1均相反应动力学1(ppt,课件)
化学反应工程-第2章

移项并积分得:
dCA kCA a CB b dt
CA 0
kt
dCA CA mCBn
CA
这时假设a,b分别为m, n ,则以时间t为横 坐标,以积分项 C
A0
CA
dC A m n C A CB
为纵坐标,当以具体数据代入时,作图就可 以得到斜率为k的直线。如果得到直线,则表明此 动力学方程是适合于所研究的反应的。若得到曲 线,则表明此动力学应被排除,应该重新假设a, b的值而加以检验。
即:
ln
C Ae
C A0 C Ae C A C Ae
1 k1 1 t K
代入2-20式得:
将实验测得的CA-t数据,按照上式 C
ln
C A0
A
C Ae C Ae
与t作图可以得一条直线,斜率为k1+k2, 又因为k1/k2可知,因此可以求出 k1,k2 值。
2.2 等温恒容过程 ⑵ 反应转化率
第二章 均相反应动力学基础
反应物A的转化率可以用下式定义
反应物A的转化量 n A 0 n A xA = A的起始量 n A0
注意: ① 转化率恒为正。 ② 反应物一般指关键反应物(限制反应物、着眼反应物), 其是以最小化学计量量存在的反应物。 ③ 根据nA0的选择不同,有单程转化率(以反应器进口物料 为基准,如氨合成过程的合成塔进口循环气。)和总转化率 (以过程进口物料为基准,如氨合成过程的新鲜气。)。
如果cA0远远小于cB0,cB在全部反应时间里近似 于不变,则二级反应可以作为拟一级反应处理。
适用范围:
利用积分法求取动力学方程式的过程, 实际上是个试差的过程,它一般在反应级 数是简单整数时使用。当级数为分数时, 试差就比较困难,这时应该用微分法。 其他不可逆反应动力学方程式的 积分式见书上表2-4.
第二章 均相反应动力学基础

2.2 等温恒容过程
2.2.1 单一反应动力学方程的建立
2.2.1.1 积分法 (1)不可逆反应
A
P
恒容系统中:
(rA)ddctA kcA
设:α =1,分离变量积分,代入初始条件t=0,C=CA0 可得:
ln
C A0 CA
kt
2.2 等温恒容过程
以
ln
C A0 CA
1
CA0CA
dC CA
CA0
A
2.2 等温恒容过程
(2) 瞬时选择性和总选择性
瞬时 选择性:
单 位 时 间 生 成 目 的 产 物 的 物 质 的 量 SP单 位 时 间 生 成 副 产 物 的 物 质 的 量
选择性:
生 成 的 全 部 目 的 产 物 的 物 质 的 量 S 0 生 成 全 部 副 产 物 的 物 质 的 量
Rg 气体常数,8.314J/(mol.K)
2.1 概述
1 反应速率的量纲
反应速率常数的量纲与反应速率和f(Ci)的量纲有关:
kcri fCi
ri的量纲为M.t-1.L-3。 f(Ci)的量纲取决于反应速率方程。例如,反应速率方程为:
ri kcCAaCBb
浓度Ci的量纲为M.L-3,则浓度函数的量纲为(M.L-3)a+b。
① 反应速率与温度、压力、浓度均有关,但三者中只有 两个为独立变量。 ② 有某些未出现在反应的化学计量关系中的物质会显著 影响该反应的反应速率。能加快反应速率的物质称为催 化剂,而能减慢反应速率的物质称为阻抑剂。 ③ 恒温下,反应速率是时间的单调下降函数。
2.1 概述
2 反应速率方程
反应速率方程的一般式为:
最新第11章反应动力学基础ppt课件

• 非等分子反应:计量系数的代数和非为零(可正、可
负),A物质膨胀因子如下 APQ AAB
膨胀因子的计算
• 例题:已知某反应反应计量式如下:A+2B=3C+4D B物质的膨胀系数
B342 122
D物质的膨胀系数
D344 121
计算膨胀因子的意义
A A B B P P Q Q
• 计量方程:表示参与反应的各组分量的变化,与反应
历程无关。 A M A B M B P M P Q M Q
