数列综合题1

合集下载

数列综合训练题1

数列综合训练题1

数列综合训练题班级 姓名1、已知{}n a ,{}n b 都是等比数列,那么( )A .{}{}n n n n b a b a ∙+,都一定是等比数列。

B .{}n n b a +一定是等比数列,但{}n n b a ∙不一定是等比数列C .{}n n b a +不一定是等比数列,但{}n n b a ∙一定是等比数列D .{}n n b a +,{}n n b a ∙都不一定是等比数列2、数列0,0,0,…,0,…( )A .是等差数列但不是等比数列B .是等比数列但不是等差数列C .既是等差数列又是等比数列D .既不是等差数列又不是等比数列3、某种细菌在培养过程中,每20min 分裂一次(一个分裂成两个),经过3h , 1个这种细菌可以繁殖成( )A .511个B .512个C .1 023个D .1 024个 4、等差数列{}n a 的前m 项和为30,前2m 项和为100,则它的前3m 项的和为( )A .130B .170C .210D .2605、在2001年到2004年期间,甲每年5月1日到银行存入a 元的一年定期储蓄,若年利率q 保持不变,且每年到期的本息均自动转为新一年定期,到2005年5月1日,甲将所有存款的本息全部取回,则取回的金额是( )A .5)1(q a +B .4)1(q a +C .[]q q q a )1()1(5+-+D .[]q q q a )1()1(4+-+ 6、等比数列{}n a 中,48,1253==a a ,那么=7a7、已知数列{}n a 满足条件:*+∈+==N n a a a a n n n (22,111),它的第四项是 。

8、数列{}n a 中,3,511+==+n n a a a ,那么这个数列的通项公式是9、等差数列{}n a 中,78,24201918321=++-=++a a a a a a ,则此数列前20项和等于 。

10、等差数列{}n a 中,=≠∈==+q p q p a q p N q p p a q a 则且),,,(,,11、已知数列{}n a 的前n 项和为1,(1)()4n n n S S a n N *=-∈ (1)求;,21a a(2)求证数列{}n a 是等比数列12、等差数列{}n a 中,前n 项和为n S(1)若n S S a 则,,1311131==为何值时,S n 最大(2)若01>a 且0,01312<>S S ,则n 为何值时,n S 最大。

高三 下2020数列综合题选讲1(1)

高三 下2020数列综合题选讲1(1)

1.(2020·全国高三专题练习(理))数列{}n a 的前n 项和为n S ,且()()121nn a n =--,则2019=S ( )A .2019B .2019-C .4037-D .40373.(2020·陕西高三月考(文))已知数列{}n a 的前n 项和为n S ,且满足1n n a S +=,则39121239S S SS a a a a +++⋅⋅⋅+= ( ) A .1013B .1035C .2037D .20594.(2020·福建高三期末(理))执行如图所示的程序框图,则输出S 的值为 ( )A .1010-B .1009-C .1009D .10105.(2020·广东高三月考(理))数列{}n a :1,1,2,3,5,8,13,21,34,…,称为斐波那契数列,是由十三世纪意大利数学家列昂纳多·斐波那契以兔子繁殖为例子而引入,故又称为“兔子数列”.该数列从第三项开始,每项等于其前相邻两项之和.即:21n n n a a a ++=+.记数列{}n a 的前n 项和为n S ,则下列结论正确的是 ( ) A .201920202S a =+ B .201920212S a =+ C .201920201S a =- D .201920211S a =-6.(2020·湖北高三月考(文))已知数列{}n a 中,11a =,23122n S n n =-,设11n n n b a a +=,则数列{}n b 的前n 项和为 ( ) 7.(2019·河南高考模拟(文))已知函数()cos lnxf x x xππ=+-,若22018201920192019f f f πππ⎛⎫⎛⎫⎛⎫+++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭L ()1009ln 0,0)a b a b π+>>(,则11a b +的最小值为 ( ) A .2B .4C .6D .88. (2019·全国高三专题练习)在数列{}n a 中,已知11a =,且对于任意的*,m n N ∈,都有m n m n a a a mn +=++,则201911i ia==∑( ) A .20192020B .20182019C .20191010D .202110109.(2019·浙江学军中学高三期中)已知数列{}n a 满足112a =-,2131n n n a a a +=++,若12n n b a =+,设数列{}n b 的前项和为n S ,则使得2019S k -最小的整数k 的值为 ( ) A .0B .1C .2D .310.(2020·安徽高三(文))已知数列{}n a 满足11a =,且1x =是函数()32113n n a f x x a x +=-+()n N +∈的极值点,设22log n n b a +=,记[]x 表示不超过x 的最大整数,则122320182019201820182018b b b b b b ⎡⎤++⋅⋅⋅+=⎢⎥⎣⎦ ( )A .2019B .2018C .1009D .100812.(2020·吉林高三期末(理))已知数列{}n a 的前项n 和为n S ,满足112a =-,且1222n n a a n n ++=+,则2n S =__ ,n a =__ ____.13.(2019·湖南衡阳市八中高三(文))已知数列{}n a ,{}n b 的前n 项和分别为n S ,n T ,且0n a >,263n n n S a a =+,12(21)(21)nn n a n a a b +=--,若n k T >恒成立,则k 的最小值为14.(2019·全国高三专题练习)数列{}n a 满足11a =,对任意*n N ∈的都有11n n a a n +=++,则1299111a a a ++⋯⋯+= 16.(2019·全国高三专题练习)已知{}n a 是公比不为1的等比数列,数列{}n b 满足:2a ,n b a ,2n a 成等比数列,2221n n n c b b +=,若数列{}n c 的前n 项和n T λ≥对任意的*n N ∈恒成立,则λ的最大值为17.(2019·全国高三专题练习)数列{}n a 满足13a =,且对于任意的*n N ∈都有111n n a a a n +=++-,则12985111a a a +++=L ______. 18.(2019·全国高三专题练习)已知数列{}n a 和{}n b 的前n 项和分别为n S 和n T ,且0n a >,2*634()n n n S a a n N =+-∈,()()1111n n n b a a +=--,若对任意的n *∈N ,n k T >恒成立,则的最小值为19.(2019·全国高三专题练习)已知正项数列{}n a 的前n 项和为n S ,满足21n n S a =,则516810024246810011111(1)11111a a a a a S S S S S +++++-+-++-=-----L 20.(2010·福建高三月考(文))数列{}n a 的各项均为正数,n S 为其前n 项和,对于任意的*n N ∈,总有2,,n n n a S a 成等差数列,又记21231n n n b a a ++=⋅,数列{}n b 的前n 项和n T =21.(2020·山西高三(文))对于等差数列和等比数列,我国古代很早就有研究成果,北宋大科学家沈括在《梦溪笔谈》中首创的“隙积术”,就是关于高阶等差级数求和的问题.现有一货物堆,从上向下查,第一层有2个货物,第二层比第一层多3个,第三层比第二层多4个,以此类推,记第n 层货物的个数为n a ,则数列{}n a 的通项公式n a =_______,数列(2)n nn a ⎧⎫⎨⎬+⎩⎭的前n 项和n S =_______.22.(2019·全国高三专题练习)设数列{}n a 的前n 项和为n S ,已知1212a a ==,,且2123n n n a S S ++=-+,记22122log log n n n b a a -=+,则数列(){}21nn b -⋅的前10项和为______.23.(2020·重庆西南大学附中高三月考(文))已知正项数列{}n a 的前n 项和为n S ,且21122n n n S a a =+,若数列()2112nn nn b S +=-,数列{}n b 的前2020项和为 24.(2020·重庆高三(理))已知数列{}n a 满足1cos(1)3n n a a n n π+=++,则数列{}n a 的前40项和为________.25.(2019·湖北高考模拟(理))如图所示,点D 为ABC ∆的边BC 上一点,2BD DC =u u u v u u u v ,()n E n N ∈为AC上一列点,且满足:()114145nn n n n E A a E D E B a +=-+-u u u u v u u u u vu u u u v,其中数列{}n a 满足410n a -≠,且12a =,则12311111111n a a a a ++++=----L ______26.(2020·山东高三期末)设*n N ∈,向量(31,3)AB n =+u u u v ,(0,32)BC n =-u u u v ,n a AB AC =⋅u u u v u u u v .(1)试问数列{}1n n a a +-是否为等差数列?为什么?(2)求数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和n S . 27.(2020·北京清华附中高三月考)已知数列{}n b ,满足14b =且12(2)1n n b b n n n --=≥-. (1)求证{}n b 是单增数列; (2)求数列1n b ⎧⎫⎨⎬⎩⎭的前n 项和n S . 28.(2020·四川高三期末(文))已知各项均为正数的数列{}n a 的前n 项和n S 满足()241n n S a =+(*N n ∈). (1)证明:数列{}n a 是等差数列,并求其通项公式; (2)设2n an n b a =+,求数列{}n b 的前n 项和n T .29.(2020·湖北高三月考(理))已知数列{}n a 的前n 项和为n S ,且满足()*2n n S a n n N =-+∈.(Ⅰ)求证:数列12n a ⎧⎫-⎨⎬⎩⎭为等比数列; (Ⅱ)求数列{}1n a -的前n 项和n T .30.(2020·全国高三专题练习(理))已知数列{}n a 其前n 项和n S 满足:()*112(1),0n n S n a n N a+=-+∈=.(1)求数列{}n a 的通项公式;(2)当1n =时,11c =,当2n ≥且*n N ∈时,设12n n nc na +=,求{}n c 的前n 项和n T .。

一轮复习专题31 数列综合练习

一轮复习专题31 数列综合练习

专题31数列综合练习一、选择题:本题共12小题,每小题5分,共60分。

1.下列公式可作为数列}{n a :1,2,1,2,1,2,…的通项公式的是()。

A 、1=n aB 、21)1(+-=n n a C 、|2sin |2π-=n a n D 、23)1(1+-=+n n a 【答案】C【解析】由|2sin|2π-=n a n 可得11=a ,22=a ,13=a ,24=a ,…,故选C 。

