5.6几何证明举例(3)

合集下载

【青岛版八年级数学上册教案】5.6几何证明举例

【青岛版八年级数学上册教案】5.6几何证明举例

5.6 几何证明举例学习目标1.熟练掌握AAS,HL 判判定理,等腰三角形 , 等边三角形性质与判判定理,并会运用这些定理进行证明相关题目;2.经过独立思虑,合作研究,研究出综合法证明几何问题的方法。

3.倾尽全力,达成目标,享受几何证明的多样性之美。

自主研究(一)直角三角形全等的判判定理假如一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应相等,那么这两个直角三角形全等。

( HL 定理)【典型例题】AEFB D C例 1. 已知如图, D是△ ABC的边 BC的中点, DE⊥ AC,DF⊥ AB,垂足分别是点E,F,DE=DF.求证:△ ABC是等腰三角形 .(二)等腰三角形的性质和判断命题一:等腰三角形底边上的高、中线及顶角的均分线重合.已知:求证:证明:命题二:有两个角相等的三角形是等腰三角形.已知:求证:证明:(三)角均分线与垂直均分线的性质与判断三角形全等的运用1. 已知,如图, AB=BC,AD=CD,求证:∠ A=∠C.CD BA2. 如图,已知AB=DC,∠ ABC=∠DCB,OE均分∠ BOC交 BC于点 E. 求证: OE垂直均分BC.ADOB E C3.已知:如图,在△ ABC中, AB=AC,D 是 AB 上一点, DE⊥ BC,垂足是 E,交 CA的延长线于点 F,求证: AD=AF.FADB E C能力提高4. 在△ ABC中, D 为 BC的中点, DE⊥ BC交∠ BAC的均分线 AE于 E,EF⊥AB 于 F,EG⊥ AC交 AC的延长线于点 G,求证: BF=CG.AFD CBGE。

高中数学几何证明方法总结

高中数学几何证明方法总结

高中数学几何证明方法总结几何证明是高中数学中重要的一部分,它要求学生能够运用几何知识和推理能力,以严密的逻辑和准确的推导,验证或证明几何性质和定理。

本文将总结高中数学几何证明的常用方法,并介绍一些实例说明。

一、直接证明法直接证明法是最常见的证明方法,它通过依次列举已知条件,逐步推导出要证明的结论。

例:已知△ABC中,∠ABC = ∠ACB,证明AB = AC。

证明过程:1. 根据已知条件,得到∠ABC = ∠ACB。

2. 再由等角的性质可得△ABC为等腰三角形,即AB = AC。

二、反证法反证法是通过假设要证明的结论不成立,然后推导出矛盾的结论,从而证明原命题成立。

例:已知直线l与平面P不平行,证明直线l与平面P只有一个公共点。

证明过程:1. 假设直线l与平面P有两个不同的公共点A和B。

2. 因为直线l经过A和B,所以直线l同时位于平面P中。

3. 根据平面的定义,平面上的任意两个不同点可以确定一条直线,矛盾于直线l与平面P只有一个公共点的假设。

4. 反证法证明了直线l与平面P只有一个公共点。

三、等腰三角形的证明对于等腰三角形的证明,常用的方法包括使用等腰三角形的定义、等角的性质以及构造辅助线等。

例:证明等腰三角形的腰上的角相等。

证明过程:1. 根据等腰三角形的定义,等腰三角形的两边相等,所以∆ABC为等腰三角形,AB = AC。

2. 假设∠B = ∠C,再根据等角的性质,∠BAC = ∠B,∠CAB = ∠C。

3. 说明∠A和∠BAC相等,即∠A = ∠BAC。

4. 根据等腰三角形的定义,∆ABC的腰上的角相等。

四、相似三角形的证明相似三角形的证明方法主要有AA相似法和AAA相似法。

例:证明两条平行线所形成的锐角和其它任意两条交线所形成的锐角相等。

证明过程:1. 假设两条平行线为l和m,两条交线为k和n,且k与l的交点为A,k与m的交点为B,n与l的交点为C,n与m的交点为D。

2. ∆ABC和∆ABD中,∠CAB = ∠DAB,因为是同旁内角,且自行画图观察,可以发现这两个三角形相似。

《几何证明举例》教案 (公开课获奖)

