简析有机硅改性聚氨酯的微观结构和性能探讨

合集下载

有机硅改性聚氨酯的最新研究进展

有机硅改性聚氨酯的最新研究进展
维普资讯
20 0 8年 7月

望 等 . 机硅 改 性 聚 氨 酯 的 最 新 研 究 进 展 有
4 7
有 机 硅 改 性 聚 氨 酯 的 最 新 研 究 进 展
刘 望 梅 来宝
( 南京工业大学应用化 学系 , 南京 2 0 0 ) 10 9
摘 要 有 机硅改性聚氨 酯兼具 两者 的优 异性 能 , 提高 了聚 氨酯 材料 的 耐水 、 耐候 等 性 能。
氨基 改性法 和硅烷偶联剂改 聚四氢呋喃聚氨酯 (P M / U) 混体 系有 型分为羟基改性法 、 D SP 共 良好 的增 容作 用 , 学 性 能 明显 提 高。Si t 力 h a 性法等。 ba . 等【 3 也报 道 , 硅 氧 烷 与 聚醚 聚 氨 酯 混 合 时 , 聚 有 2 1 羟基 封端 硅氧烷 改 性法 有机 硅 中 含 有 能 和 聚 氨 酯 中 的一 N O 发 生 c 相分离 现象 。共 混 改性 是 简单 的物 理 混 合 , 化 无 反应的活泼羟基 , 是有机硅 化合 物能改性 聚氨酯 学 键形 成 。 因有机硅 化 合物 和 聚氨酯化 合 物 的溶 解参数相差较大 ( 分别是 75和 1. ) , . 00 】树脂之

性能 , 两者共混可 以取长补短 。例 如有机硅改性 水 性 聚氨酯 的主要途 径 之一 是用 氨基硅 氧 烷类 与 聚氨酯共混改性 , 余海斌 等发现聚二 甲基硅氧 烷 一 聚乙二醇 的嵌段共 聚物对 聚二 甲基硅氧 b一
料的性质得到改善 。其改性效果 比物理共混好得 多 , 目前 研 究 最 多 的 改性 方 法 。按 官 能 团 的类 是
而对 水 的接触 角则增 大 。研究 还 发 现 , 过 P 经 U—
的耐热 、 耐寒 、 疏水 、 耐磨等性能 , 使聚氨酯材料的

有机硅改性水性聚氨酯

有机硅改性水性聚氨酯

服务有机硅氟行业 打造硅氟贸易新天地 Silicone And Fluorine Information 2006.12 有 机 硅 氟 资 讯 有机硅改性水性聚氨酯有机硅改性聚氨酯材料,是由低聚物多元醇构成的软段和二异氰酸酯和扩链剂构成的硬段交替共聚而成,其特征在于在后扩链的过程中采用了可与异氰酸酯基反应的氨基类硅烷偶联剂。

本发明还提供了制备这种有机硅改性水性聚氨酯的方法。

由于本发明采用氨类硅烷偶联剂,可以在预聚物水分散后加入到体系中,在预聚物的合成中可以不用溶剂或少用溶剂。

氨类硅烷偶联剂的胺基可以和残留异氰酸酯基反应而使预聚物扩链,同时可水解基团的水解缩聚也可使预聚物扩链,而且还有交联反应发生,使所制得的有机硅改性聚氨酯材料耐水性大大提高。

由于有机硅的存在,赋予聚氨酯材料较低的表面能和良好的手感,也使此材料的使用温度范围更宽。

可用作涂料、皮革涂饰剂、织物整理剂的成膜物质,也可用作胶粘剂。

GE 展示新型有机硅密封胶2006中国(北京)国际门窗幕墙博览会(Fenestration China)于2006年12月5日在北京中国国际展览中心隆重开幕。

在此次规模空前的国际性专业展会上,GE 公司将充分展示其创新的产品、技术及多方面的定制能力,以期为快速发展中的建筑节能与门窗幕墙业带来先进技术和理念,推动相关产业的进一步发展。

GE 在会上集中展示了其可为不同建筑项目量身定制的幕墙材料解决方案,特别是在多个大型重点项目中广获赞誉的密封胶系列产品。

针对来自亚太区,特别是中国内地建筑市场的巨大需求,GE 公司秉承“以客户为本”的理念,不断推出适合本地市场的创新产品及优质服务,促进市场的可持续发展。

随着中国内地经济的高速发展,特别是2008年北京奥运会以及2010年上海世博会的临近,建筑市场呈现出前所未有的良好发展态势;同时,对建筑节能与环保材料的需求也在不断上升。

