导航系统

导航系统
导航系统

第1 章绪论

1.1 导航的基本概念

导航是引导运载体到达预定目的地的过程。导航分两类:(1)自主式导航,用飞行器或船舶上的设备导航,有惯性导航、多普勒导航和天文导航等;(2)非自主式导航,用于飞行器、船舶、汽车等交通设备与有关的地面或空中设备相配合导航,有无线电导航、卫星导航。在军事上,导航还要配合完成武器投射、侦察、巡逻、反潜和援救等任务。高效、高精度的导航系统更是我国这种发展中国家赶超发达国家的战略性资源和倍能器。在军用方面,随着新时期军事战略方针的转变及高新技术武器装备的发展,导航定位定向系统已经成为我军现代化建设中一项不可缺少的重要军事技术装备,其重要性表现在:它是信息战必不可少的基础设备,是建立战场统一坐标的前提,是快速、准确火力部署的保障,同时又是实现武器精确打击能力的必要条件。所以,导航定位定向系统对迅速提高我军的综合作战能力,加快数字化部队建设至关重要;在民用方面,国外的导航定位定向系统己在大地测量、定向钻并、隧道掘进、地面车辆导航、飞机进场着陆、航天航空遥感、机载重力测量、公路监测、地下油气管道监测、矿井监测、激光断面监测等方面得到广泛地的应用,并取得了巨大的经济效益。

在日常生活中我们经常接触到的导航是车载导航,车载导航属于非自主式导航,车载导航是利用车载GPS(全球定位系统)配合电子地图来进行的,汽车GPS导航系统由两部分组成:一部分由安装在汽车上的GPS接收机和显示设备组成;另一部分由计算机控制中心组成,两部分通过定位卫星进行联系。

1.2 惯性导航(INS)概述

通常说的惯性技术,是惯性器件、惯性测量、惯性导航、惯性制导和惯性稳定等技术的统称。惯性技术既是一门学科,也是一门工程技术,在陆、海、空、天各个领域有着广泛应用。惯性器件(陀螺仪和加速度计)、惯性仪表、惯性导航系统都是以牛顿力学定律为基础的。惯性导航系统通过加速度计实时测量载体运动的加速度,经积分运算得到载体的实时速度和位置信息。

惯性技术是对载体进行导航的关键技术之一,惯性技术是利用惯性原理或其它有关原理,自主测量和控制运载体运动过程的技术,惯性测量和惯性敏感器技。

现代惯性技术在各国政府雄厚资金的支持下,己经从最初的军事应用渗透到民用领域。惯性技术在国防装备技术中占有非常重要的地位。对于惯性制导的中远程导弹,一般说来命中精度70%取决于制导系统的精度。对于导弹核潜艇,由于潜航时间长,其位置和速度是变化的,而这些数据是发射导弹的初始参数,直接影响导弹的命中精度,因而需要提供高精度位置、速度和垂直对准信号。目前适用于潜艇的唯一导航设备就是惯性导航系统。

1.3 卫星导航概述

卫星导航是采用导航卫星对地面、海洋、空中和空间用户进行导航定位的技术。卫星导航系统通过测定的载体到导航卫星的距离、距离差等参数,并结合获取的或计算机得到的导航卫星瞬时位置来确定载体位置。目前主要有美国的GPS、俄罗斯的GLONASS、欧洲的GALILEO和我国的北斗导航卫星系统。这里主要介绍GPS导航定位。

GPS系统主要由空间部分、地面部分及用户设备组成,GPS的空间部分由24颗卫星组成,包括21颗工作星和三颗备份卫星,位于距地面20200km高度的近圆轨道上,24颗卫星均匀分布在6个轨道面上,轨道倾角为55度,这样可以确保地球上的任何一个地方都可以同时观测到6~11颗卫星。布置在轨道上的备份星,可随时进入工作状态。GPS卫星导航系统具有全球覆盖、全天候工作、定位精度高和用途广的优点。地面控制部分由一个主控站、三个注入站和若干监测站组成,主控站通过注入站向所有GPS卫星注入新的导航信息,确保卫星的导航数据和时钟信息的精确性。用户设备部分包括接收机硬件和机内软件以及GPS数据的后处理软件包,其主要功能是能够捕获到按一定卫星截止角所选择的的待测卫星,并跟踪这些卫星的运行。当接收机捕获到跟踪的卫星信号后,就可测量出接收天线至卫星的伪距和伪距率,解调出卫星轨道参数等数据。