《几何证明举例》教案 (公开课获奖)

§5.6 几何证明举例(2)教学目标:1. 学生能够证明等腰三角形的性质定理和判定定理。

2. 会运用等腰三角形的性质和判定进行有关的证明和计算。

3. 应用等腰三角形的性质和判定进一步认识等边三角形。

4. 培养学生分析问题和逻辑推理的能力。

教学重、难点:重点:会证明等腰三角形的性质定理和判定定理。

难点:等腰三角形的性质定理和判定定理的应用。

教学准备:电子白板、直尺、圆规、直角三角板教学过程一、情境导入、复习回顾1、等腰三角形的性质是什么,这个命题的逆命题是什么?二、交流展示(鼓励学生自己写出证明的过程,注意几何证明的三步)(1)“等腰三角形的两个底角相等”是真命题吗?怎样证明。

证明:等腰三角形的两个底角相等。

已知:如图,在△ABC中,AB=AC求证:∠B=∠C法1证明:过点A作∠BAC的角平分线交BC于点D∴∠BAD = ∠CAD (角平分线定义)在△BAD与△CAD中∵AB = AC (已知)∠BAD = ∠CAD (已证)AD = AD (公共边)∴△BAD≌△CAD(SAS)∴∠ B = ∠ C (全等三角形对应角相等)法2证明:作BC边上的中线 AD∴ BD = CD (中线定义)在△BAD与△CAD中∵AB = AC (已知)BD = CD (已证)AD = AD (公共边)∴△BAD≌△CAD( SSS )∴∠B = ∠ C (全等三角形对应角相等)(2)“等腰三角形的两个底角相等”的逆命题是真命题吗,怎样证明它的正确性?证明:有两个角相等的三角形是等腰三角形。

已知:如图,在如图,在△ABC中,∠B=∠C求证:AB=AC证明:作AD⊥BC,垂足为D则∠ADB=∠ADC=90°(垂直的定义),在△ABD和△ACD中,∵∠B=∠C (已知),∠ADB=∠ADC=90°(已证)AD=AD (公共边)∴△ABD≌△ACD (AAS)∴AB=AC(全等三角形的对应边相等)(3) 利用等腰三角形的性质定理和判定定理证明:(鼓励学生当老师讲给其他同学听)①等边三角形的每个内角都是60°②三个角都相等的三角形是等边三角形。

青岛版数学八年级上册 5.6几何证明举例第1课时课件(共12张PPT)

青岛版数学八年级上册 5.6几何证明举例第1课时课件(共12张PPT)
5.6 几何证明举例
第1课时
一、预习诊断
1.具备下列条件的两个三角形中,不一定全等的是( ) (A)有两边一角对应相等 (B) 三边对应相等 (C)两角一边对应相等 (D)有两直角边对应相等的两个直角 三角形 2.下列命题中:(1)形状相同的两个三角形是全等形; (2)在两个三角形中,相等的角是对应角,相等的边是对应边; (3)全等三角形对应边上的高、中线及对应角平分线分别相等。 其中正确命题的个数有( ) A.3个 B.2个 C.1个 D.0个
(根据图形结合题意写出已直和求证,给出证明)
这样,全等三角形的判定就有了基本事实SAS, ASA,SSS以及定理AAS,利用它们和全等三角形的 对应边、对应角相等就可以进一步推证全等三角形的 有关线段或角相等。
例1:已知:如图,AB=CB,AD=CD。
求证:∠A=∠C。
分析:要证∠A=∠C,只要证明它们所在的两个三角形 全等即可,但是图中没有两个全等三角形时,应通过尝 试添加辅助线构造全等三角形,使待证的角或线段是这 两个全等三角形的对应角或对应边。
A
A

A
B D C B D C
A
B D C B D C A
B D C B D C
三、系统总结
1.判定两个三角形全等的基本事实有: SAS,ASA,SSS,判定定理是AAS。 2.证明两个角或两条线段相等时,可以 考察它们是否在给出的两个全等三角形 中。如果没有,应尝试通过添加辅助线 构造两个全等三角形,使待证的角或线 段分别是两个全等三角形的对应角或对 应边。
你学会了吗?
1.已知,如图AB=CD,AD=BC,求证: ∠A=∠C
思考:怎样添加辅 助线才能使∠A与∠C 存在于两个全等三角形 中而且是两个三角形的 对应角呢?