GE 高新材料集团亚太区市场经理CHEWHOCK -HUAT 表示,“在现代建筑业,密封材料的技术和质量是高科技幕墙制造的关键因素。

有机硅改性聚氨酯弹性体材料的研究

有机硅改性聚氨酯弹性体材料的研究

有机硅改性聚氨酯弹性体材料的研究陈精华 刘伟区 宣宜宁 张 斌(中国科学院广州化学研究所 510650)摘 要:以聚氧化丙烯二醇或聚氧化丙烯三醇、氨乙基氨丙基聚二甲基硅氧烷、甲苯二异氰酸酯为原料在无溶剂条件下制备预聚体,利用二甲基硫甲苯二胺为固化剂合成一系列氨基硅油改性聚氨酯弹性体材料,并对材料的力学性能、耐热性、表面水接触角等性能进行了测试。

结果表明,改性后的聚氨酯弹性体具有更优良的力学性能、耐热性及表面疏水性。

关键词:聚氨酯;氨基硅油;弹性体;改性;合成 聚氨酯弹性体通常以低聚物多元醇、多异氰酸酯、扩链/交联剂及少量助剂为原料制得[1]。

聚氨酯弹性体模量一般介于橡胶和塑料之间,具有较高的强度和弹性、较好的硬度和耐磨性等优异性能,因此在市场上得到广泛使用。

但由于存在耐高低温、耐候及表面性能欠佳等缺点,使其在某些特定领域的应用受到限制。

聚二甲基硅氧烷(PDMS )具有优异的介电性、柔韧性、耐高低温性和耐候性及较好的疏水性和低表面张力,用PDMS 改性聚氨酯可以改善聚氨酯弹性体的性能,获得较好的综合性能。

目前文献报道的有机硅改性聚氨酯的方式主要有两种,一种是利用活性端基封端的聚二甲基硅氧烷与聚氨酯形成嵌段共聚物[2~4];另一种是利用侧链含有活性基团的聚二甲基硅氧烷与聚氨酯接枝反应形成有机硅-聚氨酯共聚物[5,6],表面改性是其目的之一。

前者硅氧烷链段被嵌在聚氨酯主链中,它向表面迁移的能力受到主链的牵制,所以为了获得较好的表面改性效果,常需加入大量的PDMS ,这将会导致聚氨酯的力学强度明显下降。

后者硅氧烷链悬挂在聚氨酯的主链上,有利于硅原子向表面迁移,只需加入少量的氨基硅油,就能改善聚氨酯的表面性质,但由于有机硅和聚氨酯的溶解度参数相差太大[7],及氨基硅油与二异氰酸酯反应迅速,所以所进行的聚合反应都需在特殊溶剂中进行,且大都停留在实验室阶段,工业化产品很少。

本工作采用特殊的工艺条件和特殊的分子设计,利用聚氧化丙烯二醇(PPG )或聚氧化丙烯三醇(PPT )、氨乙基氨丙基聚二甲基硅氧烷(氨基硅油,AE APS )、甲苯二异氰酸酯(T DI )在无溶剂条件下合成了一系列有机硅-聚氨酯预聚体,再采用新型固化剂二甲基硫甲苯二胺(DADMT )固化,制得有机硅-聚氨酯弹性体材料。

有机硅改性水性聚氨酯研究进展

有机硅改性水性聚氨酯研究进展

法 的表 征结 果 显 示 , 当 W( A P T E S ) < 9 . 7 %时 , 乳 液 粒
径 主要 受脲 基含 量 影 响 , 加 水 乳 化使 S i — O R水 解 为 S i — O H基团, 主要 分 布在乳 液粒 子 表面 , S i — O H基 团 的 交联 可 忽 略 ; 随着 A P T E S含 量 的 不 断增 加 , 亲 水 性 较差 的脲 基 含量 增 加 , 乳液粒径稍有增大 ; 在 相
子 明显 增 大 , 无机相和有机相易分离 , 在乳 液 粒 子
1 硅 烷 偶联 剂 封 端 改 性 W P U
以含 氨 基 的硅 烷偶 联 剂 作 为 封端 剂 , 利用 其 分 子 中的一 N H 基 团与 WP U预 聚体 中 的一 N C O基 团进 行 反应 , 可合成 端硅氧烷 基 的 P U; 乳 化体 系经硅 氧烷
的水解 、 缩聚后 , 可生成含交联 结构 的 WP U。 然而, 硅 氧烷 的水 解 、 交联, 会 影响 WP U的粒 径及乳 液性 能 。

