二次方程x 2+x +m =0有实数解”的____________条件.当堂练习答案1. 答案 A解析 当1<x <2时,2<2x <4,∴p ⇒q ;但由2x >1,得x >0,∴q p ,故选A.2答案 A解析 由(a -b )a 2<0⇒a ≠0且a <b ,∴充分性成立;由a <b ⇒a -b <0,当0=a <b 时 (a -b )·a 2<0,必要性不成立;故选A.3.答案 D解析 对于A ,α,β垂直于同一平面,α,β关系不确定,A 错;对于B ,m ,n 平行于同一平面,m ,n 关系不确定,可平行、相交、异面,故B 错;对于C ,α,β不平行,但α内能找出平行于β的直线,如α中平行于α,β交线的直线平行于β,故C 错;对于D ,若假设m ,n 垂直于同一平面,则m ∥n ,其逆否命题即为D 选项,故D 正确.4.答案 充分不必要条件解析 当a =b =1时,(a +b i)2=(1+i)2=2i ;当(a +b i)2=2i 时,得⎩⎪⎨⎪⎧a 2-b 2=0,ab =1, 解得a =b =1或a =b =-1,所以“a =b =1”是“(a +b i)2=2i ”的充分不必要条件.5.答案 充要条件解析 若存在集合C 使得A ⊆C ,B ⊆∁U C ,则可以推出A ∩B =∅;若A ∩B =∅,由Venn 图(如图)可知,存在A =C ,同时满足A ⊆C ,B ⊆∁U C .故“存在集合C 使得A ⊆C ,B ⊆∁U C ”是“A ∩B =∅”的充要条件.课后作业答案二、 选择题1.答案 D2.答案 A解析 解x 2-2x +1=0得x =1,所以“x =1”是“x 2-2x +1=0”的充要条件.3.答案 A4.答案 C解析 ∵x <3-1<x <3,但-1<x <3⇒x <3,∴p 是q 的必要不充分条件,故选C.5.答案 C解析 C 项命题的逆命题为“若方程x 2+x -m =0有实根,则m >0”.若方程有实根,则Δ=1+4m ≥0,即m ≥-14,不能推出m >0.所以不是真命题,故选C. 6.答案 D解析 原命题为“若p ,则q ”,则其逆否命题为“若q ,则p ”.∴所求命题为“若方程x 2+x -m =0没有实根,则m ≤0”.7.答案 B解析 向量a ,b 共线⇔x -x (x +2)=0⇔x =0或x =-1,∴命题p 为真,其逆命题为假,故在命题p 的原命题、逆命题、否命题、逆否命题中,真命题的个数为2.8.答案 B解析 m ⊂α,m ∥βα∥β,但m ⊂α,α∥β⇒m ∥β,∴m ∥β是α∥β的必要而不充分条件. 二、填空题9.答案 必要不充分解析 设p :x =3且y =5,q :x +y =8,显然p 是q 的充分不必要条件,∴p 是q 的必要不充分条件,即x ≠3或y ≠5是x +y ≠8的必要不充分条件.10.答案 2解析 其中原命题和逆否命题为真命题,逆命题和否命题为假命题.11.答案 (1)充分不必要 (2)充要解析 (1)1x <1y⇒xy ·(y -x )<0, 即x >y >0或y <x <0或x <0<y .所以x >y >0 ⇒1x <1y ,但反过来1x <1y, 所以是充分不必要条件.(2) 构造函数f (x )=x |x |,则f (x )在定义域R 上为奇函数.因为f (x )=⎩⎪⎨⎪⎧x 2,x ≥0,-x 2,x <0,所以函数f (x )在R 上单调递增,所以a >b ⇔f (a )>f (b )⇔a |a |>b |b |. 所以是充要条件.12.答案 ①②解析 对于①其否命题为“若k ≤0,则方程x 2+2x +k =0无实根”,为假命题;②的逆命题为“若a <b ,则1a >1b”,为假命题;③中原命题为真命题,故其逆否命题也为真命题. 13.答案 充分不必要解析 x 2+x +m =0有实数解等价于Δ=1-4m ≥0,即m ≤14,因为m <14⇒m ≤14,反之不成立. 故“m <14”是“一元二次方程x 2+x +m =0有实数解”的充分不必要条件.。
2021届高考数学总复习:命题及其关系、充分条件与必要条件

2021届高考数学总复习:命题及其关系、充分条件与必要条件一、知识点1.命题(1)命题的概念用语言、符号或式子表达的,可以判断真假的陈述句叫做命题。
其中判断为真的语句叫做真命题,判断为假的语句叫做假命题。
(2)四种命题及相互关系(3)四种命题的真假关系①两个命题互为逆否命题,它们有相同的真假性;②两个命题互为逆命题或互为否命题,它们的真假性没有关系。