2.数列}{n a 中“n a 、1+n a 、2+n a (+∈N n )成等比数列”是“221++⋅=n n n a a a ”的()。

A 、充分不必要条件B 、必要不充分条件C 、充要条件D 、既不充分也不必要条件【答案】A【解析】+∈N n ,n a 、1+n a 、2+n a 成等比数列,则221++⋅=n n n a a a ,反之,则不一定成立,举反例,如数列为1、0、0、0、…故选A 。

3.如图,n 个连续自然数按规律排成下表,则从2018到2020的箭头方向依次为()。

A 、↑→B 、→↑C 、↓→D 、→↓【答案】A【解析】选取1作为起点,由图可知,位置变化规律是以4为周期,由于250442018+⨯=,可知2018在2的位置,2019在3的位置,2020在4的位置,故选A 。

4.等差数列}{n a 的前m 项和为30,前m 2项和为100,则它的前m 3项和为()。

A 、130B 、170C 、210D 、260【答案】C【解析】由已知得30=m S 、1002=m S ,则m S 、m m S S -2、m m S S 23-、…为等差数列,则30=m S 、702m m S S -、11023=-m m S S ,则2103=m S ,故选C 。

5.将含有n 项的等差数列插入4和67之间,仍构成一个等差数列,且新等差数列的所有项之和等于781,则n 值为()。

A 、20B 、21C 、22D 、23【答案】A【解析】由题意知这些数构成2+n 项的等差数列,且首末项分别为4和67,由等差数列的求和公式可得7812)2()(21=+⨯+=+n a a S n ,解得20=n ,故选A 。

数列综合题-2023届高三数学一轮复习

数列综合题-2023届高三数学一轮复习

数列综合题一.选择题(共5小题)1已知数列{a n}的前n项和为S n,且a1=1,a n+1=2S n+1(n∈N*),在等差数列{b n}中,b2=5,且公差d=2.使得a1b1+a2b2+…+a n b n>60n成立的最小正整数n为()A.2 B.3 C.4 D.52.已知定义在[1,+∞)上的函数f(x)=,则关于x的方程2n f(x)﹣1=0(n∈N*)的所有解的和为()A.3n2+3n B.3×2n+2+9 C.3n+2+6 D.9×2n+1﹣33已知正项数列{a n}的前n项和为S n,且2S n=a n+,则S2015的值是()A. B.C.2015 D.4.在△ABC中,若角A,B,C所对的三边a,b,c成等差数列,给出下列结论:①b2≥ac;②;③;④.其中正确的结论是()A.①② B.②③ C.③④ D.①④5.设函数f(x)=2x﹣cosx,{a n}是公差为的等差数列,f(a1)+f(a2)+…+f(a5)=5π,则[f(a3)]2﹣a1a5=()A.0 B. C.D.二.填空题(共5小题)6.设{a n}是一个公差为d(d>0)的等差数列.若,且其前6项的和S6=21,则a n= .7.已知整数数列a0,a1,a2,…,a2014中,满足关系式a0=0,|a1|=|a0+1|,|a2|=|a1+1|,…,|a2014|=|a2013+1|,则|a1+a2+a3+…+a2014|的最小值为.8.已知数列{a n}满足a1=a,a n+1=1+,若对任意的自然数n≥4,恒有<a n<2,则a 的取值范围为.9.定义数列{x n}:x1=1,x n+1=3x n3+2x n2+x n;数列{y n}:y n=;数列{z n}:z n=;若{y n}的前n项的积为P,{z n}的前n项的和为Q,那么P+Q= .10.如图,n+1个上底、两腰皆为1,下底长为2的等腰梯形的下底均在同一直线上,设四边形P1M1N1N2的面积为S1,四边形P2M2N2N3的面积为S2,…,四边形P n M n N n N n+1的面积为S n,通过逐一计算S1,S2,…,可得S n= .三.解答题(共11小题)11.已知数列{a n}满足a1=且a n+1=a n﹣a n2(n∈N*)(1)证明:1≤≤2(n∈N*);(2)设数列{a n2}的前n项和为S n,证明(n∈N*).12.在数列{a n}中,a1=3,a n+1a n+λa n+1+μa n2=0(n∈N+)(Ⅰ)若λ=0,μ=﹣2,求数列{a n}的通项公式;(Ⅱ)若λ=(k0∈N+,k0≥2),μ=﹣1,证明:2+<<2+.13.已知数列{a n}的各项均为正数,b n=n(1+)n a n(n∈N+),e为自然对数的底数.(1)求函数f(x)=1+x﹣e x的单调区间,并比较(1+)n与e的大小;(2)计算,,,由此推测计算的公式,并给出证明;(3)令c n=(a1a2…a n),数列{a n},{c n}的前n项和分别记为S n,T n,证明:T n<eS n.14.数列{a n}满足:a1+2a2+…na n=4﹣,n∈N+.(1)求a3的值;(2)求数列{a n}的前 n项和T n;(3)令b1=a1,b n=+(1+++…+)a n(n≥2),证明:数列{b n}的前n项和S n满足S n<2+2lnn.15.已知数列{a n}(n∈N*,1≤n≤46)满足a1=a,a n+1﹣a n=其中d≠0,n∈N*.(1)当a=1时,求a46关于d的表达式,并求a46的取值范围;(2)设集合M={b|b=a i+a j+a k,i,j,k∈N*,1≤i<j<k≤16}.①若a=,d=,求证:2∈M;②是否存在实数a,d,使,1,都属于M?若存在,请求出实数a,d;若不存在,请说明理由.16.已知{a n},{b n},{c n}都是各项不为零的数列,且满足a1b1+a2b2+…+a n b n=c n S n,n∈N*,其中S n是数列{a n}的前n项和,{c n}是公差为d(d≠0)的等差数列.(1)若数列{a n}是常数列,d=2,c2=3,求数列{b n}的通项公式;(2)若a n=λn(λ是不为零的常数),求证:数列{b n}是等差数列;(3)若a1=c1=d=k(k为常数,k∈N*),b n=c n+k(n≥2,n∈N*),求证:对任意的n≥2,n∈N*,数列单调递减.17.已知数列{a n}的前n项和为S n,a1=0,a1+a2+a3+…+a n+n=a n+1,n∈N*.(Ⅰ)求证:数列{a n+1}是等比数列;(Ⅱ)设数列{b n}的前n项和为T n,b1=1,点(T n+1,T n)在直线上,若不等式对于n∈N*恒成立,求实数m的最大值.18.数列{a n}的前n项和为S n,已知若a1=,S n=n2a n﹣n(n﹣1)(n∈N*)(Ⅰ)求a2,a3;(Ⅱ)求数列{a n}的通项;(Ⅲ)设b n=,数列{b n}的前n项的和为T n,证明:T n<(n∈N*)19.在数列 {a n}中,已知 a1=a2=1,a n+a n+2=λ+2a n+1,n∈N*,λ为常数.(1)证明:a1,a4,a5成等差数列;(2)设 c n=,求数列的前n项和 S n;(3)当λ≠0时,数列 {a n﹣1}中是否存在三项 a s+1﹣1,a t+1﹣1,a p+1﹣1成等比数列,且s,t,p也成等比数列?若存在,求出s,t,p的值;若不存在,说明理由.20.已知数列{a n}是等差数列,S n为{a n}的前n项和,且a10=19,S10=100;数列{b n}对任意n∈N*,总有b1•b2•b3…b n﹣1•b n=a n+2成立.(Ⅰ)求数列{a n}和{b n}的通项公式;(Ⅱ)记c n=(﹣1)n,求数列{c n}的前n项和T n.21.在公差不为0的等差数列{a n}中,a2,a4,a8成公比为a2的等比数列.(I)求数列{a n}的通项公式;(II)设数列{b n}满足b n=.①求数列{b n}的前n项和为T n;②令c2n﹣1=(n∈N+),求使得c2n﹣1>10成立的所有n的值.。

专题:数列试题1[学生版]

专题:数列试题1[学生版]