青岛版八年级数学上册同步练习附答案5.6 几何证明举例

青岛版八年级数学上册同步练习附答案5.6 几何证明举例

5.6 几何证明举例1. 如图,在△ABC中,BC的垂直平分线交BC于点D,交AB的延长线于点E,连接CE. 求证:∠BCE=∠A +∠ACB .(第1题图)2. 如图,在Rt△ABC中,∠C=90°,AB边的垂直平分线DE交BC于点E,垂足为D. 求证:∠CAB=∠AED.(第2题图)3. 如图,在△ABC中,分别作AB边,BC边的垂直平分线,两线相交于点P,分别交AB 边,BC边于点E,F.求证:AB,BC,AC的垂直平分线相交于点P.(第3题图)4. 如图,在△ABD中,∠BAC= 90°,AD⊥BC于点D,∠ABC的平分线BF交AD于点E,交AC于点F,FH⊥BC于点H. 求证:AE =FH.(第4题图)5. 如图,点D,E分别在△ABC的边AB,AC上,AB=AC.(1)如果DE∥BC,求证:AD=AE.(2)如果AD=AE,求证:DE∥BC.(第5题图)6. 如图,AB=AC,DB=DC. 求证:∠B=∠C.(第6题图)7. 如图,E,F是线段BC上两点,AB∥CD,AB=DC,CE=BF. 求证:AE=DF.(第7题图)8. 如图,DE∥BC,A是DE上一点,AD=AE,AB=AC. 求证:BE=CD.(第8题图)9. 如图,在△ABD中,AC⊥BD,垂足为C,AC=BC,点E在AC上,且CE=CD. 连接BE 并延长交AD于点F. 求证:BF⊥AD.(第9题图)10. 如图,AC与BD相交于点O,且AC=BD,AD=BC. 求证:OA=OB.(第10题图)答案1. 证明:∵BC 的垂直平分线交BC 于点D , ∴BE =CE , ∴∠BCE =∠CBE .∵∠CBE =∠A +∠ACB ,∴∠BCE =∠A +∠ACB .2. 证明:∵DE 是AB 的垂直平分线,∴EA =EB , ∴∠EAB =∠B .∵∠C =90°,∴∠CAB +∠B =90°.又∵∠AED +∠EAB =90°,∴∠CAB =∠AED .3.证明:∵P 是AB 边的垂直平分线上的一点, ∴P A = PB .同理可得,PB = PC .∴P A =PC .∴P 是AC 边的垂直平分线上的一点. ∴AB ,BC ,AC 的垂直平分线相交于点P .4. 证明:∵BF 平分∠ABC ,F A ⊥AB ,FH ⊥BC , ∴F A =FH ,∠ABF =∠EBD .又∵∠AFB +∠ABF = 90°,∠DEB +∠EBD = 90°, ∴∠AFB =∠DEB ,∴∠AFB =∠AEF .∴AF =AE .∴AE =FH .5. 证明:(1)∵AB =AC ,∴∠B =∠C .∵DE ∥BC ,∴∠B=∠ADE ,∠C=∠AED .∴∠ADE=∠AED ,∴AD =AE .(2)∵AD =AE ,∴∠ADE=∠AED=21(180°-∠A ). ∵AB =AC ,∴∠B =∠C=21(180°-∠A ). ∴∠B=∠ADE ,∴DE ∥BC .6. 证明:连接AD .在△ABD 和△ACD 中,⎪⎩⎪⎨⎧===,,,AD AD DC DB AC AB∴△ABD ≌△ACD (SSS ),∴∠B =∠C .7. 证明:∵CE =BF ,∴CE+EF =BF+EF ,即CF =BE .∵AB ∥CD ,∴∠B =∠C .在△ABE 和△DCF 中,⎪⎩⎪⎨⎧=∠=∠=,,,CF BE C B DC AB∴△ABE ≌△DCF (SSS ),∴AE =DF .8. 证明:∵AB =AC ,∴∠ABC =∠ACB .∵BC ∥DE ,∴∠DAB =∠ABC ,∠EAC =∠ACB , ∴∠DAB =∠EAC ,∴∠DAC =∠EAB .在△DAC 和△EAB 中,⎪⎩⎪⎨⎧=∠=∠=,,,AC AB EAC DAC AE AD∴△DAC ≌△EAB (SAS ),∴BE =CD .9. 证明:∵AC ⊥DB ,∴∠BCE =∠ACD = 90°.在△BCE 和△ACD 中,⎪⎩⎪⎨⎧=∠=∠=,,,AC BC BCE ACD CD CE∴△BCE ≌△ACD (SAS ),∴∠CBE=∠CAD . ∵在△ACD 中,∠CAD +∠ACD +∠D= 180°, 在△BDF 中,∠CBE +∠BFD +∠D= 180°,∴∠CAD +∠ACD +∠D=∠CBE +∠BFD +∠D= 180°, ∴∠ACD=∠BFD=90°,即BF ⊥AD .10. 证明:连接AB .在△ABD 和△BAC 中,⎪⎩⎪⎨⎧===,,,BA AB BC AD AC BD∴△ABD ≌△BAC (SSS ),∴∠BDA=∠ACB .在△AOD 和△BOC 中,⎪⎩⎪⎨⎧=∠=∠∠=∠,,,BC AD OCB ODA BOC AOD∴△AOD ≌△BOC (AAS ),∴OA=OB .。

