2011-2012学年四川省成都市嘉祥外国语学校九年级(下)月考数学试卷(3月份)
2024届四川省成都嘉祥外国语校中考数学模拟试题含解析

2024学年四川省成都嘉祥外国语校中考数学模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如图,从正方形纸片的顶点沿虚线剪开,则∠1的度数可能是( )A .44B .45C .46D .472.对于实数x ,我们规定[x]表示不大于x 的最大整数,如[4]=4,[3]=1,[﹣2.5]=﹣3.现对82进行如下操作:821第次−−−−−→ [8282⎡⎤⎢⎥⎣⎦]=92第次−−−−−→ [93]=33第次−−−−−→ [33]=1,这样对82只需进行3次操作后变为1,类似地,对121只需进行多少次操作后变为1( )A .1B .2C .3D .43.如图 1 是某生活小区的音乐喷泉, 水流在各个方向上沿形状相同的抛物线路径落下,其中一个喷水管喷水的最大高度为 3 m ,此时距喷水管的水平距离为 1 m ,在如图 2 所示的坐标系中,该喷水管水流喷出的高度y (m )与水平距离x (m )之间的函数关系式是( )A .()213y x =--+B .()2213y x =-+ C .()2313y x =-++ D .()2313y x =--+ 4.下列每组数分别是三根小木棒的长度,用它们能摆成三角形的是( )A .3cm ,4cm ,8cmB .8cm ,7cm ,15cmC .13cm ,12cm ,20cmD .5cm ,5cm ,11cm5.设a,b是常数,不等式1xa b+>的解集为15x<,则关于x的不等式0bx a->的解集是()A.15x>B.15x<-C.15x>-D.15x<6.在数轴上表示不等式2(1﹣x)<4的解集,正确的是()A.B.C.D.7.如图,将△ABC绕点B顺时针旋转60°得△DBE,点C的对应点E给好落在AB的延长线上,连接AD,下列结论不一定正确的是()A.AD∥BC B.∠DAC=∠E C.BC⊥DE D.AD+BC=AE8.为了开展阳光体育活动,某班计划购买毽子和跳绳两种体育用品,共花费35元,毽子单价3元,跳绳单价5元,购买方案有()A.1种B.2种C.3种D.4种9.y=(m﹣1)x|m|+3m表示一次函数,则m等于()A.1 B.﹣1 C.0或﹣1 D.1或﹣110.已知二次函数y=ax2+bx+c的图象如图所示,有以下结论:①a+b+c<0;②a﹣b+c>1;③abc>0;④4a﹣2b+c <0;⑤c﹣a>1,其中所有正确结论的序号是()A.①②B.①③④C.①②③⑤D.①②③④⑤二、填空题(共7小题,每小题3分,满分21分)11.若关于x的方程2x m2x22x++=--有增根,则m的值是▲12.(2017黑龙江省齐齐哈尔市)如图,在等腰三角形纸片ABC中,AB=AC=10,BC=12,沿底边BC上的高AD剪成两个三角形,用这两个三角形拼成平行四边形,则这个平行四边形较长的对角线的长是______.13.分解因式:mx2﹣4m=_____.14.若x=﹣1是关于x的一元二次方程x2+3x+m+1=0的一个解,则m的值为______.15.若不等式组220x ab x->⎧⎨->⎩的解集为11x-<<,则2009()a b+=________.16.如图,在四边形ABCD中,∠B=∠D=90°,AB=3,BC=2,tanA=43,则CD=_____.17.如图,在△ABC中,DE∥BC,EF∥AB.若AD=2BD,则CFBF的值等于_____三、解答题(共7小题,满分69分)18.(10分)某翻译团为成为2022年冬奥会志愿者做准备,该翻译团一共有五名翻译,其中一名只会翻译西班牙语,三名只会翻译英语,还有一名两种语言都会翻译.求从这五名翻译中随机挑选一名会翻译英语的概率;若从这五名翻译中随机挑选两名组成一组,请用树状图或列表的方法求该纽能够翻译上述两种语言的概率.19.(5分)某中学响应“阳光体育”活动的号召,准备从体育用品商店购买一些排球、足球和篮球,排球和足球的单价相同,同一种球的单价相同,若购买2个足球和3个篮球共需340元,购买4个排球和5个篮球共需600元.(1)求购买一个足球,一个篮球分别需要多少元?(2)该中学根据实际情况,需从体育用品商店一次性购买三种球共100个,且购买三种球的总费用不超过6000元,求这所中学最多可以购买多少个篮球?20.(8分)如图,Rt ABC中,∠ACB=90°,以BC为直径的⊙O交AB于点D,过点D作⊙O的切线交CB的延长线于点E,交AC于点F.(1)求证:点F是AC的中点;(2)若∠A=30°,AF=3,求图中阴影部分的面积.21.(10分)如图,AB是⊙O的直径,CD切⊙O于点D,且BD∥OC,连接AC.(1)求证:AC是⊙O的切线;(2)若AB=OC=4,求图中阴影部分的面积(结果保留根号和π)22.(10分)如图,四边形ABCD的四个顶点分别在反比例函数myx=与nyx=(x>0,0<m<n)的图象上,对角线BD//y轴,且BD⊥AC于点P.已知点B的横坐标为1.当m=1,n=20时.①若点P的纵坐标为2,求直线AB的函数表达式.②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.23.(12分)如图,在△ABC中,AD=15,AC=12,DC=9,点B是CD延长线上一点,连接AB,若AB=1.求:△ABD的面积.24.(14分)已知:如图,AB为⊙O的直径,C,D是⊙O直径AB异侧的两点,AC=DC,过点C与⊙O相切的直线CF交弦DB的延长线于点E.(1)试判断直线DE与CF的位置关系,并说明理由;(2)若∠A=30°,AB=4,求CD的长.参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解题分析】连接正方形的对角线,然后依据正方形的性质进行判断即可.【题目详解】解:如图所示:∵四边形为正方形,∴∠1=45°.∵∠1<∠1.∴∠1<45°.故选:A .【题目点拨】本题主要考查的是正方形的性质,熟练掌握正方形的性质是解题的关键.2、C【解题分析】分析:[x]表示不大于x 的最大整数,依据题目中提供的操作进行计算即可.详解:1211211131[]112[]33[]111113===第次第次第次 ∴对121只需进行3次操作后变为1.故选C .点睛:本题是一道关于无理数的题目,需要结合定义的新运算和无理数的估算进行求解.3、D【解题分析】根据图象可设二次函数的顶点式,再将点(0,0)代入即可.【题目详解】解:根据图象,设函数解析式为()2y a x h k =-+由图象可知,顶点为(1,3)∴()213y a x =-+,将点(0,0)代入得()20013a =-+解得3a =-∴()2313y x =--+故答案为:D .【题目点拨】本题考查了是根据实际抛物线形,求函数解析式,解题的关键是正确设出函数解析式.4、C【解题分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【题目详解】A 、3+4<8,不能组成三角形;B 、8+7=15,不能组成三角形;C 、13+12>20,能够组成三角形;D 、5+5<11,不能组成三角形.故选:C .【题目点拨】本题考查了三角形的三边关系,关键是灵活运用三角形三边关系.5、C【解题分析】 根据不等式10x a b+>的解集为x <15 即可判断a,b 的符号,则根据a,b 的符号,即可解不等式bx-a<0 【题目详解】 解不等式10x a b+>, 移项得:1-x a b> ∵解集为x<15∴1-5a b = ,且a<0 ∴b=-5a>0,15 15a b=- 解不等式0bx a ->,移项得:bx >a两边同时除以b 得:x >a b , 即x >-15故选C【题目点拨】此题考查解一元一次不等式,掌握运算法则是解题关键6、A【解题分析】根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得不等式解集,然后得出在数轴上表示不等式的解集. 2(1– x )<4去括号得:2﹣2x<4移项得:2x >﹣2,系数化为1得:x>﹣1,故选A.“点睛”本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.7、C【解题分析】利用旋转的性质得BA=BD,BC=BE,∠ABD=∠CBE=60°,∠C=∠E,再通过判断△ABD为等边三角形得到AD=AB,∠BAD=60°,则根据平行线的性质可判断AD∥BC,从而得到∠DAC=∠C,于是可判断∠DAC=∠E,接着利用AD=AB,BE=BC可判断AD+BC=AE,利用∠CBE=60°,由于∠E的度数不确定,所以不能判定BC⊥DE.【题目详解】∵△ABC绕点B顺时针旋转60°得△DBE,点C的对应点E恰好落在AB的延长线上,∴BA=BD,BC=BE,∠ABD=∠CBE=60°,∠C=∠E,∴△ABD为等边三角形,∴AD=AB,∠BAD=60°,∵∠BAD=∠EBC,∴AD∥BC,∴∠DAC=∠C,∴∠DAC=∠E,∵AE=AB+BE,而AD=AB,BE=BC,∴AD+BC=AE,∵∠CBE=60°,∴只有当∠E=30°时,BC⊥DE.故选C.【题目点拨】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等边三角形的性质.8、B【解题分析】首先设毽子能买x个,跳绳能买y根,根据题意列方程即可,再根据二元一次方程求解.【题目详解】解:设毽子能买x 个,跳绳能买y 根,根据题意可得:3x+5y=35, y=7-35x , ∵x 、y 都是正整数,∴x=5时,y=4;x=10时,y=1;∴购买方案有2种.故选B .【题目点拨】本题主要考查二元一次方程的应用,关键在于根据题意列方程.9、B【解题分析】由一次函数的定义知,|m|=1且m-1≠0,所以m=-1,故选B.10、C【解题分析】根据二次函数的性质逐项分析可得解.【题目详解】解:由函数图象可得各系数的关系:a <0,b <0,c >0,则①当x=1时,y=a+b+c <0,正确;②当x=-1时,y=a-b+c >1,正确;③abc >0,正确;④对称轴x=-1,则x=-2和x=0时取值相同,则4a-2b+c=1>0,错误;⑤对称轴x=-2b a=-1,b=2a ,又x=-1时,y=a-b+c >1,代入b=2a ,则c-a >1,正确. 故所有正确结论的序号是①②③⑤.故选C二、填空题(共7小题,每小题3分,满分21分)11、1.【解题分析】方程两边都乘以最简公分母(x -2),把分式方程化为整式方程,再根据分式方程的增根就是使最简公分母等于1的未知数的值求出x 的值,然后代入进行计算即可求出m 的值:方程两边都乘以(x -2)得,2-x -m=2(x -2).∵分式方程有增根,∴x -2=1,解得x=2.∴2-2-m=2(2-2),解得m=1.12、10,273,413.【解题分析】解:如图,过点A 作AD ⊥BC 于点D ,∵△ABC 边AB =AC =10,BC =12,∴BD =DC =6,∴AD =8,如图①所示:可得四边形ACBD 是矩形,则其对角线长为:10;如图②所示:AD =8,连接BC ,过点C 作CE ⊥BD 于点E ,则EC =8,BE =2BD =12,则BC =413;如图③所示:BD =6,由题意可得:AE =6,EC =2BE =16,故AC =22616+=273.故答案为10,273,413.13、m (x+2)(x ﹣2)【解题分析】提取公因式法和公式法相结合因式分解即可.【题目详解】原式()24,m x =- ()()22.m x x =+-故答案为()()22.m x x +-【题目点拨】本题主要考查因式分解,熟练掌握提取公因式法和公式法是解题的关键.分解一定要彻底.14、1【解题分析】试题分析:将x=﹣1代入方程得:1﹣3+m+1=0,解得:m=1.考点:一元二次方程的解.15、-1【解题分析】分析:解出不等式组的解集,与已知解集-1<x<1比较,可以求出a、b的值,然后相加求出2009次方,可得最终答案.详解:由不等式得x>a+2,x<12b,∵-1<x<1,∴a+2=-1,12b=1∴a=-3,b=2,∴(a+b)2009=(-1)2009=-1.故答案为-1.点睛:本题是已知不等式组的解集,求不等式中另一未知数的问题.可以先将另一未知数当作已知处理,求出解集与已知解集比较,进而求得零一个未知数.16、6 5【解题分析】延长AD和BC交于点E,在直角△ABE中利用三角函数求得BE的长,则EC的长即可求得,然后在直角△CDE中利用三角函数的定义求解.【题目详解】如图,延长AD、BC相交于点E,∵∠B=90°,∴4 tan3BEAAB==,∴BE=44 3AB⋅=,∴CE=BE-BC=2,225AB BE+=,∴3 sin5ABEAE==,又∵∠CDE=∠CDA=90°,∴在Rt△CDE中,sinCDECE =,∴CD=36sin255 CE E⋅=⨯=.17、1 2【解题分析】根据平行线分线段成比例定理解答即可.【题目详解】解:∵DE∥BC,AD=2BD,∴123 CE CE BDAC AE BD BD===+,∵EF∥AB,∴132 CF CE CE CEBF AE AC CE CE CE====--,故答案为1 2 .【题目点拨】本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例.三、解答题(共7小题,满分69分)18、(1)45;(2)710.【解题分析】(1)直接利用概率公式计算;(2)只会翻译西班牙语用A表示,三名只会翻译英语的用B表示,一名两种语言都会翻译用C表示,画树状图展示所有20种等可能的结果数,找出该组能够翻译上述两种语言的结果数,然后根据概率公式求解.【题目详解】解:(1)从这五名翻译中随机挑选一名会翻译英语的概率=45;(2)只会翻译西班牙语用A表示,三名只会翻译英语的用B表示,一名两种语言都会翻译用C表示画树状图为:共有20种等可能的结果数,其中该组能够翻译上述两种语言的结果数为14,所以该纽能够翻译上述两种语言的概率=147 2010=.【题目点拨】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.19、(1)一个足球需要50元,一个篮球需要80元;(2)1个.【解题分析】(1)设购买一个足球需要x元,则购买一个排球也需要x元,购买一个篮球y元,根据购买2个足球和3个篮球共需340元,4个排球和5个篮球共需600元,可得出方程组,解出即可;【题目详解】(1)设购买一个足球需要x元,则购买一个排球也需要x元,购买一个篮球y元,由题意得:,解得:.答:购买一个足球需要50元,购买一个篮球需要80元;(2)设该中学购买篮球m个,由题意得:80m+50(100﹣m)≤6000,解得:m≤1,∵m是整数,∴m最大可取1.答:这所中学最多可以购买篮球1个.【题目点拨】本题考查了一元一次不等式及二元一次方程组的知识,解答本题的关键是仔细审题,得到等量关系及不等关系,难度一般.20、(1)见解析;(2)31 26π-【解题分析】(1)连接OD、CD,如图,利用圆周角定理得到∠BDC=90°,再判定AC为⊙O的切线,则根据切线长定理得到FD=FC,然后证明∠3=∠A得到FD=FA,从而有FC=FA;(2)在Rt△ACB中利用含30度的直角三角形三边的关系得到BC=33AC=2,再证明△OBD为等边三角形得到∠BOD=60°,接着根据切线的性质得到OD⊥EF,从而可计算出DE的长,然后根据扇形的面积公式,利用S阴影部分=S△ODE-S扇形BOD进行计算即可.