一次函数基础测试题附答案
一次函数测试题3套(有答案)

----------------------------精品word 文档 值得下载 值得拥有---------------------------------------------- 一次函数测试题一、相信你一定能填对!(每小题3分,共30分) 1.下列函数中,自变量x 的取值范围是x ≥2的是( )A .y=.y=C .D .2.下面哪个点在函数y=12x+1的图象上( ) A .(2,1) B .(-2,1) C .(2,0) D .(-2,0)3.下列函数中,y 是x 的正比例函数的是( )A .y=2x-1B .y=3xC .y=2x 2D .y=-2x+14.一次函数y=-5x+3的图象经过的象限是( ) A .一、二、三 B .二、三、四 C .一、二、四 D .一、三、四6.若一次函数y=(3-k )x-k 的图象经过第二、三、四象限,则k 的取值范围是( )A .k>3B .0<k ≤3C .0≤k<3D .0<k<3 7.已知一次函数的图象与直线y=-x+1平行,且过点(8,2),那么此一次函数的解析式为( )A .y=-x-2B .y=-x-6C .y=-x+10D .y=-x-1 8.汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内余油量y (升)与行驶时间t (时)的函数关系用图象表示应为下图中的( )9.李老师骑自行车上班,最初以某一速度匀速行进,•中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,如果准时到校.在课堂上,李老师请学生画出他行进的路程y•(千米)与行进时间t (小时)的函数图象的示意图,同学们画出的图象如图所示,你认为正确的是( )10.一次函数y=kx+b 的图象经过点(2,-1)和(0,3),•那么这个一次函数的解析式为( )A .y=-2x+3B .y=-3x+2C .y=3x-2D .y=12x-3 二、你能填得又快又对吗?(每小题3分,共30分) 11.已知自变量为x 的函数y=mx+2-m 是正比例函数,则m=________,•该函数的解析式为_________.12.若点(1,3)在正比例函数y=kx 的图象上,则此函数的解析式为________.13.已知一次函数y=kx+b 的图象经过点A (1,3)和B (-1,-1),则此函数的解析式为_________.14.若解方程x+2=3x-2得x=2,则当x_________时直线y=x+•2•上的点在直线y=3x-2上相应点的上方.15.已知一次函数y=-x+a 与y=x+b 的图象相交于点(m ,8),则a+b=_________.16.若一次函数y=kx+b 交于y•轴的负半轴,•且y•的值随x•的增大而减少,•则k____0,b______0.(填“>”、“<”或“=”)17.已知直线y=x-3与y=2x+2的交点为(-5,-8),则方程组30220x y x y --=⎧⎨-+=⎩的解是________.18.已知一次函数y=-3x+1的图象经过点(a ,1)和点(-2,b ),则a=________,b=______. 19.如果直线y=-2x+k 与两坐标轴所围成的三角形面积是9,则k 的值为_____. 20.如图,一次函数y=kx+b的图象经过A 、B 两点,与x 轴交于点C ,则此一次函数的解析式为__________,△AOC 的面积为_________. 三、认真解答,一定要细心哟!(共60分) 21.(14分)根据下列条件,确定函数关系式: (1)y 与x 成正比,且当x=9时,y=16;(2)y=kx+b 的图象经过点(3,2)和点(-2,1). 23.(12分)一农民带了若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售.售出土豆千克数与他手中持有的钱数(含备用零 钱)的关系如图所示,结合图象回答下列问题:(1)农民自带的零钱是多少?(2)降价前他每千克土豆出售的价格是多少?(3)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,问他一共带了多少千克土豆?24.(10分)如图所示的折线ABC•表示从甲地向乙地打长途电话所需的电话费y (元)与通话时间t (分钟)之间的函数关系的图象(1)写出y 与t•之间的函数关系式.(2)通话2分钟应付通话费多少元?通话7分钟呢? 25.(12分)已知雅美服装厂现有A 种布料70米,B 种布料52米,•现计划用这两种布料生产M 、N 两种型号的时装共80套.已知做一套M 型号的时装需用A 种布料1.•1米,B 种布料0.4米,可获利50元;做一套N 型号的时装需用A 种布料0.6米,B 种布料0.•9米,可获利45元.设生产M 型号的时装套数为x ,用这批布料生产两种型号的时装所获得的总利润为y 元.①求y (元)与x (套)的函数关系式,并求出自变量的取值范围;②当M 型号的时装为多少套时,能使该厂所获利润最大?最大利润是多?3.B 4.C 5.D 6.A 7.C 8.B 9.C 10.A 11.2;y=2x 12.y=3x 13.y=2x+1 14.<2 15.1616.<;< 17.58x y =-⎧⎨=-⎩ 18.0;7 19.±6 20.y=x+2;421.①y=169x ;②y=15x+7522.y=x-2;y=8;x=1423.①5元;②0.5元;③45千克24.①当0<t ≤3时,y=2.4;当t>3时,y=t-0.6. ②2.4元;6.4元25.①y=50x+45(80-x )=5x+3600.∵两种型号的时装共用A 种布料[1.1x+0.•6(80-x )]米, 共用B 种布料[0.4x+0.9(80-x )]米, ∴ 解之得40≤x ≤44, 而x 为整数,∴x=40,41,42,43,44,∴y 与x 的函数关系式是y=5x+3600(x=40,41,42,43,44);②∵y 随x 的增大而增大, ∴当x=44时,y 最大=3820,即生产M 型号的时装44套时,该厂所获利润最大,最大利润是3820元.班级_____________座号____________姓名_____________成绩_________ __一.