2.充分条件、必要条件与充要条件的概念1.否命题与命题的否定:否命题是既否定条件,又否定结论,而命题的否定是只否定命题的结论。
2.区别A是B的充分不必要条件(A⇒B且B⇒/A),与A的充分不必要条件是B(B⇒A且A⇒/B)两者的不同。
3.A是B的充分不必要条件⇔非B是非A的充分不必要条件。
4.充要关系与集合的子集之间的关系,设A={x|p(x)},B ={x|q(x)},(1)若A⊆B,则p是q的充分条件,q是p的必要条件。
(2)若A B,则p是q的充分不必要条件,q是p的必要不充分条件。
(3)若A=B,则p是q的充要条件。
一、走进教材1.(选修2-1P8A组T2改编)命题“若x2>y2,则x>y”的逆否命题是()A.“若x<y,则x2<y2”B.“若x>y,则x2>y2”C.“若x≤y,则x2≤y2”D.“若x≥y,则x2≥y2”解析根据原命题和逆否命题的条件和结论的关系得命题“若x2>y2,则x>y”的逆否命题是“若x≤y,则x2≤y2”。
故选C。
答案 C2.(选修2-1P 10练习T 3(2)改编)“(x -1)(x +2)=0”是“x =1”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 解析 若x =1,则(x -1)(x +2)=0显然成立,但反之不成立,即若(x -1)(x +2)=0,则x 的值也可能为-2。
故选B 。
答案 B二、走近高考3.(2018·天津高考)设x ∈R ,则“⎪⎪⎪⎪⎪⎪x -12<12”是“x 3<1”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件 解析由⎪⎪⎪⎪⎪⎪x -12<12,得0<x <1,所以0<x 3<1;由x 3<1,得x <1,不能推出0<x <1。
考点02 命题及其关系、充分条件和必要条件(解析版)

考点02 命题及其关系、充分条件和必要条件【考纲要求】理解必要条件、充分条件与充要条件的意义. 【命题规律】考查充分条件与必要条件的题型一般以选择题或填空题的形式出现,以集合、函数、数列、三角函数、不等式及立体几何中的线面关系为载体,难度一般不大. 【典型高考试题变式】(一)充分条件与必要条件的判定例1.(2021全国甲卷理7)等比数列{}n a 的公比为q ,前n 项和为n S ,设甲:0q >,乙:{}n S 是递增数列,则 ( )A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件 【答案】B【分析】当0q >时,通过举反例说明甲不是乙的充分条件;当{}n S 是递增数列时,必有0n a >成立即可说明0q >成立,则甲是乙的必要条件,即可选出答案. 【解析】由题,当数列为2,4,8,---时,满足0q >,但是{}n S 不是递增数列,∴甲不是乙的充分条件.若{}n S 是递增数列,则必有0n a >成立,若0q >不成立,则会出现一正一负的情况,是矛盾的,则0q >成立,∴甲是乙的必要条件,故选B .【点睛】在不成立的情况下,我们可以通过举反例说明,但是在成立的情况下,我们必须要给予其证明过程.【变式1】【2018年北京卷文】设a,b,c,d 是非零实数,则“ad=bc ”是“a,b,c,d 成等比数列”的A . 充分而不必要条件B . 必要而不充分条件C . 充分必要条件D . 既不充分也不必要条件 【答案】B 【解析】 分析:证明“”“成等比数列”只需举出反例即可,论证“成等比数列”“”可利用等比数列的性质.【名师点睛】充分条件、必要条件的判断方法:①定义法:直接判断“若p 则q ”、“若q 则p ”的真假.并注意和图示相结合,例如“p ⇒q ”为真,则p 是q 的充分条件.②等价法:利用p ⇒q 与⌝q ⇒⌝p ,q ⇒p 与⌝p ⇒⌝q ,p ⇔q与⌝q ⇔⌝p 的等价关系,对于条件或结论是否定式的命题,一般运用等价法.③集合法:若A ⊆B ,则A 是B 的充分条件或B 是A 的必要条件;若A =B ,则A 是B 的充要条件. 【变式2】【变式1中的条件与结论换位】设a,b,c,d 是非零实数,则“a,b,c,d 成等比数列”是“ad=bc ”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.