【题目详解】(1)证明:连接OD、CD,如图,∵BC为直径,∴∠BDC=90°,∵∠ACB=90°,∴AC为⊙O的切线,∵EF为⊙O的切线,∴FD=FC,∴∠1=∠2,∵∠1+∠A=90°,∠2+∠3=90°,∴∠3=∠A,∴FD=FA,∴FC=FA,∴点F是AC中点;(2)解:在Rt△ACB中,3,而∠A=30°,∴∠CBA=60°,BC=33AC=2,∵OB=OD,∴△OBD为等边三角形,∴∠BOD=60°,∵EF为切线,∴OD⊥EF,在Rt△ODE中,DE=3OD=3,∴S阴影部分=S△ODE﹣S扇形BOD=12×1×3﹣2601360π⋅⋅=32﹣16π.【题目点拨】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.简记作:见切点,连半径,见垂直.也考查了圆周角定理和扇形的面积公式.21、(1)证明见解析;(2)23 3π-;【解题分析】(1)连接OD,先根据切线的性质得到∠CDO=90°,再根据平行线的性质得到∠AOC=∠OBD,∠COD=∠ODB,又因为OB=OD,所以∠OBD=∠ODB,即∠AOC=∠COD,再根据全等三角形的判定与性质得到∠CAO=∠CDO=90°,根据切线的判定即可得证;(2)因为AB=OC=4,OB=OD,Rt△ODC与Rt△OAC是含30°的直角三角形,从而得到∠DOB=60°,即△BOD为等边三角形,再用扇形的面积减去△BOD的面积即可.【题目详解】(1)证明:连接OD,∵CD与圆O相切,∴OD⊥CD,∴∠CDO=90°,∵BD∥OC,∴∠AOC=∠OBD,∠COD=∠ODB,∵OB=OD,∴∠OBD=∠ODB,∴∠AOC=∠COD,在△AOC和△DOC中,OA OD AOC COD OC OC =⎧⎪∠=∠⎨⎪=⎩,∴△AOC ≌△EOC (SAS ),∴∠CAO=∠CDO=90°,则AC 与圆O 相切;(2)∵AB=OC=4,OB=OD ,∴Rt △ODC 与Rt △OAC 是含30°的直角三角形,∴∠DOC=∠COA=60°,∴∠DOB=60°,∴△BOD 为等边三角形,图中阴影部分的面积=扇形DOB 的面积﹣△DOB 的面积, =26021223336023ππ⨯-⨯⨯=-. 【题目点拨】本题主要考查切线的判定与性质,全等三角形的判定与性质,含30°角的直角三角形的性质,扇形的面积公式等,难度中等,属于综合题,解此题的关键在于熟练掌握其知识点.22、(1)①132y x =-+;②四边形ABCD 是菱形,理由见解析;(2)四边形ABCD 能是正方形,理由见解析,m+n=32. 【解题分析】(1)①先确定出点A ,B 坐标,再利用待定系数法即可得出结论;②先确定出点D 坐标,进而确定出点P 坐标,进而求出PA ,PC ,即可得出结论;(2)先确定出B (1,4m ),D (1,4n ),进而求出点P 的坐标,再求出A ,C 坐标,最后用AC=BD ,即可得出结论. 【题目详解】(1)①如图1,4m =,∴反比例函数为4y x =, 当4x =时,1y =,()4,1B ∴,当2y =时,42x∴=, 2x ∴=,()2,2A ∴,设直线AB 的解析式为y kx b =+,∴ 2241k b k b +=⎧⎨+=⎩, ∴ 123k b ⎧=-⎪⎨⎪=⎩,∴直线AB 的解析式为132y x =-+; ②四边形ABCD 是菱形,理由如下:如图2,由①知,()4,1B ,//BD y 轴,()4,5D ∴,点P 是线段BD 的中点,()4,3P ∴,当3y =时,由4y x =得,43x =, 由20y x =得,203x =, 48433PA ∴=-=,208433PC =-=, PA PC ∴=,PB PD =,∴四边形ABCD 为平行四边形,BD AC ⊥,∴四边形ABCD 是菱形;(2)四边形ABCD 能是正方形,理由:当四边形ABCD 是正方形,记AC ,BD 的交点为P ,BD AC ∴=,当4x =时,4m m y x ==,4n n y x == 4,4m B ⎛⎫∴ ⎪⎝⎭,4,4n D ⎛⎫ ⎪⎝⎭, 4,8m n P +⎛⎫∴ ⎪⎝⎭, 8(m A m n ∴+,)8m n +,8(n C m n +,)8m n + AC BD =,∴ 8844n m n m m n m n -=-++, 32m n ∴+=.【题目点拨】此题是反比例函数综合题,主要考查了待定系数法,平行四边形的判定,菱形的判定和性质,正方形的性质,判断出四边形ABCD 是平行四边形是解本题的关键.23、2.【解题分析】试题分析:由勾股定理的逆定理证明△ADC 是直角三角形,∠C=90°,再由勾股定理求出BC ,得出BD ,即可得出结果.解:在△ADC 中,AD=15,AC=12,DC=9,AC2+DC2=122+92=152=AD2,即AC2+DC2=AD2,∴△ADC是直角三角形,∠C=90°,在Rt△ABC中,BC===16,∴BD=BC﹣DC=16﹣9=7,∴△ABD的面积=×7×12=2.24、(1)见解析;(2)43π.【解题分析】(1)先证明△OAC≌△ODC,得出∠1=∠2,则∠2=∠4,故OC∥DE,即可证得DE⊥CF;(2)根据OA=OC得到∠2=∠3=30°,故∠COD=120°,再根据弧长公式计算即可.【题目详解】解:(1)DE⊥CF.理由如下:∵CF为切线,∴OC⊥CF,∵CA=CD,OA=OD,OC=OC,∴△OAC≌△ODC,∴∠1=∠2,而∠A=∠4,∴∠2=∠4,∴OC∥DE,∴DE⊥CF;(2)∵OA=OC,∴∠1=∠A=30°,∴∠2=∠3=30°,∴∠COD=120°,∴120241803CDlππ⨯==.【题目点拨】本题考查了全等三角形的判定与性质与弧长的计算,解题的关键是熟练的掌握全等三角形的判定与性质与弧长的公式.。
成都嘉祥外国语学校成华分校九年级数学下册第三单元《锐角三角函数》测试(答案解析)

一、选择题1.如图,为方便行人推车过天桥,市政府在10m 高的天桥两端分别修建了50m 长的斜道.用科学计算器计算这条斜道的倾斜角,下列按键顺序正确的是( )A .sin0.2=B .2ndF sin0.2=C .tan0.2=D .2ndF tan0.2= 2.菱形的周长为8cm ,高为1cm ,则该菱形两邻角度数比为( )A .5:1B .4:1C .3:1D .2:1 3.小明在学完《解直角三角形》一章后,利用测角仪和校园旗杆的拉绳测量校园旗杆的高度,如图,旗杆PA 的高度与拉绳PB 的长度相等,小明先将PB 拉到'PB 的位置,测得(''PB C a B C ∠=为水平线),测角仪/B D 的高度为1米,则旗杆PA 的高度为( )A .11sin a +米B .11cos a -米C .11sin a -米D .11cos a +米 4.如图,四边形 ABCD 中,BD 是对角线,AB=BC ,∠ABC=60°,CD=4,∠ADC=60°,则△BCD 的面积为( )A .43B .8C .23+4D .36 5.公元三世纪,我国汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”如图所示,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形.如果大正方形的面积是125,小正方形面积是25,则()2sin cos θθ-=( )A .15B .55C .355D .956.如图,在平面直角坐标系中,边长为2的正方形ABCD 的对角线AC 在x 轴上,点A 的坐标是()1,0,把正方形ABCD 绕原点O 旋转180︒,则点B 的对应点B '的坐标是( )A .(-1,-1)B .()2,1C .()2,1--D .()2,1-- 7.如图,ABC ∆的三个项点均在格点上,则tan A 的值为( )A .12B .55C .2D .2558.如图,在△ABC 中,sinB=13, tanC=2,AB=3,则AC 的长为( )A .2B .5C .5D .29.如图,在平面直角坐标系中,等边三角形OAB 的边长为4,点A 在第二象限内,将OAB 沿射线AO 平移,平移后点A '的横坐标为43,则点B ′的坐标为( )A .(3,2)-B .(63,3)-C .()6,2-D .(63,2)-10.在Rt △ABC 中,若∠ACB =90°,tanA =12,则sinB =( ) A .12 B .32 C .55 D .25511.如图,Rt △ABC 中,AB =4,BC =2,正方形ADEF 的边长为2,F 、A 、B 在同一直线上,正方形ADEF 向右平移到点F 与B 重合,点F 的平移距离为x ,平移过程中两图重叠部分的面积为y ,则y 与x 的关系的函数图象表示正确的是( )A .B .C .D .12.在Rt △ABC 中,∠C =90°,AB =13,AC =5,则sin A 的值为( )A .513B .1213C .512D .125二、填空题13.如图,点O 为正八边形ABCDEFGH 的中心,连接DA 、DB ,则=ADB ∠______度;若4OA =,则该正八边形的面积为______.14.01sin 4513(32018)6tan 302-++︒︒=________. 15.如图,梯形ABCD 是拦水坝的横断面图,(图中1:3i =DE 与水平宽度CE 的比),60B ∠=,6AB =,4=AD ,拦水坝的横断面ABCD 的面积是________3 1.732=2 1.414=)16.如图 1 的矩形ABCD 中,有一点E 在AD 上,现以BE 为折线将点A 往右折,如图2所示,再过点A 作 AF CD ⊥于点F ,如图3所示,若123,26,60AB BC BEA ︒∠===, 则图3中AF 的长度为____.17.如图所示,AOB ∠是放置在正方形网格中的一个角,则sin AOB ∠的值是________.18.如图,我市在建高铁的某段路基横断面为梯形ABCD ,DC ∥AB ,BC 长为6米,坡角β为45°,AD 的坡角α为30°,则AD 的长为 ________ 米 (结果保留根号)19.如图,已知直线l :y =3x ,过点A (0,1)作y 轴的垂线交直线l 于点B ,过点B 作直线l 的垂线交y 轴于点A 1;过点A 1作y 轴的垂线交直线l 于点B 1,过点B 1作直线l 的垂线交y 轴于点A 2;…;按此作法继续下去,则点A 4的坐标为_____.20.如图,在ABC ∆中,3AB AC cm ==,120A ∠=︒,AB 的垂直平分线分别交,AB BC 于,D E ,则EC 的长为_________.三、解答题21.如图,在A 处的正东方向有--港口B .某巡逻艇从A 处沿着北偏东60︒方向巡逻,到达C 处时接到命令,立刻在C 处沿东南方向以20海里/时的速度行驶3小时到达港口B .求A B ,间的距离.22.计算(1)cos 451-sin60︒︒(2)(12)-2-(π-3.14)0-│tan60°-2│ 23.我市里运河有一座人行天桥如图所示,天桥高为6米,坡面BC 的坡度为1:1,文化墙PM 在天桥底部正前方8米处(PB 的长),为了方便行人推车过天桥,有关部门决定降低坡度,使新坡面的坡度为1:3.有关部门规定,文化墙距天桥底部小于3米时应拆除,天桥改造后,该文化墙PM 是否需要拆除?请说明理由.(参考数据:2=1.414,3=1.732)24.理解写作如下图1,在探究锐角A ∠的对边与直角三角形斜边之比的数学实验中包含两个环节,一是通过在A ∠的边AB 上取不同的点B ', B '',分别作高B C '',B C ''''利用三角形相似,可以说明 B C B C A AB B ''''''=''',即A ∠的对边与斜边的比值固定,与点B '的位置无关. 二是说明A ∠的度数发生变化时,A ∠的对边与斜边的比值也会发生变化.请根据下图2简要说明做法并证明第二个环节的结论,并在图3中再构造一种思路证明此结论.25.计算或解方程:(111754640.583⎛ ⎝ (2360245cos 60︒+︒-︒(3)2430x x -+=26.解直角三角形:在Rt ABC ∆中,90,,C A B C ∠=︒∠∠∠,的对边分别为,,a b c ,已知5,60a B =∠=.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】 先利用正弦的定义得到10sin 0.250A ==,然后利用计算器求锐角∠A . 【详解】∵ 10sin 0.250A ==, ∴ 用计算器求值的顺序为20.2ndFsin =,故选:B .【点睛】本题考查了锐角三角函数及计算器的应用,掌握科学计算器的应用是解决本题的关键. 2.A解析:A【分析】先根据菱形的性质求出菱形的边长,再根据菱形的高与边长的关系求出∠A ,进而可求出∠ADC ,从而可得答案.【详解】解:如图,DE 是菱形ABCD 的高,DE=1cm ,∵菱形ABCD 的周长是8cm ,∴AD=2cm ,在Rt △ADE 中,∵DE=12AD ,∴∠A=30°, ∵AB ∥DC ,∴∠A+∠ADC=180°,∴∠ADC=150°,∴∠ADC :∠A=150°:30°=5:1.故选:A .【点睛】本题考查了菱形的性质和30°角的直角三角形的性质,属于基本题型,熟练掌握上述知识是解题的关键.3.C解析:C【分析】设PA=PB=PB′=x ,在RT △PCB′中,根据sin αPC PB =',列出方程即可解决问题. 【详解】解:设PA=PB=PB′=x , 在RT △PCB′中,sin αPC PB =' ∴1sin αx x-= ∴x 1xsin α-=,∴(1-sin α)x=1,∴x=11sin α-. 故选C .【点睛】 本题考查解直角三角形、三角函数等知识,解题的关键是设未知数列方程,属于中考常考题型.4.A解析:A【分析】先证明△ABC 是等边三角形,以C 为圆心,CD 为半径作圆,交AD 边与点M ,可得△CDM是等边三角形,进而得到∆BCM ≅∆ACD ,可得到60BMC ∠=︒,得到BM ∥CD ,过点M 作MH CD ⊥,根据△BCD 的面积等于△CDM 的面积求解即可;【详解】∵BD 是对角线,AB=BC ,∠ABC=60°,∴△ABC 是等边三角形,以C 为圆心,CD 为半径作圆,交AD 边与点M ,延长BC ,交C 于点N ,如图所示,∵∠ADC=60°,CM=CD ,∴△CDM 是等边三角形,∴60MCD ∠=︒,∴∠ACB+∠ACM=∠MCD+∠ACM ,即:∠BCM=∠ACD ,∴∆BCM ≅∆ACD ,∴∠BMC=∠ADC=60°,∴∠BMC=∠MCD ,∴BM ∥CD ,根据平行线间的距离相等得到△BCD 的面积等于△CDM 的面积,过点M 作MH CD ⊥,∵CD=4,∴2==CH HD , ∴tan 602MH MH DH ︒==, ∴23MH =, ∴△△1423432BDC CDM S S ==⨯⨯= 故答案选A .【点睛】本题主要考查了四边形综合,结合等边三角形性质,构造等边△CDM 是解题的关键. 5.A【分析】 根据正方形的面积公式可得大正方形的边长为55,小正方形的边长为5,再根据直角三角形的边角关系列式即可求解. 【详解】 解:∵大正方形的面积是125,小正方形面积是25,∴大正方形的边长为55,小正方形的边长为5,∴55cos 55sin 5θθ-=,∴5cos sin 5θθ-=, ∴()21sin cos 5θθ-=. 故选A .【点睛】 本题考查了解直角三角形、勾股定理的证明和正方形的面积,难度适中,解题的关键是正确得出5cos sin θθ-=. 6.D解析:D【分析】根据题意,画出图形,连接BD ,交x 轴于E ,根据正方形的性质可得AB=2,BD ⊥x 轴,AE=BE ,∠BAE=45°,利用锐角三角函数即可求出AE 和BE ,从而求出OE ,即可求出点B 的坐标,然后根据关于原点对称的两点坐标关系即可求出结论.