精心选一选(本大题共8道小题,每题4分,共32分)1、下列各图给出了变量x 与y 之间的函数是: ( ) A 、y=2x-1 B 、y=3C 、y=2x 2D 、y=-2x+1 3、已知一次函数的图象与直线y= -x+1平行,且过点(8,2),那么此一次函数的解析式为:( )A 、y=2x-14B 、y=-x-6C 、y=-x+10D 、y=4x 4、点A (1x ,1y )和点B (2x ,2y )在同一直线y kx b=+上,且0k <.若12x x >,则1y ,2y 的关系是:( ) A 、12y y > B 、12y y < C 、12y y =D 、无法确定.5、若函数y=kx +b 的图象如图所示,那么当y>0时,x 的取值范围是:( ) A 、 x>1 B 、 x>2 C 、 x<1 D 、 x<26、一次函数y=kx+b 满足kb>0且y随x的增大而减小,则此函数的图象不经过( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限7、一次函数y=ax+b ,若a+b=1,则它的图象必经过点( ) A 、(-1,-1) B 、(-1, 1) C 、(1, -1) D 、(1, 1)8、三峡工程在2003年6月1日至2003年6月10日下闸蓄水期间,水库水位由106米升至135米,高峡平湖初现人间,假设水库水位匀速上升,那么下列图象中,能正确反映这10天水位h (米)随时间t (天)变化的是: ( )二.耐心填一填(本大题5小题,每小题4分,共20分) 八年级上学期第十四章《一次函数》单元测试----------------------------精品word文档值得下载 值得拥有---------------------------------------------- 10、请你写出一个图象经过点(0,2),且y 随x 的增大而减小的一次函数解析式 。
一次函数练习题(附答案)

一次函数练习题(附答案)篇一:一次函数测试题及其答案一次函数测试题1. 函数y=中,自变量x的取值范围是() x?1A.x≥0 B.x>1 C.x>0且x≠1 D.x≥0且x≠1 2. 已知正比例函数y=-2x,当x=-1时,函数y的值是()A.2 B.-2 C.-0.5 D.0.5 3. 一次函数y=-2x-3的图像不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限4. 某校八年级同学到距学校6千米的郊外秋游,一部分同学步行,另一部分同学骑自行车,沿相同路线前往,如图,L1L2分别表示步行和骑车的同学前往目的地所走的路程y(千米)与所用时间x (分钟)之间的函数关系,则以下判断错误的是() A.骑车的同学比步行的同学晚出发30分钟 B.骑车的同学和步行的同学同时到达目的地C.骑车的同学从出发到追上步行的同学用了20分钟 D.步行的速度是6千米/小时。
5. 已知一次函数y=(m+2)x+(1-m),若y随x的增大而减小,且此函数图像与y轴的交点在x轴上方,则m的取值范围是()A.m>-2 B.m<1 C.<-2 D.-2<m<16. (2021福建福州)已知一次函数y?(a?1)x?b的图象如图所示,那么a的取值范围是()A.a?1 B.a?1C.a?0D.a?07. (2021上海市)如果一次函数y?kx?b的图象经过第一象限,且与y轴负半轴相交,那么() A.k?0,b?0B.k?0,b?0C.k?0,b?0D.k?0,b?08. (2021陕西)如图,一次函数图象经过点A,且与正比例函数图象交于点B,则该一次函数的表达式为() A.y??x?2C.y?x?2B.y?x?2 D.y??x?2)9. (2021浙江湖州)将直线y=2x向右平移2个单位所得的直线的解析式是(。
CA、y=2x+2B、y=2x-2C、y=2(x-2)D、y=2(x+2) 10. 已知两点M(3,5),N(1,-1),点P是x轴上一动点,若使PM+PN最短,则点P的坐标点是()A.(0,-4)B.(2,0) 3C.(4,0) 3D.(3,0) 2二、填空题 11. 若点A(2,,-4)在正比例函数y=kx的图像上,则k=_____。
一次函数经典测试题含答案

一次函数经典测试题含答案一、选择题1.如图,在平面直角坐标系中,OABC 的顶点A 在x 轴上,定点B 的坐标为(6,4),若直线经过定点(1,0),且将平行四边形OABC 分割成面积相等的两部分,则直线的表达式( )A .+1y x =B .4455y x =-C .1y x =-D .33y x =-【答案】C【解析】【分析】 根据过平行四边形的中心的直线把平行四边形分成面积相等的两部分,先求出平行四边形中心的坐标,再利用待定系数法求一次函数解析式解答即可.【详解】∵点B 的坐标为(6,4),∴平行四边形的中心坐标为(3,2),设直线l 的函数解析式为y kx b =+,则320k b k b +=⎧⎨+=⎩,解得11k b =⎧⎨=-⎩,所以直线l 的解析式为1y x =-. 故选:C .【点睛】本题考查了待定系数法求一次函数解析式,平行四边形的性质,熟练掌握过平行四边形的中心的直线把平行四边形分成面积相等的两部分是解题的关键.2.如图,直线l 是一次函数y=kx+b 的图象,若点A (3,m )在直线l 上,则m 的值是( )A .﹣5B .32C .52D .7【解析】【分析】把(-2,0)和(0,1)代入y=kx+b ,求出解析式,再将A (3,m )代入,可求得m.【详解】把(-2,0)和(0,1)代入y=kx+b ,得201k b b -+=⎧⎨=⎩, 解得121k b ⎧=⎪⎨⎪=⎩ 所以,一次函数解析式y=12x+1, 再将A (3,m )代入,得 m=12×3+1=52. 故选C.【点睛】 本题考核知识点:考查了待定系数法求一次函数的解析式,根据解析式再求函数值.3.一次函数y=ax+b 与反比例函数a b y x-=,其中ab <0,a 、b 为常数,它们在同一坐标系中的图象可以是( ) A . B .C .D .【解析】【分析】根据一次函数的位置确定a 、b 的大小,看是否符合ab<0,计算a-b 确定符号,确定双曲线的位置.【详解】A. 由一次函数图象过一、三象限,得a>0,交y 轴负半轴,则b<0,满足ab<0,∴a −b>0,∴反比例函数y=a b x- 的图象过一、三象限, 所以此选项不正确; B. 