既不充分也不必要条件 【答案】A【解析】由a,b,c,d 成等比数列可得ad=bc ,当时,a,b,c,d 不是等比数列,所以“a,b,c,d成等比数列”是“ad=bc ”的充分而不必要条件,故选A.例2.(2021年高考天津卷2)已知a ∈R ,则“6>a ”是“362>a ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 【答案】A【分析】由充分条件、必要条件的定义判断即可得解.【解析】由题意,若6a >,则236a >,故充分性成立;若236a >,则6a >或6a <-,推不出6a >,必要性不成立;∴“6a >”是“236a >”的充分不必要条件,故选A . 【名师点睛】充分条件与必要条件的两个特征:①对称性:若p 是q 的充分条件,则q 是p 的必要条件,即“p ⇒q ”⇔“q ⇐p ”.②传递性:若p 是q 的充分(必要)条件,q 是r 的充分(必要)条件,则p 是r 的充分(必要)条件,即“p ⇒q 且q ⇒r ”⇒“p ⇒r ”(“p ⇐q 且q ⇐r ”⇒“p ⇐r ”). 【变式1】【改变例题的条件】设,则“24x >”是“”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .即不充分也不必要条件 【答案】C【解析】由242x x >⇔>或2x <-,所以“24x >”是“||2x >”的充分必要条件,故选C. (二)充分条件与必要条件的运用例3.【2019·全国Ⅱ卷】设α,β为两个平面,则α∥β的充要条件是( ) A .α内有无数条直线与β平行 B .α内有两条相交直线与β平行 C .α,β平行于同一条直线 D .α,β垂直于同一平面【答案】B【解析】由面面平行的判定定理知:α内有两条相交直线都与β平行是αβ∥的充分条件;由面面平行的性质定理知,若αβ∥,则α内任意一条直线都与β平行,所以α内有两条相交直线都与β平行是αβ∥的必要条件,故α∥β的充要条件是α内有两条相交直线与β平行,故选B .【变式1】【改变例题中的问法】设α,β是两个不同的平面,m 是直线且m α⊂.“m β∥”是“αβ∥”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】B【解析】//m β不能推出//αβ,而//αβ,//m β⇒,∴“//m β”是“//αβ”的必要不充分条件,故选B . 例4.【2011全国卷】下面四个条件中,使a b >成立的充分而不必要的条件是( ) A .1a b >+ B .1a b >- C .22a b > D .33a b > 【答案】A【解析】由1a b >+,得a b >;反之不成立,故选A.【名师点津】命题p 是q 的必要不充分条件⇔p q ⇒且q p ⇒;命题p 的必要不充分条件是q ⇔q p ⇒且p q ⇒. 这两种说法有区别,不能混淆.【变式1】【改变例题中的问法】下面四个条件中,使a b >成立的必要而不充分的条件是( ) A .1a b >+ B .1a b >- C .22a b > D .33a b > 【答案】B【解析】由a b >,可得1a b >-;反之不成立,故选B.【变式2】【改变例题中的条件、问法】下面四个条件中,使33a b >成立的充要的条件是( ) A .1a b >+ B .a b <C .22a b >D .a b > 【答案】C【解析】由a b >,可得33a b >;反之也成立,故选C. (三)新定义问题例5.【2011湖北卷】若实数a ,b 满足0,0,0a b ab ≥≥=且,则称a 与b 互补,记()22,a b a b a b ϕ=+-,那么(),0a b ϕ=是a 与b 互补的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .即不充分也不必要条件 【答案】C【名师点津】紧扣新定义.首先分析新定义的特点,把新定义所叙述的问题的本质弄清楚,并能够应用到具体的解题过程之中,这是破解新定义型集合问题难点的关键所在.【变式1】【2010年普通高等学校招生全国统一考试湖北卷10】记实数1x ,2x ,……n x 中的最大数为max {}12,,......n x x x ,最小数为min {}12,,......n x x x 。
第2节 命题及其关系、充分条件与必要条件

知识梳理自测
【教材导读】 1.在四种命题中,会有1个或3个命题为真命题吗?
