专题三函数与方程及函数的应用

合集下载

专题03导数及其应用(解析版)

专题03导数及其应用(解析版)

专题03 导数及其应用1.【2019年高考全国Ⅲ卷理数】已知曲线e ln x y a x x =+在点(1,a e )处的切线方程为y =2x +b ,则 A .e 1a b ==-, B .a=e ,b =1 C .1e 1a b -==,D .1e a -=,1b =-【答案】D【解析】∵e ln 1,x y a x '=++∴切线的斜率1|e 12x k y a ='==+=,1e a -∴=, 将(1,1)代入2y x b =+,得21,1b b +==-. 故选D .【名师点睛】本题求解的关键是利用导数的几何意义和点在曲线上得到含有a ,b 的等式,从而求解,属于常考题型.2.【2019年高考天津理数】已知a ∈R ,设函数222,1,()ln ,1.x ax a x f x x a x x ⎧-+≤=⎨->⎩若关于x 的不等式()0f x ≥在R 上恒成立,则a 的取值范围为 A .[]0,1 B .[]0,2 C .[]0,eD .[]1,e【答案】C【解析】当1x =时,(1)12210f a a =-+=>恒成立;当1x <时,22()22021x f x x ax a a x =-+≥⇔≥-恒成立,令2()1x g x x =-,则222(11)(1)2(1)1()111x x x x g x x x x -----+=-=-=----112201x x ⎛⎫⎛⎫=--+-≤-= ⎪ ⎪ ⎪-⎝⎭⎝⎭,当111x x-=-,即0x =时取等号, ∴max 2()0a g x ≥=,则0a >.当1x >时,()ln 0f x x a x =-≥,即ln xa x≤恒成立, 令()ln xh x x=,则2ln 1()(ln )x h x x -'=,当e x >时,()0h x '>,函数()h x 单调递增, 当0e x <<时,()0h x '<,函数()h x 单调递减, 则e x =时,()h x 取得最小值(e)e h =, ∴min ()e a h x ≤=,综上可知,a 的取值范围是[0,e]. 故选C.【名师点睛】本题考查分段函数的最值问题,分别利用基本不等式和求导的方法研究函数的最值,然后解决恒成立问题.3.(2019浙江)已知,a b ∈R ,函数32,0()11(1),032x x f x x a x ax x <⎧⎪=⎨-++≥⎪⎩.若函数()y f x ax b =--恰有3个零点,则 A .a <–1,b <0 B .a <–1,b >0 C .a >–1,b <0 D .a >–1,b >0【答案】C【解析】当x <0时,y =f (x )﹣ax ﹣b =x ﹣ax ﹣b =(1﹣a )x ﹣b =0,得x =b1−a , 则y =f (x )﹣ax ﹣b 最多有一个零点;当x ≥0时,y =f (x )﹣ax ﹣b =13x 3−12(a +1)x 2+ax ﹣ax ﹣b =13x 3−12(a +1)x 2﹣b ,2(1)y x a x =+-',当a +1≤0,即a ≤﹣1时,y ′≥0,y =f (x )﹣ax ﹣b 在[0,+∞)上单调递增, 则y =f (x )﹣ax ﹣b 最多有一个零点,不合题意;当a +1>0,即a >﹣1时,令y ′>0得x ∈(a +1,+∞),此时函数单调递增,令y ′<0得x ∈[0,a +1),此时函数单调递减,则函数最多有2个零点.根据题意,函数y =f (x )﹣ax ﹣b 恰有3个零点⇔函数y =f (x )﹣ax ﹣b 在(﹣∞,0)上有一个零点,在[0,+∞)上有2个零点, 如图:∴b1−a <0且{−b >013(a +1)3−12(a +1)(a +1)2−b <0, 解得b <0,1﹣a >0,b >−16(a +1)3,则a >–1,b <0. 故选C .【名师点睛】本题考查函数与方程,导数的应用.当x <0时,y =f (x )﹣ax ﹣b =x ﹣ax ﹣b =(1﹣a )x ﹣b 最多有一个零点;当x ≥0时,y =f (x )﹣ax ﹣b =13x 3−12(a +1)x 2﹣b ,利用导数研究函数的单调性,根据单调性画出函数的草图,从而结合题意可列不等式组求解.4.【2019年高考全国Ⅰ卷理数】曲线23()e xy x x =+在点(0)0,处的切线方程为____________. 【答案】30x y -=【解析】223(21)e 3()e 3(31)e ,x x x y x x x x x '=+++=++ 所以切线的斜率0|3x k y ='==,则曲线23()e x y x x =+在点(0,0)处的切线方程为3y x =,即30x y -=.【名师点睛】准确求导数是进一步计算的基础,本题易因为导数的运算法则掌握不熟,而导致计算错误.求导要“慢”,计算要准,是解答此类问题的基本要求.5.【2019年高考江苏】在平面直角坐标系xOy 中,P 是曲线4(0)y x x x=+>上的一个动点,则点P 到直线0x y +=的距离的最小值是 ▲ . 【答案】4 【解析】由4(0)y x x x =+>,得241y x'=-, 设斜率为1-的直线与曲线4(0)y x x x=+>切于0004(,)x x x +,由20411x -=-得0x =0x =, ∴曲线4(0)y x x x=+>上,点P 到直线0x y +=4=.故答案为4.【名师点睛】本题考查曲线上任意一点到已知直线的最小距离,渗透了直观想象和数学运算素养.采取导数法,利用数形结合和转化与化归思想解题.6.【2019年高考江苏】在平面直角坐标系xOy 中,点A 在曲线y =ln x 上,且该曲线在点A 处的切线经过点(-e ,-1)(e 为自然对数的底数),则点A 的坐标是 ▲ . 【答案】(e, 1)【解析】设出切点坐标,得到切线方程,然后求解方程得到横坐标的值,可得切点坐标. 设点()00,A x y ,则00ln y x =. 又1y x'=, 当0x x =时,01y x '=, 则曲线ln y x =在点A 处的切线为0001()y y x x x -=-, 即00ln 1xy x x -=-, 将点()e,1--代入,得00e1ln 1x x ---=-,即00ln e x x =,考察函数()ln H x x x =,当()0,1x ∈时,()0H x <,当()1,x ∈+∞时,()0H x >, 且()ln 1H x x '=+,当1x >时,()()0,H x H x '>单调递增, 注意到()e e H =,故00ln e x x =存在唯一的实数根0e x =, 此时01y =, 故点A 的坐标为()e,1.【名师点睛】导数运算及切线的理解应注意的问题:一是利用公式求导时要特别注意除法公式中分子的符号,防止与乘法公式混淆.二是直线与曲线公共点的个数不是切线的本质,直线与曲线只有一个公共点,直线不一定是曲线的切线,同样,直线是曲线的切线,则直线与曲线可能有两个或两个以上的公共点.7.【2019年高考北京理数】设函数()e e xxf x a -=+(a 为常数).若f (x )为奇函数,则a =________;若f (x )是R 上的增函数,则a 的取值范围是___________. 【答案】(]1,0--∞【解析】首先由奇函数的定义得到关于a 的恒等式,据此可得a 的值,然后利用()0f x '≥可得a 的取值范围.若函数()e e xxf x a -=+为奇函数,则()(),f x f x -=-即()ee e e xx x x a a --+=-+,即()()1e e0x xa -++=对任意的x 恒成立, 则10a +=,得1a =-.若函数()e e xxf x a -=+是R 上的增函数,则() e e 0x x f x a -'=-≥在R 上恒成立,即2e x a ≤在R 上恒成立, 又2e 0x >,则0a ≤,即实数a 的取值范围是(],0-∞.【名师点睛】本题考查函数的奇偶性、单调性、利用单调性确定参数的范围.解答过程中,需利用转化与化归思想,转化成恒成立问题.注重重点知识、基础知识、基本运算能力的考查.8.【2019年高考全国Ⅰ卷理数】已知函数()sin ln(1)f x x x =-+,()f x '为()f x 的导数.证明:(1)()f x '在区间(1,)2π-存在唯一极大值点; (2)()f x 有且仅有2个零点. 【答案】(1)见解析;(2)见解析.【解析】(1)设()()g x f 'x =,则1()cos 1g x x x =-+,21sin ())(1x 'x g x =-++. 当1,2x π⎛⎫∈- ⎪⎝⎭时,()g'x 单调递减,而(0)0,()02g'g'π><,可得()g'x 在1,2π⎛⎫- ⎪⎝⎭有唯一零点,设为α.则当(1,)x α∈-时,()0g'x >;当,2x α⎛π⎫∈ ⎪⎝⎭时,()0g'x <. 所以()g x 在(1,)α-单调递增,在,2απ⎛⎫ ⎪⎝⎭单调递减,故()g x 在1,2π⎛⎫- ⎪⎝⎭存在唯一极大值点,即()f 'x 在1,2π⎛⎫- ⎪⎝⎭存在唯一极大值点. (2)()f x 的定义域为(1,)-+∞.(i )当(1,0]x ∈-时,由(1)知,()f 'x 在(1,0)-单调递增,而(0)0f '=,所以当(1,0)x ∈-时,()0f 'x <,故()f x 在(1,0)-单调递减,又(0)=0f ,从而0x =是()f x 在(1,0]-的唯一零点.(ii )当0,2x ⎛π⎤∈ ⎥⎝⎦时,由(1)知,()f 'x 在(0,)α单调递增,在,2απ⎛⎫ ⎪⎝⎭单调递减,而(0)=0f ',02f 'π⎛⎫< ⎪⎝⎭,所以存在,2βαπ⎛⎫∈ ⎪⎝⎭,使得()0f 'β=,且当(0,)x β∈时,()0f 'x >;当,2x βπ⎛⎫∈ ⎪⎝⎭时,()0f 'x <.故()f x 在(0,)β单调递增,在,2βπ⎛⎫⎪⎝⎭单调递减.又(0)=0f ,1ln 1022f ππ⎛⎫⎛⎫=-+> ⎪ ⎪⎝⎭⎝⎭,所以当0,2x ⎛π⎤∈ ⎥⎝⎦时,()0f x >.从而,()f x 在0,2⎛⎤⎥⎝⎦π没有零点. (iii )当,2x π⎛⎤∈π⎥⎝⎦时,()0f 'x <,所以()f x 在,2π⎛⎫π ⎪⎝⎭单调递减.而02f π⎛⎫> ⎪⎝⎭,()0f π<,所以()f x 在,2π⎛⎤π⎥⎝⎦有唯一零点. (iv )当(,)x ∈π+∞时,ln(1)1x +>,所以()f x <0,从而()f x 在(,)π+∞没有零点. 综上,()f x 有且仅有2个零点.【名师点睛】本题考查导数与函数极值之间的关系、利用导数解决函数零点个数的问题.解决零点问题的关键一方面是利用零点存在性定理或最值点来说明存在零点,另一方面是利用函数的单调性说明在区间内零点的唯一性,二者缺一不可.9.【2019年高考全国Ⅱ卷理数】已知函数()11ln x f x x x -=-+.(1)讨论f (x )的单调性,并证明f (x )有且仅有两个零点;(2)设x 0是f (x )的一个零点,证明曲线y =ln x 在点A (x 0,ln x 0)处的切线也是曲线e x y =的切线. 【答案】(1)函数()f x 在(0,1)和(1,)+∞上是单调增函数,证明见解析; (2)见解析.【解析】(1)f (x )的定义域为(0,1)(1,+∞).因为212()0(1)f 'x x x =+>-,所以()f x 在(0,1),(1,+∞)单调递增. 因为f (e )=e 110e 1+-<-,22222e 1e 3(e )20e 1e 1f +-=-=>--,所以f (x )在(1,+∞)有唯一零点x 1,即f (x 1)=0.又1101x <<,1111111()ln ()01x f x f x x x +=-+=-=-,故f (x )在(0,1)有唯一零点11x .综上,f (x )有且仅有两个零点. (2)因为0ln 01e x x -=,故点B (–ln x 0,01x )在曲线y =e x 上.由题设知0()0f x =,即0001ln 1x x x +=-,故直线AB 的斜率0000000000111ln 111ln 1x x x x x k x x x x x x +---===+-----. 曲线y =e x 在点001(ln ,)B x x -处切线的斜率是01x ,曲线ln y x =在点00(,ln )A x x 处切线的斜率也是01x , 所以曲线ln y x =在点00(,ln )A x x 处的切线也是曲线y =e x 的切线.【名师点睛】本题考查了利用导数求已知函数的单调性、考查了曲线的切线方程,考查了数学运算能力. 10.【2019年高考全国Ⅲ卷理数】已知函数32()2f x x ax b =-+.(1)讨论()f x 的单调性;(2)是否存在,a b ,使得()f x 在区间[0,1]的最小值为1-且最大值为1若存在,求出,a b 的所有值;若不存在,说明理由. 【答案】(1)见解析;(2)01a b =⎧⎨=-⎩或41a b =⎧⎨=⎩. 【解析】(1)2()622(3)f x x ax x x a '=-=-. 令()0f x '=,得x =0或3ax =. 若a >0,则当(,0),3a x ⎛⎫∈-∞+∞ ⎪⎝⎭时,()0f x '>;当0,3a x ⎛⎫∈ ⎪⎝⎭时,()0f x '<.故()f x 在(,0),,3a ⎛⎫-∞+∞ ⎪⎝⎭单调递增,在0,3a ⎛⎫⎪⎝⎭单调递减;若a =0,()f x 在(,)-∞+∞单调递增;若a <0,则当,(0,)3a x ⎛⎫∈-∞+∞ ⎪⎝⎭时,()0f x '>;当,03a x ⎛⎫∈ ⎪⎝⎭时,()0f x '<.故()f x 在,,(0,)3a ⎛⎫-∞+∞ ⎪⎝⎭单调递增,在,03a ⎛⎫ ⎪⎝⎭单调递减.(2)满足题设条件的a ,b 存在.(i )当a ≤0时,由(1)知,()f x 在[0,1]单调递增,所以()f x 在区间[0,l]的最小值为(0)=f b ,最大值为(1)2f a b =-+.此时a ,b 满足题设条件当且仅当1b =-,21a b -+=,即a =0,1b =-.(ii )当a ≥3时,由(1)知,()f x 在[0,1]单调递减,所以()f x 在区间[0,1]的最大值为(0)=f b ,最小值为(1)2f a b =-+.此时a ,b 满足题设条件当且仅当21a b -+=-,b =1,即a =4,b =1.(iii )当0<a <3时,由(1)知,()f x 在[0,1]的最小值为3327a a f b ⎛⎫=-+ ⎪⎝⎭,最大值为b 或2a b -+.若3127a b -+=-,b =1,则a =0<a <3矛盾.若3127a b -+=-,21a b -+=,则a =a =-a =0,与0<a <3矛盾. 综上,当且仅当a =0,1b =-或a =4,b =1时,()f x 在[0,1]的最小值为-1,最大值为1.【名师点睛】这是一道常规的函数导数和不等式的综合题,题目难度比往年降低了不少,考查函数的单调性、最大值、最小值这种基本量的计算. 11.【2019年高考北京理数】已知函数321()4f x x x x =-+. (Ⅰ)求曲线()y f x =的斜率为1的切线方程; (Ⅱ)当[2,4]x ∈-时,求证:6()x f x x -≤≤;(Ⅲ)设()|()()|()F x f x x a a =-+∈R ,记()F x 在区间[2,4]-上的最大值为M (a ).当M (a )最小时,求a 的值.【答案】(Ⅰ)y x =与6427y x =-;(Ⅱ)见解析;(Ⅲ)3a =-. 【解析】(Ⅰ)由321()4f x x x x =-+得23()214f x x x '=-+.令()1f x '=,即232114x x -+=,得0x =或83x =.又(0)0f =,88()327f =,所以曲线()y f x =的斜率为1的切线方程是y x =与88273y x -=-, 即y x =与6427y x =-.(Ⅱ)令()(),[2,4]g x f x x x =-∈-. 由321()4g x x x =-得23()24g'x x x =-.令()0g'x =得0x =或83x =. (),()g'x g x 的情况如下:所以()g x 的最小值为6-,最大值为0. 