由一次函数图象过二、四象限,得a<0,交y 轴正半轴,则b>0,满足ab<0,∴a −b<0,∴反比例函数y=a b x-的图象过二、四象限, 所以此选项不正确; C. 由一次函数图象过一、三象限,得a>0,交y 轴负半轴,则b<0,满足ab<0,∴a −b>0,∴反比例函数y=a b x-的图象过一、三象限, 所以此选项正确; D. 由一次函数图象过二、四象限,得a<0,交y 轴负半轴,则b<0,满足ab>0,与已知相矛盾所以此选项不正确;故选C.【点睛】此题考查反比例函数的图象,一次函数的图象,解题关键在于确定a 、b 的大小4.如图,函数4y x =-和y kx b =+的图象相交于点()8A m-,,则关于x 的不等式()40k x b ++>的解集为( )A .2x >B .02x <<C .8x >-D .2x <【答案】A【解析】【分析】 直接利用函数图象上点的坐标特征得出m 的值,再利用函数图象得出答案即可.【详解】解:∵函数y =−4x 和y =kx +b 的图象相交于点A (m ,−8),∴−8=−4m ,解得:m =2,故A 点坐标为(2,−8),∵kx +b >−4x 时,(k +4)x +b >0,则关于x 的不等式(k +4)x +b >0的解集为:x >2.故选:A .【点睛】此题主要考查了一次函数与一元一次不等式,正确利用函数图象分析是解题关键.5.如图,已知一次函数22y x =-+的图象与坐标轴分别交于A 、B 两点,⊙O 的半径为1,P 是线段AB 上的一个点,过点P 作⊙O 的切线PM ,切点为M ,则PM 的最小值为( )A .2B 2C 5D 3【答案】D【解析】【分析】【详解】解:连结OM 、OP ,作OH ⊥AB 于H ,如图,先利用坐标轴上点的坐标特征:当x=0时,y=﹣x+22=22,则A (0,22),当y=0时,﹣x+22=0,解得x=22,则B (22,0),所以△OAB 为等腰直角三角形,则AB=2OA=4,OH=12AB=2, 根据切线的性质由PM 为切线,得到OM ⊥PM ,利用勾股定理得到PM=22OP OM -=21OP -,当OP 的长最小时,PM 的长最小,而OP=OH=2时,OP 的长最小,所以PM 的最小值为2213-=.故选D .【点睛】本题考查切线的性质;一次函数图象上点的坐标特征.6.下列函数中,y 随x 的增大而增大的函数是( )A .2y x =-B .21y x =-+C .2y x =-D .2y x =-- 【答案】C【解析】【分析】根据一次函数的性质对各选项进行逐一分析即可.【详解】∵y=-2x 中k=-2<0,∴y 随x 的增大而减小,故A 选项错误;∵y=-2x+1中k=-2<0,∴y 随x 的增大而减小,故B 选项错误;∵y=x-2中k=1>0,∴y 随x 的增大而增大,故C 选项正确;∵y=-x-2中k=-1<0,∴y 随x 的增大而减小,故D 选项错误.故选C .【点睛】本题考查的是一次函数的性质,一次函数y=kx+b (k≠0)中,当k >0时y 随x 的增大而增大;k<0时y 随x 的增大而减小;熟练掌握一次函数的性质是解答此题的关键.7.如图,在矩形ABCD 中,2AB =,3BC =,动点P 沿折线BCD 从点B 开始运动到点D .设运动的路程为x ,ADP ∆的面积为y ,那么y 与x 之间的函数关系的图象大致是( )A .B .C .D .【答案】D【解析】【分析】由题意当03x ≤≤时,3y =,当35x <<时,()131535222y x x =⨯⨯-=-+,由此即可判断.【详解】由题意当03x ≤≤时,3y =,当35x <<时,()131535222y x x =⨯⨯-=-+, 故选D .【点睛】本题考查动点问题的函数图象,解题的关键是理解题意,学会用分类讨论是扇形思考问题.8.如图,在同一直角坐标系中,函数13y x =和22y x m =-+的图象相交于点A ,则不等式210y y <<的解集是( )A .01x <<B .502x <<C .1x >D .512x << 【答案】D【解析】【分析】 先利用y 1=3x 得到A(1,3),再求出m 得到y 2═-2x+5,接着求出直线y 2═-2x+m 与x 轴的交点坐标为(52,0),然后写出直线y 2═-2x+m 在x 轴上方和在直线y 1=3x 下方所对应的自变量的范围【详解】当x=1时,y=3x=3,∴A(1,3),把A(1,3)代入y 2═−2x+m 得−2+m=3,解得m=5,∴y 2═−2x+5,解方程−2x+5=0,解得x=52, 则直线y 2═−2x+m 与x 轴的交点坐标为(52,0), ∴不等式0<y 2<y 1的解集是1<x<52故选:D【点睛】 本题考查了一次函数与一元一次不等式,会观察一次函数图象.9.如图,在矩形AOBC 中,A (–2,0),B (0,1).若正比例函数y=kx 的图象经过点C ,则k 的值为( )A .–12B .12C .–2D .2【答案】A【解析】【分析】根据已知可得点C 的坐标为(-2,1),把点C 坐标代入正比例函数解析式即可求得k.【详解】∵A(-2,0),B(0,1),∴OA=2,OB=1,∵四边形OACB 是矩形,∴BC=OA=2,AC=OB=1,∵点C 在第二象限,∴C 点坐标为(-2,1),∵正比例函数y =kx 的图像经过点C ,∴-2k=1,∴k=-12, 故选A. 【点睛】本题考查了矩形的性质,待定系数法求正比例函数解析式,根据已知求得点C 的坐标是解题的关键.10.如图,矩形ABOC 的顶点坐标为()4,5-,D 是OB 的中点,E 为OC 上的一点,当ADE ∆的周长最小时,点E 的坐标是( )A .40,3⎛⎫ ⎪⎝⎭B .50,3⎛⎫ ⎪⎝⎭C .()0,2D .100,3⎛⎫ ⎪⎝⎭ 【答案】B【解析】【分析】作点A 关于y 轴的对称点A',连接A'D ,此时△ADE 的周长最小值为AD+DA'的长;E 点坐标即为直线A'D 与y 轴的交点.【详解】解:作点A 关于y 轴的对称点A',连接A'D ,此时△ADE 的周长最小值为AD+DA'的长;∵A 的坐标为(-4,5),D 是OB 的中点,∴D (-2,0),由对称可知A'(4,5),设A'D 的直线解析式为y=kx+b ,5402k b k b =+⎧∴⎨=-+⎩5653k b ⎧=⎪⎪∴⎨⎪=⎪⎩ 5563y x ∴=+ 当x=0时,y=53 50,3E ⎛⎫∴ ⎪⎝⎭故选:B【点睛】本题考查矩形的性质,线段的最短距离;能够利用轴对称求线段的最短距离,将AE+DE 的最短距离转化为线段A'D 的长是解题的关键.11.