专题 数列第1讲 数列的基本概念1.已知数列{a n }对任意的p ,q ∈N *满足a p +q =a p +a q ,且a 2=-6,那么a 10等于( )A .-165B .-33C .-30D .-212.已知数列{a n }的前n 项和S n 满足S n =n 2+2n -1,则( ) A .a n =2n +1(n ∈N *) B .a n =2n -1(n ∈N *)C .a n =⎩⎪⎨⎪⎧ 2,(n =1),2n +1,(n ≥2,n ∈N *) D .a n =⎩⎪⎨⎪⎧2,(n =1),2n -1,(n ≥2,n ∈N *) 3.在数列{a n }中,已知a 1=1,且当n ≥2时,a 1a 2…a n =n 2,则a 3+a 5等于( ) A.73 B.6116 C.3115 D.1144.(2010年安徽)设数列{a n }的前n 项和S n =n 2,则a 8的值为( ) A .15 B .16 C .49 D .645.(2011年江西)已知数列(a n )的前n 项和S n 满足:S n +S m =S n +m ,且a 1=1,那么a 10=( )A .1B .9C .10D .556.已知数列{a n }满足:a 4n -3=1,a 4n -1=0,a 2n =a n ,n ∈N *,则a 2 009=________,a 2014=________.7.我们可以利用数列{a n }的递推公式a n =2,n n n a n ⎧⎪⎨⎪⎩,为奇数时,为偶数时,(n ∈N *)求出这个数列各项的值,使得这个数列中的每一项都是奇数.则a 24+a 25=________;研究发现,该数列中的奇数都会重复出现,那么第8个5是该数列的第________项.8.(2011年浙江)若数列⎩⎨⎧⎭⎬⎫n (n +4)(23)n 中的最大项是第k 项,则k =__________.9.(2011年广东广州)数列{a n }的前n 项和记为S n ,a 1=1,a n +1=2S n +1(n ≥1),求{a n }的通项公式.第2讲等差数列1.(2011年重庆)在等差数列{a n}中,a2=2,a3=4,则a10=()A.12 B.14 C.16 D.182.(2011届广东汕头)在等差数列{a n}中,a2+a12=32,则2a3+a15的值是()A.24 B.48 C.96 D.无法确定3.(2011年广东湛江测试)等差数列{a n}前17项和S17=51,则a5-a7+a9-a11+a13=()A.3 B.6 C.17 D.514.已知S n为等差数列{a n}的前n项和,若a1+a7+a13是一确定的常数,下列各式:①a21;②a7;③S13;④S14;⑤S8-S5.其结果为确定常数的是()A.②③⑤ B.①②⑤ C.②③④ D.③④⑤5.(2010年福建)设等差数列{a n}的前n项和为S n,若a1=-11,a4+a6=-6,则当S n 取最小值时,n等于()A.6 B.7 C.8 D.96.(2011年全国)设S n为等差数列{a n}的前n项和,若a1=1,公差d=2,S k+2-S k=24,则k=()A.8 B.7 C.6 D.57.等差数列{a n},{b n}的前n项和分别为S n,T n.若S nT n=7n+14n+27(n∈N*),则a7b7=________.8.(2011年辽宁)S n为等差数列{a n}的前n项和,S2=S6,a4=1,则a5=______.9.(2011年福建)已知等差数列{a n}中,a1=1,a3=-3.(1)求数列{a n}的通项公式;(2)若数列{a n}的前k项和S k=-35,求k的值.10.已知S n为等差数列{a n}的前n项和,S n=12n-n2.求数列的通项公式。

数列综合测试题(经典)含答案

数列综合测试题(经典)含答案

数列综合测试题第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符号题目要求的。

)1.已知等差数列{a n }的前n 项和为S n ,且满足S 33-S 22=1,则数列{a n }的公差是( )A.12B .1C .2D .32.设等比数列{a n }的前n 项和为S n ,若8a 2+a 5=0,则下列式子中数值不能确定的是( )A.a 5a 3B.S 5S 3C.a n +1a nD.S n +1S n3.(理)已知数列{a n }满足log 3a n +1=log 3a n +1(n ∈N *)且a 2+a 4+a 6=9,则log 13(a 5+a 7+a 9)的值是( )A .-5B .-15C .5D.154.已知两个等差数列{a n }和{b n }的前n 项和分别为A n 和B n ,且A n B n =7n +45n +3,则使得a nb n为正偶数时,n 的值可以是( )A .1B .2C .5D .3或115.已知a >0,b >0,A 为a ,b 的等差中项,正数G 为a ,b 的等比中项,则ab 与AG 的大小关系是( )A .ab =AGB .ab ≥AGC .ab ≤AGD .不能确定6.各项都是正数的等比数列{a n }的公比q ≠1,且a 2,12a 3,a 1成等差数列,则a 3+a 4a 4+a 5的值为( )A.1-52B.5+12C.5-12D.5+12或5-127.数列{a n }的通项公式为a n =2n -49,当该数列的前n 项和S n 达到最小时,n 等于( ) A .24 B .25 C .26D .278.数列{a n }是等差数列,公差d ≠0,且a 2046+a 1978-a 22012=0,{b n }是等比数列,且b 2012=a 2012,则b 2010·b 2014=( )A .0B .1C .4D .89.已知各项均为正数的等比数列{a n }的首项a 1=3,前三项的和为21,则a 3+a 4+a 5=( )A .33B .72C .84D .18910.已知等差数列{a n }的前n 项和为S n ,若a 1=1,S 3=a 5,a m =2011,则m =( ) A .1004 B .1005 C .1006D .100711.设{a n }是由正数组成的等差数列,{b n }是由正数组成的等比数列,且a 1=b 1,a 2003=b 2003,则( )A .a 1002>b 1002B .a 1002=b 1002C .a 1002≥b 1002D .a 1002≤b 100212.已知数列{a n }的通项公式为a n =6n -4,数列{b n }的通项公式为b n =2n ,则在数列{a n }的前100项中与数列{b n }中相同的项有( )A .50项B .34项C .6项D .5项第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题4分,共16分,把正确答案填在题中横线上) 13.已知数列{a n }满足:a n +1=1-1a n,a 1=2,记数列{a n }的前n 项之积为P n ,则P 2011=________.14.秋末冬初,流感盛行,荆门市某医院近30天每天入院治疗流感的人数依次构成数列{a n },已知a 1=1,a 2=2,且a n +2-a n =1+(-1)n (n ∈N *),则该医院30天入院治疗流感的人数共有________人.15.已知等比数列{a n }中,各项都是正数,且a 1,12a 3,2a 2成等差数列,则a 3+a 10a 1+a 8=________.16.在如图的表格中,每格填上一个数字后,使每一横行成等差数列,每一纵列成等比数列,且从上到下所有公比相等,则a +b +c 的值为________.三、解答题()17.设数列{a n }的前n 项和为n S =2n 2,{b n }为等比数列,且a 1=b 1,b 2(a 2 -a 1) =b 1。