故6()0g x -≤≤,即6()x f x x -≤≤. (Ⅲ)由(Ⅱ)知,当3a <-时,()(0)|(0)|3M F g a a a ≥=-=->; 当3a >-时,()(2)|(2)|63M F a g a a ≥-=--=+>; 当3a =-时,()3M a =. 综上,当()M a 最小时,3a =-.【名师点睛】本题主要考查利用导函数研究函数的切线方程,利用导函数证明不等式,分类讨论的数学思想等知识,意在考查学生的转化能力和计算求解能力. 12.【2019年高考天津理数】设函数()e cos ,()xf x xg x =为()f x 的导函数.(Ⅰ)求()f x 的单调区间;(Ⅱ)当,42x ππ⎡⎤∈⎢⎥⎣⎦时,证明()()02f x g x x π⎛⎫+-≥ ⎪⎝⎭;(Ⅲ)设n x 为函数()()1u x f x =-在区间2,242n n ππ⎛⎫π+π+ ⎪⎝⎭内的零点,其中n ∈N ,证明20022sin c s e o n n n x x x -πππ+-<-. 【答案】(Ⅰ)()f x 的单调递增区间为3ππ2π,2π(),()44k k k f x ⎡⎤-+∈⎢⎥⎣⎦Z 的单调递减区间为π5π2π,2π()44k k k ⎡⎤++∈⎢⎥⎣⎦Z .(Ⅱ)见解析;(Ⅲ)见解析. 【解析】(Ⅰ)由已知,有()e (cos sin )x f 'x x x =-.因此,当52,244x k k ππ⎛⎫∈π+π+ ⎪⎝⎭()k ∈Z 时,有sin cos x x >,得()0f 'x <,则()f x 单调递减;当32,244x k k ππ⎛⎫∈π-π+ ⎪⎝⎭()k ∈Z 时,有sin cos x x <,得()0f 'x >,则()f x 单调递增.所以,()f x 的单调递增区间为32,2(),()44k k k f x ππ⎡⎤π-π+∈⎢⎥⎣⎦Z 的单调递减区间为52,2()44k k k ππ⎡⎤π+π+∈⎢⎥⎣⎦Z . (Ⅱ)证明:记()()()2h x f x g x x π⎛⎫=+-⎪⎝⎭.依题意及(Ⅰ),有()e (cos sin )x g x x x =-,从而()2e sin x g'x x =-.当,42x ππ⎛⎫∈ ⎪⎝⎭时,0()g'x <,故()()()()(1)()022h'x f 'x g'x x g x g'x x ππ⎛⎫⎛⎫=+-+-=-< ⎪ ⎪⎝⎭⎝⎭.因此,()h x 在区间,42ππ⎡⎤⎢⎥⎣⎦上单调递减,进而()022h x h f ππ⎛⎫⎛⎫≥== ⎪ ⎪⎝⎭⎝⎭. 所以,当,42x ππ⎡⎤∈⎢⎥⎣⎦时,()()02f x g x x π⎛⎫+-≥ ⎪⎝⎭.(Ⅲ)证明:依题意,()()10n n u x f x =-=,即cos e 1n x n x =.记2n n y x n =-π,则,42n y ππ⎛⎫∈ ⎪⎝⎭,且()()()22e cos ecos 2e n n yx n n n n n f y y x n n π--π==-π=∈N .由()()20e1n n f y f y -π==≤及(Ⅰ),得0n y y ≥.由(Ⅱ)知,当,42x ππ⎛⎫∈ ⎪⎝⎭时,()0g'x <,所以()g x 在,42ππ⎡⎤⎢⎥⎣⎦上为减函数,因此()()004n g y g y g π⎛⎫≤<= ⎪⎝⎭.又由(Ⅱ)知,()()02n n n f y g y y π⎛⎫+-≥ ⎪⎝⎭,故()()()()()022*******2sin cos sin c e e e e os e n n n n n n y n n f y y g y g y g y y y x x -π-π-π-ππ--=-≤=--≤<. 所以,20022sin c s e o n n n x x x -πππ+-<-.【名师点睛】本小题主要考查导数的运算、不等式证明、运用导数研究函数的性质等基础知识和方法.考查函数思想和化归与转化思想.考查抽象概括能力、综合分析问题和解决问题的能力. 13.【2019年高考浙江】已知实数0a ≠,设函数()=ln 0.f x a x x >(1)当34a =-时,求函数()f x 的单调区间; (2)对任意21[,)e x ∈+∞均有()2f x a≤ 求a 的取值范围. 注:e=…为自然对数的底数.【答案】(1)()f x 的单调递增区间是()3,+∞,单调递减区间是()0,3;(2)0,4⎛ ⎝⎦. 【解析】(1)当34a =-时,3()ln 04f x x x =-+>.3()4f 'x x =-+=所以,函数()f x 的单调递减区间为(0,3),单调递增区间为(3,+∞).(2)由1(1)2f a ≤,得0a <≤.当0a <≤()f x ≤2ln 0x -≥. 令1t a=,则t ≥.设()22ln ,g t t x t =≥则2()2ln g t t x =.(i )当1,7x ⎡⎫∈+∞⎪⎢⎣⎭()2ln g t g x ≥=.记1()ln ,7p x x x =≥,则1()p'x x =-==.故所以,()(1)0p x p ≥=.因此,()2()0g t g p x ≥=≥.(ii )当211,e 7x ⎡⎫∈⎪⎢⎣⎭时,1()1g t g x ⎛+= ⎝.令211()(1),,e 7q x x x x ⎡⎤=++∈⎢⎥⎣⎦,则()10q'x =+>, 故()q x 在211,e 7⎡⎤⎢⎥⎣⎦上单调递增,所以1()7q x q ⎛⎫⎪⎝⎭.由(i )得,11(1)077q p p ⎛⎫⎛⎫=<= ⎪ ⎪⎝⎭⎝⎭. 所以,()<0q x .因此1()10g t g x ⎛+=> ⎝.由(i )(ii )知对任意21,e x ⎡⎫∈+∞⎪⎢⎣⎭,),()0t g t ∈+∞, 即对任意21,e x ⎡⎫∈+∞⎪⎢⎣⎭,均有()2xf x a .综上所述,所求a 的取值范围是⎛⎝⎦. 【名师点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系.(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数.(3)利用导数求函数的最值(极值),解决生活中的优化问题.(4)考查数形结合思想的应用.14.【2019年高考江苏】设函数()()()(),,,f x x a x b x c a b c =---∈R 、()f 'x 为f (x )的导函数.(1)若a =b =c ,f (4)=8,求a 的值;(2)若a ≠b ,b =c ,且f (x )和()f 'x 的零点均在集合{3,1,3}-中,求f (x )的极小值;(3)若0,01,1a b c =<=,且f (x )的极大值为M ,求证:M ≤427. 【答案】(1)2a =;(2)见解析;(3)见解析.【解析】(1)因为a b c ==,所以3()()()()()f x x a x b x c x a =---=-.因为(4)8f =,所以3(4)8a -=,解得2a =.(2)因为b c =,所以2322()()()(2)(2)f x x a x b x a b x b a b x ab =--=-+++-, 从而2()3()3a b f 'x x b x +⎛⎫=-- ⎪⎝⎭.令()0f 'x =,得x b =或23a b x +=. 因为2,,3a ba b +都在集合{3,1,3}-中,且a b ≠, 所以21,3,33a ba b +===-. 此时2()(3)(3)f x x x =-+,()3(3)(1)f 'x x x =+-. 令()0f 'x =,得3x =-或1x =.列表如下:所以()f x 的极小值为2(1)(13)(13)32f =-+=-.(3)因为0,1a c ==,所以32()()(1)(1)f x x x b x x b x bx =--=-++,2()32(1)f 'x x b x b =-++.因为01b <≤,所以224(1)12(21)30b b b ∆=+-=-+>, 则()f 'x 有2个不同的零点,设为()1212,x x x x <.由()0f 'x =,得12x x ==. 列表如下:所以()f x 的极大值()1M f x =. 解法一:()321111(1)M f x x b x bx ==-++()221111211(1)[32(1)]3999b b x b b b x b x b x -+++⎛⎫=-++--+ ⎪⎝⎭()2321(1)(1)227927b b b b b --+++=++23(1)2(1)(1)2272727b b b b +-+=-+(1)24272727b b +≤+≤.因此427M ≤. 解法二:因为01b <≤,所以1(0,1)x ∈.当(0,1)x ∈时,2()()(1)(1)f x x x b x x x =--≤-. 令2()(1),(0,1)g x x x x =-∈,则1()3(1)3g'x x x ⎛⎫=-- ⎪⎝⎭. 令()0g'x =,得1x =.列表如下:所以当13x =时,()g x 取得极大值,且是最大值,故max 14()327g x g ⎛⎫== ⎪⎝⎭. 所以当(0,1)x ∈时,4()()27f x g x ≤≤,因此427M ≤. 【名师点睛】本题主要考查利用导数研究函数的性质,考查综合运用数学思想方法分析与解决问题以及逻辑推理能力.15.【河北省武邑中学2019届高三第二次调研考试数学】函数f(x)=x 2−2lnx 的单调减区间是A .(0,1]B .[1,+∞)C .(−∞,−1]∪(0,1]D .[−1,0)∪(0,1]【答案】A【解析】f′(x)=2x −2x =2x 2−2x(x >0),令f′(x)≤0,解得:0<x ≤1. 故选A .【名师点睛】本题考查了函数的单调性,考查导数的应用,是一道基础题.16.【江西省南昌市2019届高三模拟考试数学】已知f(x)在R 上连续可导,f ′(x)为其导函数,且f(x)=e x +e −x −f ′(1)x ⋅(e x −e −x ),则f ′(2)+f ′(−2)−f ′(0)f ′(1)= A .4e 2+4e −2 B .4e 2−4e −2 C .0D .4e 2【答案】C【解析】∵()e e (1)()(e e ()x x x x f x f x f x --'-=+=---), ∴()f x 是偶函数,两边对x 求导,得()()f x f x -'-=',即()()f x f x '-=-', 则()f x '是R 上的奇函数,则(0)0f '=,(2)(2)f f '-=-',即(2)(2)0f f '+'-=,则(2)(2)(0)(1)0f f f f ''''+--=. 故选C .【名师点睛】本题主要考查函数导数值的计算,根据条件判断函数的奇偶性是解决本题的关键,是中档题.17.【江西省新八校2019届高三第二次联考数学】若3()3()21f x f x x x +-=++对x ∈R 恒成立,则曲线()y f x =在点()()1,1f 处的切线方程为A .5250x y +-=B .10450x y +-=C .540x y +=D .204150x y --=【答案】B 【解析】()()3321f x f x x x +-=++……①,()()3321f x f x x x ∴-+=--+……②,联立①②,解得()31124f x x x =--+,则()2312f x x '=--, ()11511244f ∴=--+=-,()351122f '=--=-,∴切线方程为:()55142y x +=--,即10450x y +-=. 故选B.【名师点睛】本题考查利用导数的几何意义求解在某一点处的切线方程,关键是能够利用构造方程组的方式求得函数的解析式.18.【云南省玉溪市第一中学2019届高三第二次调研考试数学】函数2l ()n f x x x =的最小值为A .1e -B .1eC .12e-D .12e【答案】C【解析】由题得(0,)x ∈+∞,()2ln (2ln 1)f x x x x x x '=+=+, 令2ln 10x +=,解得12ex -=,则当12(0,e )x -∈时,()f x 为减函数,当12(e ,)x -∈+∞时,()f x 为增函数, 所以12e x -=处的函数值为最小值,且121(e )2ef -=-. 故选C.【名师点睛】本题考查用导数求函数最值,解此类题首先确定函数的定义域,其次判断函数的单调性,确定最值点,最后代回原函数求得最值.19.【四川省内江市2019届高三第三次模拟考试数学】若函数f(x)=12ax 2+xlnx −x 存在单调递增区间,则a 的取值范围是 A .1,1e ⎛⎫- ⎪⎝⎭B .1,e ⎛⎫-+∞ ⎪⎝⎭C .()1,-+∞D .1,e ⎛⎫-∞ ⎪⎝⎭【答案】B【解析】()ln f x ax x '=+, ∴()0f x '>在x ∈()0+∞,上成立, 即ax+ln x >0在x ∈()0+∞,上成立,即a ln xx->在x ∈()0+∞,上成立. 令g (x )ln x x =-,则g ′(x )21ln xx -=-, ∴g (x )ln xx =-在(0,e )上单调递减,在(e ,+∞)上单调递增,∴g (x )ln x x =-的最小值为g (e )=1e-,∴a >1e-. 故选B .【名师点睛】本题考查学生利用导数研究函数的单调性及转化化归思想的运用,属中档题.20.【山西省太原市2019届高三模拟试题(一)数学】已知定义在(0,+∞)上的函数f(x)满足xf ′(x)−f(x)<0,且f(2)=2,则f (e x )−e x >0的解集是 A .(−∞,ln2) B .(ln2,+∞) C .(0,e 2)D .(e 2,+∞)【答案】A 【解析】令g (x )=f (x )x,g ′(x )=xf ′(x )−f (x )x 2<0,∴g(x)在(0,+∞)上单调递减,且g (2)=f (2)2=1,故f (e x )−e x >0等价为f (e x )e x>f (2)2,即g (e x )>g (2),故e x <2,即x <ln2, 则所求的解集为(−∞,ln2). 故选A.【名师点睛】本题考查导数与单调性的应用,构造函数的思想,考查分析推理能力,是中档题. 21.【河南省焦作市2019届高三第四次模拟考试数学】已知a =ln √33,b =e −1,c =3ln28,则a,b,c 的大小关系为 A .b <c <a B .a >c >b C .a >b >cD .b >a >c【答案】D【解析】依题意,得ln33a ==,1lne e e b -==,3ln2ln888c ==.令f (x )=ln x x,所以f ′(x )=1−ln x x 2.所以函数f (x )在(0,e )上单调递增,在(e,+∞)上单调递减, 所以[f (x )]max =f (e )=1e =b ,且f (3)>f (8),即a >c , 所以b >a >c . 故选D.【名师点睛】本题主要考查了利用导数判断函数的单调性,构造出函数()ln xf x x=是解题的关键,属于中档题.22.【安徽省毛坦厂中学2019届高三校区4月联考数学】已知f (x )=lnx +1−ae x ,若关于x 的不等式f (x )<0恒成立,则实数a 的取值范围是 A .1,e ⎛⎫-∞ ⎪⎝⎭B .(),0-∞C .1,e⎡⎫+∞⎪⎢⎣⎭D .1,e ⎛⎫+∞ ⎪⎝⎭【答案】D【解析】由()0f x <恒成立得ln 1ex x a +>恒成立, 设()ln 1e x x h x +=,则()1ln 1e xx x h x -='-. 设()1ln 1g x x x =--,则()2110g x x x'=--<恒成立,∴g (x )在(0,+∞)上单调递减,又∵g (1)=0,∴当0<x <1时,g (x )>g (1)=0,即ℎ′(x )>0; 当x >1时,g (x )<g (1)=0,即ℎ′(x )<0, ∴ℎ(x )在(0,1)上单调递增,在(1,+∞)上单调递减, ∴ℎ(x)max =ℎ(1)=1e ,∴a >1e . 故选D.【名师点睛】本题考查利用导数求函数的最值,不等式恒成立问题,分离参数是常见的方法,属于中档题.23.【辽宁省丹东市2019届高三总复习质量测试】若1x =是函数()3221()(1)33f x x a x a a x =++-+-的极值点,则a 的值为 A .-2 B .3 C .