已知抛物线y =x 2+(2a +1)x +a 2﹣a ,则抛物线的顶点不可能在( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】D【解析】【分析】求得顶点坐标,得出顶点的横坐标和纵坐标的关系式,即可求得.【详解】抛物线y=x2+(2a+1)x+a2﹣a的顶点的横坐标为:x=﹣212a+=﹣a﹣12,纵坐标为:y=()()224214a a a--+=﹣2a﹣14,∴抛物线的顶点横坐标和纵坐标的关系式为:y=2x+34,∴抛物线的顶点经过一二三象限,不经过第四象限,故选:D.【点睛】本题考查了二次函数的性质,得到顶点的横纵坐标的关系式是解题的关键.12.若正比例函数y=kx的图象经过第二、四象限,且过点A(2m,1)和B(2,m),则k的值为()A.﹣12B.﹣2 C.﹣1 D.1【答案】A【解析】【分析】根据函数图象经过第二、四象限,可得k<0,再根据待定系数法求出k的值即可.【详解】解:∵正比例函数y=kx的图象经过第二、四象限,∴k<0.∵正比例函数y=kx的图象过点A(2m,1)和B(2,m),∴2km1 2k m=⎧⎨=⎩,解得:m11k2=-⎧⎪⎨=-⎪⎩或m11k2=⎧⎪⎨=⎪⎩(舍去).故选:A.【点睛】本题考查了正比例函数的系数问题,掌握正比例函数的性质、待定系数法是解题的关键.13.如图,已知正比例函数y1=ax与一次函数y2=12x+b的图象交于点P.下面有四个结论:①a<0;②b<0;③当x>0时,y1>0;④当x<﹣2时,y1>y2.其中正确的是()A.①②B.②③C.①③D.①④【答案】D【解析】【分析】根据正比例函数和一次函数的性质判断即可.【详解】因为正比例函数y1=ax经过二、四象限,所以a<0,①正确;一次函数21 2y x b=+ \过一、二、三象限,所以b>0,②错误;由图象可得:当x>0时,y1<0,③错误;当x<−2时,y1>y2,④正确;故选D.【点睛】考查一次函数的图象与系数的关系,一次函数与不等式,熟练掌握和灵活运用相关知识是解题的关键.14.如图1,在Rt△ABC中,∠ACB=90°,点P以每秒1cm的速度从点A出发,沿折线AC -CB运动,到点B停止.过点P作PD⊥AB,垂足为D,PD的长y(cm)与点P的运动时间x(秒)的函数图象如图2所示.当点P运动5秒时,PD的长是()A.1.5cm B.1.2cm C.1.8cm D.2cm【答案】B【解析】【分析】【详解】由图2知,点P在AC、CB上的运动时间时间分别是3秒和4秒,∵点P 的运动速度是每秒1cm ,∴AC=3,BC=4.∵在Rt △ABC 中,∠ACB=90°,∴根据勾股定理得:AB=5.如图,过点C 作CH ⊥AB 于点H ,则易得△ABC ∽△ACH . ∴CH AC BC AB =,即AC BC 3412CH CH AB 55⋅⨯=⇒==. ∴如图,点E (3,125),F (7,0). 设直线EF 的解析式为y kx b =+,则 123k b {507k b=+=+,解得:3k 5{21b 5=-=. ∴直线EF 的解析式为321y x 55=-+. ∴当x 5=时,()3216PD y 5 1.2cm 555==-⨯+==. 故选B .15.如图,已知直线1y x b =+与21y kx =-相交于点P ,点P 的横坐标为1-,则关于x 的不等式1x b kx +≤-的解集在数轴上表示正确的是( ).A.B.C.D.【答案】D【解析】试题解析:当x>-1时,x+b>kx-1,即不等式x+b>kx-1的解集为x>-1.故选A.考点:一次函数与一元一次不等式.16.在平面直角坐标系中,已知直线与轴、轴分别交于、两点,点是轴上一动点,要使点关于直线的对称点刚好落在轴上,则此时点的坐标是()A.B.C.D.【答案】B【解析】【分析】过C作CD⊥AB于D,先求出A,B的坐标,分别为(4,0),(0,3),得到AB的长,再根据折叠的性质得到AC平分∠OAB,得到CD=CO=n,DA=OA=4,则DB=5-4=1,BC=3-n,在Rt△BCD中,利用勾股定理得到n的方程,解方程求出n即可.【详解】过C作CD⊥AB于D,如图,对于直线,当x=0,得y=3;当y=0,x=4,∴A(4,0),B(0,3),即OA=4,OB=3,∴AB=5,又∵坐标平面沿直线AC 折叠,使点B 刚好落在x 轴上,∴AC 平分∠OAB ,∴CD=CO=n ,则BC=3-n ,∴DA=OA=4,∴DB=5-4=1,在Rt △BCD 中,DC 2+BD 2=BC 2,∴n 2+12=(3-n )2,解得n=,∴点C 的坐标为(0,).故选B.【点睛】本题考查了一次函数图象与几何变换:直线y=kx+b ,(k≠0,且k ,b 为常数),关于x 轴对称,横坐标不变,纵坐标是原来的相反数;关于y 轴对称,纵坐标不变,横坐标是原来的相反数;关于原点轴对称,横、纵坐标都变为原来的相反数.也考查了折叠的性质和勾股定理.17.已知直线11:l y k x b =+与直线22:l y k x =在同一平面直角坐标系中的图象如图所示,则关于不等式12k x b k x +>的解集为( )A .1x <B .1x >C .2x >D .0x <【答案】A【解析】【分析】 根据函数图象可知直线l 1:y=k 1x+b 与直线l 2:y=k 2x 的交点是(1,2),从而可以求得不等式12k x b k x +>的解集.【详解】由图象可得,12k x b k x +>的解集为x <1,故选:A .【点睛】此题考查一次函数与一元一次不等式的关系,解题的关键是明确题意,利用数形结合的思想解答问题.18.已知一次函数y=kx+k,其在直角坐标系中的图象大体是()A.B.C.D.【答案】A【解析】【分析】函数的解析式可化为y=k(x+1),易得其图象与x轴的交点为(﹣1,0),观察图形即可得出答案.【详解】函数的解析式可化为y=k(x+1),即函数图象与x轴的交点为(﹣1,0),观察四个选项可得:A符合.故选A.【点睛】本题考查了一次函数的图象,要求学生掌握通过解析判断其图象与坐标轴的交点位置、坐标.19.