【详解】解:把正方形ABCD 绕原点O 旋转180︒,如图所示,连接BD ,交x 轴于E∵四边形ABCD 2∴2,BD ⊥x 轴,AE=BE ,∠BAE=45°∴AE=BE=AB·sin ∠BAE=1∴OE=OA +AE=2∴点B 的坐标为(2,1)∴点B 绕点O 旋转180°的对应点B '的坐标(-2,-1)故选D .此题考查的是正方形的性质,锐角三角函数和关于原点对称的两点坐标关系,掌握正方形的性质,锐角三角函数和关于原点对称的两点坐标关系是解题关键.7.A解析:A【分析】连接格点BD,根据格点的长度求出BD、CD边的长度,根据勾股定理证明∠BDC=90°,再计算BDtan A=AD计算即可.【详解】解:如图所示,连接格点BD,根据格点的性质,可得BD=CD=2,BC=2,∴∠BDC=90°,故ABD为在直角三角形,且AD=22,∴BD21tan A===AD222,故选:A.【点睛】本题考查了勾股定理及锐角三角函数的定义,属于基础题,解答本题的关键是掌握格点三角形边长的求解办法.8.B解析:B【分析】过A点作AH⊥BC于H点,先由sin∠B及AB=3算出AH的长,再由tan∠C算出CH的长,最后在Rt△ACH中由勾股定理即可算出AC的长.【详解】解:过A点作AH⊥BC于H点,如下图所示:由1sin=3∠=AHBAB,且=3AB可知,=1AH,由tan =2∠=AH C CH ,且=1AH 可知,12CH =, ∴在Rt ACH ∆中,由勾股定理有:2222151()2=+=+=AC AH CH . 故选:B .【点睛】本题考查了解直角三角形及勾股定理等知识,如果图形中无直角三角形时,可以通过作垂线构造直角三角形进而求解.9.D解析:D【详解】如解图,过点A 作AC x ⊥轴,过点A '作A D x '⊥轴,∵AOB 是等边三角形,∴4AO BO ==,60AOB ∠=︒,∴30AOC ∠=︒,∴·cos 23CO OA AOC ==,2AC =,∴(23,2)A -,∵30AOD AOC ∠'=∠=︒,43OD =,∴·t 3434an A D OD A OD ⨯=∠'==',∴(43,4)A '-,∴点A '是将点A 向右平移63个单位,向下平移6个单位得到的,∴点B '也是将点B 向右平移63个单位,向下平移6个单位得到的,∵()0,4B ,∴B '的坐标为(63,2)-.10.D解析:D【分析】作出草图,根据∠A 的正切值设出两直角边分别为k ,2k ,然后利用勾股定理求出斜边,则∠B 的正弦值即可求出.【详解】解:如图,∵在Rt △ABC 中,∠C =90°,tanA =12, ∴设AC =2k ,BC =k ,则AB 22(2k)k +5,∴sinB =AC AB5k 25. 故选:D .【点睛】考核知识点:勾股定理,三角函数.理解正弦、正切定义是关键.11.B解析:B【分析】分三种情况分析:当0<x≤2时,平移过程中两图重叠部分为Rt △AA'M ;当2<x≤4时,平移过程中两图重叠部分为梯形F'A'MN ;当4<x≤6时,平移过程中两图重叠部分为梯形F'BCN .分别写出每一部分的函数解析式,结合排除法,问题可解.【详解】设AD 交AC 于N ,A D ''交AC 于M ,当0<x ≤2时,平移过程中两图重叠部分为Rt △AA 'M ,∵Rt △ABC 中,AB =4,BC =2,正方形ADEF 的边长为2,AA x '=,∴tan ∠CAB =A M BC AA AB ='', ∴A 'M =12x , 其面积y=12AA A M ''=12x •12x =14x 2, 故此时y 为x 的二次函数,排除选项D ; 当2<x ≤4时,平移过程中两图重叠部分为梯形F 'A 'MN ,AA x '=,2AF x '=-,同理:A 'M =12x ,()122F M x ='-, 其面积y=12AA A M ''-12AF F M ''=12x •12x ﹣12(x ﹣2)•12(x ﹣2)=x ﹣1, 故此时y 为x 的一次函数,故排除选项C .当4<x ≤6时,平移过程中两图重叠部分为梯形F 'BCN ,AF '=x ﹣2,F 'N =12(x ﹣2),F 'B =4﹣(x ﹣2)=6﹣x ,BC =2, 其面积y =12 [12(x ﹣2)+2]×(6﹣x )=﹣14x 2+x +3, 故此时y 为x 的二次函数,其开口方向向下,故排除A ;综上,只有B 符合题意.故选:B .【点睛】本题考查了动点问题的函数图象以及三角函数的知识,数形结合并运用排除法,是解答本题的关键.12.B解析:B【分析】先根据勾股定理求出BC=12,再利用余弦函数的定义即可求解.【详解】解:在Rt △ABC 中,由勾股定理得,BC 22AB AC -12,∴sin A =1213BC AB =, 故选:B .【点睛】 此题考查勾股定理以及锐角三角函数的定义,解题关键在于计算出BC 的长度.二、填空题13.225【分析】连接OAOB 由正八边形的性质求出得到过A 作于K 可证得是等腰直角三角形利用正弦的定义求出AK 由三角形面积公式即可得出答案【详解】解:连接OAOB ∵ABCDEFGH 是正八边形∴∴过A 作于K解析:22.5 322【分析】连接OA 、OB ,由正八边形的性质求出45AOB ∠=︒,得到22.5ADB ∠=︒,过A 作AK OB ⊥于K ,可证得AKO ∆是等腰直角三角形,利用正弦的定义求出AK ,由三角形面积公式即可得出答案.【详解】解:连接OA 、OB ,∵ABCDEFGH 是正八边形,∴360845AOB ∠=︒÷=︒, ∴122.52ADB AOB ∠=∠=︒, 过A 作AK OB ⊥于K ,∴90AKO ∠=︒,∵45AOB ∠=︒,,∴AKO ∆是等腰直角三角形, ∵4OA =, ∴22422AK === ∴114224222OAB S OB AK ∆=⋅=⨯⨯= ∴正八边形ABCDEFGH 8842322OAB S ∆==⨯=故答案为:22.5,322.【点睛】本题考查的是正多边形的有关计算以及锐角三角函数,掌握正多边形的中心角的计算方法、熟记锐角三角函数的定义是解题的关键.14.【分析】先计算特殊角的三角函数值化简绝对值零指数幂再计算实数的混合运算即可得【详解】原式故答案为:【点睛】本题考查了特殊角的三角函数值绝对值零指数幂实数的运算熟记各运算法则是解题关键 解析:3232+ 【分析】先计算特殊角的三角函数值、化简绝对值、零指数幂,再计算实数的混合运算即可得.【详解】 原式2131313)622-++=⨯⨯, 2131322=++ 3232=+,故答案为:32322++. 【点睛】 本题考查了特殊角的三角函数值、绝对值、零指数幂、实数的运算,熟记各运算法则是解题关键. 15.520【分析】过点A 作于点F 利用特殊角的锐角三角函数值和坡度求出AFBFCE 的长把整个梯形分成两个三角形和一个矩形去计算面积【详解】解:如图过点A 作于点F ∵∴∵∴故答案是:520【点睛】本题考查锐角解析:52.0【分析】过点A 作AF BC ⊥于点F ,利用特殊角的锐角三角函数值和坡度求出AF 、BF 、CE 的长,把整个梯形分成两个三角形和一个矩形去计算面积.【详解】解:如图,过点A 作AF BC ⊥于点F ,3sin 60633AF AB =⋅︒=⨯=, 1cos60632BF AB =⋅︒=⨯=, 33DE AF ==,∵3DE EC =, ∴9EC =, ∵1193333222ABF S AF BF =⋅=⨯⨯=, 1127393322CDE S CE DE =⋅=⨯⨯=, 433123ADEF S AD AF =⋅=⨯=,∴9327312330352.0ABCD S =++=≈. 故答案是:52.0.【点睛】本题考查锐角三角函数的实际应用,解题的关键是掌握利用特殊角的锐角三角函数值解直角三角形的方法.16.8【分析】作AH⊥BC于H则四边形AFCH是矩形AF=CHAH=CF在Rt△ABH 中解直角三角形即可解决问题【详解】解:作AH⊥BC于H则四边形AFCH是矩形AF=CH在Rt△ABE中∠BAE=90解析:8【分析】作AH⊥BC于H,则四边形AFCH是矩形,AF=CH,AH=CF. 在Rt△ABH中,解直角三角形即可解决问题.【详解】解:作AH⊥BC于H,则四边形AFCH是矩形,AF=CH.在Rt△ABE中,∠BAE=90°,∠BEA=60°∴∠ABE=180°-∠A-∠BEA=180°-90°-60°=30°由题意得∠ABH=90°-2∠ABE=90°-30°×2=30°在Rt△ABH中,∠ABH=30°,3,BC=26∴BH=AB cos30°332=18∴CH=BC-BH=26-18=8.即AF=8.故答案为8.【点睛】本题考查了翻折变换,矩形的性质及解直角三角形等知识.解题的关键是学会添加辅助线,构造直角三角形来解决问题.17.【分析】由题意可知要求出答案首先需要构造出直角三角形连接AB设小正方形的边长为1可以求出OAOBAB的长度由勾股定理的逆定理可得是直角三角形再根据三角函数的定义可以求出答案【详解】连接AB如图所示:解析:2 2【分析】由题意可知,要求出答案首先需要构造出直角三角形,连接AB,设小正方形的边长为1,可以求出OA、OB、AB的长度,由勾股定理的逆定理可得ABO是直角三角形,再根据三角函数的定义可以求出答案.【详解】连接AB如图所示:设小正方形的边长为1,∴2OA =23+1=10,22BA =3+1=10,222OB =4+2=20,∴ABO 是直角三角形, ∴BA 102sin AOB==OB 220∠=, 故答案为:2. 【点睛】 本题主要考查了勾股定理的逆定理和正弦函数的定义,熟练掌握技巧即可得出答案. 18.【分析】过C 作CE ⊥AB 于EDF ⊥AB 于F 分别在Rt △CEB 与Rt △DFA 中使用三角函数即可求解【详解】解:过C 作CE ⊥AB 于EDF ⊥AB 于F 可得矩形CEFD 和Rt △CEB 与Rt △DFA ∵BC=6∴解析:62【分析】过C 作CE ⊥AB 于E ,DF ⊥AB 于F ,分别在Rt △CEB 与Rt △DFA 中使用三角函数即可求解.【详解】解:过C 作CE ⊥AB 于E ,DF ⊥AB 于F ,可得矩形CEFD 和Rt △CEB 与Rt △DFA , ∵BC=6,∴CE=2sin 456322BC ︒=⨯=, ∴DF=CE=32,∴62sin 30DF AD ==︒, 故答案为:62.【点睛】此题考查了解直角三角形的应用-坡度坡角问题,难度适中,解答本题的关键是构造直角三角形和矩形,注意理解坡度与坡角的定义.19.(0256)【分析】利用锐角三角函数分别计算得到的坐标利用规律直接得到答案【详解】解:∵l :y =x ∴l 与x 轴的夹角为30°∵AB ∥x 轴∴∠ABO =30°∵OA =1∴AB =∵A1B ⊥l ∴∠ABA1=6解析:(0,256)【分析】利用锐角三角函数分别计算得到12,A A 的坐标,利用规律直接得到答案.【详解】解:∵l :y =3x ∴l 与x 轴的夹角为30°∵AB ∥x 轴∴∠ABO =30°∵OA =1∴AB∵A 1B ⊥l∴∠ABA 1=60°∴AA 1=3∴A 1(0,4)同理可得A 2(0,16)…∴A 4纵坐标为44=256∴A 4(0,256)故答案为:(0,256).【点睛】本题考查的是一次函数综合题,先根据所给一次函数判断出一次函数与x 轴夹角是解决本题的突破点;根据含30°的直角三角形的特点依次得到123,,A A A …的点的坐标是解决本题的关键.20.【分析】根据等腰三角形的性质可求出两底角的度数连接AE 可得出AE=BE 推出解直角三角形即可得出答案【详解】解:∵∴连接AE ∵ED 垂直平分AB ∴AE=BE ∵∴∴故答案为:【点睛】本题考查的知识点是等腰解析:【分析】根据等腰三角形的性质可求出两底角的度数,连接AE ,可得出AE=BE ,30EAD =∠°,推出90EAC ∠=︒,解直角三角形即可得出答案.【详解】解:∵3AB AC cm ==,120A ∠=︒,∴1(180120)30 2B C,连接AE,∵ED垂直平分AB,∴AE=BE ,30EAD=∠°,∵120A∠=︒,∴90EAC∠=︒,∴323cos3032ACCE===︒故答案为:23.【点睛】本题考查的知识点是等腰三角形的性质、解直角三角形、垂直平分线的性质,综合性较强,但难度不大.三、解答题21.()306302+海里【分析】过点C作CD⊥AB,垂足为点D,则∠ACD=60°,∠BCD=45°,通过解直角三角形可求出BD,AD的长,将其相加即可求出AB的长.【详解】过点C作CD⊥AB,垂足为点D,则∠ACD=60°,∠BCD=45°,如图所示.在Rt△BCD中,,cosBD CDsin BCD BCDCD CD∠=∠=,∴BD=BC•sin ∠BCD=20×3×2= CD=BC•cos ∠BCD=20×3×2= 在Rt △ACD 中,AD tan ACD CD∠=, ∴AD=CD•tan ∠ACD= =.∴AB=AD+BD=∴A ,B间的距离约为()海里.【点睛】本题考查了解直角三角形的应用-方向角问题,通过解直角三角形,求出BD ,AD 的长是解题的关键.22.(1)+2)【分析】(1)代入特殊角的三角函数值计算即可;(2)根据负整数指数幂、零次幂、特殊角三角函数值化简然后计算即可.【详解】(1)cos 451-sin60︒===︒(2)(12)-2-(π-3.14)0-│tan60°-2│=4-1-(【点睛】本题考查实数的混合运算,需要熟记特殊角度的三角函数值是解题的关键.23.该文化墙PM 不需要拆除,见解析【分析】首先过点C 作CD ⊥AB 于点D ,则天桥高CD=6,由新坡面的坡度为1tanα=tan ∠CAB=3==,然后由特殊角的三角函数值来求AD ,BD 的长;由坡面BC 的坡度为1:1,新坡面的坡度为1AD ,BD 的长,继而求得AB=AD-BD 的长,则可求得PA 答案.【详解】解:该文化墙PM 不需要拆除,理由:设新坡面坡角为α,新坡面的坡度为1, ∴tanα==,∴α=30°.作CD ⊥AB 于点D ,则CD =6米,∵新坡面的坡度为1:3,∴tan ∠CAD CD 61AD AD 3===, 解得,AD =63,∵坡面BC 的坡度为1:1,CD =6米,∴BD =6米,∴AB =AD ﹣BD =(3-6)米,又∵PB =8米,∴PA =PB ﹣AB =8﹣(3-6)=14﹣63≈14﹣6×1.732≈3.6米>3米,∴该文化墙PM 不需要拆除.【点睛】此题考查了坡度坡角的知识.注意根据题意构造直角三角形,利用好坡比,会解直角三角形是关键.24.答案见解析.【分析】环节一,我们用相似论证了当A ∠不变时,A ∠的对边与斜边的比值固定不变;环节二,再次为我们论证了当A ∠改变时,A ∠的对边与斜边的比值也随之变化,不再固定不变;进而从斜边相等,或直角边相等,两个方面论证即可.【详解】解:环节二证明过程如下:(1)如下图所示:过点A 在BAC ∠内部做射线AB ',截取AB AB '=,过点 B '作BC AC ''⊥,此时构造出了B AC ''∠,显然 BAC B AC ''∠≠∠此时sin BC BAC AB ∠=;sin B C B AC AB ''''∠=', 因为AB AB '=,而BC B C ''≠,所以 sin sin BAC B AC ''∠≠∠ 所以当A ∠的度数发生变化时,A ∠的对边与斜边的比值也会发生改变.(2)图3中构造另外一种思路证明:由上题我们自然想到控制变量法.环节二我们使斜边相等,现在我们使直角边BC 与B C ''与相等,如图所示:此时sin BC BAC AB ∠=;sin B C B AC AB ''''∠=';因为 BC B C ''=,而AB AB '≠,所以 sin sin BAC B AC ''∠≠∠.【点睛】本题考查了对边与斜边的比,即正弦值,会随着角度的变化而变化,熟悉相关性质是解题的关键.25.(1)2)72;(3)1231x x ==, 【分析】(1)先将二次根式化为最简,然后去括号,合并同类二次根式即可;(2)根据特殊角的三角函数值计算;(3)利用因式分解法或配方法解方程.【详解】(1)解:原式=.=.(2)解:原式12=-. 131272=+-=(3)解:243x x -=-.()224412121x x x x -+=-=-=±∴21x -=或21x -=-,∴1231x x ==,;【点睛】此题考查实数的混合计算和一元二次方程的计算,关键是根据一元二次方程、二次根式和三角函数进行解答.26.∠A=30︒,10c =,b =【分析】先利用直角三角形两锐角互余计算出∠A ,再利用30°角所对的直角边等于斜边的一半得到c 的值,然后利用勾股定理求出b .【详解】解:由9060C B ∠=︒∠=︒,,可得:180609030A ∠=︒-︒-︒=︒,∴210c a ==, 由勾股定理得22221057553b c a =-=-==.【点睛】本题考查了解直角三角形,利用了含30度角的直角三角形的性质以及勾股定理求直角三角形的边,利用直角三角形的性质求直角三角形的角.。
