燃气管道单位压降计算
气体管道压降和储气量计算

气体管道压降和储气量计算一、气体管道压降计算气体在管道中输送会产生压力损失,这个损失称为压降。
正确计算气体管道压降可以保证气体输送的效率,避免发生压力不足的情况。
1.管道内阻力:由于气体与管壁之间的摩擦引起,管道越长、直径越小,阻力越大。
2.凸耗散:气体在管道的弯曲和局部收缩处发生污染和湍流,会导致能量损失。
3.突破及扩张:当气体通过突然变化截面积或管道直径的地方,会发生局部的能量损失。
4.气体输送速度:气体的流速越大,压降越大。
根据Darcy-Weisbach公式,气体管道的压降可以通过以下公式计算:△P=(f*L*ρ*V^2)/(2*D)其中:△P表示压降,单位为帕斯卡(Pa)f表示摩擦系数L表示管道长度,单位为米(m)ρ 表示气体密度,单位为千克/立方米(kg/m^3)V表示气体流速,单位为米/秒(m/s)D表示管道直径,单位为米(m)在实际计算中,需要根据实际情况选择合适的摩擦系数。
一般可根据管道材质和管道内壁状况选择常用值,如钢管的摩擦系数一般取0.02储气量计算是指计算在给定的压力和容器大小下,可储存的气体总量。
储气量的计算对于气体储存和输送系统的选型和设计至关重要。
储气罐的储气量可以通过以下公式计算:V=P*π*R^2*H其中:V表示储气罐的总容量,单位为立方米(m^3)P表示气体储存的压力,单位为帕斯卡(Pa)π表示圆周率,取近似值3.14R表示储气罐的半径,单位为米(m)H表示储气罐的高度,单位为米(m)储气罐的形状可以是圆柱形、球形或其他形式,根据实际情况选择合适的形状和尺寸。
需要注意的是,在实际工程设计中,还需要考虑安全因素和储气罐的利用率。
例如,需要留出一定的安全裕度,避免储气罐充满后压力过高;同时,还需要考虑储气罐的利用率,尽量提高储气设备的装载量。
综上所述,气体管道压降和储气量计算是工程设计中的重要内容,它们能够帮助设计人员合理选择管道尺寸和容器大小,保证气体输送的效率和安全。
低压燃气管道水力计算公式

低压燃气管道水力计算公式-CAL-FENGHAI.-(YICAI)-Company One1燃气管道输送水力计算一、适用公式燃气的管道输配起点压力为10KPa,按《城镇燃气设计规范》,应纳入中压燃气管道的范围。
但本设计认为,虽然成套设备的输出压力为10KPa,出站后,压力即降至10KPa以下。
整个管网系统都在10KPa以下的压力状态下工作,因此,在混空轻烃管道燃气输配过程的水力计算,应采取低压水力计算公式为宜。
二、低压燃气管道水力计算公式:1、层流状态 R e≤2100λ=64/R e R e=dv/γΔP/L=×1010(Q0/d4)γρ0(T/T0)2、临界状态 R e=2100~3500λ=+(R e-2100)/(65 R e-1×105)ΔP/L=×106[1+( Q0-7×104dγ)/(-1×105dγ)](Q02/d5)ρ0(T/T0)3、紊流状态 R e≥35001)钢管λ=[(Δ/d)+(68/ R e)]ΔP/L=×106[(Δ/d)+(dγ/ Q0)](Q02/d5)ρ0(T/T0)2)铸铁管λ=[(1/d)+4960(dγ/ Q0)]ΔP/L=×106[(1/d)+4960(dγ/ Q0)](Q02/d5)ρ0(T/T0)注:ΔP——燃气管道的沿程压力降(Pa) L——管道计算长度(m)λ——燃气管道的摩阻系数 Q0——燃气流量(Nm3/h)d——管道内径(mm)ρ0——燃气密度(kg/Nm3)γ——0℃和时的燃气运动粘度(m2/s)Δ——管壁内表面的绝对当量粗糙度(mm) R e——雷诺数T——燃气绝对温度(K) T0——273Kv——管内燃气流动的平均速度(m/s)(摘自姜正侯教授主编的《燃气工程技术手册》——同济大学出版社1993版P551)二、燃气的输配工况条件起点压力——10KPa 最大流速——10m/s燃气密度——Nm3(20℃和浓度20%时)纯轻烃燃气运动粘度——×10-6m2/s(0℃和时)燃气运动粘度——×10-6m2/s(0℃和时)三、钢管阻力降的计算与查表结果注:1、——*因计算数据与实际数据误差过大,已无计算、列表的必要。
中压燃气管道压力降计算