-2或3D .-3或2【答案】B 【解析】()()()()32222113(3)(132)f x x a x a a f x x x a x a a '=++-=++-+-⇒+-,由题意可知(1)0f '=,即()212(1)303a a a a +-=+⇒-=+或2a =-,当3a =时,()222()2(1)389(9)(1)f x x a x a a x x x x +-'=++-=+-=+-,当1x >或9x <-时,()0f x '>,函数单调递增;当91x -<<时,()0f x '<,函数单调递减, 显然1x =是函数()f x 的极值点;当2a =-时,()2222()232(111))(0a a f x x a x x x x +-=-++=-=+-≥',所以函数()f x 是R 上的单调递增函数,没有极值,不符合题意,舍去. 故3a =. 故选B .【名师点睛】本题考查了已知函数的极值,求参数的问题.本题易错的地方是求出a 的值,没有通过单调性来验证1x =是不是函数的极值点,也就是说使得导函数为零的自变量的值,不一定是极值点. 24.【黑龙江省大庆市第一中学2019届高三下学期第四次模拟(最后一卷)考试】已知奇函数()f x 是定义在R 上的可导函数,其导函数为()f x ',当0x >时,有()()22f x xf x x '>+,则不等式()()()22018+2018420x f x f +-<+的解集为A .(),2016-∞-B .()2016,2012--C .(),2018-∞-D .()2016,0-【答案】A【解析】设()()2g x x f x =,因为()f x 为R 上的奇函数,所以()()()()22g x x f x x f x -=--=-,即()g x 为R 上的奇函数对()g x 求导,得()()()2f g f x x x x x '=+'⎡⎤⎣⎦, 而当0x >时,有()()220f x xf x x '>+≥,故0x >时,()0g x '>,即()g x 单调递增,所以()g x 在R 上单调递增,则不等式()()()22018+2018420x f x f +-<+即()()()22018+201842x f x f +<--, 即()()()22018+201842x f x f +<, 即()()20182g x g +<,所以20182x +<,解得2016x <-. 故选A.【名师点睛】本题考查构造函数解不等式,利用导数求函数的单调性,函数的奇偶性,题目较综合,有一定的技巧性,属于中档题.25.【重庆西南大学附属中学校2019届高三第十次月考数学】曲线21()ln 2f x x x x =+在点(1(1))f ,处的切线与直线10ax y --=垂直,则a =________. 【答案】12-【解析】因为21()ln 2f x x x x =+,所以()ln 1f x x x '=++, 因此,曲线21()ln 2f x x x x =+在点(1(1))f ,处的切线斜率为(1)112k f '==+=, 又该切线与直线10ax y --=垂直,所以12a =-. 故答案为12-. 【名师点睛】本题主要考查导数在某点处的切线斜率问题,熟记导数的几何意义即可求解,属于常考题型.26.【广东省深圳市高级中学2019届高三适应性考试(6月)数学】已知函数22,0,()e ,0,x x x f x x ⎧≤=⎨>⎩若方程2[()]f x a =恰有两个不同的实数根12,x x ,则12x x +的最大值是______.【答案】3ln 22-【解析】作出函数()f x 的图象如图所示,由()2f x a =⎡⎤⎣⎦,可得()1f x =>, 即1a >,不妨设12x x < ,则2212e x x =(1)t t =>,则12ln x x t ==,12ln x x t ∴+=令()ln g t t =()g t '= ∴当18t <<时,()0g t '>,g t 在()1,8上单调递增;当8t时,()0g t '<,g t 在()8,+∞上单调递减,∴当8t =时,g t 取得最大值,为(8)ln823ln22g =-=-.故答案为3ln 22-.【名师点睛】本题主要考查方程的根与图象交点的关系,考查了利用导数判断函数的单调性以及求函数的极值与最值,属于难题.求函数()f x 的极值与最值的步骤:(1)确定函数的定义域;(2)求导数()f x ';(3)解方程()0,f x '=求出函数定义域内的所有根;(4)判断()f x '在()0f x '=的根0x 左右两侧值的符号,如果左正右负(左增右减),那么()f x 在0x 处取极大值,如果左负右正(左减右增),那么()f x 在0x 处取极小值.(5)如果只有一个极值点,则在该点处取得极值也是最值;(6)如果求闭区间上的最值还需要比较端点处的函数值与极值的大小.27.【山东省烟台市2019届高三3月诊断性测试(一模)数学】已知函数4211()42f x x ax =-,a ∈R . (1)当1a =时,求曲线()f x 在点(2,(2))f 处的切线方程;(2)设函数2()(22)e e ()x g x x x a f x =-+--,其中e 2.71828...=是自然对数的底数,讨论()g x 的单调性并判断有无极值,有极值时求出极值. 【答案】(1)6100x y --=;(2)当0a ≤时,()g x 在(,)-∞+∞上单调递增,无极值;当0a >时,()g x 在(,-∞和)+∞单调递增,在(单调递减,极大值为2e(2)e4g a =+,极小值为2e (4g a =-+. 【解析】(1)由题意3()f x x ax '=-,所以当1a =时,(2)2f =,(2)6f '=, 因此曲线()y f x =在点(2,(2))f 处的切线方程是26(2)y x -=-, 即6100x y --=.(2)因为2()(22)e e ()x g x x x a f x =-+--, 所以2()(22)e (22)e e '()x x g x x x x a f x '=-+-+--232()e e()()(e e )x x x a x ax x a x =---=--,令()e e x h x x =-,则()e e x h x '=-, 令()0h x '=得1x =,当(,1)x ∈-∞时,()0h x '<,()h x 单调递减, 当(1,)x ∈+∞时,()0h x '>,()h x 单调递增, 所以当1x =时,min ()(1)0h x h ==, 也就说,对于x ∀∈R 恒有()0h x ≥. 当0a ≤时,2()()()0g x x a h x '=-≥,()g x 在(,)-∞+∞上单调递增,无极值;当0a >时,令()0g x '=,可得x =当x <x >2()()()0g x x a h x '=-≥,()g x 单调递增,当x <<()0g x '<,()g x 单调递减,因此,当x =()g x 取得极大值2e(2)e4g a =+;当x =()g x 取得极小值2e (4g a =-+. 综上所述:当0a ≤时,()g x 在(,)-∞+∞上单调递增,无极值;当0a >时,()g x 在(,-∞和)+∞上单调递增,在(上单调递减, 函数既有极大值,又有极小值,极大值为2e(2)e4g a =+,极小值为2e (4g a =-+. 【名师点睛】本题考查了函数的单调性,极值问题,考查导数的应用以及分类讨论思想,转化思想,是一道综合题.28.【陕西省2019届高三第三次联考数学】已知函数f(x)=lnx −ax ,g(x)=x 2,a ∈R .(1)求函数f(x)的极值点;(2)若f(x)≤g(x)恒成立,求a 的取值范围.【答案】(1)极大值点为1a ,无极小值点.(2)a ≥−1.【解析】(1)()ln f x x ax =-的定义域为(0,+∞),f ′(x )=1x −a , 当a ≤0时,f ′(x )=1x −a >0,所以f (x )在(0,+∞)上单调递增,无极值点;当a >0时,解f ′(x )=1x −a >0得0<x <1a ,解f ′(x )=1x −a <0得x >1a , 所以f (x )在(0,1a )上单调递增,在(1a ,+∞)上单调递减,所以函数f (x )有极大值点,为1a ,无极小值点. (2)由条件可得ln x −x 2−ax ≤0(x >0)恒成立, 则当x >0时,a ≥ln x x−x 恒成立,令ℎ(x )=ln x x−x(x >0),则ℎ′(x )=1−x 2−ln xx 2,令k (x )=1−x 2−ln x(x >0),则当x >0时,k ′(x )=−2x −1x <0,所以k (x )在(0,+∞)上为减函数. 又k (1)=0,所以在(0,1)上,ℎ′(x )>0;在(1,+∞)上,ℎ′(x )<0. 所以ℎ(x )在(0,1)上为增函数,在(1,+∞)上为减函数, 所以ℎ(x )max =ℎ(1)=−1,所以a ≥−1.【名师点睛】对于函数恒成立或者有解求参的问题,常用方法有:变量分离,参变分离,转化为函数最值问题;或者直接求函数最值,使得函数最值大于或者小于0;或者分离成两个函数,使得一个函数恒大于或小于另一个函数.29.【山东省济宁市2019届高三二模数学】已知函数f(x)=lnx −xe x +ax(a ∈R).(1)若函数f(x)在[1,+∞)上单调递减,求实数a 的取值范围; (2)若a =1,求f(x)的最大值.【答案】(1)a ≤2e −1;(2)f(x)max =−1.【解析】(1)由题意知,f′(x)=1x −(e x +xe x )+a =1x −(x +1)e x +a ≤0在[1,+∞)上恒成立, 所以a ≤(x +1)e x −1x 在[1,+∞)上恒成立. 令g(x)=(x +1)e x −1x ,则g′(x)=(x +2)e x +1x 2>0,所以g(x)在[1,+∞)上单调递增,所以g(x)min =g(1)=2e −1, 所以a ≤2e −1.(2)当a =1时,f(x)=lnx −xe x +x(x >0). 则f′(x)=1x−(x +1)e x +1=(x +1)(1x−e x ),令m(x)=1x −e x ,则m′(x)=−1x 2−e x <0, 所以m(x)在(0,+∞)上单调递减.由于m(12)>0,m(1)<0,所以存在x 0>0满足m(x 0)=0,即e x 0=1x 0.当x ∈(0,x 0)时,m(x)>0,f′(x)>0;当x ∈(x 0,+∞)时,m(x)<0,f′(x)<0. 所以f(x)在(0,x 0)上单调递增,在(x 0,+∞)上单调递减. 所以f(x)max =f (x 0)=lnx 0−x 0e x 0+x 0, 因为e x 0=1x 0,所以x 0=−lnx 0,所以f(x 0)=−x 0−1+x 0=−1, 所以f(x)max =−1.【名师点睛】本题主要考查利用导数研究函数的单调性,最值,零点存在性定理及其应用,分类讨论的数学思想等知识,意在考查学生的转化能力和计算求解能力.30.【福建省龙岩市2019届高三5月月考数学】今年3月5日,国务院总理李克强作的政府工作报告中,提到要“惩戒学术不端,力戒学术不端,力戒浮躁之风”.教育部日前公布的《教育部2019年部门预算》中透露,2019年教育部拟抽检博士学位论文约6000篇,预算为800万元.国务院学位委员会、教育部2014年印发的《博士硕士学位论文抽检办法》通知中规定:每篇抽检的学位论文送3位同行专家进行评议,3位专家中有2位以上(含2位)专家评议意见为“不合格”的学位论文,将认定为“存在问题学位论文”.有且只有1位专家评议意见为“不合格”的学位论文,将再送2位同行专家进行复评,2位复评专家中有1位以上(含1位)专家评议意见为“不合格”的学位论文,将认定为“存在问题学位论文”.设每篇学位论文被每位专家评议为“不合格”的概率均为(01)p p <<,且各篇学位论文是否被评议为“不合格”相互独立.(1)记一篇抽检的学位论文被认定为“存在问题学位论文”的概率为()f p ,求()f p ;(2)若拟定每篇抽检论文不需要复评的评审费用为900元,需要复评的评审费用为1500元;除评审费外,其它费用总计为100万元.现以此方案实施,且抽检论文为6000篇,问是否会超过预算并说明理由.【答案】(1)−3p 5+12p 4−17p 3+9p 2;(2)若以此方案实施,不会超过预算.【解析】(1)因为一篇学位论文初评被认定为“存在问题学位论文”的概率为C 32p 2(1−p )+C 33p 3, 一篇学位论文复评被认定为“存在问题学位论文”的概率为C 31p (1−p )2[1−(1−p )2],所以一篇学位论文被认定为“存在问题学位论文”的概率为f (p )=C 32p 2(1−p )+C 33p 3+C 31p (1−p )2[1−(1−p )2]=3p 2(1−p )+p 3+3p (1−p )2[1−(1−p )2] =−3p 5+12p 4−17p 3+9p 2.(2)设每篇学位论文的评审费为X 元,则X 的可能取值为900,1500.P (X =1500)=C 31p (1−p )2, P (X =900)=1−C 31p (1−p )2, 所以E (X )=900×[1−C 31p (1−p )2]+1500×C 31p (1−p )2=900+1800p (1−p )2. 令g (p )=p (1−p )2,p ∈(0,1),g ′(p )=(1−p )2−2p (1−p )=(3p −1)(p −1). 当p ∈(0,13)时,g ′(p )>0,g (p )在(0,13)上单调递增;当p ∈(13,1)时,g ′(p )<0,g (p )在(13,1)上单调递减,所以g (p )的最大值为g (13)=427.所以实施此方案,最高费用为100+6000×(900+1800×427)×10−4=800(万元). 综上,若以此方案实施,不会超过预算.【名师点睛】本题主要考查互斥事件的概率和独立重复试验的概率的求法,考查随机变量的期望的求法,考查利用导数求函数的最大值,意在考查学生对这些知识的理解掌握水平和分析推理能力. 31.【北京市西城区2019届高三4月统一测试(一模)数学】设函数f(x)=m e x −x 2+3,其中m ∈R .(1)当f(x)为偶函数时,求函数ℎ(x)=xf(x)的极值;(2)若函数f(x)在区间[−2 , 4]上有两个零点,求m 的取值范围. 【答案】(1)极小值ℎ(−1)=−2,极大值ℎ(1)=2;(2)−2e <m <13e 4或m =6e 3.【解析】(1)由函数f(x)是偶函数,得f(−x)=f(x), 即m e −x −(−x)2+3=m e x −x 2+3对于任意实数x 都成立, 所以m =0. 此时ℎ(x)=xf(x)=−x 3+3x ,则ℎ′(x)=−3x 2+3. 由ℎ′(x)=0,解得x =±1. 当x 变化时,ℎ′(x)与ℎ(x)的变化情况如下表所示:所以ℎ(x)在(−∞,−1),(1,+∞)上单调递减,在(−1,1)上单调递增. 所以ℎ(x)有极小值ℎ(−1)=−2,极大值ℎ(1)=2. (2)由f(x)=m e x −x 2+3=0,得m =x 2−3e x.所以“f(x)在区间[−2 , 4]上有两个零点”等价于“直线y =m 与曲线g(x)=x 2−3e x,x ∈[−2 , 4]有且只有两个公共点”.对函数g(x)求导,得g ′(x)=−x 2+2x+3e x.由g ′(x)=0,解得x 1=−1,x 2=3. 当x 变化时,g ′(x)与g(x)的变化情况如下表所示:所以g(x)在(−2,−1),(3,4)上单调递减,在(−1,3)上单调递增. 又因为g(−2)=e 2,g(−1)=−2e ,g(3)=6e 3<g(−2),g(4)=13e 4>g(−1),所以当−2e <m <13e4或m =6e3时,直线y =m 与曲线g(x)=x 2−3e x,x ∈[−2 , 4]有且只有两个公共点.即当−2e <m <13e 4或m =6e3时,函数f(x)在区间[−2 , 4]上有两个零点.【名师点睛】利用函数零点的情况求参数值或取值范围的方法: (1)利用零点存在的判定定理构建不等式求解. (2)分离参数后转化为函数的值域(最值)问题求解. (3)转化为两熟悉的函数图象问题,从而构建不等式求解.。