成都嘉祥外国语学校郫县分校九年级数学下册第二十六章《反比例函数》基础卷(提高培优)

一、选择题1.如图,A 、B 是函数1y x =的图像上关于原点对称的任意两点,BC //x 轴,AC //y 轴,ABC 的面积记为S ,则( )A .1S =B .2S =C .24S <<D .4S = 2.如图,过反比例函数()0k y x x=>的图象上一点A 作AB x ⊥轴于点B ,连接AO ,若2AOB S =△,则k 的值为( )A .2B .3C .4D .53.已知反比例函数13y x=-,下列结论中不正确的是( ) A .图象必经过点11,3⎛⎫- ⎪⎝⎭B .y 随x 的增大而增大C .图象在第二、四象限内D .若1x >,则103y -<< 4.一次函数y kx b =+和反比例函数xb y k =的部分图象在同一坐标系中可能为( ) A . B . C . D . 5.函数y a x a =+与(0)a y a x=≠在同一直角坐标系中的图像可能是( )A .B .C .D .6.已知()()()112233,,,,,A x y B x y C x y 是反比例函数2y x =上的三点,若123x x x <<,213y y y <<,则下列关系式不正确的是 ( ) A .120x x <B .130x x <C .230x x <D .120x x +< 7.反比例函数y =k x 的图象经过点A (﹣2,3),则此图象一定经过下列哪个点( ) A .(3,2) B .(﹣3,﹣2) C .(﹣3,2) D .(﹣2,﹣3) 8.规定:如果关于x 的一元二次方程ax 2+bx+c =0(a≠0)有两个实数根,且其中一个根是另一个根的2倍,则称这样的方程为“倍根方程”现有下列结论①方程x 2+2x ﹣8=0是倍根方程;②若关于x 的方程x 2+ax+2=0是倍根方程,则a =±3;③若(x ﹣3)(mx ﹣n )=0是倍根方程,则n =6m 或3n =2m ;④若点(m ,n )在反比例函数y =2x 的图象上,则关于x 的方程mx 2﹣3x+n =0是倍根方程.上述结论中正确的有( )A .①②B .③④C .②③D .②④ 9.如图,直线1122y x =+与双曲线26y x=交于()2A m ,、()6B n -,两点,则当12y y <时,x 的取值范围是()A .6x <-或2x >B .60x -<<或2x >C .6x <-或02x <<D .62x -<<10.已知反比例函数ab y x =,当x >0时,y 随x 的增大而增大,则关于x 的方程220ax x b -+=的根的情况是( ) A .有两个正根 B .有两个负根C .有一个正根一个负根D .没有实数根 11.下列函数中图象不经过第三象限的是( )A .y =﹣3x ﹣2B .y =2xC .y =﹣2x +1D .y =3x +2 12.如图,已知正比例函数y 1=x 与反比例函数y 2=9x的图像交于A 、C 两点,AB ⊥x 轴,垂足为B , CD ⊥x 轴,垂足为D .给出下列结论:①四边形ABCD 是平行四边形,其面积为18;②AC =32;③当-3≤x<0或x≥3时,y 1≥y 2;④当x 逐渐增大时,y 1随x 的增大而增大,y 2随x 的增大而减小.其中正确的结论有( )A .①④B .①③④C .①③D .①②④ 13.若点()()()1231,,1,,3,A y B y C y -在反比例函数6y x =的图像上,则123,,y y y 的大小关系是( )A .123y y y <<B .132y y y <<C .321y y y <<D .213y y y << 14.如图,在平面直角坐标系中,点A 是函数()0k y x x=>在第一象限内图象上一动点,过点A 分别作AB x ⊥轴于点B AC y ⊥、轴于点C ,AB AC 、分别交函数()10y x x=>的图象于点E F 、,连接OE OF 、.当点A 的纵坐标逐渐增大时,四边形OFAE 的面积( )A.不变B.逐渐变大C.逐渐变小D.先变大后变小15.在平面直角坐标系中,对于不在坐标轴上的任意一点P(x,y),我们把的P'(1x,1y)称为点P的“倒影点”.直线y=﹣2x+1上有两点A、B,它们的倒影点A'、B'均在反比例函数ykx=的图象上,若AB5=,则k的值为()A.83-B.43-C.5 D.10二、填空题16.已知函数3(2)my m x-=-是反比例函数,则m=_________.17.如图,△OA1B1,△A1A2B2,△A2A3B3,…是分别以A1,A2,A3,…为直角顶点,一条直角边在x轴正半轴上的等腰直角三角形,其斜边的中点C1(x1,y1),C2(x2,y2),C3(x3,y3),…均在反比例函数y=4x(x>0)的图象上,则y1+y2+…+y100的值为_____.18.如图,菱形ABCD的边AD与x轴平行,A、B两点的横坐标分别为1和3,反比例函数y=3x的图象经过A、B两点,则菱形ABCD的面积是_____;19.已知点(,7)M a 在反比例函数21y x =的图象上,则a=______. 20.如图,在平面直角坐标系中,直线36y x =-+与x 轴,y 轴分别交于A 、B 两点,以AB 为边在第一象作正方形ABCD ,则过D 的反比例函数解析式为________.21.如果反比例函数y 2m x-=的图象在第一、三象限,那么m 的取值范围是____. 22.如图,点A 是一次函数13y x =(0)x ≥图像上一点,过点A 作x 轴的垂线l ,点B 是l 上一点(B 在A 上方),在AB 的右侧以AB 为斜边作等腰直角三角形ABC ,反比例函数k y x=(0)x >的图像过点B 、C ,若OAB ∆的面积为8,则ABC ∆的面积是_________.23.如图,菱形ABCD 的两个顶点A 、B 在函数k y x=(x>0)的图像上,对角线AC//x 轴.若AC=4,点A 的坐标为(2,2),则菱形ABCD 的周长为_____.24.已知,点P (a ,b )为直线3y x =-与双曲线2y x=-的交点,则11b a -的值等于__. 25.如图,△BOD 都是等腰直角三角形,过点B 作AB ⊥OB 交反比例函数y k x=(x >0)于点A ,过点A 作AC ⊥BD 于点C ,若S △BOD ﹣S △ABC =3,则k 的值为____.26.如图,直线3y x =-+与y 轴交于点A ,与反比例函数()0k y x x=<的图象交于点C ,过点C 作CB x ⊥轴于点B ,若3AO BO =,则k 的值为________.三、解答题27.如图,一次函数y 1=kx +b (k ≠0)和反比例函数()20m y m x=≠的图象相交于点A (﹣4,2),B (n ,﹣4)(1)求一次函数和反比例函数的表达式;(2)观察图象,直接写出不等式y 1<y 2的解集.28.如图,直线y =12x 与双曲线y =k x (k >0)交于A 、B 两点,且点A 的横坐标为4. (1)求k 的值;(2)若双曲线y =k x(k >0)上一点C 的纵坐标为8,求△AOC 的面积.29.已知12y y y =-,1y 与x 成正比例,2y 与()2x -成反比例,当2x =-时,7y =-;3x =时,13y =.求:y 关于x 的函数解析式30.如图,直线y=k 1x+b 与双曲线y=2k x相交于A (1,2)、B (m ,﹣1)两点.(1)求直线和双曲线的解析式;(2)若A 1(x 1,y 1),A 2(x 2,y 2),A 3(x 3,y 3)为双曲线上的三点,且x 1<x 2<0<x 3,请直接写出y 1,y 2,y 3的大小关系式;(3)观察图象,请直接写出不等式k 1x+b >2k x 的解集.。
四川省成都市嘉祥外国语学校2022-2023学年九年级下学期开学考试数学试题

四川省成都市嘉祥外国语学校2022-2023学年九年级下学期开学考试数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题....A .BM DN =B .BAM ∠6.若关于x 的一元一次不等式组A.8B8.如图,二次函数y=ax<m<4,则下列说法:①的是()A.①②④B二、填空题9.若关于x的一元二次方程10.在平面直角坐标系中,将抛物线式是.11.已知关于x,y的方程组、为12.如图,AB BC∠∠=︒,则AOCCBD62三、解答题14.(1)计算:(﹣1 3课程人数(1)如图1,求证:BF 为O 的切线:.(2)如图2,点K 为O 内部一点,连接OK CK 、,若90OKC KCA ∠=∠=︒时,与CK 的数量关系,并说明理由.(3)在(2)的条件下,若3OK =,O 的半径为5,求CE 的长.四、填空题分别在轴、轴上,点则的值为23.如图,正方形ABCD 中,接DE ,CF 交于点P ,过点长为.五、解答题24.今年甲、乙两个果园的红心猕猴桃喜获丰收,已知甲果园的总产量为27吨,乙果园的总产量13吨,某果业公司租用A 、B 两种型号的保鲜货车去果园运输猕猴桃,甲果园需要A 型保鲜货车满载猕猴桃运输6趟,同时需要B 型保鲜货车满载猕猴桃运输5趟才能刚好运输完:乙果园需A 型保鲜货车满载猕猴桃运输2趟,同时需要B 型保鲜货车满载猕猴桃运输3趟刚好运输完.(1)求A 、B 两种保鲜货车满载猕猴桃运输一趟分别是多少吨?(2)果业公司收购该批猕猴桃的单价为0.8万元/吨,目前公司可以0.9万元/吨的价格售出,如果保鲜冷藏储存起来,旺市再销售以便获取最大利润,由于失水和腐烂,水果重量每天减少0.5吨,且每天需支付各种费用0.08万元/吨,而每天的价格会持续上涨0.1万元/吨、如果公司计划把该批猕猴桃最多保鲜冷藏储存20天,那么储存多少天后出售这批猕猴桃所获得的利润最大?最大利润是多少万元?25.如图,抛物线26y ax x c =++交x 轴于A 、B 两点,交y 轴于点C ,连接AC .直线5y x =-经过点B 、C .(1)求抛物线的解析式;(2)P为抛物线上一点,连接AP,若AP将(3)在直线BC上是否存在点M,使直线的2倍?若存在,请求出点M的坐标;若不存在,请说明理由.。
成都七中嘉祥外国语学校初三入学考试题

成都七中嘉祥外国语学校初级九年级(下)数学入学考试题(时间120分钟,满分150分)命题人: 审题人:(注意:请将选择题和填空题的答案填在后面的表格中!)一、选择题:(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.2cos45°的值等于 ( )22224D.222.计算326(3)m m ÷-的结果是( ) A.-3m B. -2m C.2m D.3m3. 在成都市晨晖路在某段时间内的车流量为30.6万辆,用科学记数法表示为( ) A .430.610⨯辆 B .33.0610⨯辆C .43.0610⨯辆D .53.0610⨯辆4.小华拿一个矩形木框在阳光下玩,矩形木框在地面上形成的投影不可能是( )ABCD5. 下列事件中,哪个是确定事件?答:( ) A .明日有雷阵雨B .小明的自行车胎被扎坏C .小红买体彩中奖D .抛掷一枚正方体骰子,出现7点朝上6.下列函数中,自变量x 的取值范围是x>2的函数是 ( ) A. 2y x =-y 21x =-C. 2y x =- D. 21y x =-7. 如图,△ABC 中,AB=AC ,∠A=30°,DE 垂直平分AC ,则∠BCD 的度数为( )A. 80°B.75°C. 65°D. 45°8.将100个个体的样本编成组号为○1~○8的八个组,如下表7题图EDCBA组号 ○1 ○2 ○3 ○4 ○5 ○6 ○7 ○8 频数14111213131210那么第5组的频率为( )A.14B.15C.0.14D.0.159.一个圆锥的高为33 ) A. 9π B . 18π C. 27π D.39π 10. 有下列函数:①y = 3x ;②y =-x – 1:③y =-x1(x < 0);④y = x 2 + 2x + 1.其中当x 在各自的自变量取值范围内取值时,y 随着x 的增大而增大的函数有( )(A )①② (B )②④ (C )①③(D )③④二.填空题. (本大题共4小题,每小题4分,共16分)11.现有甲、乙两个学习小组,每个小组的数学平均分都为130分,方差分别为2甲S =32,2乙S =26,则数学成绩较整齐的学习小组是 组.12.将抛物线23y x =-向上平移一个单位后,得到的抛物线解析式是 . 13.如图,O 内切于△ABC,切点分别为D 、E 、F ,已知∠B=50°,∠C=70°,连结OE ,OF ,DE ,DF ,那么tan ∠EDF 等于________________.14.如图,菱形OABC 中,120A =∠,1OA =,将菱形OABC 绕点O 按顺时针方向旋转90,则图中由BB ',B A '',A C ',CB 围成的阴影部分的面积是 .三.解答题. (第15题每小题6分,第16题6分,共18分)15. (1) 01)41.12(45tan 32)31(-++---(2) 化简求值)1()1112(2-⨯+--a a a ,其中33-=a 。
成都嘉祥外国语学校初三数学综合题

1.在 Rt△ABC 中,∠ACB=90°,BC=30,AB=50.点 P 是 AB 边上任意一点,直线 PE⊥AB,与边 AC 或 BC 12
相交于 E.点 M 在线段 AP 上,点 N 在线段 BP 上,EM=EN,sin∠EMP= 13 . (1)如图 1,当点 E 与点 C 重合时,求 CM 的长; (2)如图 2,当点 E 在边 AC 上时,点 E 不与点 A、C 重合,设 AP=x,BN=y,求 y 关于 x 的函数关系
2
5 已知:在△ABC 中 AB=AC,点 D 为 BC 边的中点,点 F 是 AB 边上一点,点 E 在线段 DF 的延长线上,∠BAE= ∠BDF,点 M 在线段 DF 上,∠ABE=∠DBM. (1)如图 1,当∠ABC=45°时,求证:AE= MD; (2)如图 2,当∠ABC=60°时,则线段 AE、MD 之间的数量关系为_____; (3)在(2)的条件下延长 BM 到 P,使 MP=BM,连接 CP,若 AB=7,AE= ,求 tan∠PCB 和 tan∠ACP 的值.