中 出现 了 S i 一 0 一 S i 富集 区域 ,膜 的交 联度 也 随之 提 高; 改 性 WP U在 2 5℃和 9 0℃时 的凝胶 含 量没 有差 别, F T — I R和 2 9 S i — N MR 的表征 结果 显示 ,室温 条件
缘 和透 气 等特 点 , 以此 作 为 WP U 的 改性 剂 , 可 结合
有机 硅 和 P U 的优点 , 有 效 提高 了 WP U 固化 膜 的柔 韧性 、 耐 水 性 和 热稳 定 性 。 因 此 , 研 究 有 机 硅 改 性 WP U对 相关 行业 具有 重 大意 义 。
转变 过程 中 , S i — O R发生 水解 缩 聚反应 , 使 得乳 液粒

有机硅改性水性聚氨酯的研究

有机硅改性水性聚氨酯的研究

有机硅改性水性聚氨酯的研究一、本文概述随着环保理念的深入人心和科学技术的不断进步,水性聚氨酯作为一种环境友好型高分子材料,在涂料、胶粘剂、皮革涂饰剂、纸张处理剂、纤维处理剂以及高分子膜等多个领域得到了广泛应用。

然而,传统的水性聚氨酯在某些性能上仍存在一定不足,如耐水性、耐溶剂性、耐候性等方面的性能有待提升。

因此,通过改性提高水性聚氨酯的性能成为了研究的热点。

有机硅材料以其独特的结构和性能,如良好的耐水性、耐候性、耐化学腐蚀性等,成为了改性水性聚氨酯的理想选择。

有机硅改性水性聚氨酯不仅继承了水性聚氨酯的环保性,还大幅提升了其耐水、耐候等性能,拓宽了其应用领域。

本文旨在深入研究有机硅改性水性聚氨酯的制备工艺、性能表征及应用性能,探讨有机硅改性对水性聚氨酯性能的影响机理。

通过系统的实验研究和理论分析,为有机硅改性水性聚氨酯的工业化生产和应用提供理论支持和技术指导。

本文也期望通过这一研究,为推动水性聚氨酯材料的发展和应用做出一定的贡献。

二、有机硅改性水性聚氨酯的制备方法有机硅改性水性聚氨酯的制备主要涉及到有机硅化合物的引入和水性聚氨酯的合成两个主要步骤。

以下将详细介绍这一制备过程。

需要选择适合的有机硅化合物进行改性。

常见的有机硅化合物包括硅烷偶联剂、聚硅氧烷等。

这些化合物具有良好的耐水、耐候和耐化学腐蚀性能,能够有效提高水性聚氨酯的性能。

在选择有机硅化合物后,需要进行适当的处理,如水解、醇解等,以使其能够更好地与水性聚氨酯反应。

水性聚氨酯的合成通常采用预聚体法。

将异氰酸酯与多元醇进行预聚反应,生成预聚体。

然后,在预聚体中加入扩链剂、催化剂、水等,进行链扩展和乳化,最终得到水性聚氨酯乳液。

在合成水性聚氨酯的过程中,将处理后的有机硅化合物引入反应体系。

有机硅化合物可以与预聚体中的异氰酸酯基团发生反应,形成硅氧键,从而将有机硅链段引入水性聚氨酯分子链中。

通过控制有机硅化合物的加入量和反应条件,可以实现对水性聚氨酯性能的调控。

有机硅改性水性聚氨酯

有机硅改性水性聚氨酯