精选2019-2020年数学八年级上册第5章 几何证明初步5.6 几何证明举例青岛版巩固辅导第三篇

精选2019-2020年数学八年级上册第5章 几何证明初步5.6 几何证明举例青岛版巩固辅导第三篇

精选2019-2020年数学八年级上册第5章几何证明初步5.6 几何证明举例青岛版巩固辅导第三篇第1题【单选题】某学生在暑假期间观察了x天的天气情况,其结果是:①共有7天上午是晴天;②共有5天下午是晴天;③共下了8次雨;④下午下雨的那天,上午是晴天.则x=( )A、8B、9C、10D、11【答案】:【解析】:第2题【单选题】气象爱好者孔宗明同学在x(x为正整数)天中观察到:①有7个是雨天;②有5个下午是晴天;③有6个上午是晴天;④当下午下雨时上午是晴天.则x等于( )A、7B、8C、9D、10【答案】:【解析】:第3题【单选题】A,B,C,D四个队赛球,比赛之前,甲和乙两人猜测比赛的成绩次序:甲:从第一名开始,名次顺序是A,D,C,B;乙:从第一名开始,名次顺序是A,C,B,D,比赛结果,两人都猜对了一个队的名次,已知第一名是B队,请写出四个队的名次顺序是( )A、B,A,C,DB、B,C,A,DC、D,B,A,CD、B,A,D,C【答案】:【解析】:第4题【单选题】成都七中学生网站是由成都七中四大学生组织共同管理的网站,该网站是成都七中历史上首次由四大学生组织共同合作建成的一个学生网站,其内容囊括了成都七中学生学习及生活的各个方面.某学生在输入网址“http:∥www.cdqzstu.com”中的“cdqzstu.com”时,不小心调换了两个字母的位置,则可能出现的错误种数是( )A、90B、45C、88D、44【答案】:【解析】:第5题【单选题】一同学在n天假期中观察:(1)下了7次雨,在上午或下午;(2)当下午下雨时,上午是晴天;(3)一共有5个下午是晴天;(4)一共有6个上午是晴天。