4
10 如图 1,一副直角三角板满足 AB=BC,AC=DE,∠ABC=∠DEF=90°∠EDF=30°, 【操作 1】将三角板 DEF 的直角顶点 E 放置于三角板 ABC 的斜边 AC 上,再将三角板 DEF 绕点 E 旋转,并使 边 DE 与边 AB 交于点 P,边 EF 与边 BC 于点 Q.
7 在直角坐标系中,过原点 O 及点 A(8,0),C(0,6)作矩形 OABC,连结 OB,D 为 OB 的中点。点 E 是线段 AB 上的动点,连结 DE,作 DF⊥DE,交 OA 于点 F,连结 EF。已知点 E 从 A 点出发,以每秒 1 个单位长度的速度在线段 AB 上移动,设移动时间为 t 秒。 (1)如图 1,当 t=3 时,求 DF 的长; (2)如图 2,当点 E 在线段 AB 上移动的过程中,∠DEF 的大小是否发生变化?如果变化,请说明理由;如 果不变,请求出 tan∠DEF 的值; (3)连结 AD,当 AD 将△DEF 分成的两部分面积之比为 1:2 时,求相应 t 的值。
成都嘉祥外国语学校成华分校九年级数学下册第一单元《反比例函数》测试(答案解析)

一、选择题1.正比例函数1y 的图像与反比例函数2y 的图像相交于点(2,4)A ,下列说法正确的是( )A .反比例函数2y 的解析式是28y x=-B .两个函数图像的另一个交点坐标为(2,4)C .当2x <-或02x <<时,12y y <D .正比例函数1y 与反比例函数2y 都随x 的增大而增大2.在同一平面直角坐标系中,函数y =kx +1(k ≠0)和ky x=(k ≠0)的图象大致是( )A .B .C .D .3.下列式子中表示y 是x 的反比例函数的是( ) A .24y x =- B .y=5x 2C .y=21xD .y=13x4.已知函数()0ky k x=≠中,在每个象限内,y 的值随x 的值增大而增大,那么它和函数()0y kx k =-≠在同一直角坐标平面内的大致图像是( ).A .B .C .D .5.函数y a x a =+与(0)ay a x=≠在同一直角坐标系中的图像可能是( )A.B.C.D.6.已知:点A(1,y1)、B(2,y2)、C(-3,y3)都在反比例函数kyx=图象上(k>0),则y1、y2、y3的关系是()A.y3<y1<y2B.y1<y2<y3C.y2<y1<y3D.y3<y2<y17.已知反比例函数2y-x=,点A(a-b,2),B(a-c,3)在这个函数图象上,下列对于a,b,c的大小判断正确的是()A.a<b<cB.a<c<bC.c<b<aD.b<c<a8.已知一个正比例函数与一个反比例函数的图像交于(-3,4),则这两个函数的表达式分别是()A.412,3y x yx==B.412,3y x yx=-=-C.412,3y x yx=-=D.412,3y x yx==-9.如图,函数kyx=-与1y kx=+(0k≠)在同一平面直角坐标系中的图像大致()A.B.C.D.10.在函数()0ky k x=<的图象上有()11,A y ,()21,B y -,()32,B y -三个点,则下列各式中正确的是( )A .123y y y <<B .132y y y <<C .321y y y <<D .231y y y <<11.如图,直线y =x +2与y 轴交于点A ,与直线y =﹣3x +10交于点B ,P 是线段AB 的中点,已知反比例函数y =kx的图象经过点P ,则k 的值为( )A .1B .3C .6D .812.如图直线y 1=x+1与双曲线y 2=kx交于A (2,m )、B (﹣3,n )两点.则当y 1>y 2时,x 的取值范围是( )A .x >﹣3或0<x <2B .﹣3<x <0或x >2C .x <﹣3或0<x <2D .﹣3<x <2二、填空题13.已知函数3(2)m y m x -=-是反比例函数,则m =_________. 14.如图,设点P 在函数5y x=的图象上,PC ⊥x 轴于点C ,交函数y =2x 的图象于点A ,PD ⊥y 轴于点D ,交函数y =2x的图象于点B ,则四边形PAOB 的面积为_____.15.在平面直角坐标系中,若直线2y x =-+与反比例函数ky x=的图象有2个公共点,则k 的取值范围是_________. 16.函数25(1)ny n x -=+是反比例函数,且图象位于第二、四象限内,则n =____. 17.已知()221ay a x -=-是反比例函数,则a =________________.18.如图,B(2,﹣2),C(3,0),以OC ,CB 为边作平行四边形OABC ,则经过点A 的反比例函数的解析式为_____.19.如果一个正比例函数的图像与反比例函数-1y x=交于A (x 1,y 1),B (x 2,y 2),那么(x 1-x 2)(y 1-y 2)=____________. 20.如图,已知反比例函数y =kx(x >0)与正比例函数y =x (x ≥0)的图象,点A (1,4),点A '(4,b )与点B '均在反比例函数的图象上,点B 在直线y =x 上,四边形AA 'B 'B 是平行四边形,则B 点的坐标为______.三、解答题21.数学活动:问题情境:有这样一个问题:探究函()120y x x x ⎛⎫=+> ⎪⎝⎭的图象与性质.乐乐根据学习函数的经验,对函数()120y x x x ⎛⎫=+> ⎪⎝⎭的图象和性质进行探究,下面是乐乐的探究过程,请补充完整:(1)补全下表,并在坐标系中补全描点法应描的点,然后画出函数()120y x x x ⎛⎫=+> ⎪⎝⎭的图象;x⋅⋅⋅ 14 13 121 2 3 4⋅⋅⋅ y⋅⋅⋅1722034203 172⋅⋅⋅(2)观察该函数的图象,请写出函数的一条性质______;(3)在同一个坐标系中画出函数4y x =的图象,并根据图像直接写出0x >时关于x 的不等式142y x x x ⎛⎫=+⎪⎝>⎭的解集:______.22.如图,一次函数y kx b =+与反比例函数my x=的图象交于()(),3,3,1A n B -两点.(1)求一次函数与反比例函数的解析式; (2)根据已知条件,请直接写出不等式mkx b x+>的解集; (3)过点B 作 BC x ⊥轴,垂足为C ,求ABC ∆的面积.23.如图,在平面直角坐标系中,Rt △ABC 的边AB ⊥x 轴,垂足为A,C 的坐标为(1,0),反比例函数y=kx(x>0)的图象经过BC 的中点D,交AB 于点E.已知AB=4,BC=5.求k 的值24.实验数据显示,一般成人喝半斤低度白酒后,1.5小时内其血液中酒精含量y (毫克/百毫升)与时间A (时)成正比例;1.5小时后(包括1.5小时)B 与C 成反比例.根据图中提供的信息,解答下列问题:(1)求一般成人喝半斤低度白酒后,D 与x 之间的两个函数关系式及相应的自变量x 取值范围;(2)依据人的生理数据显示,当y ≥80时,肝部正被严重损伤,请问喝半斤低度白酒后,肝部被严重损伤持续多少小时?25.阅读理解:材料一:若三个非零实数x ,y ,z 满足:只要其中一个数的倒数等于另外两个数的倒数的和,则称这三个实数x ,y ,z 构成“和谐三数组”.材料二:若关于x 的一元二次方程ax 2+bx +c = 0(a ≠0)的两根分别为1x ,2x ,则有12bx x a +=-,12c x x a⋅=. 问题解决: (1)请你写出三个能构成“和谐三数组”的实数 ;(2)若1x ,2x 是关于x 的方程ax 2+bx +c = 0 (a ,b ,c 均不为0)的两根,3x 是关于x 的方程bx +c =0(b ,c 均不为0)的解.求证:x 1,x 2,x 3可以构成“和谐三数组”; (3)若A (m ,y 1) ,B (m + 1,y 2) ,C (m +3,y 3)三个点均在反比例函数4y x=的图象上,且三点的纵坐标恰好构成“和谐三数组”,求实数m 的值. 26.如图,反比例函数ky x=的图像经过第二象限内的点(1,)A m -,AB x ⊥轴于点B ,AOB ∆的面积为2.若直线y ax b =+经过点A ,并且经过反比例函数ky x=的图像上另一点(,2)C n -.(1)求反比例函数ky x=与直线y ax b =+的解析式; (2)连接OC ,求AOC ∆的面积;(3)不等式0kax b x+-≥的解集为_________ (4)若()11,D x y 在ky x=(0)k ≠图像上,且满足13y ≥-,则1x 的取值范围是_________.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】由题意可求正比例函数解析式和反比例函数解析式,由正比例函数和反比例函数的性质可分别进行判断求解,即可得出结论. 【详解】解:∵正比例函数y 1的图象与反比例函数y 2的图象相交于点A (2,4),∴正比例函数12y x =,反比例函数28y x=, ∴两个函数图象的另一个交点为(−2,−4), ∴A ,B 选项错误;∵正比例函数12y x =中,y 随x 的增大而增大, 反比例函数28y x=中,在每个象限内y 随x 的增大而减小,∴D 选项错误;∵当x <−2或0<x <2时,y 1<y 2, ∴选项C 正确; 故选:C . 【点睛】本题考查了反比例函数与一次函数的交点问题,熟练运用反比例函数与一次函数的性质解决问题是本题的关键.2.C解析:C 【分析】分两种情况讨论,当k>0时,分析出一次函数和反比例函数所过象限;再分析出k<0时,一次函数和反比例函数所过象限,符合题意者即为正确答案. 【详解】①当k> 0时,y=kx+1过第一、二、三象限,ky x =过第一、三象限; ②当k<0时,y= kx+1过第一、二、四象限,ky x=过第二、四象限,观察图形可知,只有C 选项符合题意, 故选:C . 【点睛】此题考查了依据一次函数与反比例函数的图象,正确掌握各函数的图象与字母系数的关系是解题的关键.3.D解析:D 【分析】根据反比例函数的定义逐项分析即可. 【详解】A. 24y x =-,y 是x 的一次函数,故不符合题意;B. y=5x2,y 是x 的正比例函数,故不符合题意; C. 21y x =,y 是x²的反比例函数,故不符合题意; D. y=13x ,y 是x 的反比例函数,符合题意;故选:D . 【点睛】本题考查了反比例函数的定义,一般地,形如ky x=(k 为常数,k ≠0)的函数叫做反比例函数.4.A解析:A【分析】首先根据反比例函数图象的性质判断出k的范围,再确定其所在象限,进而确定正比例函数图象所在象限,即可得到答案.【详解】解:∵函数kyx=中,在每个象限内,y随x的增大而增大,∴k<0,∴双曲线在第二、四象限,∴函数y=-kx的图象经过第一、三象限,故选:A.【点睛】此题主要考查了反比例函数图象的性质与正比例函数图象的性质,图象所在象限受k的影响.5.B解析:B【分析】分a>0与a<0两种情况,根据一次函数和反比例函数的图象与性质解答即可.【详解】解:当a>0时,y=|a|x+a=ax+a的图象在第一、二、三象限,ayx=的图象在第一、三象限,此时选项B正确;当a<0时,y=|a|x+a=﹣ax+a的图象在第一、三、四象限,ayx=的图象在第二、四象限,此时没有正确选项;故选:B.【点睛】本题考查了一次函数与反比例函数的图象与性质,属于常考题型,熟练掌握上述知识是解题关键.6.D解析:D【分析】先根据反比例函数中k<0判断出函数图象所在的象限及增减性,再根据各点横坐标的特点即可得出结论.【详解】∵反比例函数kyx=(k>0),∴函数图象的两个分式分别位于一、三象限,且在每一象限内y随x的增大而减小,∵-3<0,∴点C(-3,y3)位于第三象限,∴y3<0;∵2>1>0,∴A(1,y2)、B(2,y3)在第一象限,∵2>1,∴0<y2<y1,∴y3<y2<y1.故选D【点睛】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.7.B解析:B【分析】利用反比例函数图象上点的坐标特征得到2(a-b)=-2,3(a-c)=-2,则a-b=-1<0,a-c=-2 3<0,再消去a得到-b+c=-13<0,然后比较a、b、c的大小关系.【详解】∵点A(a-b,2),B(a-c,3)在函数2y-x的图象上,∴2(a-b)=-2,3(a-c)=-2,∴a-b=-1<0,a-c=-23<0,∴a<b,a<c,∵-b+c=-13<0,∴c<b,∴a<c<b.故选B.【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数y=kx(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.8.B解析:B【分析】用待定系数法分别求出两个函数表达式即可.【详解】解:设正比例函数为y =kx ,将(-3,4)代入,得4=-3k , 解得43k =-, ∴正比例函数为43y x =-, 设反比例函数为k y x=, 将(-3,4)代入,得43k =- 解得k =-12,∴反比例函数为12y x=-, 故选:B .【点睛】本题考查了用待定系数法求正比例函数表达式和反比例函数表达式,熟练掌握待定系数法是解决本题的关键.9.B解析:B【分析】分k >0和k <0两种情况分类讨论即可确定正确的选项.