• 计量方程中M表示各组分的摩尔质量
膨胀因子的计算
• 每消耗1mol的某反应物所引起的反应系统总物质的量
的变化量(δ)称为该反应物的膨胀因子。
A(nn0)nA 0nA
反应速率的定义
• 单位时间单位体积反应层中某组分的反应量或生成量
ri
1 V
dni dt
• 对于简单反应 A P
rA
dnA Vdt
rP
dnP Vdt
• rA 视为一整体
气-固相反应的反应速率
以固体催化剂的质量(m)、表面积(S)、颗粒体积(Vp)为
基准的反应速率
rA
dnA Vdt
m、S、Vp
(-rA)V=(-rAm)m= (-rAs)S= (-rAVp)Vp
rAm,rAs,rAVp
• 【例题11.3.1】某气固相催化反应在一定温度和浓度 条件原料A的反应速率为 rA m3.0 1 3 0 m/o s[g l催 ( 化 )。] 剂 已知催化剂填充层的填充密度为 = 1.20g/cm 3,填充层
空隙率 =0.40 。试分别计算以反应层体积和催化剂
化学反应工程知识点复习 ppt课件

k之所以称之为常数,是指当反应温度不变时,k是个 常数,当反应温度变化较大时它就不再是常数。 活化能E,根据过度状态理论,反应物生成产物,要 超过一个能垒,因此E的取值永远是正值。
图2-1
lnk与1/T是直线关系 -E/R为斜率 lnk0为截距
通过实验测出不同温度下的 速率常数k,作图根据截距 就可以求出指前因子k0,再 根据直线的斜率求出活化能 E
对于(恒容)气相反应,由于分压与浓度成正比,也可 用分压来表示。
( r )
1
dn A
k
P P
A V dt
pA B
问题:
化学反应速率式为,rAKCC ACB
如用浓度表示的速率常数为Kc, 用压力表 示的速率常数Kp,则Kc= Kp
化学反应工程知识点复习
(3) 基元反应 基元反应指反应物分子一步直接转化为产物分子的反应 。 凡是基元反应,其反应速率遵循质量作用定律,即根据 化学计量关系,就可以写出反应速率方程。 (4)反应级数 反应级数:指浓度函数中各组分浓度的幂数。
•答:1/3 1/2
冪数型动力学方程和双曲型动力学方程
1)幂数型动力学方程 aA+bB=rR+sS
实验研究得知,均相反应速率取决于物料的浓度
和温度,反应速率符合下述方程,称之为幂数型
动力学方( r A ) k A c A c B
k cA cB
式中k称作反应速率常数;α、β是反应级数。
对二级不可逆反应:
A + B → 产物
其反应速率方程为:
rA
dCA dt
CA0
dxA dt
k CACB
k CA01 xACB0 CA0xA
高分子合成工艺学1.化学反应工程基础PPT课件

2021/3/3
5
按反应过程进行的条件分类(外部条件)
操作方式 温度条件
间歇反应 半连续反应 连续反应 等温反应 绝热反应 非绝热变温反应
2021/3/3
6
二、反应速率(均相反应)
1.定义:单位时间单位反应体积中所生成(或消 失)的某组分的摩尔数。 Ci=ni/V
=
……(a)
恒容时
式中 ri为体系中i组分的反应速率,ni为i组分 的摩尔数, V为反应体积, Ci 为i组分的浓 度。
2021/3/3
11
2、按反应器的结构型式分类(除图2-1 各种结构 型式的反应器外)
(1)管式反应器。长径比为40~2000。用于快速的气相 和液相反应,对有压力的反应尤为适用。其体积最小, 单位体积的传热面最大(如高压聚乙烯)。
(2)釜式反应器。长径比为2~3。化工生产中使用最广 泛,占80%~90%。适用于液相、液-液相、气-液相及 液-固相反应。釜式反应器 的适应性及操作弹性都很大 (如 PVC、PP、PE的聚合)。
2021/3/3
12
(3)塔式反应器。长径比为2~40。 如苯乙烯本体聚合、己内酰胺的缩聚
(4)硫化床反应器 反应器 传热好、温度均匀、易控 制。 (如聚丙烯反应器)