LOGO
文献中已有的研究结果及其分析
图1 有机硅改性阴离子水性聚氨酯的FTIR谱图

LOGO
文献中已有的研究结果及其分析
有机硅含量对力学性能的影响
表1有机硅含量对力学性能的影响

R值
DMPA含量
乳液外观、稳定性、胶 膜力学性能、耐溶剂和 耐水性、耐热性、水接 触角、吸水率

LOGO
研究内容
主要研究内容
环境温度
乳液外观、稳定性、粘 度、胶膜力学性能、耐 溶剂和耐水性、耐热性、 水接触角、吸水率
中和度
乳液外观、稳定性、胶 膜力学性能、耐溶剂和 耐水性、耐热性、水接 触角、吸水率
LOGO
有机硅共聚改性水性聚氨酯乳液的研究
1 2 3 4
研究目的
改性水性聚氨酯的合成
课题主要研究内容初步计划
文献中已有的研究结果及其分析

LOGO
有机硅
有机硅(silicone),即有机硅化合物,是指含 有Si-O键、且至少有一个有机基团直接与硅原 子相连的化合物,习惯上常把那些通过氧、硫、 氮等使有机基团与硅原子相连接的化合物也当 作有机硅化合物。其中,以硅氧键(-Si-0-Si-) 为骨架组成的聚硅氧烷,是有机硅化合物中为 数最多,研究最深、应用最广的一类,约占总 用量的90%以上。
有机硅对相分离的影响
图2 有机硅对相分离的影响

LOGO
文献中已有的研究结果及其分析
有机硅对耐热性的影响
图3 纯聚氨酯的TGA曲线
图4 有机硅质量分数为3%的聚 氨酯的TGA曲线

LOGO
文献中已有的研究结果及其分析
2.扩链
3.亲水扩链

有机硅改性水性聚氨酯乳液的表征及应用

有机硅改性水性聚氨酯乳液的表征及应用

有机硅改性水性聚氨酯乳液的表征及应用
"改变世界,由有机硅促进——探索有机硅改性水性聚氨酯乳液的应用特性"
本文旨在介绍有机硅改性水性聚氨酯乳液的表征及应用。

一、有机硅改性水性聚氨酯乳液的表征
1.性质:有机硅改性水性聚氨酯乳液是一种由乙烯基三甲氧基硅烷(VTMS)和水性聚氨酯组成的水性乳液型组合物,它是经过共混改性处理的一种乳液,具有良好的安定性和抗腐蚀性。

2.结构特征:有机硅改性水性聚氨酯乳液的结构由高分子量的聚氨酯、中分子量的乙烯基三甲氧基硅烷(VTMS)和高分子量的有机硅三元醚构成,其结构特征可以有效地抑制铁表面的生锈性和耐温。

3.物理性质:有机硅改性水性聚氨酯乳液具有良好的空间定形性、耐热性和抗风化性,它能有效地阻隔外界气体和水分,保护金属表面不受潮湿环境的侵害。

二、有机硅改性水性聚氨酯乳液的应用
1.防腐:由于有机硅改性水性聚氨酯乳液具有很强的防腐性,因此可以用于各种零件的防腐,特别是对耐腐蚀的金属材料如铝、铁、钢和铜的防护,可以有效阻止金属表面的生锈。

2.工业应用:有机硅改性水性聚氨酯乳液可以用于工业生产的各种新型增强材料的生产,比如轻质隔热材料、耐热材料和抗静电材料,它能够有效改善工业产品的性能,为生产者带来更多利益。