【详解】解:当k >0时,函数1y kx =+的图象经过一、二、三象限,反比例函数k y x =-的图象分布在二、四象限,没有选项符合题意;当0k <时,函数1y kx =+的图象经过一、二、四象限,反比例函数k y x =-的图象分布在一、三象限,B 选项正确,故选:B.【点睛】考查了反比例函数和一次函数的性质,解题的关键是能够分类讨论,难度不大. 10.B解析:B【分析】根据反比例函数图象上点的坐标特征得到11y k ⨯=,21y k -⨯=,32y k -⨯=,然后计算出1y 、2y 、3y 的值再比较大小即可.【详解】解:(0)k y k x=<的图象上有1(1,)A y 、2(1,)B y -、3(2,)C y -三个点, 11y k ∴⨯=,21y k -⨯=,32y k -⨯=,1y k ∴=,2y k =-,312y k =-, 而k 0<,132y y y ∴<<.故选:B .【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数k y x=(k 为常数,且0k ≠)的图象是双曲线,图象上的点(),x y 的横纵坐标的积是定值k ,即xy k =.11.B解析:B【分析】先求出直线y =x +2与坐标轴的交点A 坐标,再由两条直线解析式构成方程组,解方程组求得B 点坐标,进而求得中点P 的坐标,问题就迎刃而解了.【详解】解:直线y =x +2中,令x =0,得y =2,∴A (0,2),解2310y x y x =+⎧⎨=-+⎩得24x y =⎧⎨=⎩, ∴B (2,4),∵P 是线段AB 的中点,∴P (1,3),把(1,3)P 代入k y x=中,得3k =, 故选:B .【点睛】本题主要考查了两条直线的相交问题,反比例函数图象上点的坐标特征,待定系数法.本题的关键是求出P 点坐标. 12.B解析:B【分析】当y 1>y 2时,x 的取值范围就是y 1的图象落在y 2图象的上方时对应的x 的取值范围.【详解】根据图象可得当y 1>y 2时,x 的取值范围是:﹣3<x <0或x >2.故选:B .【点睛】本题考查了反比例函数与一次函数图象的交点问题,“数形结合”是解题的关键.二、填空题13.-2【分析】让x 的指数为-1系数不为0列式求值即可【详解】依题意得且解得故答案为:-2【点睛】考查反比例函数的定义;反比例函数解析式的一般形式y =(k≠0)也可转化为y=kx-1(k≠0)的形式特别解析:-2【分析】让x 的指数为-1,系数不为0列式求值即可.【详解】 依题意得31m -=-且20m -≠,解得2m =-.故答案为:-2.【点睛】考查反比例函数的定义;反比例函数解析式的一般形式y =k x(k≠0),也可转化为y=kx -1(k≠0)的形式,特别注意不要忽略k≠0这个条件. 14.3【分析】根据反比例函数系数k 的几何意义求出四边形PCOD 的面积△OBD 和△OAC 的面积然后求解即可【详解】解:根据题意S 四边形PCOD =PC•PD =5S △OBD =S △OAC =×2=1所以四边形PA解析:3.【分析】根据反比例函数系数k 的几何意义求出四边形PCOD 的面积,△OBD 和△OAC 的面积,然后求解即可.【详解】解:根据题意,S 四边形PCOD =PC •PD =5,S △OBD =S △OAC =12×2=1, 所以,四边形PAOB 的面积=S 四边形PCOD ﹣S △OBD ﹣S △OAC =5﹣1﹣1=3.故答案为:3.【点睛】 本题考查了反比例函数比例系数的几何意义,一般的,从反比例函数k y x=(k 为常数,k ≠0)图象上任一点P ,向x 轴和y 轴作垂线你,以点P 及点P 的两个垂足和坐标原点为顶点的矩形的面积等于常数k ,以点P 及点P 的一个垂足和坐标原点为顶点的三角形的面积等于12k .15.且【分析】联立两函数解析式消去y 得到关于x 的一元二次方程由两函数在同一直角坐标系中的图象有两个公共点得到根的判别式大于0列出关于k 的不等式求出不等式的解集即可得到k 的范围【详解】联立两解析式得:消去 解析:1k <且0k ≠【分析】联立两函数解析式,消去y 得到关于x 的一元二次方程,由两函数在同一直角坐标系中的图象有两个公共点得到根的判别式大于0,列出关于k 的不等式,求出不等式的解集即可得到k 的范围.【详解】 联立两解析式得:2y x k y x =-+⎧⎪⎨=⎪⎩, 消去y 得:220x x k -+=,∵两个函数在同一直角坐标系中的图象有两个公共点,∴24440b ac k =-=->,即1k <,则当k 满足1k <且0k ≠时,这两个函数在同一直角坐标系中的图象有两个公共点. 故答案为:1k <且0k ≠.【点睛】本题考查了一次函数与反比例函数的交点问题,把两函数图象的交点问题转化成一元二次方程根的问题是解题的关键.16.-2【分析】根据反比例函数的定义与性质解答即可【详解】根据反比函数的解析式y=(k≠0)故可知n+1≠0即n≠-1且n2-5=-1解得n=±2然后根据函数的图像在第二四三象限可知n+1<0解得n<-解析:-2.【分析】根据反比例函数的定义与性质解答即可.【详解】根据反比函数的解析式y=k x(k≠0),故可知n+1≠0,即n≠-1, 且n 2-5=-1,解得n =±2,然后根据函数的图像在第二、四三象限,可知n+1<0,解得n<-1,所以可求得n=-2.故答案为:-2【点睛】本题考查反比例函数的定义与性质,熟记定义与性质是解题的关键. 17.【分析】根据反比例函数的定义列出方程不等式即可求解【详解】解:∵是反比例函数∴且∴且∴故答案是:【点睛】本题考查了反比例函数的定义解方程解不等式等知识点能根据反比例函数的定义正确列出方程和不等式是解 解析:1-【分析】根据反比例函数的定义列出方程、不等式即可求解.【详解】解:∵()221ay a x -=-是反比例函数 ∴221a -=-且10a -≠∴1a =±且1a ≠∴1a =-.故答案是:1-【点睛】本题考查了反比例函数的定义、解方程、解不等式等知识点,能根据反比例函数的定义正确列出方程和不等式是解题的关键. 18.y =【分析】设A 坐标为(xy )根据四边形OABC 为平行四边形利用平移性质确定出A 的坐标利用待定系数法确定出解析式即可【详解】解:设A 坐标为(xy )∵B (2﹣2)C (30)以OCCB 为边作平行四边形O解析:y =2x【分析】设A 坐标为(x ,y ),根据四边形OABC 为平行四边形,利用平移性质确定出A 的坐标,利用待定系数法确定出解析式即可.【详解】解:设A 坐标为(x ,y ),∵B (2,﹣2),C (3,0),以OC ,CB 为边作平行四边形OABC ,∴x+3=0+2,y+0=0﹣2,解得:x =﹣1,y =﹣2,即A (﹣1,﹣2), 设过点A 的反比例解析式为y =k x, 把A (﹣1,﹣2)代入得:k =2, 则过点A 的反比例函数解析式为y =2x , 故答案为:y =2x. 【点睛】此题考查了待定系数法求反比例函数解析式,以及平行四边形的性质,熟练掌握待定系数法是解本题的关键. 19.-4【分析】由AB 为正比例函数的图像与反比例函数的交点则其坐标关于原点对称所以可得x1=-x2y1=-y2最后替换后计算即可【详解】解:∵A (x1y1)B(x2y2)为上的点∴x1y1=-1x2y2 解析:-4【分析】由A、B为正比例函数的图像与反比例函数-1yx=的交点,则其坐标关于原点对称,所以可得x1=-x2,y1=-y2,最后替换后计算即可.【详解】解:∵A(x1,y1),B(x2,y2)为-1yx=上的点∴x1y1=-1, x2y2=-1,∵正比例函数的图像与反比例函数-1yx=的两交点A(x1,y1),B(x2,y2)∴A、B关于原点对称,∴x1=-x2,y1=-y2,∴(x1-x2)(y1-y2)=(-x2-x2)(-y2-y2)=-2 x2 (-2 y2)=4 x2y2=-4故答案为-4.【点睛】本题考查了反比例函数与正比例函数的交点问题,掌握正比例函数与反比例函数的两交点坐标关于原点对称是解答本题的关键.20.【分析】先根据点A的坐标求出反比例函数的解析式然后求出点的坐标由点B在直线上设出点B的坐标为(aa)从而利用平行四边形的性质可得到的坐标因为在反比例函数图象上将点代入反比例函数解析式中即可求出a的值解析:【分析】先根据点A的坐标求出反比例函数的解析式,然后求出点A'的坐标,由点B在直线上,设出点B的坐标为(a,a),从而利用平行四边形的性质可得到B'的坐标,因为B'在反比例函数图象上,将点B'代入反比例函数解析式中即可求出a的值,从而可确定点B的坐标.【详解】∵反比例函数y=kx(x>0)过点A(1,4),∴k=1×4=4,∴反比例函数解析式为:y=4x.∵点A'(4,b)在反比例函数的图象上,∴4b=4,解得:b =1,∴A '(4,1).∵点B 在直线y =x 上,∴设B 点坐标为:(a ,a ).∵点A (1,4),A '(4,1),∴A 点向下平移3个单位,再向右平移3个单位,即可得到A '点.∵四边形AA 'B 'B 是平行四边形,∴B 点向下平移3个单位,再向右平移3个单位,即可得到B '点(a +3,a ﹣3).∵点B '在反比例函数的图象上,∴(a +3)(a ﹣3)=4,解得:a =或a =舍去),故B 点坐标为:.故答案为:.【点睛】本题主要考查反比例函数与几何综合,掌握待定系数法,平行四边形的性质,点的平移规律和一元二次方程的解法是解题的关键.三、解答题21.(1)见解析;(2)当1x >时,y 随x 的增大而增大;(3)01x <<.【分析】(1)求出当x=12,x=2的函数值即可补全表格,利用表格描点把自变量确定为点的横坐标,函数值为纵坐标,描点,连线即可;(2)性质较多写出一条即可①当1x >时,y 随x 的增大而增大;②当01x <<时,y 随x 的增大而减小;③当1x =时,4y =最小位;④当0x >时,互为倒数的两个自变量对应的函数值相等;(3)利用图像法解不等式的解集,找交点,看位置上大下小,定范围即可.【详解】解:(1)当x=12时,1122252y x x ⎛⎫⎛⎫=+=+= ⎪ ⎪⎝⎭⎝⎭, 当x=2时,1122252y x x ⎛⎫⎛⎫=+=+= ⎪ ⎪⎝⎭⎝⎭, 补全表格:y … 172 203 5 4 5 203 172 …答图①答图②描点、连线画出函数的图象如答图①:(2)观察该函数的图象,写出函数的性质(一条即可):①当1x >时,y 随x 的增大而增大;②当01x <<时,y 随x 的增大而减小;③当1x =时,4y =最小值④当0x >时,互为倒数的两个自变量对应的函数值相等,(3)不等式124x x x ⎛⎫+> ⎪⎝⎭, 如图②根据函数图象y=12x x ⎛⎫+ ⎪⎝⎭图像在y=4x 图像上方, 两图像的交点是x=1,在x=1直线左侧,y 轴右侧y=12x x ⎛⎫+⎪⎝⎭图像在y=4x 图像上方, 不等式124x x x ⎛⎫+> ⎪⎝⎭的解集为01x <<. 【点睛】本题考查复合函数的图像画法,是初等函数的拓展,掌握好初等函数图像的画法,列表、描点、连线基本步骤,会观察图像写性质增减性,最值等,会利用函数图解不等式是难点,关键是找交点,分上大下小定范围是解题关键.22.(1)3y x=-,2y x =-+;(2)1x <-或03x <<;(3)2ABC S ∆= 【分析】(1)将点B 的坐标代入反比例函数解析式中即可求出m 的值,从而得出反比例函数解析式,再将点A 的坐标代入反比例函数解析式即可求出n 的值,由点A ,点B 的坐标利用待定系数法即可求出一次函数解析式;(2)观察两函数图象,结合点A ,点B 的坐标,即可得出结论;(3)由BC ⊥x 轴结合点B 的坐标可得出BC 的长度,再根据点A 的坐标利用三角形的面积公式即可得出结论.【详解】 ()1将点()3,1B -代入反比例函数解析式中,得13m -=,解得3m =- ∴反比例函数解析式为3y x=- 点A(n,3)在反比例函数的图像3y x =-上 33n∴=-,解得1n =- 即点A 的坐标为()1,3-将点()1,3A -,点()3,1B -,代入一次函数解析式中,得331k b k b -+=⎧⎨+=-⎩, 解得12k k =-⎧⎨=⎩∴一次函数解析式为2y x =-+()2观察函数图象发现:当x <-1或0<x <3时,一次函数图象在反比例函数图象上方 ∴不等式m kx b x+>的解集为x <-1或0<x <3; ()3BC x ⊥轴,()3,1B -1,BC ∴=()1,3A -11422ABC S ∆∴=⨯⨯=【点睛】本题考查了反比例函数与一次函数交点问题,待定系数法求函数解析式及三角形的面积公式. 解题的关键是:(1)求出点A的坐标;(2)结合函数图象解不等式;(3)利用三角形的面积公式求出面积. 解决该题型题目时,求出点的坐标,利用待定系数法求出函数解析式是关键.23.k=5【分析】先由勾股定理求出AC的长度,得到点C坐标,再确定出点B的坐标,由中点坐标公式得出点D的坐标,最后把点D坐标代入反比例函数解析式中即可求得k的值.【详解】∵在Rt△ABC中,AB=4,BC=5,∴22BC AB-2516-,∵点C坐标(1,0),∴OC=1,∴OA=OC+AC=4,∴点A坐标(4,0),∴点B(4,4),∵点C(1,0),点B(4,4),∴BC的中点D(52,2),∵反比例函数y=kx(x>0)的图象经过BC的中点D,∴k=xy=52=52⨯【点睛】本题考查了反比例函数图象上点的坐标特征,勾股定理,中点坐标公式,熟练运用反比例函数图象性质是解决问题的关键.24.