则n最小为( )A、7B、9C、10D、11.【答案】:【解析】:第6题【单选题】如图是一个风景区,A,B,C,D,E,F是这一风景区内的五个主要景点,现观光者聚于A点.假若你是导游,要带领游客欣赏这五个景点后再回到A点,但又不想多走“冤枉路”(不能走重复的路线和经过同一个景点),你认为可选择行走路线有( )种.?A、4B、5C、6D、7【答案】:【解析】:第7题【填空题】一个零件的形状如图所示,按规定∠A应等于90°,∠B、∠C应分别是21°和32°.当检验工人量得的∠BDC的度数不等于______度时,就可判定此零件不合格?【答案】:【解析】:第8题【填空题】在一次数学游戏中,老师在A、B、C三个盘子里分别放了一些糖果,糖果数依次为a0 ,b0 ,c0 ,记为G0=(a0 ,b0 ,c0).游戏规则如下:若三个盘子中的糖果数不完全相同,则从糖果数最多的一个盘子中拿出两个,给另外两个盘子各放一个(若有两个盘子中的糖果数相同,且都多于第三个盘子中的糖果数,则从这两个盘子字母序在前的盘子中取糖果),记为一次操作.若三个盘子中的糖果数都相同,游戏结束.n次操作后的糖果数记为G0=(a0 ,b0 ,c0).(1)若G0=(4,7,10),则第______次操作后游戏结束;(2)小明发现:若G0=(4,8,18),则游戏永远无法结束,那么G2015=______【答案】:【解析】:第9题【填空题】我市教研室对2008年嘉兴市中考数学试题的选择题作了错题分析统计,受污损的下表记录了n位同学的错题分布情况:已知这n人中,平均每题有11人答错,同时第6题答错的人数恰好是第5题答错人数的1.5倍,且第2题有80%的同学答对.则第5题有______人答对.?【答案】:【解析】:第10题【填空题】有100个人,其中至少有1人说假话,又知这100人里任意2人总有个说真话,则说真话的有______人.【答案】:【解析】:第11题【填空题】甲、乙、丙、丁、戊与小强六位同学参加乒乓球比赛,每两人都要比赛一场,到现在为止,已知甲赛了5场,乙赛了4场,丙赛了3场,丁赛了2场,戊赛了1场,则小强赛了______场.【答案】:【解析】:第12题【解答题】在学习中,小明发现:命题“当n=1,2,3时,n^2-6n的值都是负数”是真命题.于是小明判断:“当n为任意正整数时,n^2-6n的值都是负数”这个命题也是真命题.小明的判断正确吗?请简要说明你的理由.【答案】:【解析】:第13题【解答题】甲、乙、丙、丁四人比赛象棋,每两人都比一盘,结果乙胜丁,并且甲、乙、丙胜的盘数相同,问丁胜了几盘?【答案】:【解析】:第14题【解答题】某足球协会举办了一次足球联赛,其积分规则为:胜一场得3分,平一场得1分,负一场得0分,当全部比赛结束(每队平均比赛12场)时,A队共积19分,请通过计算,判断A队胜、平、负各几场.【答案】:【解析】:第15题【解答题】有一座三层楼房不幸起火,一个消防员搭梯子爬往三楼去救一个小孩子,当他爬到梯子正中1级时,二楼窗口喷出了火,他就往下退了3级,等到火过了,他又爬了7级,这时屋顶有两块杂物掉下来,他又往下退了2级,幸好没有打中他.他又向上爬了8级,这时他距离梯子最高层还有1级,问这个梯子共有几级?【答案】:【解析】:。