人教A版第三章函数的应用基础测试题(解析版)-高一数学寒假补差训练(人教A版必修1+必修2)

人教A版第三章函数的应用基础测试题(解析版)-高一数学寒假补差训练(人教A版必修1+必修2)

专题5:人教A 版第三章函数的应用基础测试题(解析版)一、单选题1.已知函数()2f x ax bx c =++满足()20f <且()30f >,则()f x 在()2,3上的零点( ). A .至多有一个 B .有1个或2个 C .有且仅有一个 D .一个也没有1.C 【分析】由零点存在定理可判定出结果. 【详解】由题意知:()f x 在R 上至多有两个零点.由零点存在定理知:若()()230f f ⋅<,则()f x 在()2,3上有且仅有一个零点. 故选:C .2.函数()ln 4f x x x =+-的零点所在的区间是( ) A .()1,2 B .()2,3C .()3,4D .()4,52.B 【分析】计算区间端点处的函数值,根据零点存在定理判断. 【详解】(1)30f =-<,(2)ln 220f =-<,(3)ln 310f =->,∴零点在区间(2,3)上. 故选:B .3.函数()6ln f x x x =-+的零点所在区间应是( ) A .()2,3 B .()3,4C .()4,5D .()5,63.C 【分析】分别计算()2f ,()3f ,()4f ,()5f ,()6f ,根据零点存在性定理,即可得出结果. 【详解】因为()6ln f x x x =-+,所以()226ln 24ln 20f =-+=-+<,()336ln33ln30f =-+=-+<,()446ln 422ln 20f =-+=-+<, ()556ln51ln50f =-+=-+>,()666ln6ln60f =-+=>,由零点存在性定理,可得函数()6ln f x x x =-+的零点所在区间应是()4,5, 即C 正确,ABD 错误. 故选:C.4.下列函数中,没有零点的是( )A .2()log 7f x x =-B .()1f xC .()1f x x= D .()2f x x x =+4.C 【分析】分别解函数对应的方程,逐项判断,即可得出结果. 【详解】A 选项,由2()log 70f x x =-=可得72x =,即函数2()log 7f x x =-有零点;B 选项,由()10f x =得1x =,即函数()1f x 有零点;C 选项,由()10f x x ==解得,x 不存在,即函数()1f x x=没有零点; D 选项,由()20f x x x =+=解得1x =-或0,即函数()2f x x x =+有零点. 故选:C.5.函数()228f x x x =--零点是( )A .2和4-B .2-和4C .()2,0和()4,0-D .()2,0-和()4,05.B 【分析】解方程()0f x =,即可得出函数()f x 的零点. 【详解】解方程()0f x =,即2280x x --=,解得2x =-或4x =.因此,函数()228f x x x =--的零点是2-和4.故选:B.6.为了求函数()237x f x x =+-的一个零点,某同学利用计算器得到自变量x 和函数()f x 的部分对应值,如表所示:x1.25 1.3125 1.375 1.4375 1.5 1.5625 ()f x-0.8716-0.5788-0.28130.21010.328430.64115则方程237x x +=的近似解(精确到0.1)可取为( ) A .1.2 B .1.3C .1.4D .1.56.C 【分析】根据二分法结合零点存在定理求解. 【详解】因为(1.375)0,(1.4375)0f f <>, 所以方程的解在区间()1.375,1.4375内, 又精确到0.1, 所以可取1.4 故选:C7.把函数2()log f x x =的图像向左平移1个单位,再向下平移2个单位后得到函数()g x 的图像,则函数()g x 的零点是( )A .3B .5C .34-D .547.A 【分析】根据平移变换得到()g x ,令()g x 0=,解方程可得结果. 【详解】依题意得2()log (1)2g x x =+-,由()0g x =得2log (1)2x +=,得14x +=,得3x =. 故选:A【点睛】关键点点睛:掌握函数零点的概念是本题解题关键.8.“道高一尺,魔高一丈”出于《西游记》第五十回“道高一尺魔高丈,性乱情昏错认家,可恨法身无坐位,当时行动念头差,”用来比喻取得一定成就后遇到的障碍会更大或正义终将战胜邪恶,若用下列函数中的一个来表示这句话的含义,则最合适的是( )A .10y x =,0x >B .110y x =,0x > C .10y x =+,0x > D .=9y x +,0x >8.A 【分析】根据一丈等于十尺,即可得出结果. 【详解】因为一丈等于十尺,所以“道高一尺魔高一丈”更适合用10y x =,0x >来表示; 故选:A.9.若32()22f x x x x =+--的一个正数零点附近的函数值用二分法逐次计算,数据如下表:那么方程32220x x x +--=的一个近似根(精确到0.1)为( ) A .1.2 B .1.3C .1.41D .1.59.C 【分析】利用零点存在性定理,判断根的较小区间,即可求得近似解. 【详解】因为(1.438)0.1650f =>,(1.4065)0.0520f =-<,(1.438)(1.4065)0f f ⨯<,所以方程的近似根在()1.4065,1.438,则近似根为1.41 故选:C10.已知函数()351f x x x =-+,则下列区间中一定包含()f x 零点的区间是( )A .()2,1--B .()1,0-C .()0,1D .()1,210.C 【分析】计算出各端点的函数值,利用零点存在性定理即可判断. 【详解】()351f x x x =-+,()32252130f ∴-=-+⨯+=>,()31151150f -=-+⨯+=>,()010f => ()31151130f =-⨯+=-<,()32252110f =-⨯+=-<,根据零点存在性定理可得一定包含()f x 零点的区间是()0,1. 故选:C.11.已知函数()25xf x ex --=-的零点位于区间(),1m m +,m ∈Z 上,则42log m m +=( )A .14-B .14C .12D .3411.D 【分析】利用零点存在定理求得整数m 的值,进而可求得42log mm +的值. 【详解】易知函数()f x 单调递减,又因为()2210f e -=->,()130f e -=-<,由零点存在定理可知,函数()f x 的零点在区间()2,1--内,则2m =-. 所以2441132log 2log 2424mm -+=+=+=. 故选:D. 【点睛】本题考查利用零点存在定理求参数值,同时也考查指数式与对数式的计算,考查计算能力,属于基础题.12.我们知道,人们对声音有不同的感觉,这与声音的强度有关系.声音的强度常用I (单位:瓦/米2,即2/m W )表示,但在实际测量时,声音的强度水平常用L (单位:分贝)表示,它们满足换算公式:010lgI L I =(0L ≥,其中1220110/m I W -=⨯是人们平均能听到的声音的最小强度).若使某小区内公共场所声音的强度水平降低10分贝,则声音的强度应变为原来的( ) A .15B .1100C .110D .12012.C 【分析】设该小区内公共场所声音的强度水平为1L ,2L ,相应声音的强度为1I ,2I ,代入可得选项. 【详解】设该小区内公共场所声音的强度水平为1L ,2L ,相应声音的强度为1I ,2I , 由题意,得1210L L -=,即120010lg 10lg 10I II I -=, 解得21110I I =. 故选:C. 【点睛】本题考查函数模型的应用,关键在于理解生活中的数据在数学应用中的表达,属于基础题.二、填空题13.函数()22f x x x =+-的零点为______________.13.2-和1 【分析】解方程220x x +-=,即可得出函数()y f x =的零点. 【详解】令()0f x =,得220x x +-=,解得1x =或2x =-. 因此,函数()22f x x x =+-的零点为2-和1.故答案为:2-和1.【点睛】本题考查函数零点的求解,熟悉函数零点的定义是解题的关键,考查运算求解能力,属于基础题.14.若二元一次方程37x y -=,231x y +=,9y kx =-有公共解,则实数k =_____________. 14.4 【分析】由题意建立关于x ,y 的方程组,求得x ,y 的值,再代入9y kx =-中,求得k 的值. 【详解】解37231x y x y -=⎧⎨+=⎩得21x y =⎧⎨=-⎩,代入9y kx =-得129k -=-, 解得4k =. 故答案为:4 【点睛】本题主要考查解二元一次方程组,意在考查学生对该知识的理解掌握水平. 15.燕子每年秋天都要从北方飞向南方过冬,专家发现,两岁燕子的飞行速度可以表示为函数25log 10Ov =,单位是m/s ,其中O 表示燕子的耗氧量.则当燕子静止时的耗氧量是______个单位. 15.10 【分析】当燕子静止时,速度为0,由此列方程,解方程求得O 的值. 【详解】若燕子静止,则0v =,即25log 0,11010O O==,所以10O =. 故填:10. 【点睛】本小题主要考查阅读理解能力,考查已知函数值以及函数解析式求自变量的值,属于基础题.16.已知函数3,0()1,0x x x f x x a x x ⎧+≤⎪=⎨-->⎪⎩有4个不同的零点,则实数a 的取值范围为_______. 16.()2,+∞ 【分析】当0x ≤时,即()f x 恒有1个零点;当0x >时,得到相切时a 的值,即可求解。

人教A版第三章函数的应用综合测试题(解析版)-高一数学寒假补差训练(人教A版必修1+必修2)

人教A版第三章函数的应用综合测试题(解析版)-高一数学寒假补差训练(人教A版必修1+必修2)

专题6:人教A 版第三章函数的应用综合测试题(解析版)一、单选题1.设()ln 2f x x x =+-,则函数()f x 的零点所在的区间为( )A .(0,1)B .(1,2)C .(2,3)D .(3,4)1.B【分析】根据()f x 的单调性,结合零点存在性定理,即可得出结论.【详解】 ()ln 2f x x x =+-在(0,)+∞单调递增,且(1)10,(2)ln20f f =-<=>,根据零点存在性定理,得()f x 存在唯一的零点在区间(1,2)上.故选:B【点睛】本题考查判断函数零点所在区间,结合零点存在性定理的应用,属于基础题. 2.若一根蜡烛长20 cm ,点燃后每小时燃烧5 cm ,则燃烧剩下的高度h(cm)与燃烧时间t(小时)的函数关系用图象表示为( )A .B .C .D . 2.B【解析】依题设可知,蜡烛高度h 与燃烧时间t 之间构成一次函数关系,又∵函数图象必过点(0,20)、(4,0)两点,且该图象应为一条线段.∴选B.3.利用二分法求方程3log 5x x =-的近似解,可以取得一个区间( ) A .(0,1)B .(1,2)C .(2,3)D .(3,4)3.D【分析】根据零点存在定理判断.【详解】设3()log 5f x x x =-+,则函数单调递增由于3(3)log 35310f =-+=-<,33(4)log 454log 410f =-+=->,∴()f x 在(3,4)上有零点.故选:D.【点睛】本题考查方程的解与函数零点问题.掌握零点存在定理是解题关键.4.若函数()27x f x x =+-的零点所在的区间为(,1)()k k k +∈Z ,则k =( )A .3B .4C .1D .24.D【分析】结合零点存在性定理和函数()f x 的单调性,求得k 的值.【详解】 ∵(2)4270,(3)8370,f f =+-<⎧⎨=+->⎩且()f x 单调递增,∴()f x 的零点所在的区间为(2,3),∴2k =. 故选:D【点睛】本小题主要考查零点存在性定理的运用,考查函数的单调性,属于基础题.5.用二分法求如图所示函数f(x)的零点时,不可能求出的零点是( )A .x 1B .x 2C .x 3D .x 45.C【解析】 观察图象可知:点x 3的附近两旁的函数值都为负值,∴点x 3不能用二分法求,故选C.6.函数21()f x x x =+,(0,)x ∈+∞的零点个数是( ). A .0B .1C .2D .36.A【分析】 根据函数定义域,结合零点定义,即可容易判断和求解.【详解】由于20x >,10x>, 因此不存在(0,)x ∈+∞使得21()0f x x x=+=, 因此函数没有零点.故选:A .【点睛】本题考查函数零点的求解,属简单题. 7.用二分法求函数()f x 的一个正实数零点时,经计算:()()0.640,0.720f f <>,()0.680f <,()0.740f >,则函数()f x 的一个精确度为0.1的正实数零点的近似值为A .0.64B .0.8C .0.7D .0.67.C【分析】由题意根据函数零点的判定定理可得,函数零点所在的区间为(0.68,0.72),从而得出结论.【详解】因为()0.680f <,()0.720f >,即()()0.680.720f f ⋅<,所以函数()f x 的零点在区间()0.68,0.72内.又0.720.680.040.1-=<,观察各选项可知函数()f x 的一个精确度为0.1的正实数零点的近似值为0.7.故选C .【点睛】本题主要考查函数零点的判定定理的应用,属于基础题.8.已知函数()221,11,1x x f x log x x ⎧-=⎨+>⎩,则函数()f x 的零点为( )A .1,02B .2-,0C .12D .08.D【分析】函数()f x 的零点,即令()0f x =分段求解即可.【详解】函数221,1()1,1x x f x log x x ⎧-=⎨+>⎩当1x 时,令()210x f x =-=,解得0x =当1x >时,令2()1log 0f x x =+=,解得12x =(舍去) 综上函数的零点为0故选:D .【点睛】本题考查函数的零点个数,考查分段函数的知识,属于基础题.9.设f (x )=3x +3x –8,用二分法求方程3x +3x –8在x ∈(1,2)内方程的近似解,则方程的根落在区间(参考数据31.25≈3.95)A .(1,1.25)B .(1.25,1.5)C .(1.5,2)D .不能确定9.B【分析】显然函数单调递增,然后利用二分法求(1,2)的中间值f (1.5)0>,再将范围限制(1,1.5),再利用二分法继续下次知道和选项逼近即可【详解】显然函数单调递增,f (1)<0,f (2)>0,f (1.5)=31.5+3×1.5–8=323 4.58+-=4.58->4.580->,f (1.25)=31.25+3×1.25–8<0,∴f (1.25)•f (1.5)<0,∴方程的根落在区间(1.25,1.5),故选B .【点睛】利用二分法判断函数零点的区间,首先确保函数在所给区间内连续,然后利用二分法算出所给区间的中间值,进而一步步将区间范围缩小10.已知碳14是一种放射性元素,在放射过程中,质量会不断减少.已知1克碳14经过5730年,质量经过放射消耗到0.5克,则再经过多少年,质量可放射消耗到0.125克( ) A .5730B .11460C .17190D .22920 10.B【分析】根据由题意可知再经过2个半衰期可消耗到0.125克.【详解】由题意可得:碳14的半衰期为5730年,则再过5730年后,质量从0.5克消耗到0.25克,过11460年后,质量可消耗到0.125克.故选:B.【点睛】本题考查指数函数的应用,属于基础题.11.已知二次函数22()(5)6(0)f x ax a x a a =+-+-≠的图象与x 轴交于()1,0M x ,()2,0N x 两点,且12112x x -<<<<,则a 的取值范围是( )A .(2,1+B .()1C .()1++∞D .(,2-∞- 11.B【分析】讨论0a >、0a <,根据零点的范围,结合二次函数的性质列不等式组求解即可得a 的取值范围.【详解】若0a >,则(1)0(1)0(2)0f f f ->⎧⎪<⎨⎪>⎩,即2221021106160a a a a a ⎧->⎪+-<⎨⎪+->⎩,解得21a <<;若0a <,则(1)0(1)0(2)0f f f -<⎧⎪>⎨⎪<⎩,即2221021106160a a a a a ⎧-<⎪+->⎨⎪+-<⎩,不等式组无解.故a的取值范围是()1.故选:B 12.已知函数()()()()22,22,2x x f x x x ⎧-≤⎪=⎨->⎪⎩若函数()()2y f x f x m =+--()m R ∈恰有2个零点,则m 的取值范围是( )A .()2,+∞B .7,24⎛⎫ ⎪⎝⎭C .()0,2D .(),2-∞12.A【分析】求得函数()()2y f x f x =+-的解析式,画出()()2y f x f x =+-的图象,由此求得m 的取值范围.【详解】 由()()()()22,22,2x x f x x x ⎧-≤⎪=⎨->⎪⎩得()()()2,02,0x x f x x x ⎧≥⎪-=⎨<⎪⎩, 所以()()()()()222,022,0234,2x x x y f x f x x x x x ⎧-+<⎪=+-=≤≤⎨⎪-+>⎩,所以函数()()2y f x f x m =+--恰有2个零点等价于函数y m =与函数()()2y f x f x =+-的图象有2个公共点,由图象可知2m >.故选:A二、填空题13.在平面直角坐标系xOy 中,若直线y a =与函数2y x a a =-+-的图象有且只有一个公共点,则实数a 的值为______.13.1【分析】在同一坐标系中作出函数y a =与函数2y x a a=-+-的图象,根据只有一个公共点,利用数形结合法求解.【详解】在同一坐标系中作出函数y a =与函数2y x a a =-+-的图象,如图所示:因为只有一个公共点,所以2a a -=,解得1a =.故答案为:114.已知函数()1,2,x x x a f x x a+≤⎧=⎨>⎩,若存在两个不相等的实数12,x x ,使得()()12f x f x =,则实数a 的取值范围是__________.14.01a <<【分析】根据1y x =+与2xy =交于(0,1)和(1,2)点,即可求解结论.【详解】解:因为存在两个不相等的实数1x ,2x ,使得12()()f x f x =,故函数不是单调函数,又因为1y x =+与2x y =交于(0,1)和(1,2)点,故须01a <<.故答案为:(0,1).15.方程243x x m -+-=有四个互不相等的实数根,则实数m 的取值范围为_________. 15.()3,1-【分析】 方程243x x m -+-=有四个互不相等的实数根即243y x x =-+与y m =-的图象有四个不同的交点,作出函数图象可得实数m 的取值范围.【详解】 方程243x x m -+-=有四个互不相等的实数根即243y x x =-+与y m =-的图象有四个不同的交点 作出22243,04343,0x x x y x x x x x ⎧-+>=-+=⎨++≤⎩的函数图象如图所示:当2x =时,1y =-;0x =时,3y =,∴13m -<-<,()3,1m ∈-故答案为:()3,1-16.已知1x ,2x 是函数()()2221f x x k x k =-++的两个零点且一个大于1,一个小于1,则实数k 的取值范围是___________.16.02k <<【分析】根据二次函数的零点分布情况,得到()10f >,求解对应不等式,即可得出结果.【详解】因为1x ,2x 是函数()()2221f x x k x k =-++的两个零点且一个大于1,一个小于1, 二次函数()()2221f x x k x k =-++开口向上, 所以只需()()2211012f k k -++<=,即220k k -<, 解得02k <<.故答案为:02k <<.三、解答题17.已知函数32()2()3x f x x ax a R =--∈.(1)若()y f x =在()3,+∞上为增函数,求实数a 的取值范围; (2)若12a =-,设()ln(1)()g x x f x =-+,且方程3(1)(1)3xb g x x --=+有实根,求实数b 的最大值.17.(1)32a ≤(2)0 【解析】试题分析:(1)求导()'2220fx x x a =--≥在区间(3,+∞)上恒成立,从而转化为最值问题求解即可;(2)化简方程可得2ln b x x x x+-=,从而化为2(ln )b x x x x =+-在(0,+∞)上有解,从而讨论函数2()(ln )p x x x x x =+-的值域即可试题解析:(1)∵()f x 在区间()3,+∞上为增函数, ∴2'()220f x x x a =--≥即222a x x ≤-在区间()3,+∞上恒成立. ∵在()3,+∞内223x x -< ∴23a ≤即32a ≤(2)方程3(1)(1)3x b g x x --=+可化为2ln b x x x x +-=. ∴条件转化为2(ln )b x x x x =+-在()0,+∞上有解, 令2()(ln )p x x x x x =+-,∴即求函数2()(ln )p x x x x x =+-在()0,+∞上的值域. 令2()ln h x x x x =+-, 则1(21)(1)'()12x x h x x x x +-=+-=,∴当01x <<时'()0h x >,从而()h x 在()0,1上为增函数, 当1x >时'()0h x <,从而()h x 在()1,+∞上为减函数, 因此()(1)0h x h ≤=.又∵0x >,故()()0p x x h x =⋅≤,∴0b ≤因此当1x =时,b 取得最大值0.考点:根的存在性及根的个数判断;利用导数研究函数的单调性18.已知函数()lg f x kx =,()()lg 1g x x =+.(Ⅰ)当=1k 时,求函数()()y f x g x =+的单调区间;(Ⅱ)若方程()2()f x g x =仅有一个实根,求实数k 的取值集合.18.(1)单调递增区间为(0,)+∞,不存在单调递减区间;(2)0k <或4k =;【解析】试题分析:(1)由题可知,将=1k 代入,可得()()lg lg(1)lg (1)y f x g x x x x x =+=++=+,由于真数x (x+1)>0,可知x (x+1)在定义域上始终递增,外层对数函数始终递增,即单调递增区间为(0,)+∞,不存在单调递减区间;(2)由题可知,由()2()f x g x =,即lg 2lg(1)kx x =+,根据真数大于0,真数相等,可列出不等式组,对k 进行讨论,即可得出k 的取值; 试题解析:(Ⅰ)当=1k 时,()()lg lg(1)lg (1)y f x g x x x x x =+=++=+ (其中0x >),由复合函数单调性可知内层函数x (x+1)在定义域上始终递增,外层对数函数始终递增,所以,()()y f x g x =+的单调递增区间为(0,)+∞,不存在单调递减区间;(Ⅱ)由()2()f x g x =,即lg 2lg(1)kx x =+.该方程可化为不等式组 ()20101kx x kx x ⎧>⎪⎪+>⎨⎪=+⎪⎩(1)若0k >时,则0x >,原问题即为:方程2(1)kx x =+在(0,)+∞上有根,解得4k =;(2)若0k <时,则10x -<<,原问题即为:方程2(1)kx x =+在(1,0)-上有根,解得0k <.综上可得0k <或4k =为所求.考点:①复合函数的单调性②对数函数单调性的应用19.已知函数221()11x m f x x x x x -=----- (Ⅰ)若函数()f x 无零点,求实数m 的取值范围;(Ⅱ)若函数()f x 在(2,2)-有且仅有一个零点,求实数m 的取值范围.19.(Ⅰ) 47|{<m m 或2}m =;(Ⅱ)7{|4m m =或48}m ≤<。