(1)100(0 1.5)225( 1.5)x xyxx≤≤⎧⎪=⎨≥⎪⎩;(2)2.0125(或16180)(小时)【解析】分析: (1)首先根据题意,1.5小时内其血液中酒精含量y (毫克/百毫升)与时间A (时)成正比例;1.5小时后(包括1.5小时)B 与C 成反比例,y 与t 的函数关系式为a y x=(a 为常数),将数据代入用待定系数法可得反比例函数的关系式; (2)把y =80代入两个函数求得x 值相减即可求得肝部被严重损伤持续时间. 详解:(1)由题意,得①当0 1.5x ≤≤时,设函数关系式为:y kx =,则150 1.5k =,解得100k =,故100y x =,②当 1.5x ≥时, 设函数关系式为:a y x=, 则150 1.5225a =⨯=,解得 225a =,故 225y x= 综上所述:()()1000 1.5225 1.5x x y x x ⎧≤≤⎪=⎨≥⎪⎩(2)当80y =时,80100x = 解得0.8x =(或45x =) 当80y =时,22580x = 解得 2.8125x =(或4516x = ) 由图象可知,肝部被严重损伤持续时间 2.81250.8 2.0125=-=(或45416116580=-=)(小时) 点睛: 本题考查了反比例函数的应用,现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式.25.(1)65,2,3(答案不唯一);(2)见解析;(3)m =﹣4或﹣2或2. 【分析】(1)根据“和谐三数组”的定义可以先写出后2个数,取倒数求和后即可写出第一个数,进而可得答案;(2)根据一元二次方程根与系数的关系求出1211+x x ,然后再求出31x ,只要满足1211+x x =31x 即可; (3)先求出三点的纵坐标y 1,y 2,y 3,然后由“和谐三数组”可得y 1,y 2,y 3之间的关系,进而可得关于m 的方程,解方程即得结果.【详解】解:(1)∵115236+=, ∴65,2,3是“和谐三数组”; 故答案为:65,2,3(答案不唯一); (2)证明:∵1x ,2x 是关于x 的方程ax 2+bx +c = 0 (a ,b ,c 均不为0)的两根, ∴12b x x a +=-,12c x x a⋅=, ∴12121211bx x b a c x x x x ca -++===-⋅, ∵3x 是关于x 的方程bx +c =0(b ,c 均不为0)的解, ∴3c x b =-,∴31b x c =-, ∴1211+x x =31x , ∴x 1 ,x 2,x 3可以构成“和谐三数组”;(3)∵A (m ,y 1) ,B (m + 1,y 2) ,C (m +3,y 3)三个点均在反比例函数4y x =的图象上, ∴14y m =,241y m =+,343y m =+, ∵三点的纵坐标y 1,y 2,y 3恰好构成“和谐三数组”, ∴123111y y y =+或213111y y y =+或312111y y y =+, 即13444m m m ++=+或13444m m m ++=+或31444m m m ++=+, 解得:m =﹣4或﹣2或2.【点睛】本题是新定义试题,主要考查了一元二次方程根与系数的关系、反比例函数图象上点的坐标特征和对新知“和谐三数组”的理解与运用,正确理解题意、熟练掌握一元二次方程根与系数的关系与反比例函数的图象与性质是解题的关键.26.(1)4y x -=;22y x =-+ (2)3 (3)1x ≤-或02x <≤ (4)43x ≥或x <0 【分析】 (1)根据k 的几何意义即可求出k ;求出k 后利用交点C 即可求出一次函数(2)利用割补法即可求出面积(3)根据A ,C 的坐标,结合图象即可求解;(4)先求出3y =-时,43x =,再观察图像即可求解. 【详解】(1)∵点(1,)A m -在第二象限内,∴AB m =,1OB =, ∴122ABO S AB BO ∆=⋅=即:1122m ⨯=,解得4m =, ∴(1,4)A -,∵点(1,4)A -,在反比例函数k y x =的图像上, ∴41k =-,解得4k =-, ∵反比例函数为4y x-=, 又∵反比例函数4y x -=的图像经过(,2)C n -, ∴42n--=,解得2n =, ∴(2,2)C -,∵直线y ax b =+过点(1,4)A -,(2,2)C -,∴422a b a b =-+⎧⎨-=+⎩解方程组得22a b =-⎧⎨=⎩, ∴直线y ax b =+的解析式为;22y x =-+;(2)24y x =-+当0y =时,220x -+=,1x =,∴22y x =-+与x 轴的交点坐标为(1,0)设直线22y x =-+与x 轴的交点为E ,则1OE =∴AOC AOE COE S S S =+11141222=⨯⨯+⨯⨯ 3=(3)由题:k ax b x+≥ 由图像可知:当1x ≤-或02x <≤时,符合条件;故答案为:1x ≤-或02x <≤;(4)3y =-时,43x =,结合图像可知:当13y ≥-,则1x 的取值范围是43x ≥或x <0. 故答案为:43x ≥或x <0. 【点睛】本题主要考查了反比例函数,待定系数法求函数解析式,综合性较强,但只要细心分析题目难度不大.。
成都嘉祥外国语学校郫县分校九年级数学下册第二十九章《投影与视图》基础卷(提高培优)

一、选择题1.如图是由大小相同的小正方体搭成的几何体,将其中的一个小正方体①去掉,则三视图不发生改变的是()A.主视图B.俯视图C.左视图D.俯视图和左视图2.桌面上放着长方体和圆柱体各1个,按下图所示的方式摆放在一起,其左视图是()A.B.C.D.3.下面四个几何体中,俯视图为四边形的是()A.B.C.D.4.由7个相同的棱长为1的小立方块拼成的几何体如图所示,它的表面积为()A.23B.24C.26D.285.一张矩形纸片在太阳光的照射下,在地面上的投影不可能是()A.正方形B.平行四边形C.矩形D.等边三角形6.一个几何体由若干大小相同的小立方块搭成,从它的正面、左面看到的形状图完全相同(如下图所示),则组成该几何体的小立方块的个数至少有()A.3个B.4个C.5个D.6个7.如图,是一个由若干个小正方体组成的几何体的三视图.则该几何体最多可由多少个小正方体组合而成?( )A.11个B.14个C.13个D.12个8.如图是一个由5个完全相同的小正方体组成的立体图形,它的俯视图是()A.B.C.D.9.圆桌面(桌面中间有一个直径为1m的圆洞)正上方的灯泡(看作一个点)发出的光线照射平行于地面的桌面后,在地面上形成如图所示的圆环形阴影.已知桌面直径为2m,桌面离地面1m,若灯泡离地面2m,则地面圆环形阴影的面积是()A.2πm2B.3πm2C.6πm2D.12πm210.如图是由五个相同的小正方体搭成的一个几何体,它的主视图是()A.B.C.D.11.下列几何体中,其主视图、俯视图和左视图分别是图中三个图形的是()A.B.C.D.12.如图,是一块带有圆形空洞和正方形空洞(圆面直径与正方形边长相等)的小木板,则下列物体中既可以堵住圆形空洞,又可以堵住方形空洞的可能是().A.B.C.D.13.如图是由4个大小相同的立方块搭成的几何体,这个几何体的主视图是()A.B.C.D.14.从正面和左面看到长方体的图形如图所示(单位:cm),则从其上面看到图形的面积是()cm2A.4 B.6 C.8 D.1215.如图,丁轩同学在晚上由路灯AC走向路灯BD,当他走到点P时,发现身后他影子的顶部刚好接触到路灯AC的底部,当他向前再步行20 m到达Q点时,发现身前他影子的顶部刚好接触到路灯BD的底部,已知丁轩同学的身高是1.5 m,两个路灯的高度都是9 m,则两路灯之间的距离是()A.24 m B.25 m C.28 m D.30 m二、填空题16.一般把物体从正面看到的视图叫主视图,从左面看到的视图叫左视图,从上面看到的视图叫俯视图,一个几何体的三视图如图所示,则该几何体的侧面展开图的面积为______.17.如图,已知路灯离地面的高度AB为4.8m,身高为1.6m的小明站在D处的影长为2m,那么此时小明离电杆AB的距离BD为_____m.18.如图,是由一些相同的小正方体搭成的几何体从三个方向看到的图形,搭成这个几何体的小正方体的个数是_______.19.如图:在桌上摆有一些大小相同的正方体木块,其从正面和从左面看到的形状图如图所示,则要摆出这样的图形至少需要_____块正方体木块,至多需要_____块正方体木块.20.如图,一几何体的三视图如图:那么这个几何体是______.21.如图,是一个几何体的三视图(含有数据)则这个几何体的侧面展开图的面积等于__.22.一个几何体的主视图和俯视图如图所示,若这个几何体最多有a个小正方体组成,最少有b个小正方体组成,则a+b=_____.23.如图为一个长方体,则该几何体主视图的面积为______cm2.24.一个几何体的三视图如图所示,其中从上面看的视图是一个等边三角形,则这个几何体的表面积为____.25.由n个相同的小正方体堆成的几何体,其视图如下所示,则n的最大值是_____.26.将四个棱长为1的正方体如图摆放,则这个几何体的表面积是________.三、解答题27.用若干大小相同的小立方块搭成一个几何体,使得从正面和从上面看到的这个几何体的形状图如图所示.请你画出从左面看到的这个几何体的形状图的可能结果(要求画出不少于三种形状图).28.正方体是特殊的长方体,又称“立方体”、“正六面体”.(1)用一个平面去截一个正方体,截面可能是几边形?(写出至少两种情况)(2)下图是由几个小正方体所搭几何体的俯视图,小正方形中的数字表示该位置的小正方体的个数.请你画出这个几何体的主视图、左视图.29.一位美术老师在课堂上进行立体模型素描教学时,把由圆锥与圆柱组成的几何体(如图所示,圆锥在圆柱上底面正中间放置)摆在讲桌上,请你在指定的方框内分别画出这个几何体的三视图(从正面、左面、上面看得到的视图).30.如图是由9个小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置小立方块的个数,请按要求画出该几何体的主视图与左视图.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2011-2012学年四川省成都市嘉祥外国语学校九年级(下)月考数学试卷(3月份)2011-2012学年四川省成都市嘉祥外国语学校九年级(下)月考数学试卷(3月份)一、选择题:(每小题3分,共30分)2.(3分)(2011•遵义)若a、b均为正整数,且,则a+b的最小值是()3.(3分)(2011•遵义)如图,AB是⊙O的直径,BC交⊙O于点D,DE⊥AC于点E,要使DE是⊙O的切线,还需补充一个条件,则补充的条件不正确的是()4.(3分)(2011•遵义)如图,在直角三角形ABC中(∠C=90°),放置边长分别为3,4,x的三个正方形,则x的值为()5.(3分)(2011•长春)一条葡萄藤上结有五串葡萄,每串葡萄的粒数如图所示(单位:粒).则这组数据的中位数为()6.(3分)(2011•佛山)如图,一个小立方块所搭的几何体,从不同的方向看所得到的平面图形中(小正方形中的数字表示在该位置的小立方块的个数),不正确的是().CD .7.(3分)(2011•安徽)从正五边形的五个顶点中,任取四个顶点连成四边形,对于事件M ,“这个四边形是等腰梯发生的概率为 8.(3分)(2011•安徽)如图,D 是△ABC 内一点,BD ⊥CD ,AD=6,BD=4,CD=3,E 、F 、G 、H 分别是AB 、AC 、CD 、BD 的中点,则四边形EFGH 的周长是( )9.(3分)(2011•孝感)如图,某航天飞机在地球表面点P 的正上方A 处,从A 处观测到地球上的最远点Q ,若∠QAP=α,地球半径为R ,则航天飞机距地球表面的最近距离AP ,以及P 、Q 两点间的地面距离分别是( ).10.(3分)(2011•随州)已知函数,若使y=k 成立的x 值恰好有三个,则k 的值二、填空题:(每小题3分,共15分)11.(3分)(2011•内江)若m=,则m5﹣2m4﹣2011m3的值是_________.12.(3分)已知,则m﹣n=_________.13.(3分)一个口袋中有10个红球和若干个白球,请通过以下实验估计口袋中白球的个数:从口袋中随机摸出一球,记下其颜色,再把它放回口袋中,不断重复上述过程.实验中总共摸了200次,其中有50次摸到红球.则白球有_________个.14.(3分)如图,AD是⊙O的直径,弦AB∥CD,∠AOC=50°,则∠BAD=_________°.15.(3分)一个容器装有1升水,按照如下要求把水倒出:第1次倒出升水,第2次倒出的水量是升的,第3次倒出的水量是升的,第4次倒出的水量是升的,…按照这种倒水的方法,倒了10次后容器内剩余的水量是_________.三、解答题16.(10分)解答下列各题:(1)计算:.(2)用配方法解一元二次方程2x2﹣4x﹣3=0.17.(10分)(2011•荆门)2011年国家对“酒后驾车”加大了处罚力度,出台了不准酒后驾车的禁令.某记者在一停车场对开车的司机进行了相关的调查,本次调查结果有四种情况:①偶尔喝点酒后开车;②已戒酒或从来不喝酒;③喝酒后不开车或请专业司机代驾;④平时喝酒,但开车当天不喝酒.