高考数学一轮复习--数列小题综合练

高考数学一轮复习--数列小题综合练

第54练 数列小题综合练1.(2022·齐齐哈尔模拟)已知等比数列{a n }中,4a 1,12a 3,3a 2成等差数列,则a 2 021-a 2 023a 2 020-a 2 022等于( )A .4或-1B .4C .-1D .-4答案 B解析 设等比数列{a n }的公比为q ,因为4a 1,12a 3,3a 2成等差数列, 所以4a 1+3a 2=a 3,所以4a 1+3a 1q =a 1q 2,且a 1≠0,所以q 2-3q -4=0,解得q =4或q =-1,为保证a 2 021-a 2 023a 2 020-a 2 022有意义, 则q 2≠1,所以q =4,所以a 2 021-a 2 023a 2 020-a 2 022=q (a 2 020-a 2 022)a 2 020-a 2 022=q =4. 2.在数列{a n }中,a 1=-2,a n a n +1=a n -1,则a 2 023的值为( )A .-2B.13C.12D.32 答案 A解析 在数列{a n }中,a 1=-2,a n a n +1=a n -1,所以a n +1=1-1a n, 当n =1时,解得a 2=1+12=32, 当n =2时,解得a 3=1-23=13, 当n =3时,解得a 4=1-3=-2,当n =4时,解得a 5=32, 故数列a n 的周期为3,所以a 2 023=a 3×674+1=a 1=-2.3.若数列{a n }满足a 1=3,a n =3a n -1+3n (n ≥2),则数列{a n }的通项公式a n 等于( )A .2×3nB.3n n C .n ·3nD.n 3n 答案 C解析 由a n =3a n -1+3n (n ≥2),得n =2时,a 2=3a 1+32=18,对于A ,a 1=2×3=6≠3,故A 错;对于B ,a 1=31=3,a 2=322=92≠18,故B 错; 对于C ,a 1=1×3=3,a 2=2×32=18;对于D ,a 1=13≠3,故D 错. 4.(2022·太原模拟)已知{a n }是各项均为正数的等比数列,其前n 项和为S n ,且{S n }是等差数列,则下列结论错误的是( )A .{a n +S n }是等差数列B .{a n ·S n }是等比数列C .{a 2n }是等差数列D.⎩⎨⎧⎭⎬⎫S n n 是等比数列 答案 B解析 由{S n }是等差数列,得2S 2=S 1+S 3,即2(a 1+a 2)=a 1+a 1+a 2+a 3,∴a 2=a 3,设等比数列{a n }的公比为q ,∵{a n }是各项均为正数的等比数列,则q =a 3a 2=1, ∴a n =a 1>0.对于A 选项,a n +S n =(n +1)a 1,∴数列{a n +S n }是等差数列,A 正确;对于C 选项,a 2n =a 21,∴{a 2n }是常数列,且为等差数列,C 正确;对于D 选项,S n n =a 1>0,∴⎩⎨⎧⎭⎬⎫S n n 是等比数列,D 正确; 对于B 选项,a n S n =na 21,则a n +1S n +1a n S n =n +1n不是常数, ∴{a n ·S n }不是等比数列,B 不正确.5.(2022·安庆模拟)已知数列{a n }的前n 项和为S n ,若S n =na n ,且S 2+S 4+S 6+…+S 60=3 720,则a 1等于( )A .8B .6C .4D .2答案 C解析 S n =na n ,∴S n =n (S n -S n -1),n ≥2,∴nS n -1=(n -1)S n ,n ≥2,变形得S n -1n -1=S n n,n ≥2, ∴数列⎩⎨⎧⎭⎬⎫S n n 是每项均为S 1的常数列, ∴S n n=S 1, 即S n =nS 1=na 1,又∵S 2+S 4+S 6+…+S 60=3 720,∴2a 1+4a 1+6a 1+…+60a 1=(2+4+6+…+60)a 1=30×622a 1=3 720, 解得a 1=4.6.(2022·银川模拟)已知从1开始的连续奇数首尾相接蛇形排列形成如图三角形数表,第i 行第j 列的数记为a i ,j ,如a 3,1=7,a 4,3=15,则a i ,j =2 021时,110(3)j -log 2(i +19)等于( )15 37 9 1119 17 15 1321 23 25 27 29……………………………A .54B .18C .9D .6答案 A解析 奇数构成的数阵,令2n -1=2 021,解得n =1 011,故2 021是数阵中的第1 011个数,第1行到第i 行一共有1+2+3+…+i =i (i +1)2个奇数, 则第1行到第44行末一共有44×(44+1)2=990个奇数,第1行到第45行末一共有1 035个奇数,所以2 021位于第45行,又第45行是从左到右依次递增,且共有45个奇数, 所以2 021位于第45行,从左到右第21列,所以i =45,j =21, 则110(3)j -log 2(i +19)=21110(3)--·log 2(45+19)=(-3)2·log 264=9×6=54.7.(2022·泰安模拟)已知等差数列{a n }的前n 项和为S n ,公差为13,a n >0,1a 1a 2+1a 2a 3+…+1a 9a 10=12,当S n +10n取最小值时,n 的值为( ) A .7 B .8 C .9 D .10答案 B解析 1a 1a 2+1a 2a 3+…+1a 9a 10= 3⎣⎡ ⎝⎛⎭⎫1a 1-1a 2+ ⎦⎤⎝⎛⎭⎫1a 2-1a 3+…+⎝⎛⎭⎫1a 9-1a 10 =3⎝ ⎛⎭⎪⎫1a 1-1a 1+3=12, 整理得a 21+3a 1-18=0,解得a 1=3或a 1=-6(舍去),即S n =3n +n (n -1)2×13=n 2+17n 6, 则S n +10n =n 2+17n +606n =16⎝⎛⎭⎫n +60n +17. 当n ≤7时,数列单调递减,当n ≥8时,数列单调递增,当n =7时,S n +10n =387,当n =8时,S n +10n =6512, 故当n =8时,S n +10n取最小值. 8.(多选)已知等比数列{a n }的公比q =-23,等差数列{b n }的首项b 1=12,若a 9>b 9且a 10>b 10,则以下结论正确的有( )A .a 9·a 10<0B .a 9>a 10C .b 10>0D .b 9>b 10答案 AD解析 数列{a n }是首项为a 1,公比q 为-23的等比数列,{b n }是首项为12,公差设为d 的等差数列,则a 9=a 1⎝⎛⎭⎫-238,a 10=a 1⎝⎛⎭⎫-239, ∴a 9·a 10=a 21⎝⎛⎭⎫-2317<0,故A 正确; ∵a 1正负不确定,∴不能确定a 9和a 10的大小关系,故B 错误;∵a 9和a 10异号,a 9>b 9且a 10>b 10,∴b 9和b 10中至少有一个数是负数,又∵b 1=12,∴d <0,∴b 9>b 10,故D 正确.∴b 10一定是负数,即b 10<0,故C 错误.9.(多选)设数列{a n }的前n 项和为S n ,若a 2=3,S n +1=2S n +n ,则( )A .a n +1>S nB .{a n +1}是等比数列C.⎩⎨⎧⎭⎬⎫S n 2n 是单调递增数列 D .S n <2a n答案 ACD解析 对于A 选项,由S n +1=2S n +n 得a n +1=S n +n ,故a n +1>S n ,A 选项正确; 对于B 选项,将S n +1=2S n +n ,S n =2S n -1+n -1(n ≥2),两式相减得a n +1=2a n +1, 即a n +1+1=2(a n +1)(n ≥2),又令n =1,得S 2=2S 1+1⇒3+a 1=2a 1+1⇒a 1=2,a 2+1≠2(a 1+1),所以{a n +1}从第二项开始成等比数列,公比为2,故n ≥2时,a n +1=2n -2(a 2+1)=2n ,即a n =2n -1,所以a n =⎩⎪⎨⎪⎧2,n =1,2n -1,n ≥2,故B 选项错误; 对于C 选项,因为a n =⎩⎪⎨⎪⎧2,n =1,2n -1,n ≥2,当n =1时,S 1=2,当n ≥2时,S n =2+(22+23+…+2n )-(n -1)=2(1-2n )1-2-(n -1)=2n +1-n -1. 所以S n =⎩⎪⎨⎪⎧ 2,n =1,2n +1-n -1,n ≥2, 令c n =S n2n=⎩⎨⎧ 1,n =1,2-n +12n ,n ≥2,则n ≥2时,c n +1-c n =⎝ ⎛⎭⎪⎫2-n +22n +1-⎝⎛⎭⎪⎫2-n +12n =n +12n -n +22n +1=n 2n +1>0, 即c n +1>c n ,而c 2=54>c 1,所以数列⎩⎨⎧⎭⎬⎫S n 2n 单调递增,C 选项正确; 对于D 选项,当n ≥2时,S n -2a n =2n +1-n -1-(2n +1-2)=1-n ≤-1,S 1<2a 1显然成立,故S n <2a n 恒成立,D 选项正确.10.(多选)意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,…,其中从第三项起,每个数等于它前面两个数的和,后来人们把这样的一列数组成的数列{a n }称为“斐波那契数列”,记S n 为数列{a n }的前n 项和,则下列结论正确的是( )A .a 6=8B .S 9=54C .a 1+a 3+a 5+…+a 2 023=a 2 024D.a 21+a 22+…+a 22 023a 2 023=a 2 024 答案 ACD解析 对于A ,写出数列的前6项为1,1,2,3,5,8,故A 正确;对于B ,S 9=1+1+2+3+5+8+13+21+34=88,故B 错误;对于C ,由a 1=a 2,a 3=a 4-a 2,a 5=a 6-a 4,a 7=a 8-a 6,…,a 2 023=a 2 024-a 2 022,可得a 1+a 3+a 5+a 7+…+a 2 023=a 2+a 4-a 2+a 6-a 4+a 8-a 6+…+a 2 024-a 2 022=a 2 024,故C 正确;对于D ,斐波那契数列总有a n +2=a n +1+a n ,则a 21=a 2a 1,a 22=a 2(a 3-a 1)=a 2a 3-a 2a 1,a 23=a 3(a 4-a 2)=a 3a 4-a 2a 3,…,a 22 022=a 2 022(a 2 023-a 2 021)=a 2 022a 2 023-a 2 021a 2 022,a 22 023=a 2 023a 2 024-a 2 023a 2 022,可得a 21+a 22+…+a 22 023a 2 023=a 2 023a 2 024a 2 023=a 2 024,故D 正确. 11.已知等比数列{a n }满足log 2(a 1a 2a 3a 4a 5)=5,等差数列{b n }满足b 3=a 3,则b 1+b 2+b 3+b 4+b 5=________.答案 10解析 因为等比数列{a n }中,log 2(a 1a 2a 3a 4a 5)=log 2(a 3)5=5,所以a 3=2,因为b 3=a 3=2,则由等差数列的性质得b 1+b 2+b 3+b 4+b 5=5b 3=10.12.已知数列{a n }的前n 项和满足S n =2n 2+n +3,n ∈N *,则数列{a n }的通项公式a n =________.答案 ⎩⎪⎨⎪⎧6,n =1,4n -1,n ≥2,n ∈N * 解析 ∵S n =2n 2+n +3(n ∈N *),∴当n =1时,a 1=S 1=2×12+1+3=6;当n ≥2时,a n =S n -S n -1=2n 2+n +3-[2(n -1)2+(n -1)+3]=4n -1.经检验,当n =1时,不符合上式,∴a n =⎩⎪⎨⎪⎧6,n =1,4n -1,n ≥2,n ∈N *.13.(2022·贵阳模拟)已知等差数列{a n }和{b n }的前n 项和分别为S n 和T n ,且有a 3+a 9=3,b 5+b 7=6,则S 11T 11的值为________. 答案 12解析 因为{a n },{b n }为等差数列,则有a 3+a 9=2a 6=3,b 5+b 7=2b 6=6.S 11=11a 6,T 11=11b 6,所以S 11T 11=11a 611b 6=a 6b 6=12. 14.若数列{a n }的前n 项和为S n ,b n =S n n,则称数列{b n }是数列{a n }的“均值数列”.已知数列{b n }是数列{a n }的“均值数列”且通项公式为b n =n ,设数列⎩⎨⎧⎭⎬⎫1a n a n +1的前n 项和为T n ,若T n <12m 2-m -1对一切n ∈N *恒成立,则实数m 的取值范围为________. 答案 (-∞,-1]∪[3,+∞)解析 由题意,数列{a n }的前n 项和为S n ,由“均值数列”的定义可得S n n=n ,所以S n =n 2, 当n =1时,a 1=S 1=1;当n ≥2时,a n =S n -S n -1=n 2-(n -1)2=2n -1,a 1=1也满足a n =2n -1,所以a n =2n -1,所以1a n ·a n +1=1(2n -1)(2n +1)=12⎝ ⎛⎭⎪⎫12n -1-12n +1, 所以T n =12⎝ ⎛1-13+13-15+…+12n -1- ⎭⎪⎫12n +1=12⎝ ⎛⎭⎪⎫1-12n +1<12, 又T n <12m 2-m -1对一切n ∈N *恒成立, 所以12m 2-m -1≥12,整理得m 2-2m -3≥0,解得m ≤-1或m ≥3. 即实数m 的取值范围为(-∞,-1]∪[3,+∞).。

等比数列综合练习题(1)

等比数列综合练习题(1)