如图,经过点B(﹣2,0)的直线y=kx+b与直线y=4x+2相交于点A(﹣1,﹣2),4x+2<kx+b<0的解集为()A.x<﹣2 B.﹣2<x<﹣1 C.x<﹣1 D.x>﹣1【答案】B【解析】【分析】由图象得到直线y=kx+b与直线y=4x+2的交点A的坐标(-1,-2)及直线y=kx+b与x轴的交点坐标,观察直线y=4x+2落在直线y=kx+b的下方且直线y=kx+b落在x轴下方的部分对应的x的取值即为所求.【详解】∵经过点B(﹣2,0)的直线y=kx+b与直线y=4x+2相交于点A(﹣1,﹣2),∴直线y=kx+b与直线y=4x+2的交点A的坐标为(﹣1,﹣2),直线y=kx+b与x轴的交点坐标为B(﹣2,0),又∵当x<﹣1时,4x+2<kx+b,当x>﹣2时,kx+b<0,∴不等式4x+2<kx+b<0的解集为﹣2<x<﹣1.故选B.【点睛】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.20.一辆慢车从甲地匀速行驶至乙地,一辆快车同时从乙地出发匀速行驶至甲地,两车之间的距离y(千米)与行驶时间x(小时)的对应关系如图所示,下列叙述正确的是()A.甲乙两地相距1200千米B.快车的速度是80千米∕小时C.慢车的速度是60千米∕小时D.快车到达甲地时,慢车距离乙地100千米【答案】C【解析】【分析】(1)由图象容易得出甲乙两地相距600千米;(2)由题意得出慢车速度为60010=60(千米/小时);设快车速度为x千米/小时,由图象得出方程60×4+4x=600,解方程即可;(3)求出快车到达的时间和慢车行驶的路程,即可得出答案.【详解】解:(1)由图象得:甲乙两地相距600千米,故选项A错;(2)由题意得:慢车总用时10小时,∴慢车速度为:60010=60(千米/小时);设快车速度为x千米/小时,由图象得:60×4+4x=600,解得:x=90,∴快车速度为90千米/小时,慢车速度为60千米/小时;选项B错误,选项C正确;(3)快车到达甲地所用时间:60020903小时,慢车所走路程:60×203=400千米,此时慢车距离乙地距离:600-400=200千米,故选项D错误.故选C【点睛】本题考核知识点:函数图象. 解题关键点:从图象获取信息,由行程问题基本关系列出算式.。
一次函数练习题及答案

一次函数练习题及答案本文将为大家提供一系列有关一次函数的练习题,同时附带相应的答案。
一次函数,也叫线性函数,是初中数学中的重要知识点之一。
希望通过这些练习题的训练,大家能够更好地掌握一次函数的概念、性质和解题方法。
一、选择题1.已知函数y=3x+2,则它的斜率是多少?– A. 2– B. 3– C. -2– D. -3答案:B2.若一次函数图像上两点的坐标分别为(1,4)和(3,y),则y的值是多少?– A. 10– B. 12– C. 14– D. 16答案:D3.已知函数经过点(−2,1)和(4,y),则y的值是多少?– A. -5– B. 0– C. 3– D. 6答案:C二、填空题1.若一次函数y=kx+3经过点(2,5),则k的值为 \\\_。
答案:12.一次函数y=−2x+b经过点(3,−1),则b的值为 \\\_。
答案:53.若一次函数图像上两点的坐标分别为(1,y1)和(2,y2),则$\\frac{{y_1}}{{y_2}}$ 的值为 \\\_。
答案:$\\frac{1}{2}$三、计算题1.求函数y=2x−1和y=x+3的交点坐标。
解:将两个方程联立起来,得到方程组:$$ \\begin{cases} y = 2x - 1\\\\ y = x + 3\\\\ \\end{cases} $$解方程组可得:$$ x + 3 = 2x - 1 \\\\ \\Rightarrow x = 4 $$将x=4代入其中一个方程,得到y=8−1=7。
因此,交点坐标为(4,7)。
2.已知函数y=3x+b经过点(2,−1),求b的值。
解:代入点(2,−1),得到方程 $-1 = 3 \\cdot 2 + b$,解方程可得b=−7。
3.一辆汽车以匀速行驶,开车起点距离目的地 600 公里。
如果行驶 4小时后,已行驶距离为 320 公里,求每小时行驶的公里数。
解:设每小时行驶的公里数为x,根据题意可得方程 $\\frac{320}{4} = x$,解方程可得x=80。
一次函数测试题及答案

一次函数测试题及答案一、选择题1. 下列函数中,属于一次函数的是()A. f(x) = 2x^2 + 3x - 4B. f(x) = 4x - 1C. f(x) = √x + 2D. f(x) = 3/x答案:B2. 若一次函数y = kx + b在点P(-1, 3)上的函数值为3,则k和b的值分别为()A. k = 3, b = 1B. k = -3, b = 1C. k = 1, b = 3D. k = -1, b = 3答案:C3. 由点(-3, 2)和(1, 4)所确定的直线方程为()A. y = 2x + 4B. y = 0.5x + 2.5C. y = -0.5x + 4D. y = -2x + 4答案:A二、填空题1. 一次函数y = 2x + 1的x和y的交点为()答案:(-0.5, 0)2. 若一次函数y = kx + 3在点(2, 5)上的函数值为5,则k的值为()答案:13. 若直线y = 3x + b过点(-1, 1),则b的值为()答案:4三、解答题1. 已知一次函数y = 2x - 3和y = kx + 1,若两个方程有且只有一个解,则k的取值范围是多少?解答:两个方程有且只有一个解,即方程组无穷多解。
当且仅当两条直线重合时,才会满足要求。
由于y = 2x - 3和y = kx + 1均为一次函数,只有斜率相等、截距相等时,两条直线才会重合。
因此,k的取值范围为2。
2. 一根电线经过两个塔,从第一个塔底部拉出时与水平面夹角为30度,从第二个塔底部拉出时与水平面夹角为60度,两个塔之间的距离为10米。
假设电线处于水平状态,求电线的长度。
解答:设第一个塔底部坐标为A(0,0),第二个塔底部坐标为B(10,0)。
设电线的长度为L,线与水平面的夹角为α。
根据三角函数的定义,可以得出以下关系:tan30° = L / 10 => L = 10 * tan30° => L ≈ 5.77米3. 一辆汽车从A地到B地开了2小时,途中平均速度为60千米/小时。