1.4 组合导航概述

组合导航是现代导航理论和技术发展的必然结果。每种单一的导航系统都存在着各自的独特性能和局限性,几种不同的单一系统组合在一起,利用多种信息

源互相补充,构成一种具有更多余度和更高导航精度的多功能系统即为组合导航系统。根据不同的应用要求与目的,可以构成不同的组合导航系统,由于惯性导航系统的自主性,目前多以惯性导航系统作为主导航系统构成组合导航系统。

1.5 组合导航系统平台开发的现状及发展趋势

鉴于各种单一的各种导航系统有这样那样的缺点,上世纪70年代,现代组合导航系统在航海、航空与航天等领域随着现代高科技的发展应运而生。随着电子计算机技术特别是微机技术的迅猛发展和现代控制系统理论的进步,组合导航技术开始迅猛发展起来。过去单独使用的各种导航设备,通过微型电子计算机有机的组合到一起,发展各自的特点、扬长避短,组合导航成为目前导航技术发展的重要方向之一。

从上个世纪80年代开始,英、美、法等国的军方和民用部门开始了对GPS/INS 组合导航平台的研究。80年代后期欧美各国在MS Visual Studio C++6.0仿真软件平台上,实现了INS/GPS组合导航的解算,同时在Windows2000 操作界面上实现了曲线和数据的同步显示。

近年来我国各大高校采用Visual C++6.0编程,在Windows操作系统下实现了人机界面和直观的数据显示。该平台将组合导航的理论方案与导航设备相结合,可以进行室内试验系统的调试和研究,还可以提供直观的界面显示、数据图表等。

1.6 课题研究的意义

惯性导航系统( INS) 通过加速度计实时测量载体运动的加速度,经积分运算得到载体的实时速度和位置信息,是一种完全自主的导航系统,具有不依赖外界信息、隐蔽性好、抗辐射性强、全天候等优点,是机载设备中能提供多种导航参数的重要导航设备。惯性导航系统一般由惯性传感器模块、导航解算模块、电路系统、电源模块、滤波模块和外壳等部分组成。但它的定位误差随时间而积累, 长时间工作后会产生大的误差, 使得惯性导航系统不宜作远距离导航。

全球定位系统(GPS)继惯性导航以后导航技术的又一大进展,其由空间卫星、地面监控设施以及用户接收机三部分组成。具有较高的导航精度,但是该系统不能提供如载体姿态等导航参数,且在载体上使用时,由于载体的机动运动,常使接收机不易捕获和跟踪卫星的载波信号,甚至对已跟踪的信号失锁。

因此,为了克服惯性导航与全球定位系统的缺点,多根据INS和GPS的导航功能互补的特点,以适当的方法将两者组合来提高系统的整体导航精度及导航性能以及空中对准和再对准的能力GPS 接收机在惯导位置和速度信息的辅助下,也将改善捕获、跟踪和再捕获的能力,并在卫星分布条件差或可见星少的情况下导航精度不致下降过大。由于优点显著,GPS/ INS 组合系统被一致认为是载体最理想的组合导航系统。

1.7 课题研究内容及方案

平台开发内容的程序包括对微惯性传感器/组件的实时采集、曲线绘制、显示和存储。组合导航平台可以实现MEMS IMU和GPS等姿态、位置、速度等解算结果的数据显示,曲线显示,数据存储等功能。

研究方案如下:

1.捷联惯导系统的工作原理;

2.推导捷联惯导系统姿态、位置、速度更新计算,采用Matlab/Vb编程测试;

3. 构建INS/GPS导航系统界面;

4. 完成对组合导航系统的实时采集、曲线的绘制、显示和存储程序编制;

5. 针对不同导航任务要求,编制系统测试界面与后台运行程序。

第 2 章惯性导航系统及GPS基本原理

2.1 惯性导航系统的组成及分类

惯性导航系统一般由惯性传感器模块、导航解算模块、电路系统、电源模块、滤波模块和外壳等部分组成。其中,惯性传感器模块是惯性导航系统的核心,一般由三个陀螺仪和加速度计通过正交装配构成。