把散落的知识连起来
提示:不会,由原命题与逆否命题,逆命题与否命题是两对互为逆否的命题, 真假性相同,则四种命题为真命题的可能个数为0,2,4. 2.写一个命题的其他三种命题时需要注意什么?
提示:(1)对于不是“若p,则q”形式的命题,需先改写.
1 , x
反之,当 f(x)=sin x-
又 f(-x)+f(x)=sin(-x)-
所以“a=0”是“函数 f(x)=sin x-
︱高中总复习︱一轮·理数
y x 1, (2)(2016· 四川卷)设p:实数x,y满足(x-1)2+(y-1)2≤2,q:实数x,y满足 y 1 x, y 1, 则p 是q 的( )
︱高中总复习︱一轮·理数
考点三 充分条件、必要条件的探求与应用
【例3】 (1)导学号 18702010 命题“∀x∈[1,3],x2-a≤0”为真命题的一个充 分不必要条件是( (A)a≥9 (C)a≥10 ) (B)a≤9 (D)a≤10
解析:(1)命题“∀x∈[1,3],x2-a≤0”⇔“∀x∈[1,3],x2≤a”⇔9≤a.
1
3
,则x是无理数”是真命题,故其逆否命题也是
真命题.故选B.
︱高中总复习︱一轮·理数
(2)导学号 38486010 原命题为“若 n
关于其逆命题、否命题、逆否命题真假性的判断依次如下,正确的是( (A)真,真,真 (C)真,真,假 (B)假,假,真 (D)假,假,假
a an 1 <an,n∈N*,则{an}为递减数列”, 2
答案:(2)②③
︱高中总复习︱一轮·理数
第二节命题及其关系、充分条件与必要条件

【解析】 命题 p:-2≤x≤10,由 q 是 p 的必要不充分条件 知,
{x|-2≤x≤10} {x|1-m≤x≤1+m,m>0},
∴m1->m0பைடு நூலகம்-2 或m1->m0<-2 ,
1+m>10
1+m≥10
∴m≥9,即 m 的取值范围是[9,+∞).
【答案】 [9,+∞)
易错易误之一 “条件”与“结论”颠倒黑白酿失误
分不必要条件,即x12≤x≤1
{x|a≤x≤a+1},
∴a≤12, a+1≥1,
∴0≤a≤12.
【答案】 0,12
规律方法 3 1.借助命题间的等价关系直接建立参数 a 的不等 关系,避免了繁琐转换计算,将失误降到最低.
2.解决此类问题一般是把充分条件、必要条件或充要条件转 化为集合之间的关系,然后根据集合之间的关系列出关于参数的 不等式求解.