八年级数学上册 5.6 几何证明举例 例题分析 几何证明选讲(拓展)素材 (新版)青岛版

八年级数学上册 5.6 几何证明举例 例题分析 几何证明选讲(拓展)素材 (新版)青岛版

例题分析:几何证明选讲例1 如图,在△ABC 中,∠BAC =90°,E 为AC 中点,AD ⊥BC 于D ,DE 交BA 的延长线于F .求证:BF ∶DF =AB ∶AC .【分析】欲证AF DF AC AB =,虽然四条线段可分配于△ABC 和△DFB 中,由于△ABC 和△FBD 一个是直角三角形,一个是钝角三角形,不可能由这一对三角形相似直接找到对应边而得结论,故需借助中间比牵线搭桥,易证Rt△BAC ∽Rt△BDA ,得出=AC AB AD BD ,于是只需证出ADBD AF DF =,进而须证△DFB ∽△AFD 即可. 证明:∵AB ⊥AC ,AD ⊥BC ,∴Rt△ABD ∽Rt△CAD ,∠DAC =∠B ,∴AD BD AC AB =……① 又∵AD ⊥BC ,E 为AC 中点,∴DE =AE ,∠DAE =∠ADE ,∴∠B =∠ADE ,又∵∠F =∠F ,∴△FAD ∽△FDB ,∴DF BF AD BD =………②, 由①②得⋅=DFBF AC AB 【说明】由于△ABC 和△FBD 这两个三角形一个是直角三角形,一个是钝角三角形,明显不相似,不可能由这一对三角形相似直接找到对应边而得结论,且图中又没有相等的线段来代换,势必要找“过渡”的线段或线段比,这种寻找“中间”搭桥的线段或线段比是重要的解题技巧.此题用到直角三角形中斜边上的高这个“双垂直”的基本图形,这里有三对相似三角形,这个图形在证相似三角形中非常重要.例2 △ABC 中,∠A =60°,BD ,CE 是两条高,求证:BC DE 21= 【分析】欲证BC DE 21=,只须证21=BC DE . 由已知易得21=AB AD ,于是只须证明,ABAD BC DE = 进而想到证明△ADE ∽△ABC ,这可以由21==AC AE AB AD 证得. 证明:∵∠A =60°,BD ,CE 是两条高,∴∠ABD =∠ACE =30°∵AB AD 21=,AC AE 21=,∴21==AC AE AB AD ,又∠A =∠A ∴△ADE ∽△ABC ,∴BC DE AB AD BC DE 2121=∴==. 【说明】在判定相似三角形时,应特别注意应用“两边对应成比例且夹角相等,则两三角形相似”这条判定定理.例3 已知:如图,△ABC 中,AD ⊥BC 于D ,CE ⊥AB 于E ,AD 、EC 交于F ,求证BDFD AD CD =【分析】CD 、FD 在△FDC 中,AD 、BD 在△BDA 中,所以证△FDC 与△BDA 相似便可以得到结论.证明:∵AD ⊥BC 于D ,CE ⊥AB 于E ,∴∠ADC =∠ADB =90°,∵∠BAD +∠B =90°,∠BCE +∠B =90°,∴∠BAD =∠BCE ,∴△FDC ∽△BDA , ∴⋅=BDFD AD CD 【说明】为什么找到△FDC 与△BDA 相似呢?从求证的比例式出发,“竖看”,线段CD 、AD 在△ADC 中,但线段FD 、BD 却不在一个三角形中;那么“横瞧”,CD 、FD 在△FDC ,AD 、BD 在△BDA 中,所以证△FDC 与△BDA 相似便可以得到结论.小结为“横瞧竖看分配相似三角形”.例4 如图,平行四边形ABCD ,DE ⊥AB 于E ,DF ⊥BC 于F ,求证:AB ·DE =BC ·DF【分析】化求证的等积式为比例式:DE DF BC AB =,又因为CD =AB ,AD =BC ,即证明比例式DEDF AD CD = 证明:∵平行四边形ABCD ,∴∠C =∠A ,∵DE ⊥AB 于E ,DF ⊥BC 于F ,∴∠AED =∠DFC =90°,∴△CFD ∽△AED ,∴DE DF AD CD = ∵CD =AB ,AD =BC ,∴DE DF BC AB =即AB ·DE =BC ·DF . 【说明】DEDF BC AB =,“横瞧竖看”都不能分配在两个三角形中,但题中有相等的线段:CD =AB ,AD =BC 所以可横瞧竖看用相等线段代换过来的比例式:DEDF AD CD =,这个比例式中的四条线段可分配在两个相似三角形中.例5 AB 是⊙O 的直径,点C 在⊙O 上,∠BAC =60°,P 是OB 上一点,过P 作AB 的垂线与AC 的延长线交于点Q ,连结OC ,过点C 作CD ⊥OC 交PQ 于点D .(1)求证:△CDQ 是等腰三角形;(2)如果△CDQ ≌△COB ,求BP ∶PO 的值.【分析】证明△CDQ 是等腰三角形,只需证明∠DCQ =∠Q ,利用题目中已有的相似三角形和等腰三角形把这两个角的关系建立起来.并可以得到各边的比例关系,不妨把圆的半径设为1,简化计算.(1)证明:由已知得∠ACB =90°,∠ABC =30°,∴∠Q =30°,∠BCO =∠ABC =30°.∵CD ⊥OC ,∴∠DCQ =∠BCO =30°,∴∠DCQ =∠Q ,∴△CDQ 是等腰三角形.(2)解:设⊙O 的半径为1,则AB =2,OC =1, .3,121===BC AB AC ∵等腰三角形CDQ 与等腰三角形COB 全等,∴CQ =BC =3. ∵31+=+=CQ AC AQ ,,23121+==AQ AP ∴=-=AP AB BP 2332312-=+- 231+=-=AO AP PO 2131-=-, ∴3:=PO BP .【说明】利用好相似三角形对应角相等的条件,进行角的转化是解题中常用的技巧. 例6 △ABC 内接于圆O ,∠BAC 的平分线交⊙O 于D 点,交⊙O 的切线BE 于F ,连结BD ,CD .求证:(1)BD 平分∠CBE ;(2)AB ·BF =AF ·DC .【分析】可根据同弧所对的圆周角及弦切角的关系推出.由条件及(1)的结论,可知BD =CD ,因此欲求AB ·BF =AF ·DC ,可求BFBD AF AB =,因此只须求△ABF ∽△BDF 即可. 证明:(1)∵∠CAD =∠BAD =∠FBD ,∠CAD =∠CBD ,∴∠CBD =∠FBD ,∴BD 平分∠CBE .(2)在△DBF 与△BAF 中,∵∠FBD =∠FAB ,∠F =∠F ,∴△ABF ∽△BDF ,BF BD AF AB ,∴AB ·BF =BD ·AF . 又∵BD =CD ,∴AB ·BF =CD ·AF . 例7 ⊙O 以等腰三角形ABC 一腰AB 为直径,它交另一腰AC 于E ,交BC 于D .求证:BC =2DE【分析】由等腰三角形的性质可得∠B =∠C ,由圆内接四边形性质可得∠B =∠DEC ,所以∠C =∠DEC ,所以DE =CD ,连结AD ,可得AD ⊥BC ,利用等腰三角形“三线合一”性质得BC =2CD ,即BC =2DE .证明:连结AD ∵AB 是⊙O 直径 ∴AD ⊥BC∵AB =AC ∴BC =2CD ,∠B =∠C∵⊙O 内接四边形ABDE∴∠B =∠DEC (四点共圆的一个内角等于对角的外角)∴∠C =∠DEC ∴DE =DC∴BC =2DE例8 ⊙O 内两弦AB ,CD 的延长线相交于圆外一点E ,由E 引AD 的平行线与直线BC 交于F ,作切线FG ,G 为切点,求证:EF =FG .【分析】由于FG 切圆O 于G ,则有FG 2=FB ·FC ,因此,只要证明FE 2=FB ·FC 成立即可.证明:∵在△BFE 与△EFC 中有∠BEF =∠A =∠C ,又 ∠BFE =∠EFC ,∴△BFE ∽△EFC ,FE FC FB FE ,∴FE 2=FB ·FC . 又∵FG 2=FB ·FC ,∴FE 2=FG 2,∴ FE =FG .。