中压燃气管道压力降计算
一、引言
中压燃气管道是城市燃气输配系统的重要组成部分。
在设计和运行过程中,了解管道压力降对保证燃气供应的稳定性和安全性具有重要意义。
本文将详细介绍中压燃气管道压力降的计算方法及其影响因素,以期为燃气管道设计和管理提供参考。
二、中压燃气管道压力降计算方法
1.理论公式
根据达西-威斯巴赫(Darcy-Weisbach)公式,管道压力降计算公式为:ΔP = f × (L/D) × (ρ × v) / 2
其中,ΔP为压力降,f为摩擦阻力系数,L为管道长度,D为管道直径,ρ为燃气密度,v为流速。
2.实际应用中的修正
在实际应用中,需要对理论公式进行修正。
修正因素包括:
(1)流体性质:燃气中含有杂质,会对流速产生影响;
(2)管道粗糙度:管道内表面的粗糙度会影响摩擦阻力系数;
(3)工作条件:如温度、压力等。
管路压降计算公式

Dp=(L*450*Qc1.85)/(D5*P)L D P压降(bar)管道长度(m)管道内径(mm)压缩机排气口的绝对压力(bar)0.0012061320.59080.1258994741202580.6963281413005080.847726628502580.62513804510006580.22135675410008080.551212288150021981.571908462100040100.37218539812008080.0665774910002598 1 对于给定压力降,管网的最大许可长度之经济公式。
I=(⊿P*d5**P)/(450*QC1.85) I:管许可压降bar。
P:进口绝对压力bar。
QC:流量L/S。
d:管道内径。
设计一个管路系统,最好是环形布置,可缩空气从两个方向通到用气点,当间隙大量用气时压缩空气供应仍平衡。
4.2 确定储气罐容积公式:(只适用节方式的压缩机) V=Q/(8*⊿P) V:储气罐容积m3。
Q:最大压缩机的流量m3/min。
⊿P:设定的压差 bar。
压力空压机作大气量补充之储气罐容积计算公式: V=(Q*t)/(P1-P2)=L/(P1-P2) V:储气罐容积L。
Q:放气阶段。
t: 放气阶段的所需时间S。
P1:网络的标准工作压力bar。
P2:用气设备的最低压力bar。
L:补气段的空气L/工作周期。
4.3 直管之压降计算公式: ⊿P=450*{(Qv1.85*I)*(d5*P)} ⊿P: 压力降bar。
Qv:空气流量,L/S。
d: 内管径mm。
I:管长度 m。
P:绝对初始压力bar。
Qc压缩机排气量(l/s)m/min833.33333335016.666666671166.66666671075 4.5166.666666710166.6666667103333.33333320083.333333335200122083.333333125 I:管道总长m。
计算气体流量和压降的简化公式

气体流量和压降简化公式是用来计算气体流量和压降之间的关系的公式。
它可以帮助我们更好地理解气体流动的特性,从而更好地控制和利用气体流量。
简化公式的基本形式是:
流量=空气粘度×管长×管径×(压力降-静压降)/(入口温度×入口压力)
其中:
空气粘度:空气的动力粘性,也叫做空气的动力粘度,用米制单位μm2/s表示。
管长:气体流动管道的实际长度,单位是米。
管径:气体流动管道的内径,单位是米。
压力降:气体流动管道中压力的减小程度,单位是帕。
静压降:流体在管道中静止时的压力降低,单位是帕。
入口温度:气体流动入口处的温度,单位是摄氏度。
入口压力:气体流动入口处的压强,单位是帕。
根据上述简化公式可以看出,气体流量与空气粘度、管长、管径、压力降和入口温度等参数有关。
通常情况下,空气粘度、管长和管径是定值,压力降和入口温度是变量,可以根据实际情况而变化。
此外,简化公式还可以用来计算压降,公式为:
压力降=静压降+流量×(入口温度×入口压力)/(空气粘度×管长×管径)。
中压燃气管道计算示例