一次函数基础练习题答案

一次函数基础练习题一、选择题1. 下列哪个选项表示一次函数的一般形式?()A. y = ax² + bx + cB. y = ax + bC. D. y = x² + 12. 一次函数y = 3x 2的图象经过()象限。
A. 第一、二象限B. 第一、三象限C. 第一、二、三象限D. 第一、二、四象限3. 当k > 0时,一次函数y = kx + b的图象经过()。
A. 第一、二象限B. 第一、三象限C. 第一、二、三象限D. 第一、二、四象限4. 下列哪个一次函数的图象是一条水平线?()A. y = 2x + 3B. y = 4C. y = x + 1D. y = x²二、填空题1. 一次函数的图象是一条______。
2. 一次函数y = 2x + 1的斜率为______,截距为______。
3. 若一次函数y = kx + b的图象经过点(1, 3)和(2, 5),则k=______,b =______。
4. 当x =______时,一次函数y = 3x + 9的值为0。
三、解答题1. 已知一次函数y = kx + b的图象经过点(2, 5)和(4, 9),求该一次函数的解析式。
2. 一次函数y = 2x + 6的图象与x轴、y轴分别交于点A、B,求线段AB的长度。
3. 画出一次函数y = x 1的图象,并标出其斜率和截距。
4. 已知一次函数y = kx + 3与y = x + 4的图象相交于点P,求点P的坐标。
5. 讨论一次函数y = kx + b的图象与坐标轴的交点情况,当k和b取不同值时,分别画出相应的图象。
四、判断题1. 一次函数的图象一定经过原点。
()2. 一次函数的斜率决定了图象的倾斜程度,斜率越大,图象越陡峭。
()3. 一次函数的截距b表示图象与y轴的交点的横坐标。
()4. 两个一次函数的图象如果平行,则它们的斜率一定相等。
()5. 一次函数y = kx的图象一定是一条经过原点的直线。
一次函数经典测试题附答案解析

一次函数经典测试题附答案解析一、选择题1.如图,矩形ABOC 的顶点坐标为()4,5-,D 是OB 的中点,E 为OC 上的一点,当ADE ∆的周长最小时,点E 的坐标是( )A .40,3⎛⎫ ⎪⎝⎭B .50,3⎛⎫ ⎪⎝⎭C .()0,2D .100,3⎛⎫ ⎪⎝⎭【答案】B【解析】【分析】 作点A 关于y 轴的对称点A',连接A'D ,此时△ADE 的周长最小值为AD+DA'的长;E 点坐标即为直线A'D 与y 轴的交点.【详解】解:作点A 关于y 轴的对称点A',连接A'D ,此时△ADE 的周长最小值为AD+DA'的长;∵A 的坐标为(-4,5),D 是OB 的中点,∴D (-2,0),由对称可知A'(4,5),设A'D 的直线解析式为y=kx+b ,5402k b k b =+⎧∴⎨=-+⎩5653k b ⎧=⎪⎪∴⎨⎪=⎪⎩5563y x ∴=+ 当x=0时,y=5350,3E ⎛⎫∴ ⎪⎝⎭故选:B【点睛】本题考查矩形的性质,线段的最短距离;能够利用轴对称求线段的最短距离,将AE+DE 的最短距离转化为线段A'D 的长是解题的关键.2.一次函数y kx b =+是(,k b 是常数,0k ≠)的图像如图所示,则不等式0kx b +<的解集是( )A .0x >B .0x <C .2x >D .2x <【答案】C【解析】 【分析】 根据一次函数的图象看出:一次函数y=kx+b (k ,b 是常数,k≠0)的图象与x 轴的交点是(2,0),得到当x >2时,y<0,即可得到答案.【详解】解:一次函数y=kx+b (k ,b 是常数,k≠0)的图象与x 轴的交点是(2,0), 当x >2时,y<0.故答案为:x >2.故选:C.【点睛】本题主要考查对一次函数的图象,一次函数与一元一次不等式等知识点的理解和掌握,能观察图象得到正确结论是解此题的关键.3.一次函数y=ax+b 与反比例函数a b y x-=,其中ab <0,a 、b 为常数,它们在同一坐标系中的图象可以是( )A.B.C.D.【答案】C【解析】【分析】根据一次函数的位置确定a、b的大小,看是否符合ab<0,计算a-b确定符号,确定双曲线的位置.【详解】A. 由一次函数图象过一、三象限,得a>0,交y轴负半轴,则b<0,满足ab<0,∴a−b>0,∴反比例函数y=a bx-的图象过一、三象限,所以此选项不正确;B. 由一次函数图象过二、四象限,得a<0,交y轴正半轴,则b>0,满足ab<0,∴a−b<0,∴反比例函数y=a bx-的图象过二、四象限,所以此选项不正确;C. 由一次函数图象过一、三象限,得a>0,交y轴负半轴,则b<0,满足ab<0,∴a−b>0,∴反比例函数y=a bx-的图象过一、三象限,所以此选项正确;D. 由一次函数图象过二、四象限,得a<0,交y轴负半轴,则b<0,满足ab>0,与已知相矛盾所以此选项不正确;故选C.【点睛】此题考查反比例函数的图象,一次函数的图象,解题关键在于确定a、b的大小4.在平面直角坐标系中,一次函数y=kx+b的图象如图所示,则k和b的取值范围是()A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<0【答案】C【解析】【分析】根据一次函数的图象与系数的关系进行解答即可.【详解】∵一次函数y=kx+b的图象经过一、二、四象限,∴k<0,b>0,故选C.【点睛】本题考查的是一次函数的图象与系数的关系,即一次函数y=kx+b(k≠0)中,当k <0,b>0时图象在一、二、四象限.5.如图,一次函数y=﹣x+4的图象与两坐标轴分别交于A、B两点,点C是线段AB上一动点(不与点A、B重合),过点C分别作CD、CE垂直于x轴、y轴于点D、E,当点C从点A出发向点B运动时,矩形CDOE的周长()A.逐渐变大B.不变C.逐渐变小D.先变小后变大【答案】B【解析】【分析】根据一次函数图象上点的坐标特征可设出点C的坐标为(m,-m+4)(0<m<4),根据矩形的周长公式即可得出C矩形CDOE=8,此题得解.【详解】解:设点C 的坐标为(m ,-m+4)(0<m <4),则CE=m ,CD=-m+4,∴C 矩形CDOE =2(CE+CD)=8.故选B .