一、等比数列选择题1.在流行病学中,基本传染数R 0是指在没有外力介入,同时所有人都没有免疫力的情况下,一个感染者平均传染的人数.初始感染者传染R 0个人,为第一轮传染,这R 0个人中每人再传染R 0个人,为第二轮传染,…….R 0一般由疾病的感染周期、感染者与其他人的接触频率、每次接触过程中传染的概率决定.假设新冠肺炎的基本传染数0 3.8R =,平均感染周期为7天,设某一轮新增加的感染人数为M ,则当M >1000时需要的天数至少为( )参考数据:lg38≈1.58 A .34 B .35C .36D .372.已知等比数列{a n }的前n 项和为S n ,若S 3=7,S 6=63,则数列{na n }的前n 项和为( )A .-3+(n +1)×2nB .3+(n +1)×2nC .1+(n +1)×2nD .1+(n -1)×2n3.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”你的计算结果是( ) A .80里B .86里C .90里D .96里4.“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它前一个单音的频率的比都等于六个单音的频率为f ,则( ) A .第四个单音的频率为1122f - B .第三个单音的频率为142f - C .第五个单音的频率为162fD .第八个单音的频率为1122f5.等差数列{}n a 的首项为1,公差不为0.若2a 、3a 、6a 成等比数列,则{}n a 的前6项的和为( ) A .24-B .3-C .3D .86.已知等比数列{}n a 的前n 项和为n S ,若213a a =,且数列{}13n S a -也为等比数列,则n a 的表达式为( )A .12nn a ⎛⎫= ⎪⎝⎭B .112n n a +⎛⎫= ⎪⎝⎭C .23nn a ⎛⎫= ⎪⎝⎭D .123n n a +⎛⎫= ⎪⎝⎭7.记等比数列{}n a 的前n 项和为n S ,已知5=10S ,1050S =,则15=S ( ) A .180B .160C .210D .2508.明代数学家程大位编著的《算法统宗》是中国数学史上的一座丰碑.其中有一段著述“远望巍巍塔七层,红光点点倍加增,共灯三百八十一”.注:“倍加增”意为“从塔顶到塔底,相比于上一层,每一层灯的盏数成倍增加”,则该塔正中间一层的灯的盏数为( )A .3B .12C .24D .489.已知数列{}n a 满足112a =,*11()2n n a a n N +=∈.设2n n n b a λ-=,*n N ∈,且数列{}n b 是单调递增数列,则实数λ的取值范围是( )A .(,1)-∞B .3(1,)2-C .3(,)2-∞D .(1,2)-10.正项等比数列{}n a 满足2237610216a a a a a ++=,则28a a +=( ) A .1 B .2 C .4D .811.题目文件丢失!12.正项等比数列{}n a 满足:241a a =,313S =,则其公比是( ) A .14B .1C .12D .1313.已知数列{}n a 为等比数列,12a =,且53a a =,则10a 的值为( ) A .1或1-B .1C .2或2-D .214.若一个数列的第m 项等于这个数列的前m 项的乘积,则称该数列为“m 积列”.若各项均为正数的等比数列{a n }是一个“2022积数列”,且a 1>1,则当其前n 项的乘积取最大值时,n 的最大值为( ) A .1009B .1010C .1011D .202015.已知1,a 1,a 2,9四个实数成等差数列,1,b 1,b 2,b 3,9五个数成等比数列,则b 2(a 2﹣a 1)等于( ) A .8B .﹣8C .±8D .9816.设等比数列{}n a 的前n 项和为n S ,若23S =,415S =,则6S =( ) A .31B .32C .63D .6417.在等比数列{}n a 中,12345634159,88a a a a a a a a +++++==-,则123456111111a a a a a a +++++=( )A .35B .35C .53D .53-18.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:“一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯多少?”现有类似问题:一座5层塔共挂了363盏灯,且相邻两层中的下一层灯数是上一层灯数的3倍,则塔的中间一层共有灯( ) A .3盏B .9盏C .27盏D .81盏19.等比数列{}n a 中各项均为正数,n S 是其前n 项和,且满足312283S a a =+,416a =,则6S =( )A .32B .63C .123D .12620.已知数列{}n a ,{}n b 满足12a =,10.2b =,111233n n n a b a ++=+,11344n n n b a b +=+,则使0.01n n a b -<成立的最小正整数n 为( ) A .5B .7C .9D .11二、多选题21.一个弹性小球从100m 高处自由落下,每次着地后又跳回原来高度的23再落下.设它第n 次着地时,经过的总路程记为n S ,则当2n ≥时,下面说法正确的是( ) A .500n S < B .500n S ≤C .n S 的最小值为7003D .n S 的最大值为40022.已知正项等比数列{}n a 的前n 项和为n S ,若31a =,135111214a a a ++=,则( ) A .{}n a 必是递减数列 B .5314S =C .公比4q =或14D .14a =或1423.已知集合{}*21,A x x n n N==-∈,{}*2,nB x x n N ==∈将AB 的所有元素从小到大依次排列构成一个数列{}n a ,记n S 为数列{}n a 的前n 项和,则使得112n n S a +>成立的n 的可能取值为( ) A .25B .26C .27D .2824.已知等比数列{}n a 的公比0q <,等差数列{}n b 的首项10b >,若99a b >,且1010a b >,则下列结论一定正确的是( )A .9100a a <B .910a a >C .100b >D .910b b >25.已知等比数列{}n a 中,满足11a =,2q ,n S 是{}n a 的前n 项和,则下列说法正确的是( )A .数列{}2n a 是等比数列B .数列1n a ⎧⎫⎨⎬⎩⎭是递增数列 C .数列{}2log n a 是等差数列 D .数列{}n a 中,10S ,20S ,30S 仍成等比数列26.已知数列{}n a 是等比数列,那么下列数列一定是等比数列的是( ) A .1{}na B .22log ()n aC .1{}n n a a ++D .12{}n n n a a a ++++27.设等比数列{}n a 的公比为q ,其前n 项和为n S ,前n 项积为n T ,并且满足条件11a >,667711,01a a a a -><-,则下列结论正确的是( ) A .01q <<B .681a a >C .n S 的最大值为7SD .n T 的最大值为6T28.设等比数列{}n a 的公比为q ,其前n 项和为n S ,前n 项积为n T ,并且满足条件11a >,671a a >,67101a a -<-,则下列结论正确的是( ) A .01q <<B .8601a a <<C .n S 的最大值为7SD .n T 的最大值为6T29.设等比数列{}n a 的公比为q ,其前n 项和为n S ,前n 项积为n T ,并满足条件1201920201,1a a a >>,20192020101a a -<-,下列结论正确的是( )A .S 2019<S 2020B .2019202010a a -<C .T 2020是数列{}n T 中的最大值D .数列{}n T 无最大值30.在《增删算法统宗》中有这样一则故事:“三百七十八里关,初行健步不为难;次日脚痛减一半,如此六日过其关.”则下列说法正确的是( ) A .此人第二天走了九十六里路B .此人第三天走的路程站全程的18C .此人第一天走的路程比后五天走的路程多六里D .此人后三天共走了42里路31.已知等比数列{}n a 的公比为q ,前n 项和0n S >,设2132n n n b a a ++=-,记{}n b 的前n 项和为n T ,则下列判断正确的是( ) A .若1q =,则n n T S = B .若2q >,则n n T S >C .若14q =-,则n n T S >D .若34q =-,则n n T S > 32.将2n 个数排成n 行n 列的一个数阵,如下图:111213212223231323331312n n n n n n nna a a a a a a a a a a a a a a a ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 该数阵第一列的n 个数从上到下构成以m 为公差的等差数列,每一行的n 个数从左到右构成以m 为公比的等比数列(其中0m >).已知112a =,13611a a =+,记这2n 个数的和为S .下列结论正确的有( )A .3m =B .767173a =⨯C .1(31)3j ij a i -=-⨯D .()1(31)314n S n n =+- 33.已知数列{a n },{b n }均为递增数列,{a n }的前n 项和为S n ,{b n }的前n 项和为T n .且满足a n +a n +1=2n ,b n •b n +1=2n (n ∈N *),则下列说法正确的有( ) A .0<a 1<1B .1<b1C .S 2n <T 2nD .S 2n ≥T 2n34.已知数列{}n a 是等比数列,则下列结论中正确的是( ) A .数列2{}n a 是等比数列B .若32a =,732a =,则58a =±C .若123a a a <<,则数列{}n a 是递增数列D .若数列{}n a 的前n 和13n n S r -=+,则1r =-35.已知等差数列{}n a 的首项为1,公差4d =,前n 项和为n S ,则下列结论成立的有( ) A .数列n S n ⎧⎫⎨⎬⎩⎭的前10项和为100 B .若1,a 3,a m a 成等比数列,则21m = C .若111625ni i i a a =+>∑,则n 的最小值为6 D .若210m n a a a a +=+,则116m n+的最小值为2512【参考答案】***试卷处理标记,请不要删除一、等比数列选择题 1.D 【分析】假设第n 轮感染人数为n a ,根据条件构造等比数列{}n a 并写出其通项公式,根据题意列出关于n 的不等式,求解出结果,从而可确定出所需要的天数. 【详解】设第n 轮感染人数为n a ,则数列{}n a 为等比数列,其中1 3.8a =,公比为0 3.8R =,所以 3.81000nn a =>,解得 3.8333log 1000 5.17lg3.8lg3810.58n >==≈≈-, 而每轮感染周期为7天,所以需要的天数至少为5.17736.19⨯=. 故选:D . 【点睛】关键点点睛:解答本题的关键点有两个:(1)理解题意构造合适的等比数列;(2)对数的计算. 2.D 【分析】利用已知条件列出方程组求解即可得1,a q ,求出数列{a n }的通项公式,再利用错位相减法求和即可. 【详解】设等比数列{a n }的公比为q ,易知q ≠1,所以由题设得()()3136161711631a q S q a q S q ⎧-⎪==-⎪⎨-⎪==⎪-⎩, 两式相除得1+q 3=9,解得q =2, 进而可得a 1=1, 所以a n =a 1q n -1=2n -1, 所以na n =n ×2n -1.设数列{na n }的前n 项和为T n , 则T n =1×20+2×21+3×22+…+n ×2n -1, 2T n =1×21+2×22+3×23+…+n ×2n ,两式作差得-T n =1+2+22+…+2n -1-n ×2n=1212n---n ×2n =-1+(1-n )×2n , 故T n =1+(n -1)×2n . 故选:D. 【点睛】本题主要考查了求等比数列的通项公式问题以及利用错位相减法求和的问题.属于较易题. 3.D 【分析】由题意得每天行走的路程成等比数列{}n a、且公比为12,由条件和等比数列的前项和公式求出1a,由等比数列的通项公式求出答案即可.【详解】由题意可知此人每天走的步数构成12为公比的等比数列,由题意和等比数列的求和公式可得611[1()]2378112a-=-,解得1192a=,∴此人第二天走1192962⨯=里,∴第二天走了96里,故选:D.4.B【分析】根据题意得该单音构成公比为四、五、八项即可得答案.【详解】解:根据题意得该单音构成公比为因为第六个单音的频率为f,141422ff-==.661122ff-==.所以第五个单音的频率为1122f=.所以第八个单音的频率为1262f f=故选:B.5.A【分析】根据等比中项的性质列方程,解方程求得公差d,由此求得{}n a的前6项的和.