八年级数学上册 第五章 几何证明初步 5.6.5 几何证明举例同步练习 (新版)青岛版

八年级数学上册 第五章 几何证明初步 5.6.5 几何证明举例同步练习 (新版)青岛版

5.6.5 几何证明举例1. 两个直角三角形全等的条件是( )A.一锐角对应相等;B.两锐角对应相等;C.一条边对应相等;D.两条边对应相等2. 如图,∠B=∠D=90°,BC=CD ,∠1=30°,则∠2的度数为( )A. 30°B. 60°C. 30°和60°之间D. 以上都不对12ABC D3. 如果两个直角三角形的两条直角边对应相等,那么两个直角三角形全等的依据是( )A. AASB.SASC.HLD.SSS4. 已知在△ABC 和△DEF 中,∠A=∠D=90°,则下列条件中不能判定△ABC 和△DEF 全等的是( ) A.AB=DE,AC=DF B.A C =EF ,BC=DF C.AB=DE,BC=EF D.∠C=∠F,BC=EF5. 如图,AB ∥EF ∥DC ,∠ABC=90°,AB=DC,那么图中有全等三角形( )A.5对;B.4对;C.3对;D.2对6.如图,已知AC ⊥BD 于点P ,AP=CP ,请增加一个条件,使△ABP ≌△CDP (不能添加辅助线),你增加的条件是_________________________________7.如图,在Rt △ABC 和Rt △DCB 中,AB=DC ,∠A=∠D=90°,AC 与BD 交于点O ,则有△________≌△________,其判定依据是________,还有△________≌△________,其判定依据是________.第6题图 第7题图 第8题图8.如图,在△ABC 中,AD ⊥BC 于D ,BE ⊥AC 于E ,AD 与BE 相交于点F ,若BF=AC ,则∠ABC=_______9. 如图 AB=AC ,CD ⊥AB 于D ,BE ⊥AC 于E ,BE 与CD 相交于点O .(1)求证AD=AE;(2)连接OA,BC,试判断直线OA,BC的关系并说明理由.参考答案1.D 2.B 3.B 4.B 5.C6. BP=DP或AB=CD或∠A=∠C或∠B=∠D.7.ABC,DCB,HL,AOB,DOC,AAS. 8. 45°9.(1)证明:在△ACD与△ABE中,∵∠A=∠A,∠AD C=∠AEB=90°,AB=AC,∴△ACD≌△ABE,∴AD=AE.(2)互相垂直,在Rt△ADO与△AEO中,∵OA=OA,AD=AE,∴△ADO≌△AEO,∴∠DAO=∠EAO,即OA是∠BAC的平分线,又∵AB=AC,∴OA⊥BC.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