【点睛】本题考查了一次函数图象上点的坐标特征以及矩形的性质,根据一次函数图象上点的坐标特征设出点C 的坐标是解题的关键.6.已知正比例函数y=kx (k≠0)经过第二、四象限,点(k ﹣1,3k+5)是其图象上的点,则k 的值为( )A .3B .5C .﹣1D .﹣3【答案】C【解析】【分析】把x=k ﹣1,y=3k+5代入正比例函数y=kx 解答即可.【详解】把x=k ﹣1,y=3k+5代入正比例函数的y=kx ,可得:3k+5=k (k ﹣1),解得:k 1=﹣1,k 2=5,因为正比例函数的y=kx (k≠0)的图象经过二,四象限,所以k <0,所以k=﹣1,故选C .【点睛】本题考查了待定系数法求正比例函数的解析式,掌握正比例函数图象上的点的坐标都满足正比例函数的解析式是解题的关键.7.如图,四边形ABCD 的顶点坐标分别为()()()()4,0,2,1,3,0,0,3A B C D ---,当过点B 的直线l 将四边形ABCD 分成面积相等的两部分时,直线l 所表示的函数表达式为( )A .116105y x =+B .2133y x =+C .1y x =+D .5342y x =+ 【答案】D【解析】【分析】由已知点可求四边形ABCD 分成面积()113741422B AC y =⨯⨯+=⨯⨯=;求出CD 的直线解析式为y=-x+3,设过B 的直线l 为y=kx+b ,并求出两条直线的交点,直线l 与x 轴的交点坐标,根据面积有1125173121k k k k --⎛⎫⎛⎫=⨯-⨯+ ⎪ ⎪+⎝⎭⎝⎭,即可求k 。
一次函数试题及答案

一次函数试题及答案### 一次函数试题一、选择题1. 如果直线y=3x+4与x轴相交于点A(-4/3, 0),则直线y=3x+b与x 轴相交于点B(x, 0),则b的值是()。
- A. 4- B. 12- C. -4- D. 02. 已知一次函数y=kx+b的图象过点(3,5)和(-1,-1),则k+b的值是()。
- A. 4- B. 3- C. 2- D. 1二、填空题1. 一次函数y=kx+b的斜率为2,且过点(1,-1),求b的值。
2. 直线y=-2x+3与y轴的交点坐标是()。
三、解答题1. 已知一次函数y=kx+b的图象经过点(-1,2)和(2,-1),求k和b的值。
2. 直线y=-x+3与x轴相交于点A,与y轴相交于点B,求AB的长度。
答案一、选择题1. 答案:B解析:已知直线y=3x+4与x轴相交于点A(-4/3, 0),因此当y=0时,x=-4/3。
直线y=3x+b与x轴相交时,y=0,所以3x+b=0,解得x=-b/3。
因为交点B的横坐标是x,所以-b/3=x,即b=3x。
将点A的横坐标-4/3代入得b=12。
2. 答案:C解析:将点(3,5)代入y=kx+b得3k+b=5,将点(-1,-1)代入得-k+b=-1。
解方程组得k=2,b=1,所以k+b=3。
二、填空题1. 答案:b=-3解析:已知斜率k=2,将点(1,-1)代入y=kx+b得-1=2*1+b,解得b=-3。
2. 答案:(0,3)解析:直线与y轴相交时,x=0,代入y=-2x+3得y=3。
三、解答题1. 解:将点(-1,2)代入y=kx+b得-k+b=2,将点(2,-1)代入得2k+b=-1。
解方程组得k=-3/2,b=-2。
2. 解:直线y=-x+3与x轴相交时,y=0,代入得x=3,所以点A(3,0)。
与y轴相交时,x=0,代入得y=3,所以点B(0,3)。
根据两点间距离公式,AB=√(3²+3²)=3√2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
故是一次函数的有 3 个.
故选:B.
【点睛】
此题考查一次函数、二次函数和反比例函数的定义,正确把握相关定义是解题关键.
6.如图,直线 y=-x+m 与直线 y=nx+5n(n≠0)的交点的横坐标为-2,则关于 x 的不等式x+m>nx+5n>0 的整数解为( )
A.-5,-4,-3 【答案】B 【解析】 【分析】
【答案】B
【解析】
【分析】
分别利用一次函数、二次函数和反比例函数的定义分析得出即可.
【详解】
解:(1)y=x 是一次函数,符合题意;
(2)y=2x﹣1 是次函数,符合题意;
(3)y= 1 是反比例函数,不符合题意; x
(4)y=2﹣3x 是一次函数,符合题意;
(5)y=x2﹣1 是二次函数,不符合题意;
A.(21009,21010) C.(21009,﹣21010) 【答案】D 【解析】 【分析】
B.(﹣21009,21010) D.(﹣21009,﹣21010)
写出一部分点的坐标,探索得到规律 A2n+1[(﹣2)n,2×(﹣2)n](n 是自然数),即可求 解; 【详解】 A1(1,2),A2(﹣2,2),A3(﹣2,﹣4),A4(4,﹣4),A5(4,8),… 由此发现规律: A2n+1[(﹣2)n,2×(﹣2)n](n 是自然数), 2019=2×1009+1, ∴A2019[(﹣2)1009,2×(﹣2)1009], ∴A2019(﹣21009,﹣21010), 故选 D. 【点睛】 本题考查一次函数图象上点的特点;能够根据作图特点,发现坐标的规律是解题的关键.
D.y=x+12
【答案】A
【解析】
分析:由上表可知 12.5-12=0.5,13-12.5=0.5,13.5-13=0.5,14-13.5=0.5,14.5-14=0.5,15-
14.5=0.5,0.5 为常量,12 也为常量.故弹簧总长 y(cm)与所挂重物 x(㎏)之间的函数
关系式.
详解:由表可知:常量为 0.5;
11.若一次函数 y=kx+b 的图象经过一、二、四象限,则一次函数 y=-bx+k 的图象不经过
()
A.第一象限
B.第二象限
C.第三象限
D.第四象限
【答案】A
【解析】
【分析】
根据一次函数 y=kx+b 图象在坐标平面内的位置关系先确定 k,b 的取值范围,再根据 k,b
的取值范围确定一次函数 y=-bx+k 图象在坐标平面内的位置关系,从而求解.
4.一次函数 y x 1的图象不经过的象限是 ( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
【答案】C
【解析】
【分析】
先根据一次函数 y x 1中 k 1, b 1 判断出函数图象经过的象限,进而可得出结
论.