【详解】设等差数列{}n a的公差为d,由2a、3a、6a成等比数列可得2326a a a=,即2(12)(1)(15)d d d+=++,整理可得220d d+=,又公差不为0,则2d=-,故{}n a前6项的和为616(61)6(61)661(2)2422S a d⨯-⨯-=+=⨯+⨯-=-.故选:A【分析】设等比数列{}n a 的公比为q ,当1q =时,111133(3)n S a na a n a -=-=-,该式可以为0,不是等比数列,当1q ≠时,11113311n n a aS a q a q q-=-⋅+---,若是等比数列,则11301a a q -=-,可得23q =,利用213a a =,可以求得1a 的值,进而可得n a 的表达式 【详解】设等比数列{}n a 的公比为q当1q =时,1n S na =,所以111133(3)n S a na a n a -=-=-, 当3n =时,上式为0,所以{}13n S a -不是等比数列. 当1q ≠时,()1111111n nn a q a aq S qq q-==-⋅+---, 所以11113311n n a aS a q a q q-=-⋅+---, 要使数列{}13n S a -为等比数列,则需11301a a q -=-,解得23q =. 213a a =,2123a ⎛⎫∴= ⎪⎝⎭,故21111222333n n n n a a q -+-⎛⎫⎛⎫⎛⎫=⋅=⋅= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故选:D. 【点睛】关键点点睛:本题的关键点是熟记等比数列的前n 项和公式,等比数列通项公式的一般形式,由此若11113311n n a a S a q a q q -=-⋅+---是等比数列,则11301aa q-=-,即可求得q 的值,通项即可求出. 7.C 【分析】首先根据题意得到5S ,105S S -,1510S S -构成等比数列,再利用等比中项的性质即可得到答案. 【详解】因为{}n a 为等比数列,所以5S ,105S S -,1510S S -构成等比数列. 所以()()2155010=1050S --,解得15210S =. 故选:C【分析】题意说明从塔顶到塔底,每层的灯盏数构成公比为2的等比数列,设塔顶灯盏数为1a ,由系数前n 项和公式求得1a ,再由通项公式计算出中间项. 【详解】根据题意,可知从塔顶到塔底,每层的灯盏数构成公比为2的等比数列,设塔顶灯盏数为1a ,则有()7171238112a S ⋅-==-,解得13a =,中间层灯盏数34124a a q ==,故选:C. 9.C 【分析】 由*11()2n n a a n N +=∈可知数列{}n a 是公比为2的等比数列,12n n a =,得2(2)2n n nn b n a λλ-==-,结合数列{b n }是单调递增数列,可得1n n b b +>对于任意的*n N ∈*恒成立,参变分离后即可得解.【详解】 由*11()2n n a a n N +=∈可知数列{}n a 是公比为2的等比数列, 所以1111()222n n n a -==, 2(2)2n n nn b n a λλ-==- ∵数列{n b 是单调递增数列, ∴1n n b b +>对于任意的*n N ∈*恒成立, 即1(12)2(2)2n n n n λλ++->-,整理得:22n λ+<32λ∴< ,故选:C. 【点睛】本题主要考查了已知数列的单调性求参,一般研究数列的单调性的方法有: 一、利用数列单调性的定义,由1n n a a +>得数列单增,1n n a a +<得数列单减; 二、借助于函数的单调性研究数列的单调性. 10.C 【分析】利用等比数列的性质运算求解即可.【详解】根据题意,等比数列{}n a 满足2237610216a a a a a ++=, 则有222288216a a a a ++=,即()22816a a +=, 又由数列{}n a 为正项等比数列,故284a a +=. 故选:C .11.无12.D 【分析】根据241a a =,由2243a a a =,解得31a =,再根据313S =求解.【详解】因为正项等比数列{}n a 满足241a a =,由于2243a a a =,所以231a =,31a =,211a q =.因为313S =, 所以1q ≠. 由()()31231111a q S a q q q-==++-得22131q q q =++, 即21210q q --=, 解得13q =,或14q =-(舍去). 故选:D 13.C 【分析】根据等比数列的通项公式,由题中条件,求出公比,进而可得出结果. 【详解】设等比数列{}n a 的公比为q ,因为12a =,且53a a =,所以21q =,解得1q =±, 所以91012a a q ==±.故选:C. 14.C 【分析】根据数列的新定义,得到122021...1a a a =,再由等比数列的性质得到210111a =,再利用11,01a q ><<求解即可.【详解】根据题意:2022122022...a a a a =, 所以122021...1a a a =,因为{a n }等比数列,设公比为q ,则0q >,所以212021220201011...1a a a a a ====,因为11a >,所以01q <<, 所以1010101110121,1,01a a a >=<<,所以前n 项的乘积取最大值时n 的最大值为1011. 故选:C. 【点睛】关键点睛:本题主要考查数列的新定义以及等比数列的性质,数列的最值问题,解题的关键是根据定义和等比数列性质得出210111a =以及11,01a q ><<进行判断.15.A 【分析】由已知条件求出公差和公比,即可由此求出结果. 【详解】设等差数列的公差为d ,等比数列的公比为q , 则有139d +=,419q ⋅=,解之可得83d =,23q =, ()22218183b a a q ∴-=⨯⨯=.故选:A. 16.C 【分析】根据等比数列前n 项和的性质列方程,解方程求得6S .【详解】因为n S 为等比数列{}n a 的前n 项和,所以2S ,42S S -,64S S -成等比数列, 所以()()242264S S S S S -=-,即()()62153315-=-S ,解得663S =. 故选:C 17.D 【分析】利用等比数列下标和相等的性质有162534a a a a a a ==,而目标式可化为162534162534a a a a a a a a a a a a +++++结合已知条件即可求值. 【详解】162534123456162534111111a a a a a a a a a a a a a a a a a a ++++++++=++, ∵等比数列{}n a 中3498a a =-,而162534a a a a a a ==, ∴123456111111a a a a a a +++++=12345685()93a a a a a a -+++++=-, 故选:D 18.C 【分析】根据题意,设塔的底层共有x 盏灯,分析可得每层灯的数目构成以x 为首项,13为公比的等比数列,由等比数列的前n 项和公式可得x 的值,即可得答案. 【详解】根据题意,设塔的底层共有x 盏灯,则每层灯的数目构成以x 为首项,13为公比的等比数列,则有51(1)3363113x S ⨯-==-, 解可得:243x =,所以中间一层共有灯21243()273⨯=盏. 故选:C 【点睛】思路点睛:要求中间一层的灯的数量,只需求等比数列的首项,根据等比数列的和求出数列的首项即可. 19.D 【分析】根据等比数列的通项公式建立方程,求得数列的公比和首项,代入等比数列的求和公式可得选项. 【详解】设等比数列{}n a 的公比为(0)q q >.∵312283S a a =+, ∴123122()83a a a a a ++=+,即321260a a a --=. ∴2260q q --=,∴2q或32q =-(舍去),∵416a =,∴4132a a q ==, ∴6616(1)2(12)126112a q S q --===--, 故选:D. 20.C 【分析】令n n n c a b =-,由111233n n n a b a ++=+,11344n n n b a b +=+可知数列{}n c 是首项为1.8,公比为12的等比数列,即11.812n n c -⎛⎫ ⎪⎝⎭=⨯,则110.0121.8n -⎛⎫< ⎪⎝⎭⨯,解不等式可得n 的最小值. 【详解】令n n n c a b =-,则11120.2 1.8c a b =-=-=111113131344444121233343n n n n n n n n n n nn c a b a b a b b a a a b ++++⎛⎫=-=+--=+-- ⎪⎝+⎭111222n n n a b c -== 所以数列{}n c 是首项为1.8,公比为12的等比数列,所以11.812n n c -⎛⎫ ⎪⎝⎭=⨯由0.01n n a b -<,即110.0121.8n -⎛⎫< ⎪⎝⎭⨯,整理得12180n ->由72128=,82256=,所以18n -=,即9n =故选:C. 【点睛】本题考查了等比数列及等比数列的通项公式,解题的关键是根据已知的数列递推关系式,利用等比数列的定义,得到数列{}n c 为等比数列,考查了学生的分析问题能力能力与运算求解能力,属于中档题.二、多选题21.AC 【分析】由运动轨迹分析列出总路程n S 关于n 的表达式,再由表达式分析数值特征即可 【详解】由题可知,第一次着地时,1100S =;第二次着地时,221002003S =+⨯;第三次着地时,232210020020033S ⎛⎫=+⨯+⨯ ⎪⎝⎭;……第n 次着地后,21222100200200200333n n S -⎛⎫⎛⎫=+⨯+⨯++⨯ ⎪ ⎪⎝⎭⎝⎭则211222210020010040013333n n n S --⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=++++=+- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,显然500n S <,又n S 是关于n 的增函数,2n ≥,故当2n =时,n S 的最小值为40070010033+=; 综上所述,AC 正确 故选:AC 22.BD 【分析】设设等比数列{}n a 的公比为q ,则0q >,由已知得1112114a a ++=,解方程计算即可得答案. 【详解】解:设等比数列{}n a 的公比为q ,则0q >,因为21531a a a ==,2311a a q == , 所以51115135151511111112111114a a a a a a a a a a a a a ++=++=++=+=+++=, 解得1412a q =⎧⎪⎨=⎪⎩或1142.a q ⎧=⎪⎨⎪=⎩, 当14a =,12q =时,551413121412S ⎛⎫- ⎪⎝⎭==-,数列{}n a 是递减数列; 当114a =,2q 时,5314S =,数列{}n a 是递增数列; 综上,5314S =. 故选:BD. 【点睛】本题考查数列的等比数列的性质,等比数列的基本量计算,考查运算能力.解题的关键在于结合等比数列的性质将已知条件转化为1112114a a ++=,进而解方程计算. 23.CD 【分析】由题意得到数列{}n a 的前n 项依次为231,2,3,2,5,7,2,9,利用列举法,结合等差数列以及等比数列的求和公式,验证即可求解. 【详解】由题意,数列{}n a 的前n 项依次为231,2,3,2,5,7,2,9,利用列举法,可得当25n =时,AB 的所有元素从小到大依次排列构成一个数列{}n a ,则数列{}n a 的前25项分别为:1,3,5,7,9,11,13,37,39,2,4,8,16,32,可得52520(139)2(12)40062462212S ⨯+-=+=+=-,2641a =,所以2612492a =,不满足112n n S a +>; 当26n =时,AB 的所有元素从小到大依次排列构成一个数列{}n a ,则数列{}n a 的前25项分别为:1,3,5,7,9,11,13,37,39,41,2,4,8,16,32,可得52621(141)2(12)44162503212S ⨯+-=+=+=-,2743a =,所以2612526a =,不满足112n n S a +>; 当27n =时,AB 的所有元素从小到大依次排列构成一个数列{}n a ,则数列{}n a 的前25项分别为:1,3,5,7,9,11,13,37,39,41,43,2,4,8,16,32,可得52722(143)2(12)48462546212S ⨯+-=+=+=-,2845a =,所以2712540a =,满足112n n S a +>; 当28n =时,AB 的所有元素从小到大依次排列构成一个数列{}n a ,则数列{}n a 的前25项分别为:1,3,5,7,9,11,13,37,39,41,43,45,2,4,8,16,32,可得52823(145)2(12)52962591212S ⨯+-=+=+=-,2947a =,所以2812564a =,满足112n n S a +>,所以使得112n n S a +>成立的n 的可能取值为27,28. 故选:CD. 【点睛】本题主要考查了等差数列和等比数列的前n 项和公式,以及“分组求和法”的应用,其中解答中正确理解题意,结合列举法求得数列的前n 项和,结合选项求解是解答的关键,着重考查推理与运算能力. 