充分条件与必要条件的两个特征 (1)对称性:若 p 是 q 的充分条件,则 q 是 p 的必要条件,即 “p⇒q”⇔“q⇐p”; (2)传递性:若 p 是 q 的充分(必要)条件,q 是 r 的充分(必要) 条件,则 p 是 r 的充分(必要)条件. 注意区分“p 是 q 的充分不必要条件”与“p 的一个充分不必 要条件是 q”两者的不同,前者是“p⇒q”而后者是“q⇒p”.
【尝试解答】 (1)当 φ=π 时,y=sin(2x+φ)=sin(2x+π)=- sin 2x,此时曲线 y=sin(2x+φ)必过原点,但曲线 y=sin(2x+φ)过 原点时,φ 可以取其他值,如 φ=0.因此“φ=π”是“曲线 y=sin(2x +φ)过坐标原点”的充分而不必要条件.
(2)若綈 p 是 q 的必要不充分条件,则 q⇒綈 p 但綈 p q,其
高考数学总复习 基础知识名师讲义 第一章 第二节命题及其关系、充分条件与必要条件 理(1)

第二节命题及其关系、充分条件与必要条件1.理解命题的概念.2.了解“若p,则q”形式命题的逆命题、否命题与逆否命题,会分析四种命题的相互关系.3.理解充分条件、必要条件与充要条件的意义.4.会用反证法证明命题知识梳理一、命题用语言、符号或式子表达的可以判断真假的陈述句,叫命题.判断为真的命题是真命题,判断为假的命题是假命题.二、四种命题的形式原命题:若p,则q(p为命题的条件,q为命题的结论).逆命题:若q,则p,即交换原命题的条件和结论.否命题:若綈p,则綈q,即同时否定原命题的条件和结论.逆否命题:若綈q,则綈p,即交换原命题的条件、结论之后,同时否定它们.三、四种命题的关系四、四种命题的真假的关系若两个命题互为逆否命题,则它们有________的真假性.若两个命题为互逆命题或互否命题,则它们的真假性___.在四种形式的命题中真命题的个数只能为0或2或4.五、用推出符号“⇒”概括充分条件、必要条件、充要条件若p⇒q,q p,则p是q的充分不必要条件.若p q,q⇒p,则p是q的______________________条件.若p⇒q,q⇒p,则p是q的_______________________条件.若p q,q p,则p是q的______________________条件.六、用反证法证明命题的一般步骤1.假设命题的结论不成立,即假设结论的反面成立.2.从这个假设出发,经过正确的逻辑推理,得出矛盾.3.由矛盾判定假设不成立,从而肯定命题的结论成立.出现矛盾的几种常见形式有:(1)与定义、定理、公理矛盾;(2)与已知条件矛盾;(3)与假设矛盾;(4)自相矛盾.基础自测1.(2013·北京西城区模拟)命题“若a>b,则a+1>b”的逆否命题是( )A.若a+1≤b,则a>bB.若a+1<b,则a>bC.若a+1≤b,则a≤bD.若a+1<b,则a<b解析:逆否命题为“若a+1≤b,则a≤b”.答案:C2.(2013·深圳模拟)已知b,c是平面α内的两条直线,则“直线a⊥α”是“直线a⊥b,直线a⊥c”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:依题意,由a⊥α,b⊂α,c⊂α,得a⊥b,a⊥c;反过来,由a⊥b,a⊥c不能得出a⊥α,因为直线b,c可能是平面α内的两条平行直线.综上所述,“直线a⊥α”是“直线a⊥b,直线a⊥c”的充分不必要条件,选A.答案:A3.(2013·黄冈模拟)已知命题p:x2-3<0;命题q:log2x2>1,则命题p是命题q的( ) A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:由x2-3<0得-3<x<3,log2x2>1得x>2或x<- 2.∴p既不是q的充分条件,也不是q的必要条件.答案:D1.(2013·福建卷)已知集合A={1,a},B={1,2,3},则“a=3”是“A⊆B”的( ) A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:a=3⇒A⊆B,A⊆B⇒a=2或a=3.因此“a=3”是“A⊆B”的充分不必要条件.答案:A2.