公式:式中:λ计算公式:钢管公式P165式中:λ--水力摩阻系数=(K/d+68/Re)^0.25lg--常用对数K--钢管内壁绝对粗糙度(m )规划P411d--管内径(m)Re--雷诺数规划P411Re计算公式式中:Re--雷诺数D--管道内径(m )ν--燃气在管道内的流速(m/s )v--燃气的运动粘度(m 2/s )Q--燃气管道的计算流量(m 3/h )T--设计中采用燃气的温度(K )T 0--273.15KP 2--燃气管道终点的压力(绝压kPa )Z--压缩因子,当燃气压力小于1.2MPa (表压)时,Z 取1L--燃气管道计算长度(Km )λ--水力摩阻系数见:GB50251-94 中3.3.2.3条 P7高压、次高压和中压燃气管道水力计算计算公式:按《城市燃气设计规范》GB50028-2006 中6.2.5条规定执行P46本计算表用于计算单一直管段的终点压力P 1--燃气管道起点的压力(绝压kPa )d--管道内径(mm )ρ--气体的密度(kg/m 3)Z T T d Q L P P 0521022211027.1ρλ⨯=-vD υ=Re 15.112.0100100mP Z +=原值Z 的计算公式:P m --计算管段的管道平均压力(MPa)Z--计算管段平均压力下的气体压缩系数15.112.0100100mP Z +=⎪⎪⎭⎫⎝⎛++=2122132P P P P P m-0.027580.00001塑料管.5条规定执行P46⎥⎦⎤⎢⎣⎡+-=λλRe 51.271.3lg 01.21d K。
燃气管道压降计算公式

燃气管道压降计算公式
燃气管道的压降是指气体在管道内流动时,由于摩擦、阻力等因素而引起的压力降低。
燃气管道的压降计算公式可以通过以下方式进行估算:
1.管道阻力计算公式:
管道阻力可通过DarcyWeisbach公式进行估算,其计算公式如下:
ΔP=f*(L/D)*(ρ*v^2)/2
其中,ΔP为压降,f为摩擦系数,L为管道长度,D为管道直径,ρ为气体密度,v为气体流速。
2.进口和出口压降计算:
燃气管道在进口和出口处也会存在压降,可以通过以下公式进行计算:
ΔP_in=(ρ*v^2_in)/2
ΔP_out=(ρ*v^2_out)/2
其中,ΔP_in为进口压降,ΔP_out为出口压降,v_in为进口处气体流速,v_out为出口处气体流速。
3.总压降计算:
燃气管道的总压降可以通过将上述三部分压降相加得到:
ΔP_total=ΔP+ΔP_in+ΔP_out
需要注意的是,上述公式仅为近似计算,实际情况会受到多种因素的影响,如管道材质、流体性质、管道形状等,因此在实际工程中,还需考虑更多的因素并结合实际情况进行综合计算。
同时,为确保安全运行,燃气管道的设计、施工和维护应符合相关标准和规范。
论文:燃气管道气密性试验允许压力降的计算

居民用户庭院燃气管道气密性试验压力降摘要:城镇燃气管道系统一般由储配站、输配管网、调压站以及运行管理操作和控制设施等共同组成。
因此,在进行燃气管道气密性试验时,需要重视允许压力降的计算。
本文就主要通过实例,介绍了燃气管道气密性试验允许压力降的计算问题。
关键词:燃气管道;气密性;压力降;计算一、城镇燃气管道系统城镇燃气管道在总体规划设计时,需要在可行性研究的基础上,做到远近期结合,以近期为主,在技术经济比较后确定合理的方案。
燃气管道的分类有很多种方法,分别是:1、按输气压力分类,见表 1。
2、按敷设方式分类,有埋地管道和架空管道。
3、按用途分类,分为长距离输气管线、城镇燃气管线。
4、按管网形状分类,有环状管网和枝状管网两类。
5、按管网压力级制分类,有单级系统、二级管网系统、三级管网系统、多级管网系统。
二、燃气管道的允许压力降计算根据计算流量和规定压力损失来计算管径,进而决定管道投资与材料消耗;对已有管道进行流量和压力损失的验算,以充分发挥管道的输气能力或决定是否需要对原有管道进行改造。
其中枝状管网的允许压力降计算,需要根据管线图和用气情况,确定管网各管段的计算流量,对管网的节点和管段编号,再根据给定的允许压力降及由于高程差而造成的附加压头,确定管线单位长度的允许压力降,接着根据管段的计算流量及单位长度允许压力降选择管径,根据所选定的标准管径,求沿程压力降和局部压力降,计算总的压力降,最后检查计算结果。
若总的压力降未超过允许值,并趋近允许值,则认为计算合格,否则应适当变动管径,直到总压力降小于并尽量趋近允许值为止。
而计算环状管网的允许压力降时,需要绘制管网平面示意图,管网布置应使管道负荷较为均匀,然后对节点、环网、管段进行编号,标明管道长度、燃气负荷、气源或调压站位置等,计算各管段的途泄流量。
按气流沿着最短路径从供气点流向零点 (不同流向燃气的汇合点)的原则,拟定环状管网燃气流动方向。
但在同一环内,必须有两个相反的流向。