3.涂料:有机硅改性水性聚氨酯乳液能够极大地改善涂料的抗紫外线性和物理性能,特别是钢材表面的防护效果,可以有效的延长涂料的寿命,减少维护费用。

总之,有机硅改性水性聚氨酯乳液具有良好的安定性、耐热性、抗腐蚀性和防腐性,因此可以用于各种工业生产、防护和涂料中,为客户带来更多的利益。

有机硅改性聚氨酯的合成及性能研究

有机硅改性聚氨酯的合成及性能研究
维普资讯
研 究 ・开 发
弹体l61Ml 性,A27:C C0-S 33 H-LTES 20A316 5( ~ 0 E ( R N ,) 7
有 机 硅 改性 聚 氨 酯 的合 成 及 性 能 研 究
张 斌 , 海 龙 矫 彩 山 张 密 林 孙 , ,
元 醇对 其进 行 了改 性 。 采 用 了红 外 光谱 (R) 低 聚 物 和 预 聚 体 进 行 了表 征 ; 用 扫 描 电 镜 ( E 考 察 I 对 采 S M) 了 改 性 聚氨 酯 和 纯 聚 氨 酯 体 系的 断 裂 面形 貌 , 对 其 耐 水 性 和 耐 热 性 进 行 了研 究 , 究 结 果表 明 改 性 聚 并 研
样 经打 磨处 理 , 成 标 准试 样 。将 浇铸 成 型 的 试 制
作者简介 : 张 斌 ( 9 4 ) 男 . 龙 江 东 宁 人 . 士 . 究 16 一 , 黑 博 研 员. 事 合成 高分 子胶粘 剂 、 封 剂等相 关材料 的开 发 、 从 密 应 用 及相 关 理 论 的研 究 工作 。
样 分别 浸 泡 在 一 定 温 度 下 的 热 水 ( O℃ ) 冷水 7 、 中 , 置 一定 时间 后 取 出 , 放 测定 浇 铸 体拉 伸 强 度 、
氨 酯试样一的耐水性 、 耐热 性 良好 。
关键词 : 有机 硅 ; 氨 酯 ; 粘 荆 聚 胶
中 图 分 类 号 : 2 . TQ 3 38 文献标识码 : A 文 章 编 号 :0 63 7 (0 7 0 —0 10 10 —1 快 的高 分 子 材 料 之 一 ,
1 实 验 部 分
1 1 原 料 .
甲基三 乙氧基 硅 烷 、 基 三 乙氧 基硅 烷 及 二 苯 苯基 二 甲氧基 硅烷 : 化学 纯 , 浙江 化工 科技集 团 有 限公 司生 产 ; 聚酯 多元 醇 : 自制 ; 多亚 甲基 多苯 基 多异 氰 酸酯 ( AP ) 工 业 品 , P I: 山东 烟 台 万 华公 司
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

简析有机硅改性聚氨酯的微观结构和性能探讨-经济
简析有机硅改性聚氨酯的微观结构和性能探讨
肖亚军
摘要本研究中利用差热扫描量热仪、透射电镜以及正电子湮灭寿命谱对水性有机硅改性聚氨酯微观结构进行了分析,利用静态拉伸试验对水性有机硅改性聚氨酯膜的力学性能进行了测试,证明了聚氨酯改性后其膜内部的微相分离结构更为突出,同时扩大了自由体积的空洞,进而造成透湿性能的显著提高。

关键词有机硅聚氨酯微观结构性能
以聚氨酯作为涂层而制成的合成革除了在外观上具有真皮感外,还具有较好的黏结性、方便加工、价格较低等多种优势,防水性能也非常突出,因而在工业生产中大量运用。

本文对水性有机硅改性聚氨酯(WSPU)的围观结构和性能进行了滔滔,其中混合软段选用的是聚四氢呋喃醚(PWMG)、聚乙二醇(PEG)以及α,ω- 二氨丙基聚二甲基硅氧烷(APDMS)作为,亲水扩连剂选取的是二羟甲基丙酸充当,1,4- 丁二醇充当硬段调节剂,反应物为异佛尔酮二异氰酸酯。

一、WSPU 微相分离的宏观结构分析
1.DSC 方面。

是在不同APDMS 质量分数下,WSPU 膜的DSC 曲线情况变化。

根据图中显示,我们可以明显看出WSPU 在-78 摄氏度时发生了一次玻璃化转变,除此之外,处于20 摄氏度时还出现了一次微小熔融,反观其他同样含有APDMS 的聚合物DSC 曲线,都是只有两个玻璃化转变区,分别归归属于在-78 摄氏度左右软段的玻璃化转变和100 摄氏度左右的硬段的玻璃化转变。

因而我们不难看出,含有APDMS 的聚氨酯无论是在软段还是硬段都是属
于一种无定形状态,同时WSPU 的软段和硬段之间还存在非常显著的微相分离。

软段玻璃化转变温度变化上,则随着APDMS 含量的不但增加而呈现出降低的趋势,而硬段玻璃化转变温度则明显不同,呈现出先升高后降低的状态,换句话说就是随着APDMS 含量的不断增加,聚合物微相分离在增加之后又逐渐开始递减,而在PDMS 质量分数达到了10%时,其微相分离程度到达了一个顶值,为最大。