24.AD 【分析】根据等差、等比数列的性质依次判断选项即可. 【详解】对选项A ,因为0q <,所以29109990a a a a q a q =⋅=<,故A 正确;对选项B ,因为9100a a <,所以91000a a >⎧⎨<⎩或9100a a <⎧⎨>⎩,即910a a >或910a a <,故B 错误;对选项C ,D ,因为910,a a 异号,99a b >,且1010a b >,所以910,b b 中至少有一个负数, 又因为10b >,所以0d <,910b b >,故C 错误,D 正确. 故选:AD 【点睛】本题主要考查等差、等比数列的综合应用,考查学生分析问题的能力,属于中档题. 25.AC 【分析】 由已知得12n na 可得以2122n n a -=,可判断A ;又1111122n n n a --⎛⎫== ⎪⎝⎭,可判断B ;由122log log 21n n a n -==-,可判断C ;求得10S ,20S ,30S ,可判断D.【详解】等比数列{}n a 中,满足11a =,2q,所以12n n a ,所以2122n n a -=,所以数列{}2n a 是等比数列,故A 正确;又1111122n n n a --⎛⎫== ⎪⎝⎭,所以数列1n a ⎧⎫⎨⎬⎩⎭是递减数列,故B 不正确; 因为122log log 21n n a n -==-,所以{}2log n a 是等差数列,故C 正确;数列{}n a 中,101010111222S -==--,202021S =-,303021S =-,10S ,20S ,30S 不成等比数列,故D 不正确; 故选:AC . 【点睛】本题综合考查等差、等比数列的定义、通项公式、前n 项和公式,以及数列的单调性的判定,属于中档题. 26.AD 【分析】主要分析数列中的项是否可能为0,如果可能为0,则不能是等比数列,在不为0时,根据等比数列的定义确定. 【详解】1n a =时,22log ()0n a =,数列22{log ()}n a 不一定是等比数列, 1q =-时,10n n a a ++=,数列1{}n n a a ++不一定是等比数列,由等比数列的定义知1{}na 和12{}n n n a a a ++++都是等比数列. 故选AD .本题考查等比数列的定义,掌握等比数列的定义是解题基础.特别注意只要数列中有一项为0,则数列不可能是等比数列. 27.AD 【分析】分类讨论67,a a 大于1的情况,得出符合题意的一项. 【详解】①671,1a a >>, 与题设67101a a -<-矛盾. ②671,1,a a ><符合题意. ③671,1,a a <<与题设67101a a -<-矛盾. ④ 671,1,a a <>与题设11a >矛盾.得671,1,01a a q ><<<,则n T 的最大值为6T .∴B ,C ,错误.故选:AD. 【点睛】考查等比数列的性质及概念. 补充:等比数列的通项公式:()1*1n n a a q n N -=∈.28.ABD 【分析】先分析公比取值范围,即可判断A ,再根据等比数列性质判断B,最后根据项的性质判断C,D. 【详解】若0q <,则67670,00a a a a <>∴<与671a a >矛盾; 若1q ≥,则11a >∴671,1a a >>∴67101a a ->-与67101a a -<-矛盾; 因此01q <<,所以A 正确;667710101a a a a -<∴>>>-,因此2768(,1)0a a a =∈,即B 正确; 因为0n a >,所以n S 单调递增,即n S 的最大值不为7S ,C 错误;因为当7n ≥时,(0,1)n a ∈,当16n ≤≤时,(1,)n a ∈+∞,所以n T 的最大值为6T ,即D 正确; 故选:ABD 【点睛】本题考查等比数列相关性质,考查综合分析判断能力,属中档题. 29.AB由已知确定0q <和1q ≥均不符合题意,只有01q <<,数列{}n a 递减,从而确定20191a >,202001a <<,从可判断各选项.【详解】当0q <时,22019202020190a a a q =<,不成立;当1q ≥时,201920201,1a a >>,20192020101a a -<-不成立;故01q <<,且20191a >,202001a <<,故20202019S S >,A 正确;2201920212020110a a a -=-<,故B 正确;因为20191a >,202001a <<,所以2019T 是数列{}n T 中的最大值,C ,D 错误; 故选:AB 【点睛】本题考查等比数列的单调性,解题关键是确定20191a >,202001a <<. 30.ACD 【分析】若设此人第n 天走n a 里路,则数列{}n a 是首项为1a ,公比为12q =的等比数列,由6378S =求得首项,然后分析4个选项可得答案.【详解】解:设此人第n 天走n a 里路,则数列{}n a 是首项为1a ,公比为12q =的等比数列, 因为6378S =,所以1661(1)2=378112a S -=-,解得1192a =,对于A ,由于21192962a =⨯=,所以此人第二天走了九十六里路,所以A 正确; 对于B ,由于 3148119248,43788a =⨯=>,所以B 不正确; 对于C ,由于378192186,1921866-=-=,所以此人第一天走的路程比后五天走的路程多六里,所以C 正确; 对于D ,由于4561111924281632a a a ⎛⎫++=⨯++= ⎪⎝⎭,所以D 正确, 故选:ACD 【点睛】此题考查等比数的性质,等比数数的前项n 的和,属于基础题. 31.BD先求得q 的取值范围,根据q 的取值范围进行分类讨论,利用差比较法比较出n T 和n S 的大小关系. 【详解】由于{}n a 是等比数列,0n S >,所以110,0a S q =>≠, 当1q =时,10n S na =>,符合题意; 当1q ≠时,()1101n n a q S q-=>-,即101nq q ->-,上式等价于1010n q q ⎧->⎨->⎩①或1010n q q ⎧-<⎨-<⎩②.解②得1q >.解①,由于n 可能是奇数,也可能是偶数,所以()()1,00,1q ∈-.综上所述,q 的取值范围是()()1,00,-+∞.2213322n n n n b a a a q q ++⎛⎫=-=- ⎪⎝⎭,所以232n n T q q S ⎛⎫=- ⎪⎝⎭,所以()2311222n n n n T S S q q S q q ⎛⎫⎛⎫-=⋅--=⋅+⋅- ⎪ ⎪⎝⎭⎝⎭,而0n S >,且()()1,00,q ∈-⋃+∞.所以,当112q -<<-,或2q >时,0n n T S ->,即n n T S >,故BD 选项正确,C 选项错误. 当12(0)2q q -<<≠时,0n n T S -<,即n n T S <. 当12q =-或2q 时,0,n n n n T S T S -==,A 选项错误.综上所述,正确的选项为BD. 故选:BD 【点睛】本小题主要考查等比数列的前n 项和公式,考查差比较法比较大小,考查化归与转化的数学思想方法,考查分类讨论的数学思想方法,属于中档题. 32.ACD 【分析】根据题设中的数阵,结合等比数列的通项公式和等比数列的前n 项和公式,逐项求解,即可得到答案. 【详解】由题意,该数阵第一列的n 个数从上到下构成以m 为公差的等差数列,每一行的n 个数从左到右构成以m 为公比的等比数列,且112a =,13611a a =+,可得2213112a a m m ==,6111525a a d m =+=+,所以22251m m =++,解得3m =或12m =-(舍去),所以选项A 是正确的; 又由6666761(253)3173a a m ==+⨯⨯=⨯,所以选项B 不正确;又由1111111(3[((1)][2(1)3]31)3j j j j ij i a ma i m m i i a ----==+-⨯⨯==-⨯+-⨯⨯,所以选项C 是正确的; 又由这2n 个数的和为S , 则111212122212()()()n n n n nn S a a a a a a a a a =++++++++++++11121(13)(13)(13)131313n n n n a a a ---=+++---1(231)(31)22nn n +-=-⋅ 1(31)(31)4n n n =+-,所以选项D 是正确的, 故选ACD. 【点睛】本题主要考查了数表、数阵数列的求解,以及等比数列及其前n 项和公式的应用,其中解答中合理利用等比数列的通项公式和前n 项和公式,准确计算是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题. 33.ABC 【分析】利用代入法求出前几项的关系即可判断出a 1,b 1的取值范围,分组法求出其前2n 项和的表达式,分析,即可得解. 【详解】∵数列{a n }为递增数列;∴a 1<a 2<a 3; ∵a n +a n +1=2n ,∴122324a a a a +=⎧⎨+=⎩;∴12123212244a a a a a a a +⎧⎨+=-⎩>>∴0<a 1<1;故A 正确.∴S 2n =(a 1+a 2)+(a 3+a 4)+…+(a 2n ﹣1+a 2n )=2+6+10+…+2(2n ﹣1)=2n 2; ∵数列{b n }为递增数列; ∴b 1<b 2<b 3; ∵b n •b n +1=2n∴122324b b b b =⎧⎨=⎩;∴2132b b b b ⎧⎨⎩>>;∴1<b1B 正确.∵T 2n =b 1+b 2+…+b 2n=(b 1+b 3+b 5+…+b 2n ﹣1)+(b 2+b 4+…+b 2n )()()()()121212122122nn n b b b b ⋅--=+=+-))2121n n ≥-=-;∴对于任意的n ∈N*,S 2n <T 2n ;故C 正确,D 错误.故选:ABC【点睛】本题考查了分组法求前n 项和及性质探究,考查了学生综合分析,转化划归,数学运算的能力,属于较难题.34.AC【分析】在A 中,数列{}2n a 是等比数列;在B 中,58a =;在C 中,若123a a a <<,则1q >,数列{}n a 是递增数列;在D 中,13r =-. 【详解】由数列{}n a 是等比数列,知:在A 中,22221n n a a q -=,22221122221nn n n a a q q a a q+-∴==是常数, ∴数列{}2n a 是等比数列,故A 正确; 在B 中,若32a =,732a =,则58a =,故B 错误;在C 中,若1230a a a <<<,则1q >,数列{}n a 是递增数列;若1230a a a <<<,则01q <<,数列{}n a 是递增数列,故C 正确;在D 中,若数列{}n a 的前n 和13n n S r -=+,则111a S r ==+,()()221312a S S r r =-=+-+=,()()332936a S S r r =-=+-+=,1a ,2a ,3a 成等比数列,2213a a a ∴=,()461r ∴=+,解得13r =-,故D 错误. 故选:AC .【点睛】本题考查等比数列的综合应用,考查逻辑思维能力和运算能力,属于常考题. 35.AB【分析】由已知可得:43n a n =-,22n S n n =-,=21n S n n -,则数列n S n ⎧⎫⎨⎬⎩⎭为等差数列通过公式即可求得前10项和;通过等比中项可验证B 选项;因为11111=44341i i a a n n +⎛⎫- ⎪-+⎝⎭,通过裂项求和可求得111n i i i a a =+∑;由等差的性质可知12m n +=利用基本不等式可验证选项D 错误. 【详解】由已知可得:43n a n =-,22n S n n =-,=21n S n n -,则数列n S n ⎧⎫⎨⎬⎩⎭为等差数列,则前10项和为()10119=1002+.所以A 正确; 1,a 3,a m a 成等比数列,则231=,m a a a ⋅81m a =,即=4381m a m =-=,解得21m =故B 正确; 因为11111=44341i i a a n n +⎛⎫- ⎪-+⎝⎭所以1111111116=1=455494132451n i i i n n n a a n =+⎛⎫-+-++-> ⎪++⎝⎭-∑,解得6n >,故n 的最小值为7,故选项C 错误;等差的性质可知12m n +=,所以()()1161116116125=116172412121212n m m n m n m n m n ⎛⎫⎛⎫+++=+++≥+⨯= ⎪ ⎪⎝⎭⎝⎭,当且仅当16=n m m n 时,即48=45n m =时取等号,因为*,m n ∈N ,所以48=45n m =不成立,故选项D 错误.故选:AB.【点睛】本题考查等差数列的性质,考查裂项求和,等比中项,和基本不等式求最值,难度一般.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数列综合题
一、选择题
2.已知数列{3n a }是等比数列,公比为q 则数列{a n }为( )
(A )等比数列,公比为log 3q (B )等差数列,公差为log 3q
(C )等差数列,公差为3q (D )可能既非等差数列,又非等比数列。