2021/3/3
13
3、按操作方式分类 (1)间歇反应器(分批式反应器)。采
用釜式反应器。间歇反应是不稳定过程。 操作灵活性和弹性大。
加入,其余物料连续加
入,或者将某种产物连
续取出。
A
C
2、非稳态操作。 t
0
2021/3/3
16
四、连续流动反应器内流体的两种理想型态(4. 按流 体流动及混合形式分类:)
化学反应工程第二章均相反应动力学基础

2.1.3 反应的转化率、选择性和收率
⑵选择率(性)S 对于复杂反应只用转化率来反映过程的经济性是不够的, 因为对于复杂反应,尽管转化率很大,但如果大量转化
为副产品,反而经济性会更低,副产物多,一方面增加
了原料的消耗,另一方面产品中副产物多也增加了分离 过程的费用,所以必须用选择性S(或收率Y)来表示。
A+ B+…+ R+ S+…= =0
(2-2)
2.1.2 单一反应和复杂反应
如果反应器内只进行一个不可逆的反应: aA+bB rR+sS (2-3)
则把该反应叫单一反应或简单反应。
2.1.2 单一反应和复杂反应
如果在反应系统中发生两个或两个以上的化学反应,则 称为复杂反应,可大致分为下述几类。 ⑴可逆反应:
率增大,但不同反应在不同情况下增加的程度不一样, 即代表温度对反应速率的影响项,可由阿累尼乌斯公式 反映:
k A k 0 e
E
RT
(2-19)
2.1.5 反应动力学方程
活化能的大小是反应难易性和反应速率对温度敏感性的 一种标志,从式(2-19)式中kA与E的关系可以说明这点。
表2-2 反应温度和活化能一定时使反应速率加倍所需温升
n A0 n A xA n A0
(2-1)
2.1.3 反应的转化率、选择性和收率
对间歇操作的反应器,一般是反应开始状态时的n A 0 ,对 大多数间歇操作,A组分在反应器中的时间越长,转化成 的产品就越多,直到反应达到平衡或反应物被耗尽。因
此,间歇系统中转化率是时间的函数,由式(2-1)可得:
由方程知实际转化的摩尔数为:
7.05-1.7=5.35 实际生成丁二烯的摩尔数为: 4.45-0.06=3.99 则相应转化为丁二烯的正丁烯的摩尔数也为:3.99
均相反应动力学基础

齐齐哈尔大学化学反应工程教案第二章均相反应的动力学基础2.1 基本概念与术语均相反应:是指在均一的液相或气相中进行的反应。
均相反应动力学是研究各种因素如温度、催化剂、反应物组成和压力等对反应速率反应产物分布的影响,并确定表达这些因素与反应速率间定量关系的速率方程。
2.1- 1化学计量方程它是表示各反应物、生成物在反应过程的变化关系的方程。
如N2+3H2===2NH3一般形式为:2NH3- N2-3H2== 0有S个组分参与反应,计量方程::人g2A2亠亠:s A s =0SZ ctjAi =0或i生式中:A i表示i组分a i为i组分的计量系数反应物a i为负数,产物为正值。
注意:1.化学计量方程仅是表示由于反应而引起的各个参与反应的物质之间量的变化关系,计量方程本身与反应的实际历程无关。
2. 乘以一非零的系数入i后,可得一个计量系数不同的新的计量方程S ■- .p r- i A i =0i 13. 只用一个计量方程即可唯一的给出各反应组分之间的变化关系的反应体系——单一反应;必须用两个(或多个)计量方程方能确定各反应组分在反应时量的变化关系的反应,成为复合反应。
CO+2H2=CH3OH CO+ 3H2=CH4+ H2O2.1- 2化学反应速率的定义化学反应速率是以单位时间,单位反应容积内着眼(或称关键)组分K的物质量摩尔数变化来定义K组分的反应速率。