中考数学考点:专题(50)函数的应用(含答案)

中考数学考点:专题(50)函数的应用(含答案)

专题50 函数的应用 聚焦考点☆温习理解1.函数的应用主要涉及到经济决策、市场经济等方面的应用.2.利用函数知识解应用题的一般步骤: (1)设定实际问题中的变量;(2)建立变量与变量之间的函数关系,如:一次函数,二次函数或其他复合而成的函数式;(3)确定自变量的取值范围,保证自变量具有实际意义;(4)利用函数的性质解决问题;(5)写出答案.3.利用函数并与方程(组)、不等式(组)联系在一起解决实际生活中的利率、利润、租金、生产方案的设计问题.名师点睛☆典例分类考点典例一、一次函数相关应用题【例1】 (2015.陕西省,第21题,7分)(本题满分7分)胡老师计划组织朋友暑假去革命圣地延安两日游,经了解,现有甲、乙两家旅行社比较合适,报价均为每人640元,且提供的服务完全相同,针对组团两日游的游客,甲旅行社表示,每人都按八五折收费;乙旅行社表示,若人数不超过20人,每人都按九折收费,超过20人,则超出部分每人按七五折收费。

假设组团参加甲、乙两家旅行社两日游的人数均为x 人。

(1)请分别写出甲、乙两家旅行社收取组团两日游的总费用y (元)与x (人)之间的函数关系式;(2)若胡老师组团参加两日游的人数共有32人,请你通过计算,在甲、乙两家旅行社中,帮助胡老师选择收取总费用较少的一家。

【答案】(1)甲旅行社:x 85.0640y ⨯==x 544.乙旅行社:当20x ≤时,x 9.0640y ⨯==x 576.当x>20时,20)-x 0.75640209.0640y (⨯+⨯⨯==1920x 480+.(2)胡老师选择乙旅行社.【解析】×人数;乙总费用y=20个人九折的费用+超过的人数×报价×打折率,列出y关于x的函数关系式,(2)根据人数计算出甲乙两家的费用再比较大小,哪家小就选择哪家.考点:一次函数的应用、分类思想的应用.【点睛】本题根据实际问题考查了一次函数的运用.解决本题的关键是根据题意正确列出两种方案的解析式,进而计算出临界点x的取值,再进一步讨论.【举一反三】(2015·黑龙江哈尔滨)小明家、公交车站、学校在一条笔直的公路旁(小明家到这条公路的距离忽略不计)。

2020届高考数学命题猜想及专题练习--函数与方程﹑函数模型及其应用1(含解析)

2020届高考数学命题猜想及专题练习--函数与方程﹑函数模型及其应用1(含解析)

2020届高考数学命题猜想函数与方程﹑函数模型及其应用1【考向解读】求方程的根、函数的零点的个数问题以及由零点存在性定理判断零点是否存在,利用函数模型解决实际问题是高考的热点;备考时应理解函数的零点,方程的根和函数的图象与x轴的交点的横坐标的等价性;掌握零点存在性定理.增强根据实际问题建立数学模型的意识,提高综合分析、解决问题的能力.【命题热点突破一】函数零点的存在性定理1.零点存在性定理如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,且有f(a)·f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b)使得f(c)=0,这个c也就是方程f(x)=0的根.2.函数的零点与方程根的关系函数F(x)=f(x)-g(x)的零点就是方程f(x)=g(x)的根,即函数y=f(x)的图象与函数y=g(x)的图象交点的横坐标.例1 、(2018年全国I卷理数)已知函数.若g(x)存在2个零点,则a的取值范围是A. [–1,0)B. [0,+∞)C. [–1,+∞)D. [1,+∞)【答案】C【解析】画出函数的图像,在y轴右侧的去掉,再画出直线,之后上下移动,可以发现当直线过点A时,直线与函数图像有两个交点,并且向下可以无限移动,都可以保证直线与函数的图像有两个交点,即方程有两个解,也就是函数有两个零点,此时满足,即,故选C.【变式探究】【2017课标1,理21】已知函数.(1)讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围. 【答案】(1)见解析;(2)()0,1.(2)(ⅰ)若0a ≤,由(1)知,()f x 至多有一个零点.(ⅱ)若0a >,由(1)知,当ln x a =-时, ()f x 取得最小值,最小值为.①当1a =时,由于,故()f x 只有一个零点;②当()1,a ∈+∞时,由于,即,故()f x 没有零点;③当()0,1a ∈时,,即. 又,故()f x 在(),ln a -∞-有一个零点.设正整数n 满足,则.由于,因此()f x 在()ln ,a -+∞有一个零点.综上, a 的取值范围为()0,1.【变式探究】(1)已知偶函数y =f(x),x ∈R 满足f(x)=x2-3x(x ≥0),函数g(x)=⎩⎪⎨⎪⎧log2x ,x>0,-1x,x<0,则函数y =f(x)-g(x)的零点个数为( )A .1B .3C .2D .4(2)已知函数f(x)=⎩⎪⎨⎪⎧x3,x ≤a ,x2,x>a ,若存在实数b ,使函数g(x)=f(x)-b 有两个零点,则a 的取值范围是________.【答案】(1)B (2)(-∞,0)∪(1,+∞)【解析】(1)作出函数f (x )与g (x )的图像如图所示,易知两个函数的图像有3个交点,所以函数y =f (x )-g (x )有3个零点.(2)令φ(x )=x3(x ≤a ),h (x )=x2(x>a ),函数g (x )=f (x )-b 有两个零点,即函数y =f (x )的图像与直线y =b 有两个交点.结合图像,当a<0时,存在实数b 使h (x )=x2(x>a )的图像与直线y =b 有两个交点;当a ≥0时,必须满足φ(a )>h (a ),即a3>a2,解得a>1.综上得a ∈(-∞,0)∪(1,+∞).【感悟提升】函数的零点、方程的根的问题都可以转化为函数图像的交点问题,数形结合法是解决函数零点、方程根的分布、零点个数、方程根的个数问题的有效方法.在解决函数零点问题时,既要利用函数的图像,也要利用函数零点的存在性定理、函数的性质等,把数与形紧密结合起来.【变式探究】已知函数f(x)=|x +a|(a ∈R)在[-1,1]上的最大值为M(a),则函数g(x)=M(x)-|x2-1|的零点的个数为( ) 络的发展,网校教育越来越受到广大学生的喜爱,它已经成为学生们课外学习的一种趋势.假设某网校每日的套题销售量y(单位:万套)与销售价格x(单位:元/套)满足关系式y =m x -2+4(x -6)2,其中2<x<6,m 为常数.已知销售价格为4元/套时,每日可售出套题21万套.(1)求m 的值;(2)假设每套题的成本为2元(只考虑销售出的套数),试确定销售价格x 的值,使网校每日销售套题所获得的利润最大.(保留1位小数)【解析】解:(1)因为x =4时,y =21,代入y =mx -2+4(x -6)2,得m2+16=21,解得m =10.(2)由(1)可知,套题每日的销售量y =10x -2+4(x -6)2,所以每日销售套题所获得的利润f (x )=(x -2)·⎣⎢⎢⎡⎦⎥⎥⎤10x -2+4(x -6)2=10+4(x -6)2(x -2)=4x3-56x2+240x -278(2<x<6),从而f ′(x )=12x2-112x +240=4(3x -10)(x -6)(2<x<6).令f ′(x )=0,得x =103(x =6舍去),且在⎝ ⎛⎭⎪⎪⎫2,103上,f ′(x )>0,函数f (x )单调递增,在⎝ ⎛⎭⎪⎪⎫103,6上,f ′(x )<0,函数f (x )单调递减,所以x =103是函数f (x )在(2,6)内的极大值点,也是最大值点,所以当x =103≈3.3时,函数f (x )取得最大值,即当销售价格为3.3元/套时,网校每日销售套题所获得的利润最大.【感悟提升】 函数建模首先要会根据题目的要求建立起求解问题需要的函数关系式(数学模型),然后通过求解这个函数模型(求单调性、最值、特殊的函数值等),对实际问题作出合乎要求的解释.需要注意实际问题中函数的定义域要根据实际意义给出,不是单纯根据函数的解析式得出.【变式探究】调查发现,提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度v (单位:千米/小时)是关于车流密度x (单位:辆/千米)的连续函数.当桥上的车流密度达到200辆/千米时,会造成堵塞,此时车流速度为0千米/小时;当车流密度不超过20辆/千米时,车流速度为60千米/小时.研究表明:当20<x<200时,车流速度v 是关于车流密度x 的一次函数.(1)当0<x<200时,求函数v (x )的解析式;(2)当车流密度x 为多少时,车流量(每小时通过桥上某观测点的车辆数)f (x )=x ·v (x )可以达到最大,并求出最大值.(精确到1辆/小时)【解析】解:(1)由题意知,当0<x ≤20时,v (x )=60;当20<x<200时,设v (x )=ax +b ,由已知得⎩⎪⎨⎪⎧200a +b =0,20a +b =60,解得⎩⎪⎨⎪⎧a =-13,b =2003.故所求函数v (x )的解析式为v (x )=⎩⎪⎨⎪⎧60,0<x ≤20,13(200-x ),20<x<200. (2)由(1)可知v (x )=⎩⎪⎨⎪⎧60,0<x ≤20,13(200-x ),20<x<200.当0<x ≤20时,f (x )=60x 为增函数,故当x =20时,其最大值为60×20=1200;当20<x<200时,f (x )=13x (200-x )=-13(x2-200x )=-13(x -100)2+10 0003,当x =100时,f (x )取得最大值10 0003≈3333.综上可知,当车流密度为100辆/千米时,车流量可以达到最大,最大值约为3333辆/小时.【高考真题解读】1. (2018年全国I 卷理数)已知函数.若g (x )存在2个零点,则a 的取值范围是A. [–1,0)B. [0,+∞)C. [–1,+∞)D. [1,+∞) 【答案】C 【解析】画出函数的图像,在y 轴右侧的去掉,再画出直线,之后上下移动,可以发现当直线过点A 时,直线与函数图像有两个交点,并且向下可以无限移动,都可以保证直线与函数的图像有两个交点,即方程有两个解,也就是函数有两个零点,此时满足,即,故选C.2. (2018年浙江卷)已知λ∈R,函数f(x)=,当λ=2时,不等式f(x)<0的解集是___________.若函数f(x)恰有2个零点,则λ的取值范围是___________.【答案】(1). (1,4) (2).【解析】由题意得或,所以或,即,不等式f(x)<0的解集是当时,,此时,即在上有两个零点;当时,,由在上只能有一个零点得.综上,的取值范围为。