将这次调查悄况整理并绘制了如下尚不完整的统计图,请根据相关倌息,解答下列问题(1)该记者本次一共调查了_________名司机.(2)求图甲中④所在扇形的圆心角,并补全图乙.(3)在本次调查中,记者随机采访其中的一名司机.求他属第②种情况的概率.(4)请估计开车的10万名司机中,不违反“酒驾“禁令的人数.18.(13分)(2011•扬州)如图1是甲、乙两个圆柱形水槽的轴截面示意图,乙槽中有一圆柱形铁块立放其中(圆柱形铁块的下底面完全落在乙槽底面上).现将甲槽中的水匀速注人乙槽,甲、乙两个水槽中水的深度y(厘米)与注水时间x(分钟)之间的关系如图2所示.根据图象提供的信息,解答下列问题:(1)图2中折线ABC表示_________槽中水的深度与注水时间之间的关系,线段DE表示_________槽中水的深度与注水时间之间的关系(以上两空选塡“甲”或“乙”),点B的纵坐标表示的实际意义是_________.(2)注水多长时间时,甲、乙两个水槽中水的深度相同?(3)若乙槽底面积为36平方厘米(壁厚不计),求乙槽中铁块的体积;(4)若乙槽中铁块的体积为112立方厘米,求甲槽底面积(壁厚不计).(直接写成结果)19.(12分)问题情境已知矩形的面积为a(a为常数,a>0),当该矩形的长为多少时,它的周长最小?最小值是多少?数学模型设该矩形的长为x,周长为y,则y与x的函数关系式为.探索研究(1)我们可以借鉴学习函数的经验,先探索函数的图象性质.③在求二次函数y=ax2+bx+c(a≠0)的最大(小)值时,除了通过观察图象,除了通过观察图象,还可以通过配方得到.同样通过配方也可以求函数(x>0)的最小值.===≥2当=0,即x=1时,函数(x>0)的最小值为2.解决问题(2)解决“问题情境”中的问题,直接写出答案.20.(11分)(2011•南通)如图1,O为正方形ABCD的中心,分别延长OA、OD到点F、E,使OF=2OA,OE=2OD,连接EF.将△EOF绕点O逆时针旋转α角得到△E1OF1(如图2).(1)探究AE1与BF1的数量关系,并给予证明;(2)当α=30°时,求证:△AOE1为直角三角形.四、B卷填空题(每题5分,共20分)21.(5分)(2011•桂林)若,,,…;则a2011的值为_________.(用含m的代数式表示)22.(5分)(2011•港闸区模拟)已知一个半圆形工件,未搬动前如图所示,直径平行于地面放置,搬动时为了保护圆弧部分不受损伤,先将半圆作如图所示的无滑动翻转,使它的直径紧贴地面,再将它沿地面平移50米,半圆的直径为4米,则圆心O所经过的路线长是_________.23.(5分)(2011•天水)如图,在梯形ABCD中,AB∥CD,∠BAD=90°,AB=6,对角线AC平分∠BAD,点E在AB上,且AE=2(AE<AD),点P是AC上的动点,则PE+PB的最小值是_________.24.(5分)(2011•芜湖)如图,在平面直角坐标系中有一正方形AOBC,反比例函数经过正方形AOBC对角线的交点,半径为(4﹣2)的圆内切于△ABC,则k的值为_________.25.(5分)(2011•恩施州)2002年在北京召开的世界数学大会会标图案是由四个全等的直角三角形围成的一个大正方形,中间的阴影部分是一个小正方形的“赵爽弦图”.若这四个全等的直角三角形有一个角为30°,顶点B1、B2、B3、…、B n和C1、C2、C3、…、C n分别在直线和x轴上,则第n个阴影正方形的面积为_________.26.(10分)我市化工园区一化工厂,组织20辆汽车装运A、B、C三种化学物资共200吨到某地.按计划20辆汽B种物资的车辆数为y.求y与x的函数关系式;(2)如果装运A种物资的车辆数不少于5辆,装运B种物资的车辆数不少于4辆,那么车辆的安排有几种方案?并写出每种安排方案;(3)在(2)的条件下,若要求总运费最少,应采用哪种安排方案?请求出最少总运费.27.(10分)如图,在锐角△ABC中,AC是最短边;以AC中点O为圆心,AC长为半径作⊙O,交BC于E,过O作OD∥BC交⊙O于D,连接AE、AD、DC.(1)求证:D是的中点;(2)求证:∠DAO=∠B+∠BAD;(3)若,且AC=4,求CF的长.28.(10分)如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)的图象经过M(1,0)和N(3,0)两点,且与y轴交于D(0,3),直线l是抛物线的对称轴.(1)求该抛物线的解析式.(2)若过点A(﹣1,0)的直线AB与抛物线的对称轴和x轴围成的三角形面积为6,求此直线的解析式.(3)点P在抛物线的对称轴上,⊙P与直线AB和x轴都相切,求点P的坐标.2011-2012学年四川省成都市嘉祥外国语学校九年级(下)月考数学试卷(3月份)参考答案与试题解析一、选择题:(每小题3分,共30分)2.(3分)(2011•遵义)若a、b均为正整数,且,则a+b的最小值是()3.(3分)(2011•遵义)如图,AB是⊙O的直径,BC交⊙O于点D,DE⊥AC于点E,要使DE是⊙O的切线,还需补充一个条件,则补充的条件不正确的是()4.(3分)(2011•遵义)如图,在直角三角形ABC中(∠C=90°),放置边长分别为3,4,x的三个正方形,则x的值为()5.(3分)(2011•长春)一条葡萄藤上结有五串葡萄,每串葡萄的粒数如图所示(单位:粒).则这组数据的中位数为()6.(3分)(2011•佛山)如图,一个小立方块所搭的几何体,从不同的方向看所得到的平面图形中(小正方形中的数字表示在该位置的小立方块的个数),不正确的是().C D.7.(3分)(2011•安徽)从正五边形的五个顶点中,任取四个顶点连成四边形,对于事件M,“这个四边形是等腰梯发生的概率为AED==108AEB=8.(3分)(2011•安徽)如图,D是△ABC内一点,BD⊥CD,AD=6,BD=4,CD=3,E、F、G、H分别是AB、AC、CD、BD的中点,则四边形EFGH的周长是()BC==5HG=BC=EF9.(3分)(2011•孝感)如图,某航天飞机在地球表面点P的正上方A处,从A处观测到地球上的最远点Q,若∠QAP=α,地球半径为R,则航天飞机距地球表面的最近距离AP,以及P、Q两点间的地面距离分别是().AP=10.(3分)(2011•随州)已知函数,若使y=k成立的x值恰好有三个,则k的值首先在坐标系中画出已知函数解:函数二、填空题:(每小题3分,共15分)11.(3分)(2011•内江)若m=,则m5﹣2m4﹣2011m3的值是0.+1=12.(3分)已知,则m﹣n=2.,,13.(3分)一个口袋中有10个红球和若干个白球,请通过以下实验估计口袋中白球的个数:从口袋中随机摸出一球,记下其颜色,再把它放回口袋中,不断重复上述过程.实验中总共摸了200次,其中有50次摸到红球.则白球有30个.由题意,得=14.(3分)如图,AD是⊙O的直径,弦AB∥CD,∠AOC=50°,则∠BAD=25°°.15.(3分)一个容器装有1升水,按照如下要求把水倒出:第1次倒出升水,第2次倒出的水量是升的,第3次倒出的水量是升的,第4次倒出的水量是升的,…按照这种倒水的方法,倒了10次后容器内剩余的水量是.,然后从,,,次倒出:,次倒出:,++)+﹣+﹣+﹣.故答案是次倒出:;以及=三、解答题16.(10分)解答下列各题:(1)计算:.(2)用配方法解一元二次方程2x2﹣4x﹣3=0.×+1442x=2x+1==±,=1+.17.(10分)(2011•荆门)2011年国家对“酒后驾车”加大了处罚力度,出台了不准酒后驾车的禁令.某记者在一停车场对开车的司机进行了相关的调查,本次调查结果有四种情况:①偶尔喝点酒后开车;②已戒酒或从来不喝酒;③喝酒后不开车或请专业司机代驾;④平时喝酒,但开车当天不喝酒.将这次调查悄况整理并绘制了如下尚不完整的统计图,请根据相关倌息,解答下列问题(1)该记者本次一共调查了200名司机.(2)求图甲中④所在扇形的圆心角,并补全图乙.(3)在本次调查中,记者随机采访其中的一名司机.求他属第②种情况的概率.(4)请估计开车的10万名司机中,不违反“酒驾“禁令的人数.)×种情况的概率为=.18.(13分)(2011•扬州)如图1是甲、乙两个圆柱形水槽的轴截面示意图,乙槽中有一圆柱形铁块立放其中(圆柱形铁块的下底面完全落在乙槽底面上).现将甲槽中的水匀速注人乙槽,甲、乙两个水槽中水的深度y(厘米)与注水时间x(分钟)之间的关系如图2所示.根据图象提供的信息,解答下列问题:(1)图2中折线ABC表示乙槽中水的深度与注水时间之间的关系,线段DE表示甲槽中水的深度与注水时间之间的关系(以上两空选塡“甲”或“乙”),点B的纵坐标表示的实际意义是乙槽中铁块的高度为14cm.(2)注水多长时间时,甲、乙两个水槽中水的深度相同?(3)若乙槽底面积为36平方厘米(壁厚不计),求乙槽中铁块的体积;(4)若乙槽中铁块的体积为112立方厘米,求甲槽底面积(壁厚不计).(直接写成结果)∴∴19.(12分)问题情境已知矩形的面积为a(a为常数,a>0),当该矩形的长为多少时,它的周长最小?最小值是多少?数学模型设该矩形的长为x,周长为y,则y与x的函数关系式为.探索研究(1)我们可以借鉴学习函数的经验,先探索函数的图象性质.③在求二次函数y=ax2+bx+c(a≠0)的最大(小)值时,除了通过观察图象,除了通过观察图象,还可以通过配方得到.同样通过配方也可以求函数(x>0)的最小值.===≥2当=0,即x=1时,函数(x>0)的最小值为2.解决问题(2)解决“问题情境”中的问题,直接写出答案.直接代入的函数关系式为时,y=时,,时,,,,.函数(时函数(得,当该矩形的长为=20.(11分)(2011•南通)如图1,O为正方形ABCD的中心,分别延长OA、OD到点F、E,使OF=2OA,OE=2OD,连接EF.将△EOF绕点O逆时针旋转α角得到△E1OF1(如图2).(1)探究AE1与BF1的数量关系,并给予证明;(2)当α=30°时,求证:△AOE1为直角三角形.四、B卷填空题(每题5分,共20分)21.(5分)(2011•桂林)若,,,…;则a2011的值为1﹣.(用含m的代数式表示)﹣解:∵,=1,﹣﹣∵..22.(5分)(2011•港闸区模拟)已知一个半圆形工件,未搬动前如图所示,直径平行于地面放置,搬动时为了保护圆弧部分不受损伤,先将半圆作如图所示的无滑动翻转,使它的直径紧贴地面,再将它沿地面平移50米,半圆的直径为4米,则圆心O所经过的路线长是(2π+50)米.圆弧,后再平移的高度不变,所走路程为走的是线段,线段长为圆弧,从直立到扣下,球心走的是圆弧.圆弧,为23.(5分)(2011•天水)如图,在梯形ABCD中,AB∥CD,∠BAD=90°,AB=6,对角线AC平分∠BAD,点E在AB上,且AE=2(AE<AD),点P是AC上的动点,则PE+PB的最小值是2.===22224.(5分)(2011•芜湖)如图,在平面直角坐标系中有一正方形AOBC,反比例函数经过正方形AOBC对角线的交点,半径为(4﹣2)的圆内切于△ABC,则k的值为4.2中,反比例函数)的圆内切于)324QC=4CD=42=2DO=2,25.(5分)(2011•恩施州)2002年在北京召开的世界数学大会会标图案是由四个全等的直角三角形围成的一个大正方形,中间的阴影部分是一个小正方形的“赵爽弦图”.若这四个全等的直角三角形有一个角为30°,顶点B1、B2、B3、…、B n和C1、C2、C3、…、C n分别在直线和x轴上,则第n个阴影正方形的面积为()2n.﹣t++1t=(t=(+1阴影正方形边长为t=×(,个阴影正方形的面积是(•)(••())26.(10分)我市化工园区一化工厂,组织20辆汽车装运A、B、C三种化学物资共200吨到某地.按计划20辆汽B种物资的车辆数为y.求y与x的函数关系式;(2)如果装运A种物资的车辆数不少于5辆,装运B种物资的车辆数不少于4辆,那么车辆的安排有几种方案?并写出每种安排方案;(3)在(2)的条件下,若要求总运费最少,应采用哪种安排方案?请求出最少总运费.27.(10分)如图,在锐角△ABC中,AC是最短边;以AC中点O为圆心,AC长为半径作⊙O,交BC于E,过O作OD∥BC交⊙O于D,连接AE、AD、DC.(1)求证:D是的中点;(2)求证:∠DAO=∠B+∠BAD;(3)若,且AC=4,求CF的长.的中点;的面积比,从而结合∴∵∴∴,即:28.(10分)如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)的图象经过M(1,0)和N(3,0)两点,且与y轴交于D(0,3),直线l是抛物线的对称轴.(1)求该抛物线的解析式.(2)若过点A(﹣1,0)的直线AB与抛物线的对称轴和x轴围成的三角形面积为6,求此直线的解析式.(3)点P在抛物线的对称轴上,⊙P与直线AB和x轴都相切,求点P的坐标.,得到∴∴∴)时,∴的解析式为:∴∴菁优网 ©2010-2014 菁优网参与本试卷答题和审题的老师有:ZHAOJJ ;lk ;zjx111;ZJX ;zhxl ;WWF ;dbz1018;冯延鹏;sd2011;gbl210;lantin ;HLing ;caicl ;Liuzhx ;孙廷茂;sjzx ;zhqd ;hdq123;CJX ;王岑(排名不分先后)菁优网2014年2月8日。