:A A :B B=、s S :R R_ dnA (由于反应而消耗的A的摩尔数)Vdt (单位体积)(单位时间)1 dn A 1 dn B 1 dn s 1 dn Rr B r s r R二V dt V dt V dt V dt齐齐哈尔大学化学反应工程教案4.n 0 yK 0KnK0 - n KnK0 K当V 恒定时,组分K 反应掉的摩尔数 n K0 - n K反应程度是用个组分在反应前后的摩尔数变化与计量系数的比值来定义的,用Z 表示。
n i - ng n K 卞。
化学反应工程第一章1

aA bB rR sS 0
化学反应计量式只表示参与化学反应的各 组分之间的计量关系,与反应历程及反应可以 进行的程度无关。 化学反应计量式不得含有除1以外的任何公因
子。具体写法依习惯而定,
SO 2 1 2 O2 SO3 与 2SO2 O2 2SO3
把化学反应定义式和化学反应动力学方程
相结合,可以得到:
1 dnA m n rA kcA cB V dt
直接积分,可获得化学反应动力学方程的 积分形式。
对一级不可逆反应,恒容过程,有:
dcA rA kcA dt
cA 0 1 kt ln ln cA 1 xA
第一章
均相单一反应动力学和理想反应器
一、基本概念
1.化学反应式 反应物经化学反应生成产物的过程用定量关 系式予以描述时,该定量关系式称为化学反应式:
aA bB rR sS
2.化学反应计量式
aA bB rR sS
是一个方程式,允许按方程式的运算规则
5. 化学反应速率
⑴ 反应速率定义为单位反应体系内反
应程度随时间的变化率。对于均相反应,单
位反应体系是指单位反应体积:
1 d r V dt mol m 3s 1
⑵ 常用的还有以反应体系中各个组份
分别定义的反应速率:
1 dnA rA V dt mol m 3s 1
对于反应:
t/hr 醋酸转化量 ×102/kmol.m-3 0 0 1 1.636 2 2.732 3 3.662 4 4.525 5 5.405 6 6.086 7 6.833 8 7.398
试求反应的速率方程
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
CA0
CA
xA
nAO nA nAO
反应掉的 A的物质的量 反应开始时 A的物质的量
CA0 CA CA0
ln( CA0 ) ln( 1 ) kt
CA
1 xA
若将ln(CA0/CA) 或 ln[1/(1-XA)]对 t 作图,可 得一条通过原点斜率为k的 直线。若将同一反应温度下 的实验数据加以标绘,如果 拟合,表明反应级数正确。 如果是曲线,需要重新假设 反应级数
间的关系式。
aA bB pP sS
(rA ) kccAcB
等温恒容不可逆反应的速率方程及其积分式
反应式
速率方程
速率方程积分式
A→P(零级)
A→P(一级)
2 A P(二级) A B P(cA0 cB0 )
dcA k dt
dcA dt
k cA
dcA dt
化学反应工程
主讲:余卫芳 Chemical Reaction Engineering
化学反应速率的定义:
单位时间,单位体积内物料(反应物或产物)数 量(摩尔数)的变化。
(rA )
1 V
dnA dt
(单位时A间的)消(耗单量位体
积)
化学反应动力学方程:
定量描述反应速率与影响因素(浓度、温度等)之
C C A0
n A
0t
达20%时, CA 0.8CA0
式中M为常数
k 300
M
1 12.6
k 340
M
1 3.2
ln k340 ln M / 3.2 E ( 1 1 )
k 300
M /12.6 8.314 300 340
E=29.06(kJ/mol)
在一均相恒温反应中,当反应物的初始浓 度为0.04mol/L和0.08mol/L时,在34min内 单体均消失20%。求动力学方程表达式。
为了表征由于反应物系体积变化给反应速 率带来的影响,引入两个参数,膨胀因子 和膨胀率。
膨胀因子
反应式 aA bB rR sS
计量方程
II AA BB RR SS 0
定义膨胀因子
A
I
A