高考数学专题讲座 第7讲 三角函数的综合应用

高考数学专题讲座 第7讲 三角函数的综合应用

高考数学专题讲座 第7讲 三角函数的综合应用一、考纲要求1.掌握两角和与两角差的正弦、余弦、正切公式,掌握二倍角的正弦、余弦、正切公式; 2.能正确运用三角公式,进行简单三角函数式的化简、求值和恒等式证明; 3.会由已知三角函数值求角,并会用符号arcsin x, arcos x,arctan x 表示角;4.掌握正弦定理、余弦定理,并能初步运用它们解斜三角形,能利用计算器解决解三角形的计算问题.二、基础过关 1.设α、β是一个钝角三角形的两个锐角, 下列四个不等式中不正确的是( ).A .tan αtan β<1B .sin α+sin β<2C .cos α+cos β>1D .21tan(α+β)<tan 2βα+ 2.在△ABC 中,∠A=60°,b =1,△ABC 面积为3,则CB B cb a sin sin sin ++++的值为( ).A .8138 B .3932C .3326D .72 3.)sin()(ϕω+=x A x f (A >0,ω>0)在x =1处取最大值,则( ). A .)1(-x f 一定是奇函数 B .)1(-x f 一定是偶函数C .)1(+x f 一定是奇函数D .)1(+x f 一定是偶函数4.已知方程x 2+4ax +3a +1=0(a >1)的两根均tan α、tan β,且α,β∈(-2,2ππ),则tan 2βα+的值是( ).A .21 B .2- C .34 D .21或2- 5.给出四个命题:(1)若sin2A =sin2B ,则△ABC 为等腰三角形; (2)若sin A =cos B ,则△ABC 为直角三角形;(3)若sin 2A +sin 2B +sin 2C <2,则△ABC 为钝角三角形;(4)若cos(A -B )cos(B -C )cos(C -A )=1,则△ABC 为正三角形. 以上正确命题的个数是( ).A .1B .2C .3D .46.x x x f 32cos 32sin )(+=的图象中相邻的两条对称轴间距离为( ).A .3πB .π34C .π23D .π677.︒+︒+︒+︒10cos 1)370tan 31(100sin 130sin 2= .8.下列命题正确的有 . (1)若-2π<α<β<2π,则βα-范围为(-π,π);(2)若α在第一象限,则2α在第一、三象限; (3)若θsin =53+-m m ,524cos +-=m mθ,则m ∈(3,9);(4)2sin θ=53,2cos θ=54-,则θ在第三、四象限.三、典型例题例1 已知:定义在]4,(-∞上的减函数)(x f ,使得)cos 4721()sin (2x m f x m f +-+≤- 对一切实数x 均成立,求实数m 的范围.例2 化工厂的主控制表盘高1米,表盘底边距地面2米,问值班人员坐在什么位置上表盘看得最清楚?(设值班人员坐在椅子上时,眼睛距地面2.1米)例3 已知向量a →=(2,2),向量b →与向量a →的夹角为43π,且a →·b →=-2.(1)求向量b →;(2)若t →=(1,0),且b →⊥t →,c →=(cosA,22cos 2C ),其中A ,C 是△ABC 的内角,若三角形的三内角A 、B 、C 依次成等差数列,试求|b →+c →|的取值范围.四、 热身演练 1.已知,那么下列命题成立的是( ).A .若α,β是第一象限角,则βαcos cos >B .若α,β是第二象限角,则βαtan tan >C .若α,β是第三象限角,则βαcos cos >D .若α,β是第四象限角,则βαtan tan > 2.函数的部分图象是( ).3.函数的反函数是( ).A .)20)(1arccos(≤≤--=x x yB .)20)(1arccos(≤≤--=x x y πC .)20)(1arccos(≤≤-=x x yD .)20)(1arccos(≤≤-+=x x y π4.任意实数x,不等式 ),,(0cos sin R c b a c x b x a ∈>++都成立的充要条件是( ).A .00>==c b a 且B .c b a =+22C .c b a <+22D .c b a >+225.若1cos sin =+θθ,则对任意的实数n ,θθnncos sin +的取值范围是( ).A .1B .(0,1)C .121-n D .无法确定6.定义在R 上的偶函数f (x )满足f (x+2)=f (x ),且f (x )在[-3,-2]上是减函数,又α,β是锐角三角形的两内角,则( ).A .)(cos )(sin βαf f >B .)(cos )(sin βαf f <C .)(sin )(sin βαf f >D .)(cos )(cos βαf f <7.下列说法正确的是(填上你认为正确的所有命题的代号) . ①函数y=-sin(kπ+x)(k∈Z)是奇函数; ②函数y=2sin(2x+π/3)关于点(π/12,0)对称;③函数y =sin(2x+π/3)+sin(2x -π/3)的最小正周期是π;④ΔABC 中cosA>cosB 的充要条件是A<B ; 8.在△ABC 中,sinA+cosA=137,则AA A A cos 7sin 15cos 4sin 5-+= .9.如右图,在半径为R 的圆桌的正中央上空挂一盏电灯,桌子边缘一点处的照度和灯光射到桌子边缘的光线与桌面的夹角θ的正弦成正比,角和这一点到光源的距离 r 的平方成反比,即I =k ·2sin r θ,其中 k 是一个和灯光强度有关的常数,那么怎样选择电灯悬挂的高度h ,才能使桌子边缘处最亮?10.设关于x 的方程sinx+3cosx+a=0在(0, 2π)内有相异二解α、β. (1)求α的取值范围; (2)求tan(α+β)的值.12.设α、β、γ是锐角,且tan 2α=2tan 3γ,tan β=21tan γ求证:α、β、γ成等差数列.三角函数的综合应用一、考纲要求:1. 掌握两角和与两角差的正弦、余弦、正切公式,掌握二倍角的正弦、余弦、正切公式 2. 能正确运用三角公式,进行简单三角函数式的化简、求值和恒等式证明. 3. 会由已知三角函数值求角,并会用符号arcsin x, arcos x,arctan x 表示角.4.掌握正弦定理、余弦定理,并能初步运用它们解斜三角形,能利用计算器解决解三角形的计算问题. 二、基础过关: 1.设α、β是一个钝角三角形的两个锐角, 下列四个不等式中不正确的是( A ).A .tan αtan β<1B .sin α+sin β<2C .cos α+cos β>1D .21tan(α+β)<tan 2βα+ 2.在△ABC 中,∠A=60°,b =1,△ABC 面积为3,则CB B cb a sin sin sin ++++的值为( B ).A .8138 B .3932C .3326D .72 3.)sin()(ϕω+=x A x f (A >0,ω>0)在x =1处取最大值,则( D ). A .)1(-x f 一定是奇函数 B .)1(-x f 一定是偶函数C .)1(+x f 一定是奇函数D .)1(+x f 一定是偶函数4.已知方程x 2+4ax +3a +1=0(a >1)的两根均tan α、tan β,且α,β∈(-2,2ππ),则tan2βα+的值是( B ).A .21B .2-C .34D .21或2- 5.给出四个命题:(1)若sin2A =sin2B ,则△ABC 为等腰三角形;(2)若sin A =cos B ,则△ABC 为直角三角形;(3)若sin 2A +sin 2B +sin 2C <2,则△ABC 为钝角三角形;(4)若cos(A -B )cos(B -C )cos(C -A )=1,则△ABC 为正三角形.以上正确命题的个数是( B ).A .1B .2C .3D .46.x x x f 32cos 32sin )(+=的图象中相邻的两条对称轴间距离为( C ).A .3πB .π34C .π23D .π677.︒+︒+︒+︒10cos 1)370tan 31(100sin 130sin 2= .28.下列命题正确的有 .(2)(1)若-2π<α<β<2π,则βα-范围为(-π,π); (2)若α在第一象限,则2α在第一、三象限;(3)若θsin =53+-m m ,524cos +-=m mθ,则m ∈(3,9);βφαDCBA1.2 m2 m 1 m (4)2sinθ=53,2cosθ=54-,则θ在第三、四象限. 三、典型例题例1 已知:定义在]4,(-∞上的减函数)(x f ,使得)cos 4721()sin (2x m f x m f +-+≤- 对一切实数x 均成立,求实数m 的范围.解:由题意可得 ⎪⎩⎪⎨⎧≤-+-+≥-4sin cos 4721sin 2x m xm x m , 即 ⎪⎩⎪⎨⎧+≤-+-≥+-xm x x m m sin 443sin sin 212恒成立对R x ∈,又 21)21(sin 43sin 2sin 2---=-+-x x x ,∴3sin 4≥+x ,∴⎪⎩⎪⎨⎧≤-≥+-32121m m m , ∴⎪⎩⎪⎨⎧≤+≥+32121m m m , ∴21-=m ,或323≤<m例2 化工厂的主控制表盘高1米,表盘底边距地面2米,问值班人员坐在什么位置上表盘看得最清楚?(设值班人员坐在椅子上时,眼睛距地面2.1米)解:如图,8.02.12=-=CD ,设x AD =,则x x AD BD 8.18.01tan =+==α, xAD CD 8.1tan ==β, βαβαβαφtan tan 1tan tan )tan(tan +-=-= ,∴4.2144.12144.118.08.118.08.1tan =⋅≤+=⋅+-=xx x x x x x x φ当xx 44.1=,即2.1=x 时, φtan 达到最大值4.21,φ是锐角,φtan 最大时,φ也最大,所以值班人员看表盘最清楚的位置为2.1=AD 米.例3 已知向量a →=(2,2),向量b →与向量a →的夹角为43π,且a →·b →=-2,(1)求向量b →;(2)若t →=(1,0),且b →⊥t →,c →=(cosA,22cos 2C ),其中A ,C 是△ABC 的内角,若三角形的三内角A 、B 、C 依次成等差数列,试求|b →+c →|的取值范围.解:(1)设b →=(x,y ),则2x+2y=-2,且a →·b →=|b →||c →|cos 43π=22y x +×22×(-22)=-2,解得⎩⎨⎧=-=01y x 或⎩⎨⎧-==1y x , ∴b →=(-1,0) 或b →=(0,-1).(2)∵三角形的三内角A 、B 、C 依次成等差数列,∴b=3π,∵b →⊥t →,∴b →=(0,-1),∴b →+c →=( cosA,22cos 2C -1)=(cosA,cosC),∴|b →+c →|2=C A 22cos cos +=1+21(cos2A+cos2C)=1+cos(A+C)cos(A -C)=1-21cos(A -C),∴-32π<A -C<32π ,∴-21<cos(A -C)≤1,22≤|b →+c →|<25.例4 已知△ABC 的三内角A 、B 、C 满足A +C =2B ,设x =cos2CA -, f (x )=cosB (CA cos 1cos 1+). (1)试求函数f (x )的解析式及其定义域; (2)判断其单调性,并加以证明; (3)求这个函数的值域. 解:(1)∵A +C =2B ,∴B =60°,A +C =120°)cos()cos(2cos2cos2cos cos cos cos 21)(C A C A CA C A C A C A x f -++-+=⋅+⋅= 342122122-=-+-=x xx x , ∵0°≤|2C A -|<60°,∴x =cos 2C A -∈(21,1].又4x 2-3≠0,∴x ≠23,∴定义域为(21,23)∪(23,1). (2)设x 1<x 2,∴f (x 2)-f (x 1)=342342211222---x x x x=)34)(34()34)((222212121--+-x x x x x x ,若x 1,x 2∈(23,21),则4x 12-3<0,4x 22-3<0,4x 1x 2+3>0,x 1-x 2<0,∴f (x 2)-f (x 1)<0,即f (x 2)<f (x 1),若x 1,x 2∈(23,1],则4x 12-3>0. 4x 22-3>0,4x 1x 2+3>0,x 1-x 2<0,∴f (x 2)-f (x 1)<0.即f (x 2)<f (x 1),∴f (x )在(21,23)和(23,1]上都是减函数.(3)由(2)知,f (x )<f (21)=-21或f (x )≥f (1)=2.故f (x )的值域为(-∞,-21)∪[2,+∞). 四、热身演练: 1.已知,那么下列命题成立的是( B ).A .若α,β是第一象限角,则βαcos cos >B .若α,β是第二象限角,则βαtan tan >C .若α,β是第三象限角,则βαcos cos >D .若α,β是第四象限角,则βαtan tan > 2.函数的部分图象是( D ).AB C D3.函数的反函数是( A ).A .)20)(1arccos(≤≤--=x x yB .)20)(1arccos(≤≤--=x x y πC .)20)(1arccos(≤≤-=x x yD .)20)(1arccos(≤≤-+=x x y π4.任意实数x,不等式 ),,(0cos sin R c b a c x b x a ∈>++都成立的充要条件是( C ).A .00>==c b a 且B .c b a =+22C .c b a <+22D .c b a >+225.若1cos sin =+θθ,则对任意的实数n ,θθnncos sin +的取值范围是( D ).A .1B .(0,1)C .121-n D .无法确定6.定义在R 上的偶函数f (x )满足f (x+2)=f (x ),且f (x )在[-3,-2]上是减函数,又α,β是锐角三角形的两内角,则( A ).A .)(cos )(sin βαf f >B .)(cos )(sin βαf f <C .)(sin )(sin βαf f >D .)(cos )(cos βαf f <7.下列说法正确的是(填上你认为正确的所有命题的代号) .①②③④ ①函数y=-sin(k π+x)(k ∈Z)是奇函数; ②函数y=2sin(2x+π/3)关于点 (π/12,0)对称;③函数y=sin(2x+π/3)+sin(2x-π/3)的最小正周期是π; ④ΔABC 中cosA>cosB 的充要条件是A<B ; 8.在△ABC 中,sinA+cosA=137,则AA A A cos 7sin 15cos 4sin 5-+= .4389.如右图,在半径为R 的圆桌的正中央上空挂一盏电灯,桌子边缘一点处的照度和灯光射到桌子边缘的光线与桌面的夹角θ的正弦成正比,角和这一点到光源的距离 r 的平方成反比,即I =k ·2sin r θ,其中 k 是一个和灯光强度有关的常数,那么怎样选择电灯悬挂的高度h ,才能使桌子边缘处最亮?解:R =r cos θ,由此得:20,cos 1π<θ<θ=R r , RR h R k I Rk R k I R k R k r k I 22tan ,33sin ,392)32()()sin 1)(sin 1(sin 2)(2)cos (sin cos sin sin 232222222222222=θ==θ⋅≤⋅≤θ-θ-⋅θ⋅=θ⋅θ⋅=θ⋅θ⋅=θ⋅=此时时成立等号在由此得 10.设关于x 的方程sinx+3cosx+a=0在(0, 2π)内有相异二解α、β. (1)求α的取值范围; (2)求tan(α+β)的值. 解:(1)∵sinx+3cosx=2(21sinx+23cosx)=2 sin(x+3π),∴方程化为sin(x+3π)=-2a .∵方程sinx+3cosx+a=0在(0, 2π)内有相异二解,∴sin(x+3π)≠sin 3π=23. 又sin(x+3π)≠±1 (∵当等于23和±1时仅有一解),∴|-2a |<1,且-2a≠23, 即|a|<2,且a ≠-3.,∴a 的取值范围是(-2, -3)∪(-3, 2).(2) ∵α、 β是方程的相异解,∴sin α+3cos α+a=0 ① sin β+3cos β+a=0 ②①-②得(sin α- sin β)+3( cos α- cos β)=0, ∴ 2sin 2βα-cos2βα+-23sin 2βα+,sin2βα-=0,又sin2βα+≠0,∴tan2βα+=33, ∴tan(α+β)=2tan 22tan22βαβα+-+=3.11.求20sin 6420cos 120sin 3222+-的值.解:原式=20cos 20sin 20sin 20cos 32222-+64sin 220°=40sin 41)20sin 20cos 3)(20sin 20cos 3(2+-+64sin 220°=40sin 41)2030cos()2030cos(42-++64sin 220°=40sin 80sin 40sin 162+64sin 220°=32cos40°+64(240cos 1-)=32.12.设α、β、γ是锐角,且tan 2α=2tan 3γ,tan β=21tan γ求证:α、β、γ成等差数列.解:要证α、β、γ成等差数列,∵α、β、γ是锐角,只要证:tan β=tan 2γα+.∵tan 2γα+=2tan2tan12tan2tanγαγα-+=2tan2tan12tan 2tan 33γγγγ-+=)2tan 1)(2tan 1()2tan 1(2tan222γγγγ+-+=212tan 12tan22γγ-=21tan γ= tan β.∴α、β、γ成等差数列.。