5.6.几何证明举例(3)
学习目标:
1、能够推理证明线段垂直平分线的性质定理和判定定理,掌握命题证明的方法。

2、能运用证明定理的方法和定理本身内容解决问题。

3、培养学生的逻辑思维能力。

学习重点:线段垂直平分线的性质定理及其逆定理的内涵和证明
学习难点:线段垂直平分线性质定理及其逆定理的应用。

课前预习
1、什么叫线段的垂直平分线? 如何用尺规作出一条线段的垂直平分线?
2、线段垂直平分线有什么性质?
课内探究
一、定理的证明
(一)、段垂直平分线的性质的证明
任务一:(自主学习)我们在学习第二章图形的轴对称时学习的线段的垂直平分线的性质,同学们还记得当时是怎样进行探究的吗(课本45页)?你能用逻辑推理的方法证实它的真实性吗?
完成线段垂直平分线的性质证明
已知:
求证:
证明:(二)、段垂直平分线的性质的逆命题的证明
任务二:(合作探究)你能说出线段垂直平分线的性质定理的逆命题吗?
你认为它的逆命题正确吗?如果你认为正确,能加以证明吗?
完成线段垂直平分线的性质的逆定理证明
已知:
求证:
证明:
二、应用定理解题
例1、已知:如图,DE是△ABC的AB边的垂直平分线,分别交AB、BC于D、E,AE平分∠BAC
求证∠CAE=∠B 。

练习:
1、已知:AD⊥BC,BD=DC,点C在AE的垂直平分
线上
求证:①AB=AC=CE②DE =AB+BD
2、已知:如图AB=AC ,MB=MC .求证:直线AM 是线段BC 的垂直平分线
课堂小结 本节课有何收获? 这节课我学会了 当堂检测 1、下列说法:①若直线PE 是线段AB 的垂直平分线,则EA =EB ,PA =PB ;②若PA =PB ,EA =EB ,则直线PE 垂直平分线段AB ;③若PA =PB ,则点P 必是线段AB 的垂直平分线上的点;④若EA =EB ,则过点E 的直线垂直平分线段AB .其中正确的个数有( ) A .1个 B .2个 C .3个 D .4个 2、已知:如图,在ABC ∆中,BAC ∠的平分线交BC 于D ,且AB DE ⊥,
AC DF ⊥,垂足分别是E 、F . 求证:AD 是EF 的垂直平分线
.
课后提升 1、如图,在△ABC 中,AD 是∠BAC 平分线,AD 的垂直平分线分别交AB 、BC 延长线于F 、E 求证:(1)∠EAD=∠EDA ; (2)DF ∥AC (3)∠EAC=∠B 2、如图在△ABC 中,AB=AC, BC=12,∠BAC =120°,AB 的垂直平分线交BC 边于点E, AC 的垂直平分线交BC 边于点N. (1) 求△AEN 的周长. (2) 求∠EAN 的度数.(3) 求证:△AEN 是等腰三角形
3、已知,如图,在Rt △ABC 中,∠ACB=90°,AC=BC ,D 为BC 中点,CE ⊥AD 于E ,BF ∥AC 交CE 的延长线于点F ,求证:AB 垂直平分DF .
F
E D C B A A B C D E M N。

相关文档
最新文档