(2013·北京卷)“φ=π”是“曲线y=sin(2x+φ)过坐标原点”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:当φ=π时,y=sin(2x+φ)=-sin 2x过原点.当曲线过原点时,φ=kπ,k∈Z,不一定有φ=π. ∴“φ=π”是“曲线y=sin(2x+φ)过原点”的充分不必要条件.答案:A1.(2012·江门调研)已知命题p:“s in α=sin β且cos α=cos β”,命题q:“α=β”,则命题p是命题q的( )A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件解析:若“α=β”,则有“sin α=sin β且cos α=cos β”,反之若“sin α=sin β且cos α=cos β”,则有“α=2kπ+β(k∈Z)”,∴p是q的必要不充分条件.故选A.答案:A2.(2013·汕尾二模)设向量a=(1,x),b=(x,4),则“x=2”是“a∥b”的( ) A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:∵向量a=(1,x),b=(x,4),若x=2,则2a=b,∴a∥b.若a∥b,则1x=x4,x=±2.∴“x=2”是“a∥b”的充分不必要条件.故选A.答案:A。
第二节 命题及其关系、充分条件与必要条件

p是q的充 分条件
p⇒q
A⊆B
p是q的必要条件
q⇒p
A⊇B
p是q的充要条件
p⇒q且q⇒p A=B
p是q的充分不必要条件 p⇒q且q p A B
p是q的必要不充分条件 p q且q⇒p A B
p是q的既不充分条件 也不必要条件
p q且q p A B且A B
二、“基本技能”运用好 1.通过对四种命题及其相互关系的复习,提高学生的抽象概
答案:A
[一“点”就过] 判断命题真假的 2 种方法
直接 判断
判断一个命题为真命题,要给出严格的推理 证明;说明一个命题是假命题,只需举出一 个反例即可
根据“原命题与逆否命题同真同假,逆命题 间接 与否命题同真同假”这一性质,当一个命题 判断 直接判断不易进行时,可转化为判断其逆否
命题的真假
[提醒] (1)对于不是“若p,则q”形式的命题,需先改 写;(2)当命题有大前提时,写其他三种命题时需保留大前 提.(3)命题的否命题是条件和结论都否定,而命题的否定是条 件不变只否定结论.
答案:充分不必要 充要
三、“基本思想”很重要 1.利用等价转化思想判断命题真假及充分与必要条件. 2.利用集合思想、数形结合思想解决充分、必要条件的应用
问题.
1.命题“若α=π4,则tan α=1”的逆否命题是
()
A.若α≠π4,则tan α≠1
B.若α=π4,则tan α≠1
C.若tan α≠1,则α≠π4
答案:C
3.(2020·广东中山一中第一次统测)下列命题中为真命题的是
A.命题“若x>y,则x>|y|”的逆命题
()
B.命题“若x>1,则x2>1”的否命题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
考纲 要求
1.理解命题的概念 2.了解“若p,则q”形式的命题的逆命题、否命题与逆 否命题,会分析四种命题的相互关系 3.理解必要条件、充分条件与充要条件的意义
考情 播报
1.充分条件、必要条件、命题真假的判断是近几年高 考命题的热点 2.常和数学其他知识相结合考查,在知识的交汇处命题 3.题型主要以选择题为主,属中低档题
1 a 1 4
故“a=1”是“直线l1:ax+2y-1=0与直线l2:x+(a+1)y+4=0平 行”的充分不必要条件.
好好学习天天向上!
解析:根据逆否命题的定义,命题“若 m>0,则方程 x2+x -m=0 有实根”的逆否命题是“若方程 x2+x-m=0 没有实根, 则 m≤0”.故选 D.
答案:D
考点2 充分条件、必要条件的判断
高频考点 通关
【考情】充分条件、必要条件以其独特的表达形式成为高考命
题的亮点.常以选择题、填空题的形式出现,作为一个重要载体,
【特别提醒】解答充分条件、必要条件的判断题,必须从正、 逆两个方面进行判断.