即关键组份A的膨胀因子等于反应计量系数的 代数和除以A组分计量系数的相反数。
解题思路: (1)正确判断反应级数
由题意:单体的初始浓度为 0.04mol/L和0.08mol/L,在34min 内单体均消失20%,说明反应时间仅 与转化率有关,与初始浓度无关,故 此反应为一级反应。 (2) 选用一级反应的积分结果公式解 题,求出反应速率常数。 (3) 完整表达动力学方程式。
反应速率常数,k
k cA2
k t c A0 c A c A0 x A
kt
ln
c A0 cA
ln
1
1 x
A
kt 1 cA
1 c A0
1 c A0
1
x
A
x
A
A
B
P(c A0
cB0() 二级)
dcA dt
k cAcB
kt
cB0
-
微分法
(1)在等温条件下实验,得到反应器中不同 时间反应物浓度的数据。 (2)将实验所得的浓度-时间数据作图,绘 出光滑曲线。 (3)用测量各点斜率的方法进行数值或图解 微分,得到不同时刻的反应速率数据。 (4)将不可逆反应速率方程线性化,将实验 数据在特定坐标系作图,求得反应速率常数 和级数。
反应A → B为n级不可逆反应。已知在300K 时要使A的转化率达到20%需12.6分钟,而 在340K时达到同样的转化率仅需3.20分钟, 求该反应的活化能E。
:
rA
dCA dt
kCAn
分离变量积分
1 1 1
n
1
C
n1 A
C n1 A0
kt
CA dCA tdt
1
c A0
ln
cB c A0 c AcB0
cB0
1 c A0
ln
1 1
xB xA
A P(n级)
dcA dt
k cAn
kt
n
1
1
(c1An
c1A0n )
1
c
n1 A0
[(1
x A )1n
1]
建立动力学方程的方法
动力学方程式的建立:
实验反应器
间歇 连续
实验数据
反应速率常数 反应级数
(1)在等温条件下实验,测定各时刻浓度,得到组 分浓度和时间的关系ci=f(t),通过数据回归,确定反 应级数和这个温度下的速率常数;
(2)改变温度,确定速率常数与温度的关系。
1、积分法
N
根据反应 机理
推测
动力学 方程形式
运算
C-t关系 并作图
线性关 系否?
Y
1)根据对反应的初步分析,先推测一个动力学方 正确的动
程的形式(幂函数型);
力学方程
2)假设反应级数,对动力学模型方程进行积分,
得到在某一特定坐标系上表征该动力学方程的浓度
与时间的关系的直线(f(ci)=kt) 3)将实验中得到的ti下的ci数据代f(ci)函数中,得 到各ti下的f(ci) 。 4)以时间t为横坐标, f(ci) 为纵坐标绘图,如果
2A B 3C
A
2
1 2
3
0
膨胀因子是由反应式决定的,一旦反应式 确定,膨胀因子就是一个定值,与其它因 素一概无关。
A. 0
B. 1
C. 2
D. 3
变容反应过程
理想置换反应器是一种连续流动反应器, 可以用于液相反应,也可以用于气相反应 。用于气相反应时,有些反应,反应前后 摩尔数不同,在系统压力不变的情况下, 反应会引起系统物流体积发生变化。物流 体积的改变必然带来反应物浓度的变化, 从而引起反应速率的变化。
膨胀因子和膨胀率
得到过原点的直线,则表明所假设的动力学方程是
正确的,其直线的斜率为反应速率常数k。
举例:不可逆反应 AP
反应条件:等温恒容系统
假设一级反应 分离变量积分
(rA
)
dC A dt kCA源自 CA dCA k
t
dt
C C A0
A
0
ln( CA ) ln( CA0 ) kt
(rA ) kCACB
[时间] -1 [浓度] (1-n)
N :反应总级数
1.反应A + B → C,已知 k 0.15s 1 , 则反应级数n=_______
A. 0
B. 1
C. 2
D. 3
2.反应3A → P,已知 k 0.15mol / l s ,则反应级数
n=_______