2019年高考数学(理) 第三章 专题1导数在函数及方程中的应用

专题1导数在函数及方程中的应用刷难关1.[河南安阳2018 一模]已知函数2233)(x x x f +=与g (x )=6x +a 的图像有3个不同的交点,则a 的取值范围是( )A .⎥⎦⎤⎢⎣⎡-227,322 B .⎪⎭⎫⎝⎛-227,322C .⎥⎦⎤⎝⎛-322,227D .⎥⎦⎤⎢⎣⎡-322,227 2.[湖南长沙长郡中学2018 一模]已知函数)0(ln )(>=x x x e x f ,若对⎥⎦⎤⎢⎣⎡∈∀e e x ,1,彐k ∈[-a ,a](a>0),使得方程ƒ(x)=k 有解,则实数a 的取值范围是( )A.(0,e e ] B .[e e ,+∞)C .[e ,+∞)D .⎥⎥⎦⎤⎢⎢⎣⎡e e e e ,13.[河南洛阳2018联考]已知函数ƒ(x)=(ax+ Inx ).(x- Inx )-x ²有三个不同的零点x ₁,x ₂,x ₃,其中x ₁<x ₂<x ₃,则)ln 1)(ln 1(2)ln 1(332211x x x x x x ---的值为( )A .1 -aB .a-1C .-1D .14.[甘肃武威二中2018月考]若正数t 满足a(2e -t)In t=1(e 为自然对数的底数),则实数a 的取值范围为_____.5.[山西四十五校2018联考]已知函数ƒ(x)满足)(ln 1)(ln )1()(x f x f e x f +-=,当x ∈(0,1]时,x e x f ==)(.设g(x)=ƒ(x)-kx ,若方程g(x)=e 在(0,e]上有且仅有三个实数解,则实数k 的取值范围是_____.6.[河北衡水武邑中学2018调研]设函数ƒ(x)=ln x ,g(x) =xxe -x -1.(1)若关于x 的方程ƒ(x )=x ²-310+m 在区间[1,3]上有解,求m 的取值范围; (2)当x>0时,g (x )-a ≥ƒ(x)恒成立,求实数a 的取值范围.7.[江西新余2018 -模]已知函数ƒ(x)=ln x- 2x ² +3,g(x)=ƒ'(x )+4x+ alnx (a ≠0). (1)求函数ƒ(x)的单调区间;(2)若关于x 的方程g(x)=a 有实数根,求实数a 的取值范围.8.[贵州凯里一中2018一模]已知ƒ(x)=2xln x -mx+e 2.(1)若方程ƒ(x)=0在),41(e 上有实数根,求实数m 的取值范围;(2)若y=ƒ(x)在[1,e]上的最小值为-4+e 2,求实数m 的值.9.[河南郑州2018 -模]已知函数a ax x x f 11ln )(-+=,a ∈R 且a ≠0.(1)讨论函数ƒ(x)的单调性;(2)当⎥⎦⎤⎢⎣⎡∈e e x ,1时,试判断函数g(x)=(Inx-1)x e +x- m 零点个数.10.[湖北武汉2018调研]已知函数ƒ(x)=xe - ax -1(a ∈R )(e=2.718 28...是自然对数的底数). (1)求ƒ(x)的单调区间;(2)讨论g (x )=ƒ(x)(x-21)在区间[0,1]上零点的个数.11.[山东德州2018期末]已知221)1()(ax x e x x f +-=.(1)若ƒ(x)在x=1处切线的斜率为2e ,求a 的值;(2)在(1)的前提下,求ƒ(x)的极值;(3)若ƒ(x)有两个不同的零点,求a 的取值范围.12.[山西孝义2018一模]已知函数ƒ(x)=2(a-1)x+b . (1)讨论函数g(x)=xe - ƒ(x)在[0,1]上的单调性; (2)已知函数h (x )=xe -x ƒ(2x)-1,若h(1)=0,且函数h (x )在(0,1)内有零点,求a 的取值范围.专题1导数在函数及方程中的应用 刷难关1.B 【解析】原问题等价于函数xx x x h 62233)(-+=的图像与直线y=a 有三个不同的交点.h ’(x)=x ² +x-6=(x-2)(x+3),当x ∈(-∞,-3)时,h ’(x)>0,h(x)单调递增;当x ∈(-3,2)时,H ’(x)<0,h(x)单调递减;当x ∈(2,+∞)时,h ’(x)>0,h(x)单调递增.函数h(x)的图像,如图,又h (-3)=227,h(2)=222-,数形结合可得a 的取值范围是)227,222(-.故选B .2.B 【解析】)1(ln ln )('x x x e x x e x x e x f +=+=,令x x x g 1ln )(+=,则21211)('x x x x x g -=-= ∴当0 <x<1时,g ‘(x)<0,当x>1时,g ’(x)>0,∴g(x)在)1,1(e 上单调递减,在(1,e)上单调递增.∴g (x )≥g(1)=1,∴f ’(x )>0,∴f(x)在⎥⎦⎤⎢⎣⎡1,1e 上单调递增,∴f(x)在⎥⎦⎤⎢⎣⎡1,1e 上的值域为⎥⎥⎦⎤⎢⎢⎣⎡-e e e e,1. ∵对∀X ∈⎥⎦⎤⎢⎣⎡1,1e ,]彐k ∈[-a ,a](a>0),使得方程f(x)=k 有解,∴⎪⎪⎪⎩⎪⎪⎪⎨⎧>≤-≥-,0,,1a a e e a e e,解得ee a ≥,∴实数a 的取值范围是[ee ,+∞).3.D 【解析】易知x> Inx .令f(x)=0,分离参数得x x x x x a ln ln --=,令x xx x x x h ln ln )(--=,则2)ln (2)ln 2)(ln 1(ln )('x x x x x x x x h ---=,令h ’(x)=0,得x=1或x=e .当X ∈(0,1)时,h ’(x)<0,当X ∈(1,e)时,h ’(x)>0,当x ∈(e ,+∞)时,h ’(x)<0,即h(x)在(0,1),(e ,+∞)上为减函数,在(1,e)上为增函数,所以0 <x ₁ <1 <X ₂ <e<X ₃,且h(1)<a<h(e),即x x x x x x x x x a e e e a ln ln 11ln ln ·111--=--=--<<,令x x u ln =,则u u a --=11,即u ²+(a -1)u+1 -a =0.设u ₁,u ₂为方程U ²+(a-1)u+1-a=0的两根,则u ₁+u ₂2=1-n <0,u ₁u ₂=1-a <0.对于x xu ln =,2ln 1'x x u -=,则当0<x<e 时,u ’>0;当x>e 时,u ’<0.而当x>e 时,u 恒大于零,作出xx u ln =的大致图像,如图所示,不妨设u ₁<u ₂,则111ln x x u =,333222ln ln x x u x x u ===,则)1)(1(2)1()ln 1)(ln 1(·2)ln 1(321332211u u u x x x x x x ---=---=[(1 -u ₁)(1-u ₂)]²=[1-(1-a)+(1-a)]²=1.故选D.4.(-∞ ,0)∪⎪⎭⎫⎢⎣⎡+∞,1e【解析】设f(t)= (2e -t)Int ,则1ln 22ln )('--=-+-=t t e t t e t t f .显然f ’(e)=0,令g(t)=f ’(t),则t t e t g 12)('-=,当t>0时,g ’(t)<0,故f ’(t)是减函数,所以当0<t<e时,f ’(t)>0,f(t)递增,当t>e 时,f ’(t)<0,f(t)单调递减,所以当t=e 时f(t)取得极大值,也是最大值,且f(e)=(2e - e)ln e=e ,当t →+∞(或t →0)时f(t)→∞,因此f(t)≤e ,所以01<a 或ea ≤<10,解得a <0或e a 1≥.5. ⎥⎦⎤ ⎝⎛--21,41e e 解析 ∵当x ∈(0,1]时,x e x f =)(.∴当x ∈(1,e]时,Inx ∈(0,1]x x e x f ==ln )(ln ,从而111)(ln 1)(ln )1()(-+=+-=+-=e xx x ex x f x f e x f .故有⎪⎩⎪⎨⎧≤<-+≤<=.1,11,10,)(e x e x x x e x f .由g(x)=f(x) -kx=e ,可得f(x)= kx+e .在同一直角坐标系内画出y=f(x)与y= kx+e 的图像,如图所示:设A(0,e),AB 为曲线y=f(x),x ∈(1,e]的切线,B 为切点,)11,(-+e e e C ,由图可知,当直线y=kx+e位于切线AB 和直线AC 之间时,y=kx +e 的图像与y= f(x)的图像有三个交点.设B (x ₀,y ₀),由21)'11(x e x -=-+,可得切线)(201)11(:00x x x e x y AB --=-+-.又切线过点)0(201)11(00x x e x e --=-+-,解得x ₀ =2,故41-=ABk .又2111e e e e e e k AC -=--+=,∴当方程g(x)=e 。

中考数学复习:专题3-4 一次函数考点分析及典型试题

一次函数考点分析及典型试题【专题综述】一次函数的图象和性质正比例函数的图象和性质【方法解读】1.一次函数的意义及其图象和性质⑴.一次函数:若两个变量x、y间的关系式可以表示成y=kx+b(k、b为常数,k≠0)的形式,则称y是x 的一次函数(x是自变量,y是因变量〕特别地,当b=0时,称y是x的正比例函数.⑵.一次函数的图象:一次函数y=kx+b 的图象是经过点()(0,,0)bkb -,的一条直线,正比例函数y=kx 的图象是经过原点(0,0)的一条直线,如下表所示.⑶.一次函数的性质:y=kx +b(k 、b 为常数,k ≠0)当k >0时,y 的值随x 的值增大而增大;当k <0时,y 的值随x 值的增大而减小.⑷.直线y=kx +b(k 、b 为常数,k ≠0)时在坐标平面内的位置与k 在的关系. ①直线经过第一、二、三象限(直线不经过第四象限); ②直线经过第一、三、四象限(直线不经过第二象限); ③直线经过第一、二、四象限(直线不经过第三象限); ④直线经过第二、三、四象限(直线不经过第一象限);2.一次函数表达式的求法⑴.待定系数法:先设出式子中的未知系数,再根据条件列议程或议程组求出未知系数,从而写出这个式子的方法,叫做待定系数法,其中的未知系数也称为待定系数。

⑵.用待定系数法求出函数表壳式的一般步骤:⑴写出函数表达式的一般形式;⑵把已知条件(自变量与函数的对应值)公共秩序 函数表达式中,得到关于待定系数的议程或议程组;⑶解方程(组)求出待定系数的值,从而写出函数的表达式。

⑶.一次函数表达式的求法:确定一次函数表达式常用 待定系数法,其中确定正比例函数表达式,只需一对x 与y 的值,确定一次函数表达式,需要两对x 与y 的值。

类型1:正比例函数和一次函数的概念【例1】若函数(1)my m x =-是正比例函数,则该函数的图象经过第 象限.类型2:一次函数的图像【例2】(2017上海市)如果一次函数y =kx +b (k 、b 是常数,k ≠0)的图象经过第一、二、四象限,那么k 、b 应满足的条件是( )类型3:正比例函数和一次函数解析式的确定基础知识归纳:确定一个正比例函数,就是要确定正比例函数定义式kx y =(k ≠0)中的常数k .确定一个一次函数,需要确定一次函数定义式b kx y +=(k ≠0)中的常数k 和b .解这类问题的一般方法是待定系数法.基本方法归纳:求正比例函数解析式只需一个点的坐标,而求一次函数解析式需要两个点的坐标. 注意问题归纳:数形结合思想,将线段长度,图形面积与点的坐标联系起来是关键,同时注意坐标与线段间的转化时符号的处理.【例3】(2017天津)用A 4纸复印文件,在甲复印店不管一次复印多少页,每页收费0.1元.在乙复印店复印同样的文件,一次复印页数不超过20时,每页收费0.12元;一次复印页数超过20时,超过部分每页收费0.09元.设在同一家复印店一次复印文件的页数为x (x 为非负整数). (1)根据题意,填写下表:一次复印页数(页) 5 10 20 30 … 甲复印店收费(元) 0.52… 乙复印店收费(元)0.62.4…(2)设在甲复印店复印收费y 1元,在乙复印店复印收费y 2元,分别写出y 1,y 2关于x 的函数关系式; (3)当x >70时,顾客在哪家复印店复印花费少?请说明理由.类型4:一次函数图象与坐标轴围成的三角形的面积基础知识归纳:直线y =kx +b 与x 轴的交点坐标为(bk-,0),与y 轴的交点坐标为(0,b );直线与两坐标轴围成的三角形的面积为S△=12|bk|·|b|=22||bk.基本方法归纳:直线与两坐标轴交点是关键.注意问题归纳:对于k不明确时要分情况讨论,否则容易漏解.【例4】(2017怀化)一次函数y=﹣2x+m的图象经过点P(﹣2,3),且与x轴、y轴分别交于点A、B,则△AOB的面积是()A.12B.14C.4D.8【例5】(2017浙江省台州市)如图,直线l1:y=2x+1与直线l2:y=mx+4相交于点P(1,b).(1)求b,m的值;(2)垂直于x轴的直线x=a与直线l1,l2分别交于点C,D,若线段CD长为2,求a的值.类型5:一次函数的应用基础知识归纳:主要涉及到经济决策、市场经济等方面的应用.利用一次函数并与方程(组)、不等式(组)联系在一起解决实际生活中的利率、利润、租金、生产方案的设计问题.基本方法归纳:利用函数知识解应用题的一般步骤:(1)设定实际问题中的变量;(2)建立变量与变量之间的函数关系,如:一次函数,二次函数或其他复合而成的函数式;(3)确定自变量的取值范围,保证自变量具有实际意义;(4)利用函数的性质解决问题;(5)写出答案..注意问题归纳:读图时首先要弄清横纵坐标表示的实际意义,还要会将图象上点的坐标转化成表示实际意义的量;自变量取值范围要准确,要满足实际意义.【例6】(2017四川省凉山州)为了推进我州校园篮球运动的发展,2017年四川省中小学生男子篮球赛于2月在西昌成功举办.在此期间,某体育文化用品商店计划一次性购进篮球和排球共60个,其进价与售价间的关系如下表:篮球排球进价(元/个)8050售价(元/个)10570(1)商店用4200元购进这批篮球和排球,求购进篮球和排球各多少个?(2)设商店所获利润为y(单位:元),购进篮球的个数为x(单位:个),请写出y与x之间的函数关系式(不要求写出x的取值范围);(3)若要使商店的进货成本在4300元的限额内,且全部销售完后所获利润不低于1400元,请你列举出商店所有进货方案,并求出最大利润是多少?【强化训练】1.(2017内蒙古呼和浩特市)一次函数y=kx+b满足kb>0,且y随x的增大而减小,则此函数的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限2.(2017内蒙古赤峰市)将一次函数y=2x﹣3的图象沿y轴向上平移8个单位长度,所得直线的解析式为()A.y=2x﹣5B.y=2x+5C.y=2x+8D.y=2x﹣83. (2017枣庄)如图,直线243y x=+与x轴、y轴分别交于点A和点B,点C、D分别为线段AB、OB的中点,点P为OA上一动点,PC+PD值最小时点P的坐标为()A.(﹣3,0)B.(﹣6,0)C.(32-,0)D.(52-,0)4.(2017山东省菏泽市)如图,函数y1=﹣2x与y2=ax+3的图象相交于点A(m,2),则关于x的不等式﹣2x>ax+3的解集是()A.x>2B.x<2C.x>﹣1D.x<﹣15.(2017山东省泰安市)已知一次函数y=kx﹣m﹣2x的图象与y轴的负半轴相交,且函数值y随自变量x 的增大而减小,则下列结论正确的是()A.k<2,m>0B.k<2,m<0C.k>2,m>0D.k<0,m<0 6. (2017四川省南充市)小明从家到图书馆看报然后返回,他离家的距离y与离家的时间x之间的对应关系如图所示,如果小明在图书馆看报30分钟,那么他离家50分钟时离家的距离为km.7. (2017吉林省长春市)甲、乙两车间同时开始加工一批服装.从幵始加工到加工完这批服装甲车间工作了9小时,乙车间在中途停工一段时间维修设备,然后按停工前的工作效率继续加工,直到与甲车间同时完成这批服装的加工任务为止.设甲、乙两车间各自加工服装的数量为y(件).甲车间加工的时间为x(时),y与x之间的函数图象如图所示.(1)甲车间每小时加工服装件数为件;这批服装的总件数为件.(2)求乙车间维修设备后,乙车间加工服装数量y与x之间的函数关系式;(3)求甲、乙两车间共同加工完1000件服装时甲车间所用的时间.8. (2017宁夏)某商店分两次购进A.B两种商品进行销售,两次购进同一种商品的进价相同,具体情况如下表所示:购进数量(件)A B购进所需费用(元)第一次30403800第二次40303200(1)求A、B两种商品每件的进价分别是多少元?(2)商场决定A种商品以每件30元出售,B种商品以每件100元出售.为满足市场需求,需购进A、B两种商品共1000件,且A种商品的数量不少于B种商品数量的4倍,请你求出获利最大的进货方案,并确定最大利润.9. (2017黑龙江省龙东地区)为了推动“龙江经济带”建设,我省某蔬菜企业决定通过加大种植面积、增加种植种类,促进经济发展.2017年春,预计种植西红柿、马铃薯、青椒共100公顷(三种蔬菜的种植面积均为整数),青椒的种植面积是西红柿种植面积的2倍,经预算,种植西红柿的利润可达1万元/公顷,青椒1.5万元/公顷,马铃薯2万元/公顷,设种植西红柿x公顷,总利润为y万元.(1)求总利润y(万元)与种植西红柿的面积x(公顷)之间的关系式.(2)若预计总利润不低于180万元,西红柿的种植面积不低于8公顷,有多少种种植方案?(3)在(2)的前提下,该企业决定投资不超过获得最大利润的18在冬季同时建造A、B两种类型的温室大棚,开辟新的经济增长点,经测算,投资A种类型的大棚5万元/个,B种类型的大棚8万元/个,请直接写出有哪几种建造方案?10. (2017四川省广安市)正方形A1B1C1O,A2B2C2C1,A3B3C3C2…按如图所示放置,点A1、A2、A3…在直线y=x+1上,点C1、C2、C3…在x轴上,则A n的坐标是.。