【通关题组】
1.(2014·天津模拟)“x>1”是“|x|>1”的( )
A.充分不必要条件
B.必要不充分条件
C.充分必要条件
D.既不充分又不必要条件
【解析】选A.由x>1可得|x|>1,而由|x|>1得x>1或x<-1,故
22
2
线与圆相切,该命题正确.
(2)选A.由已知条件可以判断原命题为真,所以它的逆否命题也
是真;而它的逆命题为真,所以它的否命题亦为真,故选A.
【规律方法】 1.书写否命题和逆否命题的注意事项 (1)一些常见词语及其否定表示:
词语 否定
是 不是
都是 不都是
都不是
至少一 个是
等于 不等于
大于 不大于
实数解”的( )
A.充分不必要条件 B.充要条件
C.必要不充分条件 D.既不充分也不必要条件
【解析】选A.一元二次方程x2+x+m=0有实数解时m满足1-4m≥0,
即m≤ 1 ,故m< 1 ⇒m≤ 1 ;反之不成立,所以“m< 1 ”是
4
4
4
4
“一元二次方程x2+x+m=0有实数解”的充分不必要条件.
“x>1”是“|x|>1”的充分不必要条件.
2.(2014·浙江高考)已知i是虚数单位,a,b∈R,则“a=b=1”是 “(a+bi)2=2i”的 ( ) A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件
【解析】选A.当a=b=1时,(a+bi)2=(1+i)2=2i,反过来
(2)(2013·陕西高考)设a,b为向量,则“|a·b|=|a||b|”是 “a∥b”的( ) A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件
(2)选C.设向量a与b的夹角为θ.由|a·b|=||a |·|b|cosθ| =|a||b| ,得|cos θ|=1,即cos θ=±1,所以θ=0或π,能够推 得a∥b,显然,反之也能够成立. 故“|a·b|=|a||b|”是“a∥b”的充分必要条件.
答案:A
3.设a∈R,则“a=1”是“直线l1:ax+2y-1=0与直线 l2:x+(a+1)y+4=0平行”的( ) A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件
【解析】选A.“直线l1:ax+2y-1=0与直线l2 :x+(a+1)y+4=0平 行”的充要条件是: 由 a 2 1, 解得a=-2或1.
考查的数学知识面很广,几乎涉及数学知识的各个方面,如函数、
不等式、三角、平面向量、解析几何、立体几何等.
充要条件的三种判断方法 (1)定义法:根据 p⇒q,q⇒p 进行判断. (2)集合法:根据 p,q 成立的对应的集合之间的包含关系进 行判断. (3)等价转化法:根据一个命题与其逆否命题的等价性,把判 断的命题转化为其逆否命题进行判断.这个方法特别适合以否定 形式给出的问题,如“xy≠1”是“x≠1 或 y≠1”的何种条件, 即可转化为判断“x=1 且 y=1”是“xy=1”的何种条件.
【知识梳理】 1.命题 用语言、符号或式子表达的,可以_判__断__真__假__的陈述句叫做命题. 其中_判__断__为__真__的语句叫做真命题,_判__断__为__假__的语句叫做假命 题.
2.四种命题及其相互关系 (1)四种命题间的相互关系:
若q,则p
若p,则q
若q,则p
(2)四种命题中的等价关系:原命题等价于_逆__否__命__题__,否命题等价 于_逆__命__题__,在四种形式的命题中真命题的个数只能是0或2或4.
【规范解答】(1)选C.命题①由球的体积公式可知,一个球的
半径缩小到原来的 1 ,则其体积缩小到原来的 1 ,正确;命
2
8
题②两组数据的平均数相等,若其离散程度不同,则它们的标
准差也不相等,故该命题错误;命题③圆心(0,0)到直线
x+y+1=0的距离 d 1 2 , 与圆x2+y2= 1 的半径相等,故直
(a+bi)2=a2-b2+2abi=2i,
则
ìïïíïïî
a 2-b2 2ab =
= 2,
0,
解得
ìïïíïïî
a b
= =
1, 1
或
ìïïíïïî
a b
= =
-1, 所以“a=b=1”是
-1,
“(a+bi)2=2i”的充分不必要条件.