3. 在等差数列{a n }中,a 1=4,且a 1,a 5,a 13成等比数列,则(a n )的通项公式为( )
(A )a n =3n+1 (B )a n =n+3 (C )a n =3n+1或a n =4 (D )a n =n+3或a n =4
4.已知a,b,c 成等比数列,且x,y 分别为a 与b 、b 与c 的等差中项,则y
c x a +的值为( ) (A )2
1 (B )-
2 (C )2 (D ) 不确定 5.互不相等的三个正数a,b,c 成等差数列,x 是a,b 的等比中项,y 是b,c 的等比中项,那
么x 2,b 2,y 2三个数( )
(A )成等差数列不成等比数列 (B )成等比数列不成等差数列
(C )既成等差数列又成等比数列 (D )既不成等差数列,又不成等比数列
6.在100内能被3整除,但不能被7整除的所有正整数之和为( )
(A )1368 (B )1470 (C )1473 (D )1557
8.已知数列{a n }的前n 项和为S n ,S 2n+1=4n 2+2n,则此数列的通项公式为( )
(A )a n =2n-2 (B )a n =8n-2 (C )a n =2n-1 (D )a n =n 2-n
9.已知(z-x)2=4(x-y)(y-z),则( )
(A )x,y,z 成等差数列 (B )x,y,z 成等比数列
(C )z y x 1,1,1成等差数列 (D )z
y x 1,1,1成等比数列 11.由2开始的偶数数列,按下列方法分组:(2),(4,6),(8,10,12),…,第n 组有n 个数,则第n 组的首项为( )
(A )n 2-n (B )n 2-n+2 (C )n 2+n (D )n 2+n+2
12.数列1
⋯,16
17,815,413,21,前n 项和为( ) (A )n 2-121+n (B )n 2-21211++n (C )n 2-n-121+n (D )n 2-n-212
11++n 14.已知数列{a n }的通项公式a n =5n-1,数列{b n }满足b 1=21,b n-1=32b n ,若a n +log λb n 为常数,则满足条件的λ( )
(A )唯一存在,且值为2
1(B )唯一存在,且值为2 (C )至少存在1个(D )不一定存在 15.若两个等差数列{a n }、{b n }的前n 项和分别为A n 、B n ,且满足
5524-+=n n B A n n ,则135135
b b a a ++的值为( )
(A )97 (B )78 (C )2019 (D )8
7 16.已知数列{a n }的通项公式为a n =
n n ++11
且S n =1101-,则n 的值为( ) (A )98 (B )99 (C )100 (D )101
17.已知数列{a n }的前n 项和为S n =n 2
-5n+2,则数列{n a }的前10项和为( ) (A )56 (B )58 (C )62 (D )60
18.已知数列{a n }的通项公式为a n =n+5, 从{a n }中依次取出第3,9,27,…3n , …项,按原
来的顺序排成一个新的数列,则此数列的前n 项和为( )
(A )2)133(+n n (B )3n +5 (C )23103-+n n (D )2
31031-++n n 二、填空题
1. 各项都是正数的等比数列{a n },公比q ≠1,a 5,a 7,a 8成等差数列,则公比q=
2. 已知等差数列{a n },公差d ≠0,a 1,a 5,a 17成等比数列,则18
621751a a a a a a ++++= 3. 已知数列{a n }满足S n =1+n a 4
1,则a n = 5.已知数列{a n }的通项公式为a n =log (n+1)(n+2),则它的前n 项之积为
6.数列{(-1)n-1n 2}的前n 项之和为
10.已知整数对的序列如下:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),(1,5),(2,4),……,则第60个数对为
二、解答题
1.已知数列{a n }的通项公式为a n =3n +2n +(2n-1),求前n 项和。

2.已知数列{a n }是公差d 不为零的等差数列,数列{a bn }是公比为q 的等比数列, b 1=1,b 2=10,b 3=46,,求公比q 及bn 。

3.已知等差数列{a n }的公差与等比数列{b n }的公比相等,且都等于d(d>0,d ≠1),a 1=b 1 ,a 3=3b 3,a 5=5b 5,求a n ,b n 。

4. 有四个数,其中前三个数成等比数列,其积为216,后三个数成等差数列,其和为36,
求这四个数。

5. 已知数列{a n },前n 项和S n =2n-n 2,a n =log 5bn ,其中bn>0,求数列{bn}的前n 项和。

6.已知等比数列{a n },首项为81,数列{b n }满足b n =log 3a n ,其前n 项和S n 。

(1)证明{b n }为等差数列
(2)若S 11≠S 12,且S 11最大,求{b n }的公差d 的范围。

相关文档
最新文档