高考数学总复习考点知识专题讲解3---函数及其表示


(2)下列四组函数中,表示相等函数的一组是( D ) A.f(x)= x+1· x-1,g(x)= x2-1 B.f(x)= x2,g(x)=( x)2 C.f(x)=xx2--11,g(x)=x+1 D.f(x)=|x|,g(t)= t2
[解析] (1)①是映射,也是函数 ②不是映射,更不是函数 ③不是映射,更不是函数 ④是映射,但不是函数
[解析] 二次函数g(x)满足g(1)=1,g(-1)=5,且图象
过原点,可设二次函数g(x)的解析式为g(x)=ax2+
bx(a≠0),可得
a+b=1, a-b=5,
解得a=3,b=-2,所以二次
函数g(x)的解析式为g(x)=3x2-2x.故选B.
2.(2020·湖南衡阳第一中学月考)已知f(2x+1)=x2- 2x,则f(3)=___-__1___.
3.已知函数f(x)满足f(x)+2f(-x)=ex,则函数f(x)的解 析式为_____f(_x_)_=__23_e-_x_-__13_e_x _____.
[解析] f(x)+2f(-x)=ex①, f(-x)+2f(x)=e-x②, ①②联立消去f(-x)得3f(x)=2e-x-ex, ∴f(x)=23e-x-13ex.
A叫做函数的 定义域 ;与x的值相对应的y值叫做函数值, 函数值的集合{f(x)|x∈A}叫做函数的 值域 .
(2)函数的三要素是: 定义域 、 值域 和对应关系.
3.表示函数的常用方法 列表法 、 图象法 和解析法. 4.分段函数
在函数的定义域内,对于自变量x的不同取值区间,有 着不同的 对应法则 ,这种函数称为分段函数.
[思路引导] 设f(x)=ax+b(a≠0)→代入已知条件→解 出a、b→得f(x).

2020届高考数学命题猜想及专题练习--函数与方程﹑函数模型及其应用2(含解析)

2020届高考数学命题猜想函数与方程﹑函数模型及其应用【考向解读】求方程的根、函数的零点的个数问题以及由零点存在性定理判断零点是否存在,利用函数模型解决实际问题是高考的热点;备考时应理解函数的零点,方程的根和函数的图象与x轴的交点的横坐标的等价性;掌握零点存在性定理.增强根据实际问题建立数学模型的意识,提高综合分析、解决问题的能力.【命题热点突破一】函数零点的存在性定理1.零点存在性定理如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,且有f(a)·f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b)使得f(c)=0,这个c也就是方程f(x)=0的根.2.函数的零点与方程根的关系函数F(x)=f(x)-g(x)的零点就是方程f(x)=g(x)的根,即函数y=f(x)的图象与函数y=g(x)的图象交点的横坐标.例1 、(2018年全国卷Ⅱ)已知函数.(1)若,求的单调区间;(2)证明:只有一个零点.【答案】见解析【解析】(2)由于,所以等价于.设=,则g ′(x )=≥0,仅当x=0时g ′(x )=0,所以g (x )在(–∞,+∞)单调递增.故g (x )至多有一个零点,从而f (x )至多有一个零点.又f (3a –1)=,f (3a+1)=,故f (x )有一个零点.综上,f (x )只有一个零点.【感悟提升】新定义问题的本质是转化思想的应用,即把新定义问题转化为已知的问题加以解决,解题的关键是理解新定义,把新定义表达的问题转化为我们已经掌握的数学问题,然后根据题目的要求进行推理计算得出结论.【变式探究】给出定义:如果函数f(x)在[a ,b]上存在x1,x2(a<x1<x2<b),满足f ′(x1)=f (b )-f (a )b -a ,f ′(x2)=f (b )-f (a )b -a ,则称实数x1,x2为[a ,b]上的“对望数”,函数f(x)为[a ,b]上的“对望函数”.已知函数f(x)=13x3-x2+m 是[0,m]上的“对望函数”,则实数m 的取值范围是( )A.⎝ ⎛⎭⎪⎪⎫32,3 B .(2,3) C.⎝⎛⎭⎪⎪⎫32,2 3 D .(2,2 3)【答案】A【命题热点突破三】 函数模型及其应用解决函数模型的实际应用题,首先考虑题目考查的函数模型,并要注意定义域.其解题步骤是(1)阅读理解,审清题意:分析出已知什么,求什么,从中提炼出相应的数学问题;(2)数学建模:弄清题目中的已知条件和数量关系,建立函数关系式;(3)解函数模型:利用数学方法得出函数模型的数学结果;(4)实际问题作答:将数学问题的结果转化成实际问题作出解答.例3、(2017·江苏)设f(x)是定义在R 上且周期为1的函数,在区间[0,1)上,f(x)=⎩⎪⎨⎪⎧x2,x ∈D ,x ,x ∉D ,其中集合D =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪⎪x =n -1n ,n ∈N*,则方程f(x)-lg x =0的解的个数是_____.【答案】8【变式探究】随着网络的发展,网校教育越来越受到广大学生的喜爱,它已经成为学生们课外学习的一种趋势.假设某网校每日的套题销售量y(单位:万套)与销售价格x(单位:元/套)满足关系式y =m x -2+4(x -6)2,其中2<x<6,m 为常数.已知销售价格为4元/套时,每日可售出套题21万套.(1)求m 的值;(2)假设每套题的成本为2元(只考虑销售出的套数),试确定销售价格x 的值,使网校每日销售套题所获得的利润最大.(保留1位小数)【解析】解:(1)因为x =4时,y =21,代入y =mx -2+4(x -6)2,得m2+16=21,解得m =10.(2)由(1)可知,套题每日的销售量y =10x -2+4(x -6)2,所以每日销售套题所获得的利润f (x )=(x -2)·⎣⎢⎢⎡⎦⎥⎥⎤10x -2+4(x -6)2=10+4(x -6)2(x -2)=4x3-56x2+240x -278(2<x<6),从而f ′(x )=12x2-112x +240=4(3x -10)(x -6)(2<x<6).令f ′(x )=0,得x =103(x =6舍去),且在⎝ ⎛⎭⎪⎪⎫2,103上,f ′(x )>0,函数f (x )单调递增,在⎝ ⎛⎭⎪⎪⎫103,6上,f ′(x )<0,函数f (x )单调递减,所以x =103是函数f (x )在(2,6)内的极大值点,也是最大值点,所以当x =103≈3.3时,函数f (x )取得最大值,即当销售价格为3.3元/套时,网校每日销售套题所获得的利润最大.1 、(2017·全国Ⅲ)已知函数f(x)=x2-2x +a(ex -1+e -x +1)有唯一零点,则a 等于 A.-12B.13C.12 D.1【解析】f(x)=x2-2x +a(ex -1+e -x +1) =(x -1)2+a[ex -1+e -(x -1)]-1,令t =x -1,则g(t)=f(t +1)=t2+a(et +e -t)-1. ∵g(-t)=(-t)2+a(e -t +et)-1=g(t), ∴函数g(t)为偶函数.∵f(x)有唯一零点,∴g(t)也有唯一零点. 又g(t)为偶函数,由偶函数的性质知g(0)=0, ∴2a -1=0,解得a =12 .【答案】C.2、(2017·江苏)设f(x)是定义在R 上且周期为1的函数,在区间[0,1)上,f(x)=⎩⎪⎨⎪⎧x2,x ∈D ,x ,x ∉D ,其中集合D =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪⎪x =n -1n ,n ∈N*,则方程f(x)-lg x =0的解的个数是_____.【答案】81.【2016高考新课标1卷】函数在[]2,2-的图像大致为(A)(B)(C)(D)【答案】D2.【2016高考山东文数】已知函数其中0m>,若存在实数b,使得关于x的方程f(x)=b有三个不同的根,则m的取值范围是________________.【答案】() 3,+∞【解析】画出函数图象如下图所示:由图所示,要()f x b=有三个不同的根,需要红色部分图像在深蓝色图像的下方,即,解得3m >。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高三二轮复习专题三
函数与方程及函数的应用
主备教师:xxx 审核:xxx 班级___________ 姓名____________
【考试要求】1、结合二次函数的图象,了解函数的零点与方程根的联系,判断一元二次方程根的存在性及根的个数2、根据具体函数的图象,能够用二分法求相应方程的近似解;3、了解函数模型的广泛应用。

【高考试题回放】 1、(2011天津理2)函数()23x
f x x
=+的零点所在的一个区间是( ).
A.
()2,1--
B.
()1,0-
C.
()0,1
D.
()1,2
2、(2011山东理10)已知()f x 是R 上最小正周期为2的周期函数,且当02x ≤<时,3
()f x x x =-,则函数()y f x =的图象在区间[0,6]上与x 轴的交点的个数为
(A )6 (B )7 (C )8 (D )9 3、(2011湖北理10)放射性元素由于不断有原子放射出微粒子而变成其他元素,其含量不断减少,这种现象成为衰变,假设在放射性同位素铯137的衰变过程中,其含量M (单位:太贝克)与时间t (单位:年)满足函数关系:
()30
02
t M t M -=,其中
M 为0=t 时铯137
的含量,已知30=t 时,铯137的含量的变化率是2ln 10-(太贝克/年),则()=60M A. 5太贝克 B. 2ln 75太贝克 C. 2ln 150太贝克 D. 150太贝克
4、(2011北京理6)根据统计,一名工人组装第x
件某产品所用的时间(单位:分钟)为
()x A f x x A <=≥(A ,c 为常数)。

已知工人组装第4件产品用时30分钟,组装第A 件
产品时用时15分钟,那么c 和A 的值分别是
A. 75,25
B. 75,16
C. 60,25
D. 60,16
【课内探究】探究一、确定函数的零点 例1.设函数1()ln (0)3
f x x x x =
->,则f(x)( )
A .在区间1[,1],(1,)e e
内均有零点 B.在区间1[,1],(1,)e e
内均无零点 C.在区间 1
[,1]e 内有零点,在区间(1,e )内无零点
D .在区间 1
[,1]e
内无零点,在区间(1,e )内有零点
拓展延伸:1、方程||cos x x =在(,)-∞+∞内( )
A .没有根 B.有且仅有一个根 C 有且仅有两个根 D 有无穷多个根
2、已知a 是函数12
()2log x f x x =-的零点,若00x a <<,则0()f x 的值满足( )
A .0()f x =0 B. 0()f x <0 C. 0()f x >0 D. 0()f x 的符号不确定 探究二、函数零点的应用
例2. 1.(2011重庆理10)设m ,k 为整数,方程2
20mx kx -+=在区间(0,1)内有两个不同的根,则m+k 的最小值为
(A )-8 (B )8 (C)12 (D) 13 2.(2011辽宁文16)已知函数
a
x e x f x
+-=2)(有零点,则a 的取值范围是__________
3.m 为何值时,2()234f x x m x m =+++
(1)、有且仅有一个零点?(2)、有两个零点且比-1大?(3)、若函数2()|4|F x x x a =-+有4个零点,求实数a 的取值范围.
探究三、函数的应用 问题四、(2011湖北理17)提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度v (单位:千米/小时)是车流密度x (单位:辆/千米)的函数.当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时.研究表明:当20020≤≤x 时,车流速度v 是车流密度x 的一次函数.
(Ⅰ)当2000≤≤x 时,求函数()x v 的表达式;
(Ⅱ)当车流密度x 为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)()()
x v x x f ⋅=可以达到最大,并求出最大值.(精确到1辆/小时)
【巩固练习】
1、方程2210ax x ++=至少有一个负根的充要条件是( )
A .01a <≤ B.a<1 C. 1a ≤ D. 01a <≤或a<0 2、已知f (x )=1-(x -a )(x -b ) (a<b ),m ,n 是f (x )的零点,且m<n ,则实数a ,b ,m ,n 的大小关系是 ( )
A. m<a<b<n
B. a<m<n<b
C.a<m<b<n
D.m<a<n<b
3、关于x 的实系数方程x 2
-ax +2b =0的一根在区间[0,1]上,另一根在区间[1,2]上,则2a +3b 的最大为
4、已知函数32
,2
()(1),2x f x x x x ⎧≥⎪=⎨⎪-<⎩
若关于x 的方程f(x)=k 有两个不同的实根,则实数k 的
取值范围是______________. 5、已知二次函数f (x )=4x 2-2(p -2)x -2p 2-p +1在区间[-1,1]内至少存在一个实数c ,使f (c )>0,求实数p 的取值范围.
6、某工厂生产一种机器的固定成本(即固定投入)为0.5万元,但每生产100台,需要加可变成本(即另增加投入)0.25万元.市场对此产品的年需求量为500台,销售的收入函数为R (x )=5x -2
2
x
(万元)(0≤x ≤5),其中x 是产品售出的数量(单位:百台).
(1)把利润表示为年产量的函数;
(2)年产量是多少时,工厂所得利润最大? (3)年产量是多少时,工厂才不亏本?。

相关文档
最新文档