【详解】
解: 一次函数 y x 1中 k 1 0 , b 1 0 ,
此函数的图象经过一、二、四象限,不经过第三象限. 故答案选:C. 【点睛】
y 5x5 63
当 x=0 时,y= 5 3
E
0,
5 3
故选:B
【点睛】
本题考查矩形的性质,线段的最短距离;能够利用轴对称求线段的最短距离,将 AE+DE 的
最短距离转化为线段 A'D 的长是解题的关键.
9.在平面直角坐标系中,一次函数 y=kx+b 的图象如图所示,则 k 和 b 的取值范围是 ()
B.-4,-3
C.-4,-3,-2
D.-3,-2
根据一次函数图像与不等式的性质即可求解. 【详解】 直线 y=nx+5n 中,令 y=0,得 x=-5 ∵两函数的交点横坐标为-2, ∴关于 x 的不等式-x+m>nx+5n>0 的解集为-5<x<-2 故整数解为-4,-3,故选 B. 【点睛】 此题主要考查一次函数与不等式的关系,解题的关键是熟知一次函数的图像与性质.
3.正比例函数 y=kx 与一次函数 y=x﹣k 在同一坐标系中的图象大致应为( )
A.
B.
C.
D.
【答案】B 【解析】 【分析】
根据图象分别确定 k 的取值范围,若有公共部分,则有可能;否则不可能.
【详解】 根据图象知: A、k<0,﹣k<0.解集没有公共部分,所以不可能; B、k<0,﹣k>0.解集有公共部分,所以有可能; C、k>0,﹣k>0.解集没有公共部分,所以不可能; D、正比例函数的图象不对,所以不可能. 故选:B. 【点睛】 本题考查了一次函数的图象和性质,熟练掌握一次函数 y=kx+b 的图象的四种情况是解题的 关键.
C.16cm
D.12cm
设直线 AC 的解析式为 y kx bk 0 ,然后利用待定系数法求出直线 AC 的解析式,
再把 x 50 代入进行计算即可得解.
【详解】
解:设直线 AC 的解析式为 y kx bk 0
∵ A0,6, B30,12
∴
12
6b 30k
b
∴
k
1 5
b 6
∴y 1x6 5
∵b= -5<0,
∴此函数图象与 y 轴负半轴相交,
∴此一次函数的图象经过一、三、四象限,不经过第二象限.
故选 A.
【点睛】
本题考查的是一次函数的性质,即一次函数 y=kx+b(k≠0)中,当 k>0 时,函数图象经过
一、三象限,当 b<0 时,(0,b)在 y 轴的负半轴,直线与 y 轴交于负半轴.
本题考查的是一次函数的性质,即一次函数 y kx bk 0 中,当 k 0 , b 0 时,
函数图象经过一、二、四象限.
5.下列函数(1)y=x (2)y=2x﹣1 (3)y= 1 (4)y=2﹣3x (5)y=x2﹣1 中,是一次函 x
数的有( )
A.4 个
B.3 个
C.2 个
D.1 个
解:作点 A 关于 y 轴的对称点 A',连接 A'D,
此时△ADE 的周长最小值为 AD+DA'的长; ∵A 的坐标为(-4,5),D 是 OB 的中点, ∴D(-2,0), 由对称可知 A'(4,5), 设 A'D 的直线解析式为 y=kx+b,
5 0
4k b 2k b
k b
5 6 5 3
一次函数基础测试题附答案
一、选择题
1.函数 y=2x﹣5 的图象经过( )
A.第一、三、四象限
B.第一、二、四象限
C.第二、三、四象限
D.第一、二、三象限
【答案】A
【解析】
【分析】
先根据一次函数的性质判断出此函数图象所经过的象限,再进行解答即可.
【详解】
∵一次函数 y=2x-5 中,k=2>0,
∴此函数图象经过一、三象限,
2.某一次函数的图象经过点 1, 2 ,且 y 随 x 的增大而减小,则这个函数的表达式可能是
()
A. y 2x 4
B. y 2x 4
C. y 3x 1
D. y 3x 1
【答案】B 【解析】 【分析】
设一次函数关系式为 y kx b ,把(1,2)代入可得 k+b=2,根据 y 随 x 的增大而减小可 得 k<0,对各选项逐一判断即可得答案. 【详解】
【详解】
解:一次函数 y=kx+b 过一、二、四象限,
则函数值 y 随 x 的增大而减小,因而 k<0;
图象与 y 轴的正半轴相交则 b>0,
因而一次函数 y=-bx+k 的一次项系数-b<0,
y 随 x 的增大而减小,经过二四象限,
常数项 k<0,则函数与 y 轴负半轴相交,
因而一定经过二三四象限,
<0,b>0 时图象在一、二、四象限.
10.如图,在平面直角坐标系中,函数 y=2x 和 y=﹣x 的图象分别为直线 l1,l2,过点 (1,0)作 x 轴的垂线交 l1 于点 A1,过点 A1 作 y 轴的垂线交 l2 于点 A2,过点 A2 作 x 轴的 垂线交 l1 于点 A3,过点 A3 作 y 轴的垂线交 l2 于点 A4,…,依次进行下去,则点 A2019 的坐 标为( )
7.已知直线
y=-x+4
与
y=x+2
的图象如图,则方程组
y y
x x2
4
的解为(
)
A. x 3,y 1
B. x 1,y 3
C. x 0,y 4
D. x 4,y 0
【答案】B 【解析】 【分析】
二元一次方程组的解就是组成二元一次方程组的两个方程的公共解,即两条直线的交点坐 标.
【详解】
随 x 的增大而增大;当 k<0 时,y 随 x 的增大而减小.
14.生物活动小组的同学们观察某植物生长,得到该植物高度 y (单位: cm )与观察时间 x (单位:天)的关系,并画出如图所示的图象( CD / / x 轴),该植物最高的高度是( )
A. 50cm
【答案】C 【解析】 【分析】
B. 20cm
D. k 0
【答案】B
【解析】
【分析】根据一次函数图象的增减性来确定(k-2)的符号,从而求得 k 的取值范围.
【详解】∵在一次函数 y=(k-2)x+1 中,y 随 x 的增大而增大,
∴k-2>0,
∴k>2,
故选 B.
【点睛】本题考查了一次函数图象与系数的关系.在直线 y=kx+b(k≠0)中,当 k>0 时,y
设一次函数关系式为 y kx b ,
∵图象经过点 1, 2 ,
k b 2;
∵y 随 x 增大而减小,