2.TEM 方面。

WSPU0 软段和硬段相分离界面非常模糊,基本很难用肉眼分辨。

另外,暗区和亮区分别为硬段区和软段区,两区质检相融程度较大,换句话说就是软段和硬段的微相混溶程度比较大。

但是在(b)中WSPU10 的电镜照片中,可以非常明显的观察到亮暗微区,同时软段和硬段相分离程度也比较大。

3. 力学性能方面。

本研究中利用静态拉伸膜实验来测试APDMS 引入后原来的膜力学性能所造成的影响。

根据曲线变化我们可以看出随着APDMS 含量的逐渐增大,膜的抗拉强度呈现出明显的变化,开始增加后逐渐下降,而其延伸率则始终都处于减小状态。

同时当APDMS 的质量分数达到10%时,其拉伸模量也即是E 的值达到一个峰值,为22.12 mPa,为最大值,这是其断裂伸长率也即是ε 的值则为830.41.之所以出现这种情况,其根本原因是:如果单纯从硬段的角度来看,那么随着WSPU 中所含APDMS 的不断增加,硬段所形成的脲键也越来越多增多,链段氢键的功能随之开始不断增强,从而导致膜的抗拉强度开始加大。

如果从软段的角度来看,由于引入了APDMS,一定程度上对分子的柔性有所提升,然而它本身具有的分子结构特征却迫使分子与分子之间的距离越来越宽,在这种情况下,分子内聚力逐渐开始变小,膜强度开始降低,延伸率
同样随之降低。

二、WSPU 图层透湿性和微观机理
1.微相分离以及防水透湿性能方面。

本研究中对于涂层织物的透湿性以及防渗水性均作出了测试,并和美国著名企业CYTEC 研制推出的溶剂型防水透湿胶进行了比较和分析,该种胶的底胶选用的是UECCOAT3440,而面胶则采用了UECCOAT6430。

两种材料的头适量Y 以及耐静水压P 的比较情况所示。

本研究中采用的WSPU 系列的透湿量上,随着聚硅氧烷的不断加入,在初始的增加后又逐渐降低,之所以出现这种情况是因为其中填入了部分小于10%的聚硅氧烷,从而使得聚氨酯微相分离现象得到显著提升,而基于这种情况,硬、软段之间所产生的相互作用力也呈现出明显的下降趋势,进一步提升了造成软段区与水分子二者的互相作用能力,主要影响是促进了水汽分子透过。

2.自由体积大小以及防水透湿性能方面。

关于正电子湮灭寿命谱测试的具体情况,我们可以分析得出,如果自由体积小,那么防湿性能就会较差,防水性能则会较好,反之,则透视性能较好,而防水性能则会较差。

其中,当WSPU 其内部自由体积空洞的半径和D=0.324 纳米的水分子一致时,那么如果在其中不断加入APDMS,则自由体积空洞的半径也会随之越来越大,同样,自由体积分数也即是fv/C 也呈现出逐渐变大的趋势。

同时本研究中海证明了聚合物的透湿量最初增加后又开始出现逐渐递减,表明其透湿能力的大小除了深受微观自由体积空洞大小的影响外,其化学组成也是一个关键原因,因而随着APDMS 的不断加入,聚四氢呋喃醚开始被逐渐替换掉。

试样中一旦APDMS质量分数达到10%时,涂层的透湿量就会达到一个峰值,为最大值2130.1g·(㎡·d)-1,证明了本试样中所应用的水性聚氨酯具有非常好的透湿性能。

三、结束语
综上所述,混合软段选用的是聚四氢呋喃醚(PWMG)、聚乙二醇(PEG)以及α,ω- 二氨丙基聚二甲基硅氧烷(APDMS)作为,亲水扩连剂选取的是二羟甲基丙酸充当,1,4- 丁二醇充当硬段调节剂,反应物为异佛尔酮二异氰酸酯而制成的WSPU,在微观结构上,能够导致聚氨酯内部出现非常显著微相分离结构,体积空洞也明显增大变大,增强了聚氨酯膜的透湿性能。

WSPU 出色的防水透湿性能使其在现代工业应用中具有较好的前景。

参考文献
[1] 杜郢,王哲,周太炎,夏汉忠. 羟基硅烷改性高固含量水性聚氨酯及性能研究[J]. 中国皮革. 2011(21)。

相关文档
最新文档