根据构建导航坐标系方法和途径的不同,可将惯性导航系统分为两种类型:采用物理平台模拟导航坐标系的系统称为平台式惯性导航系统;采用数学算法确定导航坐标系的系统称为捷联式惯性导航系统。平台式惯性导航系统是用物理平台直接模拟导航坐标系,导航计算比较简单。陀螺稳定平台能够隔离载体的角运动,给惯性器件提供较好的工作环境,系统的精度较高,但是物理平台本身结构复杂、体积大、制造成本高。捷联式惯性导航系统由于没有实体物理平台,结构简单、体积小、维护方便,但惯性器件直接安装在运载体上,工作环境恶劣,对惯性器件的环境适应性要求很高。同时,由于加速度计输出的加速度分量是沿载体坐标系轴向的,需经计算转换到某种导航坐标系中去,计算量大。

惯性导航完全不依赖外面的声、光、电、磁等传播信号,可以实时、高精度地输出所需要的全部导航参数信息,自主地进行定位、导航,不受地域的限制,不受自然环境和人为干扰的影响,隐蔽性好,不论外太空、空间、地面、地下、水面及水下都能全天候的可靠工作,这是其他导航技术,如天文导航、无线电导航与定位、卫星导航等无法实现的。这些独特的优点使其成为国防、航天、航空、船舶与海洋、陆地交通等领域十分重要、不可替代的导航手段。

2.2 捷联式惯性导航系统的工作原理

“捷联”(strapdown)这一术语的英文原意是“捆绑”因此所谓的捷联式惯性导航系统就是将惯性测量装置的敏感器(陀螺仪和加速度计)直接固联在载体上。陀螺仪用于测量载体坐标系的3个轴的角速度信息,并将信息传输给导航计算机,经过误差补偿计算后进行姿态矩阵计算。加速度计组件用于测量载体坐标系的3个轴的加速度信息,并将信息同样传输到导航计算机,经过误差补偿计算后进行比力坐标系的变换。加速度计测量的是载体坐标系(b系)相对于惯性空间

的加速度在载体坐标系中的投影b ib a ,该测试量也称为比力。而对于捷联惯导系

统,导航计算机要在导航坐标系中完成,因此,首先要将机体系中的测试量b ib a 转

换导航坐标系中的物理量n ib a ,即实现由机体坐标系到导航坐标系的坐标转换。

这一转换由姿态矩阵n b C 完成,而n b C 是利用陀螺仪的输出b ib ω即载体相对惯性空间

转动的角速率在载体坐标系下的投影计算得到。姿态矩阵是随时间的变化而不断变化的。另外,从姿态矩阵中可以单值的确定飞行器的姿态角。捷联式惯导系统中需要实时地求取姿态矩阵,以便提取飞行器姿态角(俯仰角、滚动角、航偏角)以及变换比力。捷联惯导系统原理简图如图2.1所示

加速度

组合比力坐标变换导航解算

陀螺组

合姿态阵解算航向,姿态解算

指令解算

速度,位置初值

航向姿态姿态阵

初值+-b f ~n f ~

b

ib ω~b in ω~b

nb ω

~·X 图2.1 捷联惯导系统原理简图

2.3 常用坐标系

惯性导航中所采用的坐标系可分为惯性坐标系与非惯性坐标系两类。惯性导航区别于其它类型的导航方案(如无线电导航、天文导航等)的根本不同之处就在于其导航原理是建立在牛顿力学定律一一又可称为惯性定争一的基础上的,“惯性导航”也因此而得名。然而牛顿力学定律是在惯性空间内成立的,这就首先有

必要引入惯性坐标系,作为讨论惯性导航基本原理的坐标基准。我们知道,对飞行器进行导航的主要目的就是要实时地确定其导航参数,如飞行器的姿态、位置、速度等。飞行器的导航参数就是通过各个坐标系之间的关系来确定的,这些坐标系是区别于惯性坐标系、并根据导航的需要而选取的。我们称之为非惯性坐标系,如地球坐标系、地理坐标系、导航坐标系、平台坐标系以及机体坐标系等等。在惯性导航中常用的坐标系有以下几种:

(1)地心惯性坐标系(下标为i)— Oexiyizi

惯性坐标系是符合牛顿力学定律的坐标系,即是绝对静止或只做匀速直线运动的坐标系。

地心惯性坐标系的原点Oe。选在地球的中心,zi轴选在沿地轴指向北极的方向上,而xi、 yi轴则在地球的赤道平面内,并指向空间的两颗恒星,xi yi zi 构成右手坐标系。三个坐标轴指向惯性空间固定不动,此坐标系是惯性仪表测量参考基准。