【加固训练】
1.m< 1
4
”是“一元二次方程x2+x+m=0有
(2)否定的方法: 在根据原命题构造其否命题和逆否命题时,首先要把条件和结 论分清楚,其次把其中的关键词搞清楚.注意其中易混的关键词, 如“都不是”和“不都是”,其中“都不是”是指的一个也不 是,“不都是”指的是其中有些不是.
2.命题真假的判断方法 (1)联系已有的数学公式、定理、结论进行正面直接判断. (2)利用原命题和其逆否命题的等价关系进行判断.
解析:根据逆否命题的定义可以排除 A,D,因为 x2-3x- 4=0,所以 x=4 或-1,故原命题为假命题,即逆否命题为假命 题.
答案:C
5.命题“若x2-2x-3>0,则x>3或x<-1”的逆否命题
是
.
【解析】因为x>3或x<-1的否定是x≥-1且x≤3,即-1≤x≤3,所
以原命题的逆否命题是“若-1≤x≤3,则x2-2x-3≤0”.
【解析】选A.对于①,因为原命题等价于逆否命题,所以①是真 命题;对于②,由充分、必要条件的定义知②是真命题;对于③, 由充要条件的意义知,③是真命题;对于④,“若p,则q”的否命 题是“若﹁p,则﹁q”,所以④是假命题.
2.“x>2”是“x2>4”的( )
A.充分不必要条件 B.必要不充分条件
2.设 a,b 是非零向量,“a·b=|a||b|”是“a∥b”的( )
A.充分而不必要条件 B.必要而不充分条件
C.充分必要条件
D.既不充分也不必要条件
解析:a·b=|a||b|cos〈a,b〉.而当 a∥b 时,〈a,b〉还可能 是 π,此时 a·b=-|a||b|,故“a·b=|a||b|”是“a∥b”的充分而不 必要条件.
A.①②③ B.①② C.①③ D.②③
(2)(2014·陕西高考)原命题为“若
an
+ an+1 2
<a n
,
n∈N+,
则{an}为递减数列”,关于其逆命题,否命题,逆否命题
真假性的断依次如下,正确的是( )
A.真,真,真
B.假,假,真
C.真,真,假
D.假,假,假
【解题视点】(1)命题①,用球的体积和半径的关系进行判断, 命题②,用样本平均数、样本标准差的概念进行判断,命题③, 用直线和圆的位置关系进行判断. (2)因为原命题和其逆否命题同真假,逆命题和否命题同真假, 所以只要判断原命题和它的逆命题的真假即可.
答案:若-1≤x≤3,则x2-2x-3≤0
考点1 四种命题及其相互关系
【典例1】(1)(2013·天津高考)已知下列三个命题:
①若一个球的半径缩小到原来的 1 ,则其体积缩小到原来的 1 ;
2
8
②若两组数据的平均数相等,则它们的标准差也相等;
③直线x+y+1=0与圆x2+y2= 1 相切.
2
其中真命题的序号是( )
C.充要条件
D.既不充分也不必要条件
【解析】选A.显然,若x>2,则x2>4,但反之不成立.故选A.
3.给出命题:“若实数x,y满足x2+y2=0,则x=y=0”,在它的逆命
题、否命题、逆否命题中,真命题的个数是( )
A.0个
B.1个 C.2个 D.3个
【解析】选D.原命题显然正确,其逆命题为:若x=y=0,则
3.充要条件 (1)相关概念:
若p⇒q,则p是q的_充__分__条件,q是p的_必__要__条件
p是q的_充__分__不__必__要__条件
p⇒q且q p
p是q的_必__要__不__充__分__条件
p q且q⇒p
p是q的_充__要__条件
p⇔q
p是q的_既__不__充__分__也__不__必__要__条件
p q且q p
(2)集合与充要条件: