2007年中考数学全真模拟试题3(附答案)
数学中考全真模拟测试卷(附答案)

A.﹣3B.3C.- D.
2.小友家阳台上有一个如图所示的移动台阶,它的主视图是( )
A. B. C. D.
3.如图是我国几家银行的标志,其中既是轴对称图形又是中心对称图形的是( )
A. B. C. D.
4.已知正比例函数y=mx的图象过第一、三象限,则m的取值范围是( )
A.m<0B.m≤0C.m≥0D.m>0
5.计算(﹣2x2y3)•3xy2结果正确的是( )
A. ﹣6x2y6B. ﹣6x3y5C. ﹣5x3y5D. ﹣24x7y5
【答案】B
【解析】
【分析】根据单项式乘单项式法则直接计算即可.
【详解】解:(﹣2x2y3)•3xy2=﹣6x2+1y3+2=﹣6x3y5,
故选B.
【点睛】本题是对整式乘法的考查,熟练掌握单项式与单项式相乘的运算法则是解决本题的关键.
【详解】解:由图知,6张卡片中有2张是数字3,
∴从中任取一张是数字3的概率是 .
故选B.
【点睛】本题考查了概率公式.概率=所求情况数与总情况数之比.
8.广西北部湾某中学为了使学生能够更好地进行体育活动,决定修建一个长方体形状的游泳池,其底面周长为100 m,设游泳池的底面长方形的长为xm,要使游泳池的底面面积为400 m2,则可列方程为( )
【解析】
【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.
【详解】A、不是轴对称图形,也不是中心对称图形,故本选项错误;
B、是轴对称图形,不是中心对称图形,故本选项错误;
C、既是轴对称图形,又是中心对称图形,故此选项正确;
D、是轴对称图形,不是中心对称图形,故本选项错误,
2007中考模拟题(10套)[下学期]
![2007中考模拟题(10套)[下学期]](https://img.taocdn.com/s3/m/076bd23c964bcf84b9d57b4f.png)
2007年深圳中考模拟语文(时间100分钟,满分100分)第一部分拼音与书写能力考查(5分)1、请将下面成语用楷书或行楷抄写在方格里,并把拼音写成汉字。
yǎn旗息鼓第二部分古诗文阅读能力考察(共25分)(一)课内文言文实词考查(4分)2、下列句子和词语中,加点字意思相同的两组是()()A、至于负者歌于途/忍辱负重B、不宜妄自菲薄,引喻失义/舍生而取义者也C、未尝不叹息痛恨于桓、灵也/ 痛恨虚伪D、故不为苟得也/苟且偷生(二) 课内文言文阅读考查(6分)舟首尾长约八分有奇,高可二黍许。
中轩敞者为舱,箬篷覆之。
旁开小窗,左右各四,共八扇。
启窗而观,雕栏相望焉。
闭之,则右刻“山高月小,水落石出”,左刻“清风徐来,水波不兴”,石青糁之。
3、翻译句子的含义(2分)舟首尾长约八分有奇,高可二黍许。
4、解释词语(2分)轩:启:5、回忆全文,本段的引文是苏轼前后赤壁赋的句子。
它能够照应第一段中哪句话?(2分)(三)课外文言文阅读考查(5分)初,张咏在成都,闻准①入相,谓其僚属曰:“寇公奇材,惜学术不足尔。
”及准出陕,咏适自成都罢还,准严②供帐,大为具待③。
咏将去,准送之郊,问曰:“何以教准?”咏徐曰:“《霍光传》④不可不读也。
”准莫谕其意,归,取其传读之,至“不学无术”,笑曰:“此张公谓我矣。
”(选自《宋史•寇准传》)[注释] ①准:寇准,北宋政治家,景德元年任宰相。
②严:敬重。
③具待:具,备办;待,接待。
④《霍光传》:载《汉书》,传末有“然光不学无术,暗于大理”之语。
6、解释下列句子中加横线词语的含义。
(2分)(1)咏适.自成都罢还()(2)咏将去.()7、请将下面句子翻译成现代汉语。
(3分)此张公谓我矣。
译文:(四)古诗文名句考查(10分)8、请把下面的名句补充完整。
(1)晨兴理荒秽,。
(陶渊明《归园田居》)(2),江入大荒流。
(李白《渡荆门送别》)(3),关山度若飞。
(北朝民歌《木兰诗》)(4)征蓬出汉塞,。
2007年中考全真模拟试卷(10)

2007年中考数学全真模拟试题(10)班级 姓名 得分一、 填空题(每空2分,共40分) 1、21-的相反数是 ;-2的倒数是 ; 16的算术平方根是 ;-8的立方根是 。
2、不等式组⎩⎨⎧-+2804<>x x 的解集是 。
3、函数y=11-x 自变量x 的取值范围是 。
4、直线y=3x-2一定过(0,-2)和( ,0)两点。
5、样本5,4,3,2,1的方差是 ;标准差是 ;中位数是 。
6、等腰三角形的一个角为︒30,则底角为 。
7、梯形的高为4厘米,中位线长为5厘米,则梯形的面积为 平方厘米。
8、如图PA 切⊙O 于点A ,∠PAB=︒30,∠AOB= ,∠ACB= 。
9、 如图PA 切⊙O 于A 割线PBC 过圆心,交⊙O 于B 、C ,若PA=6;PB=3,则PC= ;⊙O 的半径为 。
10题图9题图ACDB AP BOC8题图COPBA11题图OP BA10、如图∆ABC 中,∠C=︒90,点D 在BC 上,BD=6,AD=BC ,cos ∠ADC=53,则DC 的长为 。
11、如图同心圆,大⊙O 的弦AB 切小⊙O 于P ,且AB=6,则阴影部分既圆环的面积为 。
12、已知Rt ∆ABC 的两直角边AC 、BC 分别是一元二次方程06x 5-x 2=+的两根,则此Rt ∆的外接圆的面积为 。
13、如果方程0m x 2x 2=++有两个同号的实数根,m 的取值范围是 ( ) 二、 A 、m <1 B 、0<m ≤1 C 、0≤m <1选择题(每题4分,共20分) D 、m >014、徐工集团某机械制造厂制造某种产品,原来每件产品的成本是100元,由于提高生产技术,所以连续两次降低成本,两次降低后的成本是81元。
则平均每次降低成本的百分率是 ( )A .8.5% B. 9% C. 9.5% D. 10%15、二次函数c bx ax y 2++=的图像如图所示,则关于此二次函数的下列四个结论①a<0②a>0 ③ac 4-b 2>0 ④ab<0中,正确的结论有 ( ) A.1个 B.2个 C.3个 D.4个16题图PB COA 15题图o yx16、如图:点P 是弦AB 上一点,连OP ,过点P 作PC ⊥OP ,PC 交⊙O ,若AP =4,PB =2,则PC 的长是 ( )A. 2B. 2C. 22D. 317、为了美化城市,建设中的某休闲中心准备用边长相等的正方形和正八边形两种地砖镶嵌地面,在每一个顶点周围,正方形、正八边形地砖的块数分别是( ) A. 1、2 B. 2、1 C. 2、3 D. 3、2 三、 (本题每题5分,共20分) 18、计算1303)2(2514-÷-+⎪⎭⎫⎝⎛+- 19、计算22)145(sin 230tan 3121-︒+︒--20、计算)+()-(+-ab b a ]a b a b b a a [2÷ 21、解方程11-x 1-1-x 22=四、解答题(每题7分,共28分)22、已知关于x 的一元二次方程0)32(22=+-+m x m x 的两个不相等的实数根α、β满足111=+βα,求m 的值。
2007年中考模拟试题及答案

2007年中考模拟试题(五)这是一套综合性比较强、内容丰富多彩、技能性高、知识面比较广的具有现实性的新华师版的试题。
值得大家借鉴。
(时间120分钟,满分120分)山东省聊城东昌府区郑家中学 庞纪武 邮编:252035一、选择题(每小题3分,共30分)1.若方程23100x x m -+=有两个同号不等的实数根,则m 的取值范围是( ). A .0m ≥ B .0m >C .2503m <<D .2503m <≤ 2.如图,B 是线段AC 的中点,过点C 的直线l 与AC 成60的角,在直线l 上取一点P ,使得30APB ∠= ,则满足条件的点P 的个数是( ).A .3个B .2个C .1个D .不存在3.据丽水气象台“天气预报”报道,今天的最低气温是17℃,最高气温是25℃,则今天气温t (℃)的范围是( ).A. t <17B. t >25C. t=21D. 17≤t ≤25乙:8 5,7 0.4;从上述数据可以看出,_______同学的数学成绩不够稳定,波动_____,希望该同学在学习上补缺补漏,加强能力训练.A 甲 , 较大 B.甲,较小 C.乙,较大D.乙,较小5.据丽水市统计局2005年公报,我市2004年人均生产总值约为10582元,则近似数10582的有效数字有( )个.A. 1B. 3C. 4D. 5 6. 下列图形中,轴对称图形是( ).7.国家统计局统计资料显示,2005年第一季度我国国内生产总值为31355.55亿元,用科学记数法表示为( )元(用四舍五入法保留3个有效数字).A .123.1310⨯B . 123.1410⨯C .133.1410⨯D . 831355.5510⨯8.用黑白两种颜色正方形的纸片按黑色纸片数逐渐加l 的规律拼成一列图案:(B)(C)(D)xl第2题图(1)第4个图案中有白色纸片 张 (2)第n 个图案中有白色纸片 张A 13,3n +1B 12 ,3n -1C 13,4n +1D 23,3n +29.二次函数y=x 2+10x-5的最小值为( ). A .-35 B .-30 C .-5 D .2010.为了改善住房条件,小亮的父母考察了某小区的A B 、两套楼房,A 套楼房在第3层楼,B 套楼房在第5层楼,B 套楼房的面积比A 套楼房的面积大24平方米,两套楼房的房价相同,第3层楼和第5层楼的房价分别是平均价的1.1倍和0.9倍.为了计算两套楼房的面积,小亮设A 套楼房的面积为x 平方米,B 套楼房的面积为y 平方米,根据以上信息列出了下列方程组.其中正确的是( ).A .⎩⎨⎧=-=241.19.0x y y x B. 1.10.924x y x y =⎧⎨-=⎩ C .0.9 1.124x y x y =⎧⎨-=⎩ D . 1.10.924x yy x =⎧⎨-=⎩二、填空题(每小题4分,共36分)11. 据泉州统计局网上公布的数据显示,2005年第一季度我市完成工业总产值约为 61 400000000元,用科学记数法表示 约为 元.12. 我国宋朝数学家杨辉在他的著作《详解九章算法》中提出右下表,此表揭示了nb a )(+(n 为非负整数)展开式的各项系数的规律,例如:1)(0=+b a ,它只有一项,系数为1;b a b a +=+1)(,它有两项,系数分别为1,1;2222)(b ab a b a ++=+,它有三项,系数分别为1,2,1;3223333)(b ab b a a b a +++=+,它有四项,系数分别为1,3,3,1;www:/ 教育库之数学库……根据以上规律,4)(b a +展开式共有五项,系数分别为 . 13.妞妞和她的爸爸玩“锤子、剪刀、布”游戏.每次用一只手可以出锤子、剪刀、布三种手势之一,规则是锤子赢剪刀、剪刀赢布、布赢锤子,若两人出相同手势,则算打平. (1)你帮妞妞算算爸爸出“锤子”手势的概率是______ (2)妞妞决定这次出“布”手势,妞妞赢的概率有_____ (3)妞妞和爸爸出相同手势的概率是_______14.观察下列球的排列规律(其中●是实心球,○是空心球):●○○●●○○○○○●○○●●○○○○○●○○●●○○○○○●…… 从第1个球起到第2004个球止,共有实心球 个.15. 某电信公司推出手机两种收费方式:A 种方式是月租20元,B 种方式是月租0元.一个月的本地网内打出电话时间t(分钟)与打出 电话费s(元)的函数关系如图3,当打出电话150分钟时,这两种方式电话费相差 元.16. “五一”国际劳动节,广场中央摆放着一个正六边形的鲜花图案,如图所示,已知第一层摆黄色花,第二层摆红色花,第三层是紫色花,第四层摆黄色花……由里向外依次按黄、红、紫的颜色摆放,那么第10层应摆 盆 花.17. 如图,ABCD 是各边长都大于2的四边形,分别以它的顶点为圆心、1为半径画弧(弧 的端点分别在四边形的相邻两边上),则这4条弧长的和是________________18.如图,⊙O 的直径AB=12,AM 和BN 是它的两条切线,切点分别为A 、B ,DE 切⊙O 于E ,交AM 于D ,交BN 于C ,设AD=x ,BC=y ,则y 与x 的函数关系式是 .第18题图 第19题图www:/ 教育库之数学库19.顶角为36°的等腰三角形称为黄金三角形.如图,△ABC 、△BDC 、△DEC 都是黄金三角形已知AB=1,则DE=___________________)三、解答题(共44分)20. (6分)计算:13132312110-+-+⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛--.21.(8分)在梯形纸片ABCD 中.AD ∥BC ,AD >CD .将纸片沿过点D 的直线折叠,使点C 落在AD 上的点C ‘处,折痕DE 交BC 于点E .连结C ,E (1)求证:四边形CD C ,E 是菱形;(2)若BC =CD +AD ,试判断四边形ABED 的形状,并加以证明;22.(8分)如图,河对岸有一铁塔AB.在C 处测得塔顶A 的仰角为30°,向塔前进16米到达D ,在D 处测得A 的仰角为45°,求铁塔AB 的高.23.(10分)今年五月,某工程队(有甲、乙两组)承包人民路中段的路基改造工程,规定若干天内完成.(1)已知甲组单独完成这项工程所需时间比规定时间的2倍多4天,乙组单独完成这项工程所需时间比规定时间的2倍少16天.如果甲、乙两组合做24天完成,那么甲、乙两组www:/ 教育库之数学库合做能否在规定时间内完成?(2)在实际工作中,甲、乙两组合做完成这项工程的65后,工程队又承包了东段的改造工程,需抽调一组过去,从按时完成中段任务考虑,你认为抽调哪一组最好?请说明理由.24.(12分)半径为2.5的⊙O 中,直径AB 的不同侧有定点C 和动点P ,已知BC :CA=4:3,点P 在AB 弧上运动,过点C 作CP 的垂线,与PB 的延长线交于点Q .(1)当点P 运动到与点C 关于直径AB 对称时,求CQ 的长;(2)当点P 运动到什么位置时,CQ 取到最大值,并求出此时CQ 的长.后附供选题www:/ 教育库之数学库《2007年中考模拟试题(五)》参考答案(备用图)一、1-5 CBDCD 6-10 BBABD二、11. 6.14×1010;12. 1,4,6,4,1;13. 31,31,31. 14. 602;15. 10;16. 60,黄色;17. 6π;18.y=36x (x >0); 三、20. 原式=l+3+3+l+3-l =4+23. 21.(1)证明根据题意可得;CD =C ’D ,∠C ’DE =∠CDE ……1分 ∵AD ∥BC ∴∠C ’DE =∠CED ……2分 ∴∠CDE =∠CED ……3分 ∴CD = C ’D =C ’E =CE ……4分 ∴四边形CD C ’E 是菱形 ……5分(2)答:当BC =CD +AD 时,四边形ABED 为平行四边形 … … … 6分证明:由(1)知CE =CD又∵BC =CD +AD ∴BE =AD … … … 7分又∵AD ∥BE ∴四边形ABED 为平行四边形 … … … 8分 22.在Rt △ABD 中,∵∠ADB=45°,∴BD=AB. ……2分在Rt △ABC 中,∵∠ACB=30°,∴……2分设AB=x (米),∵CD=16,∴BC=x+16.∴……2分)81x ⇒==.即铁塔AB 的高为)81米. ……2分23.解:(1)设规定时间为x 天,则16162244224=-++x x解之,得x 1=28,x 2=2.(3分)经检验可知,x 1=28,x 2=2都是原方程的根,www:/ 教育库之数学库但x 2=2不合题意,舍去,取x=28.由24<28知,甲、乙两组 合做可在规定时间内完成.(4分)(2)设甲、乙两组 合做完成这项工程的5/6用去y 天,则65)16282142821(=-⨯++⨯y解之,得y=20(天).(5分)甲 独做剩下工程所需时间:10(天). 因为20+l0=30>28,所以甲 独做剩下工程不能在规定时间内完成;(6分) 乙 独做剩下工程所需时间:20/3(天). 因为20+20/3=2632<28, 所以乙独做剩下工程能在规定时间内完成. (9分)所以我认为抽调甲组最好. (10分) 24.(本题满分12分) 解:(1)当点P 运动到与点C 关于直径AB 对称时,如图所示,此时CP AB ⊥于D ,又AB 是圆O 的直径,90ACB ∴=︒∠.543A BB C C A == ,∶∶, 43BC AC ∴==,.又∵AC ·BC=CD ·AB 122435CD PC ∴==,.… …… …… 4分 在Rt ACB △和Rt PCQ △中, 90ACB PCQ ==︒∠∠,C A B C P =∠∠, R t R tA CB PC Q ∴△∽△. ························ 6分.53234,==⋅=∴=∴PC AC PC BC CQ CQ BC PC AC ················ 8分 (2)因为点P 在弧AB 上运动过程中,有,34PC AC PC BC CQ =⋅=所以PC 最大时,CQ 取到最大值. ····················· 10分www:/ 教育库之数学库(第26题图)∴当PC过圆心O,即PC取最大值5时,CQ最大,最大为203.··········12分供选题1.等腰三角形的底和腰是方程x2-6x+8=0的两根,则这个三角形的周长为(B )A.8B.10C.8或10D.不能确定2.数学课上,老师让同学们观察如图所示的图形,问:它绕着圆心O旋转多少度后和它自身重合?甲同学说:45°;乙同学说:60°;丙同学说:90°;丁同学说:135°。
2007年中考全真模拟试卷(2)

2007年中考全真模拟试卷(2)班级: 姓名: 座号: 评分:一、 选择题(每小题2分,共20分)1、︱-32︱的值是( )A 、-3B 、3C 、9D 、-9 2、下列二次根式是最简二次根式的是( ) A 、21B 、8C 、7D 、以上都不是 3、下列计算中,正确的是( )A 、X 3+X 3=X 6B 、a 6÷a 2=a 3C 、3a+5b=8abD 、(—ab)3=-a 3b 34、1mm 为十亿分之一米,而个体中红细胞的直径约为0.0000077m ,那么人体中红细胞直径的纳米数用科学记数法表示为( ) A 、7.7×103mm B 、7.7×102mm C 、7.7×104mm D 、以上都不对 5、如图2,天平右盘中的每个砝码的质量为10g ,则物体M 的质量m(g)的取值范围,在数轴上可表示为( )6、如图3,将∠BAC 沿DE 向∠BAC 内折叠,使AD 与A ’D 重合,A ’E 与AE 重合,若∠A =300,则∠1+∠2=( ) A 、500B 、60C 、450D 、以上都不对7、某校九(3)班的全体同学喜欢的球类运动用图4所示的统计图来表示,下面说法正确的是( ) A 、从图中可以直接看出喜欢各种球类的具体人数; B 、从图中可以直接看出全班的总人数;C 、从图中可以直接看出全班同学初中三年来喜欢各种球类的变化情况;D 、从图中可以直接看出全班同学现在喜欢各种球类的人数的大小关系。
8、下列各式中,能表示y 是x 的函数关系式是( )A 、y=x x -+-12B 、y=x3C 、y=x x21- D 、y=x ±9、如图5,PA 为⊙O 的切线,A 为切点,PO 交⊙O 于点B ,PA =8,OA =6,则tan ∠APO 的值为( )A 、43 B 、53 C 、54 D 、34 10、在同一直角坐标系中,函数y=kx+k ,与y=xk-(k 0≠)的图像大致为( )二、 填空题(每小题2分,共20分)11、(-3)2-(л-3.14)0= 。
中考全真模拟测试 数学试题 附答案解析

一.选择题
1.计算 的结果是( )
A.1 8B.9C.-9D.-1.8
【答案】B
【解析】
【分析】
先去括号,然后计算,即可得到答案.
【详解】解: ;
故选择:B.
【点睛】本题考查了有理数的减法运算,解题的关键是掌握去括号法则.
2.如图,直线 , , ,则 的度数是()
A. B. C. D.
【答案】C
5.若不等式组 无解,那么m的取值范围是()
A.m>2B.m<2C.m≥2D.m≤2
【答案】D
【解析】
【分析】
先求出每个不等式的解集,再根据不等式组解集的求法和不等式组无解的条件,即可得到m的取值范围.
【详解】解:
由①得,x>2,
由②得,x<m,
又因为不等式组无解,
所以根据”大大小小解不了”原则,
m≤2.
读书时间(小时)
7
8
9
10
11
学生人数
6
10
9
8
7
A.9,8B.9,9C.9.5,9D.9.5,8
【答案】A
【解析】
【分析】
根据中位数和众数的定义进行解答即可.
【详解】由表格,得该班学生一周读书时间的中位数和众数分别是9,8.
【点睛】本题主要考查了中位数和众数,掌握中位数和众数的定义及求法是解答的关键.
15.某班共有6名学生干部,其中4名是男生,2名是女生,任意抽一名学生干部去参加一项活动,其中是女生的概率为_____.
16.如图,PA,PB分别切⊙O于点A,B.若∠P=100°,则∠ACB的大小为_____(度).
17.用一个半径为10cm半圆纸片围成一个圆锥的侧面(接缝忽略不计),则该圆锥的高为.
2007年中考数学模拟试题(2)

2007年中考数学模拟试题(2)出题:胡成春 (总分100分,50分钟完成) 姓名 分数 一、选择题(每题4分,共40分,请将答案题号写在表格内,否则不给分)1、化简)2(-2得 ( ) A 、4 B 、-2 C 、2 D 、-42.世界文化遗产------长城的总长度约为670 000 m ,用科学记数法表示为 ( ) A . m 51076⨯. B. m 51076-⨯. C. m 61076⨯. D. m 61076-⨯.3.下列图形中,既是轴对称,又是中心对称图形的是 ( )4.如果用□表示1个立方体,用表示 两个立方体重叠,用▇表示三个立方体重叠,如图1是由7个立方体叠成的几何体,从正前方观察,可画出的平面图形是( ).5.在同一时刻的阳光下,小明的影子比小强的影子长,那么在同一路灯下 ( ) (A )小明的影子比小强的影子长 (B )小明的影长比小强的影子短 (C )小明的影子和小强的影子一样长 (D )无法判断谁的影子长6.已知一次函数y =kx +b 的图像如图所示,则当x <0时,y 的取值范围是( )A. y >0B. y <0C. -2<y <0D. y <-27.如图,已知一坡面的坡度i =α为 (A.15 B.20 C.30 D.458( )A.在4和5之间B.在5和6之间C.在6和7之间D.在7和8之间9、在直角坐标系中,⊙O 的圆心在圆点,半径为3,⊙A 的圆心A 的坐标为(-3,1),半径为1,那么⊙O 与⊙A 的位置关系为 ( )A 、外离B 、外切C 、内切D 、相交 10、如图,在梯形ABCD 中,AD ∥BC , 2AD =,8BC =,6AC =,8BD =, 则此梯形的面积是( )A 、24B 、20C 、16D 、12二、填空题:(每题4分,共20分,请将答案题号写在表格内,否则不给分) 11、函数y=11-+x x 的自变量X 的取值范围为 。
中考全真模拟测试 数学试题 含答案解析

一、选择题(每小题3分,共30分,每小题仅有一个答案是正确的)1.计算:1(2)()(2)2-÷-⨯-的结果是( )A .-8B .8C .-2D .22.如图,矩形内有两个相邻的正方形,其面积分别为2和8,则图中阴影部分的面积为( )A .B .2C .2D .63.x =1是关于的一元二次方程x 2+ax +2b =0的解,则2a +4b =( )A. -2 .B. -3 .C. 4 .D. -6.4.点(1,m),(2,n)在函数1y x =-+的图象上,则,m n 的关系是( )A. m n ≤B.m n =C. m n <D.m n >5.若一组数据x ,3,1,6,3的中位数和平均数相等,则x 的值为( )A .2B .3C .4D .56.把一根9m 长的钢管截成1m 长和2m 长两种规格均有的短钢管,且没有余料,设某种截法中1m 长的钢管有a 根,则a 的值可能有( )A .3种B .4种C .5种D .9种7.如图,点A 在⊙O 上,BC 为⊙O 的直径,AB =4,AC =3,D 是AB 的中点,CD 与AB 相交于点P ,则CP 的长为( )A B .32 C .72 D 8.如图,在△ABC 中,∠B =50°,CD ⊥AB 于点D ,∠BCD 和∠BDC 的角平分线相交于点E ,F 为边AC 的中点,CD =CF ,则∠ACD +∠CED =( )A .125°B .145°C .175°D .190°9.对于一个函数,自变量x 取a 时,函数值y 也等于a ,我们称a 为这个函数的不动点.如果二次函数y =x 2+2x +c 有两个相异的不动点x 1.x 2,且x 1<1<x 2,则c 的取值范围是( ) A .c <﹣3 B .c <﹣2 C .c <14 D .c <110.如图,ABCD 是正方形,点E 、F 在直线AC 上,CE =2, ∠E +∠F =45°,设AC =x ,AF =y ,则y 关于x 的函数关系式为( )A 2y x = B. 24x y = C. y =3x D. y =2-x 二、填空题(每小题4分,共24分)11.分解因式:am 2﹣9a = . 12.老师给出一个函数,甲、乙各指出了这个函数的一个性质:甲:第一、三象限有它的图象;乙:在每个象限内,y 随x 的增大而减小.请你写一个满足上述性质的函数表达式 .13.若关于x 的方程15102x m x x-=--无解,则m = . 14.用一条宽度相等的足够长的纸条打一个结(如图1所示),然后轻轻拉紧、压平就可以得到如图2所示的正五边形ABCDE .图中,∠BAC = 度.15.如图,双曲线9(0)y xx=>经过矩形OABC的顶点B,双曲线(0)ky xx=>交AB,BC于点E.F,且与矩形的对角线OB交于点D,连接EF.若OD:OB=2:3,则△BEF的面积为.16.如图,在平面直角坐标系中,四边形OA1B1C1,A1A2B2C2,A2A3B3C3,…都是菱形,点A1,A2,A3,…都在x轴上,点C1,C2,C3,…都在直线y=+上,且∠C1OA1=∠C2A1A2=∠C3A2A3=…=60°,OA1=1,则点C6的坐标是.三、解答题:(本题共7小题,计66分)17.(本题6分)计算:(﹣2)2﹣|﹣2|﹣2cos45°+(3﹣π)018.(本题8分)为了解某校九年级全体男生1000米跑步的成绩,随机抽取了部分男生进行测试,并将测试成绩分为A.B.C.D四个等级,绘制如下不完整的统计图表,如题20图表所示,根据图表信息解答下列问题:(1)x =________,y =_______,扇形图中表示C的圆心角的度数为_______度;(2)甲、乙、丙是A等级中的三名学生,学校决定从这三名学生中随机抽取两名介绍体育锻炼经验,用列表法或画树状图法,求同时抽到甲、乙两名学生的概率.19.(本题8分)寒梅中学为了丰富学生的课余生活,计划购买围棋和中国象棋供棋类兴趣小组活动使用.若购买3副围棋和5副中国象棋需用98元;若购买8副围棋和3副中国象棋需用158元;(1)求每副围棋和每副中国象棋各多少元;(2)寒梅中学决定购买围棋和中国象棋共40副,总费用不超过550元,那么寒梅中学最多可以购买多少副围棋?20.(本题10分)如图,在正方形ABCD中,点E是BC的中点,连接DE,过点A作AG⊥ED交DE于点F,交CD于点G.(1)证明:△ADG≌△DCE;(2)连接BF,证明:AB=FB.21.(本题10分)如图,抛物线y=-x2+2x+c与x轴交于A、B两点,它的对称轴与x轴交于点N,过顶点M作ME⊥y轴于点E,连结BE交MN于点F.已知点A的坐标为(-1,0).(1)求该抛物线的解析式及顶点M的坐标;(2)求△EMF 与△BNF 的面积之比.22.(本题10分)如图,在Rt △ABC 中,∠ABC =90°,以AB 为直径作⊙O ,点D 为⊙O 上一点,且CD =CB ,连接DO 并延长交CB 的延长线于点E .(1)判断直线CD 与⊙O 的位置关系,并说明理由;(2)若BE =2,DE =4,求圆的半径及AC 的长.23.(本题14分)已知抛物线1C :21112y x x =-+,点F (1,1). (1)求抛物线1C 的顶点坐标; (2)①若抛物线1C 与y 轴的交点为A ,连接AF ,并延长交抛物线1C 于点B ,求证:112AF BF+=; ②抛物线1C 上任意一点P (P P x y ,)(01P x <<),连接PF ,并延长交抛物线1C 于点Q (Q Q x y ,),试判断112PF QF+=是否成立?请说明理由; (3)将抛物线1C 作适当的平移,得抛物线2C :221()2y x h =-,若2x m <≤时,2y x ≤恒成立,求m 的最大值.参考答案一、选择题:CBADA BDCBB二、填空题:11. (3)(3)a m m +- 2y x =等 12. 8-13. 3614. 251815.三、解答题17.【分析】先根据乘方的计算法则、绝对值的性质、零指数幂及特殊角的三角函数值分别计算出各数,再根据实数混合运算的法则进行计算即可.【解答】解:(﹣2)2﹣|﹣2|﹣2cos 45°+(3﹣π)0, =4﹣(2﹣)﹣2×+1, =4﹣2+﹣+1, =3.【点评】本题考查的是实数的运算,熟知零指数幂的计算法则、绝对值的性质及特殊角的三角函数值是解答此题的关键.18.解:(1)y =10÷25%=40,x =40-24-10-2=4,C 的圆心角=360°×404=36° (2)画树状图如下:一共有6种可能结果,每种结果出现的可能性相同,其中同时抽到甲、乙的结果有2种 ∴P (甲乙)=62=31答:同时抽到甲、乙两名学生的概率为31. 【考点】数据收集与分析,概率的计算 19.【解答】解:(1)设每副围棋x 元,每副中国象棋y 元,根据题意得:,∴,∴每副围棋16元,每副中国象棋10元;(2)设购买围棋z 副,则购买象棋(40﹣z )副,根据题意得:16z +10(40﹣z )≤550,∴z ≤25,∴最多可以购买25副围棋;【点评】本题考查二元一次方程组,一元一次不等式的应用;能够通过已知条件列出准确的方程组和不等式是解题的关键.20.解:(1)∵四边形ABCD 是正方形,∴∠ADG =∠C =90°,AD =DC ,又∵AG ⊥DE ,∴∠DAG +∠ADF =90°=∠CDE +∠ADF ,∴∠DAG =∠CDE ,∴△ADG ≌△DCE (ASA );(2)如图所示,延长DE 交AB 的延长线于H ,∵E 是BC 的中点,∴BE =CE ,又∵∠C =∠HBE =90°,∠DEC =∠HEB , ∴△DCE ≌△HBE (ASA ),∴BH =DC =AB ,即B 是AH 的中点,又∵∠AFH =90°, ∴Rt △AFH 中,BF =AH =AB .【分析】(1)依据正方形的性质以及垂线的定义,即可得到∠ADG =∠C =90°,AD =DC,∠DAG=∠CDE,即可得出△ADG≌△DCE;(2)延长DE交AB的延长线于H,根据△DCE≌△HBE,即可得出B是AH的中点,进而得到AB=FB.【点评】本题主要考查了正方形的性质以及全等三角形的判定与性质,在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.22.【分析】(1)欲证明CD是切线,只要证明OD⊥CD,利用全等三角形的性质即可证明;(2)设⊙O的半径为r.在Rt△OBE中,根据OE2=EB2+OB2,可得(4﹣r)2=r2+22,推出r=1.5,由tanOB CDEEB DE∠==,推出=,可得CD=BC=3,再利用勾股定理即可解决问题;【解答】(1)证明:连接OC.∵CB=CD,CO=CO,OB=OD,∴△OCB≌△OCD(SSS),∴∠ODC=∠OBC=90°,∴OD⊥DC,∴DC是⊙O的切线;(2)解:设⊙O的半径为r.在Rt△OBE中,∵OE2=EB2+OB2, ∴(4﹣r)2=r2+22,∴r=1.5,∵tan ∠E ==,∴=, ∴CD =BC =3,在Rt △ABC 中,AC =3.∴圆的半径为1.5,AC 的长为3. 【点评】本题考查直线与圆的位置关系、圆周角定理、勾股定理、锐角三角函数等知识,解题的关键是学会添加常用辅助线,属于中考常考题型.(II )①根据题意,可得点A (0,1),∵F (1,1).理由如下:如图,过点(,)P P P x y 作PM ⊥AB 于点M ,则FM =1P x -,PM =1P y -(01)P x <<∴R t △PMF 中,有勾股定理,得22222(1)(1)PF FM PM xP yP =+=-+-又点(,)P P P x y 在抛物线1C 上,∴22221(1)P P P PF y y y =-+-=即P PF y =.过点(,)Q Q Q x y 作QN ⊥B ,与AB 的延长线交于点N , 同理可得Q QF y =.图文∠PMF =∠QNF =90°,∠MFP =∠NFQ , ∴△PMF ∽△QNF这里11P PM y PF =-=-,11Q QN y QF =-=-(3) 令3y x =,设其图象与抛物线2C 交点的横坐标为00,'x x ,且00'x x <, 2观察图象.随着抛物线2C 向右不断平移,00,'x x 的值不断增大, ∴当满足2x m <≤,2y x ≤恒成立时,m 的最大值在0x 处取得. 可得当02x =时.所对应的m 为最大值.解得4h =或0h =(舍)解得122,8x x == ∴m 的最大值为8。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2007年中考数学全真模拟试题(3)
一、选择题(本大题共10个小题,每小题3分)
⒈sin30°的值是( )
A.21 B. 23 C. 33 D. 3
⒉点P(-1,4)关于x轴对称的点P′的坐标是( )
A.(-1,-4) B. (-1,4) C. (1,-4) D.(1,4)
⒊方程0442xx的根的情况是( )
A.有两个不相等的实数根 B.有两个相等的实数根
C.有一个实数根 D.没有实数根
⒋如图:若弦BC经过圆O的半径OA的中点P且PB=3,PC=4,则圆O的直径为
( )
A. 7 B. 8 C. 9 D. 10POACB
5.如果一次函数y=kx+b的图象经过点(0,-4)那么b的值是()
A.1 B.-1 C.-4 D.4
6.小明要在一幅长90厘米宽40厘米的风景画的四周外围镶上一条宽度相同的纸
边,制成一挂图(如图),使风景画的面积为整个挂图面积的54%,设纸边的宽
度为X厘米根据题意所列方程为( )
A.(90+X)(40+X)54%=9040 B.(90+2X)(40+2X)54%=9040
C.(90+X)(40+2X)54%=9040 D.(90+2X)(40+X)54%=9040
7.一个矩形面积为9,则这个矩形的一组邻边长x与y的函数关系的大致图象是
( )
A.B.C. D.
8.二次函数cbxaxy2图象如图所示,下列关于a、b、c关系判断正确的是
( )
A.ab<0 B.bc<0 C.a+b+c>0 D.a-b+c<0
9.如图,A、B是圆O1和圆O2的公共点,AC是圆O2的切线,AD是圆O1的切线。
若BC=4,AB=6则BD的长为( )
A.8 B.9 C.10 D.12
O2O1DABC
10.如图,A、B是反比例函数y=xk(k>0)上的两个点,AC⊥X轴于点C,BD⊥Y
轴交于点D,连接AD、BC,则△ABD与△ACB的面积大小关系是( )
A.SADB>SACB B.SADB<SACB C.SACB=SADB D.不能确定
第Ⅱ卷(非选择题共90分)
二、填空题(本大题共8个小题,共24分)
11.函数y=21x的自便量X的取值范围是
12.已知αβ方程x2+2x-5=0的两根,那么α2+αβ+2α的值是
13.已知如图:ABCDE是圆O的内接五边形,已知∠B+∠E=2300,则∠CAD=
14.如果反比例函数图象经过点(2,1),那么这个反比例函数的图象在第 象
限
15.某宾馆在重修装修后,准备在大听的主楼梯上扑上某种红色地毯,已知这种
地毯每平方米售价20元,主楼梯道宽2米,其侧面如
图所示,则购买红地毯至少需 元
16.二次函数y=x2-4x+5的最小值
E
D
C
B
A
O
A
BC
17.如图,PA、PB分别切圆O于A、B两点,C为劣弧AB上一
点,已知∠P=500,则∠ACB= 。
18.在Rt△ABC,∠A=900 ,AB=6,AC=8,以斜边BC为中
心为旋转中心,把△ABC逆时针方向旋转90°至△DEF,则重叠部分的面积
是 。
三、解答题(本大题共7个小题,共66分)
19.(本题满分6分)用换元法解方程:
06)1(5)1(2
xxx
x
20.(本题满分8分)如图:小虎家住在高80米的公寓AD内,他家的河对岸新
修了一座大厦的高度,小虎在他家的楼底A测得大厦顶部B的仰角为60°,爬
到楼顶D处测得大厦顶部B的仰角为30°.请根据小虎计算出大厦的高BC。
P
B
A
O
C
21.(本题满分8分)已知关于x的一元二次0)32(22kxkx的两个实数根
21,xx且1x+2x=1
x
2
x
,求k的值。
22.(本题满分10分)新华商场销售某种冰箱,每台进价为2500元,市场调研
表明;当销售价定为2900元时,平均每天能售出8台;而当销售价每降低50
元时,平均每天就能多售出4台,商场要想使这种冰箱的销售利润平均每天达到
5000元,每台冰箱的定价应为多少元?
23.(本题满分10分)下表表示甲、已两名选手在一次自行车越野赛中,路程y
(千米)与时间x(分)变化的图象(全程)
根据图象完成下列问题:⑴求比赛开始多少分钟,两人第一次相遇;⑵求这次比
赛全程是多少千米?⑶求比赛开始多少分钟时,两人第二次相遇?
乙
甲
(分)(千米)DCBAyxO
24.(本题满分12分)如图:已知点C在圆O上,P是圆O外一点;割线PO交
圆O于点B、A,已知AC=PC,∠COB=2∠PCB,且PB=2
⑴求证:PC是圆O的切线
⑵求tan∠P;
⑶M是圆O的下半圆弧上的一动点,当M点运动到使△ABM的面积最大时,过CM
的直线交AB于点N,求MN,MC的值?
25.(本题满分12分)如图:在平面直角坐标系中,矩形ABCD的顶点A的坐标
为(4,8),D是OC上一点,且CD∶OD=3∶5,连接AD,过D点作DE⊥AD交OB
于E,过E作EF∥AD,交AB于F
⑴求经过A、D两点的直线解析式;
⑵求EF的长;
⑶在DE所在的直线上是否存在一点P,使AP⊥PE;若存在,则这样的点P有几
个?并说明理由;若不存在,请说明理由。
2007年中考数学全真模拟试题(3)
参考答案
一、AABBC BDDBC
二、11.x>2
12.0
13.50°
14.一、三
15.280
16.1
17.115°
18.9
三、19.提示(设1xxy,则原方程可化为0652yy)23,221xx
20.120米
21.k=3
22. 2750元
23.⑴24分钟
⑵12千米
⑶38分钟
24.⑴证略
⑵33
⑶ 8
25.
⑴543xy
⑵EF=165
⑶存在满足题设的点P有2个