(2)地球坐标系(下标为“)—OXeYeZe

地球坐标系是固连在地球上的坐标系,它相对惯性坐标系以地球自转角速率ωe旋转,ωe =15.041070/小时。

地球坐标系的原点在地球中心Oe,OeZe轴与OeZi轴重合,OeXeYe在赤道平面内,Xe轴指向格林威治经线,Ye轴指向东经90度方向。

(3)地理坐标系(下标为t)— OXiYz地理坐标系是在载体上用来表示载体所在位置的东向、北向和垂线方向的坐标系。

地理坐标系的原点O选在载体重心处,Xi指向东,Yi指向北,Zi沿垂线方向指向天(东北天)。

(4)导航坐标系(下标为n)— OXnYnZn导航坐标系是在导航时根据导航系统一Z 作的需要而选取的作为导航基准的坐标系。

当把导航坐标系选得与地理坐标系重合时,可将这种导航坐标系成为指北方位系统;为了适应在极区附近导航的需要往往将导航坐标系的Zn轴仍选的与Zi 轴重合,而使Xn与Xi及Yn与Yi之间相差一个自由方位角或游动方位角a,这种导航坐标系可称为自由方位系统或游动自由方位系统。

(5)机体坐标系(下标为b)— OXbYbZb

机体坐标下是固连在机体上的坐标系。

机体坐标系的坐标原点O 位于飞行器的重心处,Xb 沿机体横轴指向右,Yb 沿机体纵轴指向前,Zb 垂直于OXb Yb ,并沿飞行器的竖轴指向上OXbYbZ 。构成右手坐标系。机体坐标系相对地理坐标系的方位为飞机的姿态和航向。

(6)平台坐标系(下标为p) -OXpYpZp

平台坐标系是用惯导系统来复现导航坐标系时所获得的坐标系。

平台坐标系的坐标原点。位于飞行器的重心处。当惯导系统不存在误差时,平台坐标系与导航坐标系相重合;当惯导系统出现误差时,平台坐标系就要相对导航坐标系出现误差角,就是平台的姿态角α、β、γ。

2.4 参数说明

(1)位置

φ :当地纬度,λ:当地经度,h :当地高度。

(2)姿态角

ψ:为载体的航向角。载体纵轴在水平面上的投影与地理子午线N 之间的夹角即为载体航向角。航向角的数值是以地理北向为起点逆时针方向计算的。 γ:为载体的横滚角(也称为倾斜角)。载体纵向对称面与纵向铅垂平面之间的夹角即为横滚角。横滚角从铅垂平面算起,右倾为正,左倾为负。

θ:为载体的俯仰角。载体纵轴和纵向水平轴之间的夹角即为俯仰角,向上为正,向下为负。

(3)比力

比力是指单位质量受到的位移加速度和重力加速度代数和,即单位质量上所受到外力作用的代数和。

n f :导航坐标系下的比力b f :机体坐标系下的比力

(4)角速度

角速度用带有上下标的符号表示,如:b ib ,其下标含义为b 系(机体坐标系)

相对于i 系(惯性坐标系)的转动角速度,上标含义为此角速度在b 系(机体坐标系)中的投影。其它角速度符号含义与此相似。

(5)坐标系变换矩阵

坐标系变换矩阵也用带有上下标的符号表示,如:C,其含义为n系(导航坐标系)到b系(机体坐标系)的变换矩阵。其它坐标系变换矩阵符号的含义与此相似。

(6)地球半径

把地球看作一个椭球体时:地球长轴半径Re=6378.393km,椭圆度e=1/298.257。把地球看作一个球体时:地球半径Re=6317km。

(7)地球自转角速度

=15.0411?/h=7.29212 X10-5rad/s

ie

(8)重力加速度

在地球表面附近,如果忽略向心加速度的影响,重力加速度的大小与P点到地球球心间距离的平方成反比,可以近似用下式计算得到:

g(h)=g0 X ( 1一2h/Re)

式中:g0为赤道表面上的重力加速度值,g0 =9.8m/s2; h为P点离地面的高度。2.5 GPS导航原理

GPS导航系统的基本原理是测量出已知位置的卫星到用户接收机之间的距离,然后综合多颗卫星的数据就可知道接收机的具体位置。要达到这一目的,卫星的位置可以根据星载时钟所记录的时间在卫星星历中查出。而用户到卫星的距离则通过记录卫星信号传播到用户所经历的时间,再将其乘以光速得到(由于大气层电离层的干扰,这一距离并不是用户与卫星之间的真实距离,而是伪距(PR):当GPS卫星正常工作时,会不断地用1和0二进制码元组成的伪随机码(简称伪码)发射导航电文。GPS系统使用的伪码一共有两种,分别是民用的C/A码和军用的P(Y)码。C/A码频率1.023MHz,重复周期一毫秒,码间距1微秒,相当于300m;P 码频率10.23MHz,重复周期266.4天,码间距0.1微秒,相当于30m。而Y码是在P码的基础上形成的,保密性能更佳。导航电文包括卫星星历、工作状况、时钟改正、电离层时延修正、大气折射修正等信息。它是从卫星信号中解调制出来,以50b/s调制在载频上发射的。导航电文每个主帧中包含5个子帧每帧长6s。前

三帧各10个字码;每三十秒重复一次,每小时更新一次。后两帧共15000b。导航电文中的内容主要有遥测码、转换码、第1、2、3数据块,其中最重要的则为星历数据。当用户接受到导航电文时,提取出卫星时间并将其与自己的时钟做对比便可得知卫星与用户的距离,再利用导航电文中的卫星星历数据推算出卫星发射电文时所处位置,用户在WGS-84大地坐标系中的位置速度等信息便可得知。

可见GPS导航系统卫星部分的作用就是不断地发射导航电文。然而,由于用户接受机使用的时钟与卫星星载时钟不可能总是同步,所以除了用户的三维坐标x、y、z外,还要引进一个Δt即卫星与接收机之间的时间差作为未知数,然后用4个方程将这4个未知数解出来。所以如果想知道接收机所处的位置,至少要能接收到4个卫星的信号。

GPS接收机可接收到可用于授时的准确至纳秒级的时间信息;用于预报未来几个月内卫星所处概略位置的预报星历;用于计算定位时所需卫星坐标的广播星历,精度为几米至几十米(各个卫星不同,随时变化);以及GPS系统信息,如卫星状况等。

GPS接收机对码的量测就可得到卫星到接收机的距离,由于含有接收机卫星钟的误差及大气传播误差,故称为伪距。对0A码测得的伪距称为UA码伪距,精度约为20米左右,对P码测得的伪距称为P码伪距,精度约为2米左右。

第 3 章 捷联惯性导航算法及组合导航原理

3.1 捷联惯性导航数学编排

捷联惯导系统的数学模型编排方程主要包括导航位置方程和姿态方程。对于捷联式惯导系统来说,需要导航计算机来计算导航平台。对于使用地理坐标系的

导航系统而言,首先要用捷联式陀螺仪测量的角速度b ib ω和导航计算机计算的角

速度p ip ω来计算飞机的姿态矩阵p b C ,然后从姿态矩阵的元素中提取飞机的姿态和航向信息,并把捷联式加速度计测量的比力信息b f 用姿态矩阵变换到导航坐标系的比力p f ,这样就可以在导航坐标系中求解飞机的速度和位置信息。捷联惯导系统由于没有机械平台,不能直接测出姿态角和航向角,所以要得到姿态角和航向角,必须在导航计算机中建立“数学平台”,即通过机体坐标系相对地理坐标系的方向余弦阵来计算机体的姿态角和航向角。

在对捷联惯导系统工作机理进行全面分析的基础上,可以画出系统的原理方框图,如图3-1所示。

图3-1捷联惯性导航系统原理方块图

3.2 捷联惯性导航数学模型算法公式

据参考文献[1],图3.1中各个模块的计算公式如下:

1.四元数Q 的即时修正

我们选择四元数法作为捷联矩阵即时修正的算法。四元数是指由一个实数单位1和三个虚数单位i, j,k 组成并具有下列实元的数。

k p j p i p q 3210+++=λ (3.1)

机体坐标系相对平台坐标系的转动可以用四元数Q 来表示,即

b b b k q j q i q q Q 3210+++= (3.2)

Q 的即时修正可通过解下面的四元数微分方程来实现:

?????

?????????????????????------=????????????32103210000021q q q q q q q q b

pbx b pby b pbz b pbx b pbz b pby b pby b pbz b

pbx b pbz b pby b pbx ωωωωωωωωωωωω (3.3) 在求解公式((4.2)时,需要用到四元数的初始值,否则上式无法求解。确定四元数初始值的方法,可以根据初始对准中确定的姿态矩阵初始值中的元素,并利用四元数和姿态矩阵各对应元素相等的关系来确定。

2.捷联矩阵T 的计算

对于平台惯导系统,由于平台的存在,比力分量可以由加速度计直接测得,但是对于捷联惯导系统,加速度计是沿机体坐标系安装的,它只能测量沿机体坐标系的比力分量,因此引入捷联矩阵来实现机体坐标系到平台坐标系的坐标转换,由于根据捷联矩阵的元素可以确定飞机的姿态角,所以又可以叫做飞机姿态矩阵;由于捷联矩阵起到了平台的作用,所有又可以叫做“数学平台”。 由式((3.3)得出的四元数后,根据式((3.4)即可计算出捷联矩阵。

????

?????

?+--+-+-+-++---+=232221201032203110322322212030212031302123222120)(2)(2)(2)

(2)(2)(2q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q T (3.4) 3.四元数Q 的最佳归一化 由于计算机的算法误差会导致捷联矩阵称为非正交矩阵,对捷联矩阵进行正

交化处理可以消除引起非正交的算法误差源的影响。实现四元数的归一化也就是完成了捷联矩阵T 的正交化。以欧几里德范数最小为指标的四元数最佳归一化可由下式获得:

2322212032103210q q q q Q k q j q i q q

Q k q j q i q q Q b b b b

b b +++=+++=+++= (3.5)

4.比力的坐标转换

加速度计测量的比力b f 通过矩阵T 可转换为p f ,即: ????

????????????????=??????????b z b y b x p z p y p x f f f T T T T T T T T T f f f 333231232221131211 (3.6) 5.速度V (即p V )的即时修正

惯性导航的基本方程为:

g V f V ep ep ie ep +?+-=)2(ωω

以上可以写成如下矩阵形式:

?

????????????????????+-++-+-+??????????-??????????=??????????z y x p epx p iex p epy p iey

p epx p iex p iez p epy p iey p p z p y p x z y x V V V g f f f V V V iez 0)2(220)2(2000ωωωωωωωωωω (3.7) 6.位置矩阵的即时修正 位置矩阵C 是由地球坐标系转换到平台坐标系的方向余弦矩阵,它是纬度、精度与游动方位角的函数。由于位置矩阵的改变是由平台坐标系相对地球坐标系

运动的角速率p ep ω (又称为位置速率)可所引起的。所以位置矩阵C=p e C 可以通过求

解下列的矩阵微分方程而获得:

????

?????????????????--=??????????3332312322211312113332312322

2113121100000C C C C C C C C C C C C C C C C C C p epx p epy p epx p epy ωωωω (3.8)

将位置矩阵C 与姿态矩阵(即捷联矩阵)T 的即时修正相比较可以看出,由于位置矩阵的变化比姿态矩阵慢得多,所以它要求的即时修正的频率也要慢得多,而且

不存在明显的非正交化误差,无需进行正交化处理。采用方向余弦罚可以直接求出位置矩阵C,因此我们采用方向余弦法进行位置矩阵的更新。

3.3 捷联惯性导航速度与位置计算

毕业设计(论文)原创性声明和使用授权说明

原创性声明

本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。

作者签名:日期:

指导教师签名:日期:

使用授权说明

本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。

作者签名:日期:

学位论文原创性声明

本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。

作者签名:日期:年月日

学位论文版权使用授权书

本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。

涉密论文按学校规定处理。

作者签名:日期:年月日

导师签名:日期:年月日

致谢

时间飞逝,大学的学习生活很快就要过去,在这四年的学习生活中,收获了很多,而这些成绩的取得是和一直关心帮助我的人分不开的。

首先非常感谢学校开设这个课题,为本人日后从事计算机方面的工作提供了经验,奠定了基础。本次毕业设计大概持续了半年,现在终于到结尾了。本次毕业设计是对我大学四年学习下来最好的检验。经过这次毕业设计,我的能力有了很大的提高,比如操作能力、分析问题的能力、合作精神、严谨的工作作风等方方面面都有很大的进步。这期间凝聚了很多人的心血,在此我表示由衷的感谢。没有他们的帮助,我将无法顺利完成这次设计。

首先,我要特别感谢我的知道郭谦功老师对我的悉心指导,在我的论文书写及设计过程中给了我大量的帮助和指导,为我理清了设计思路和操作方法,并对我所做的课题提出了有效的改进方案。郭谦功老师渊博的知识、严谨的作风和诲人不倦的态度给我留下了深刻的印象。从他身上,我学到了许多能受益终生的东西。再次对周巍老师表示衷心的感谢。

其次,我要感谢大学四年中所有的任课老师和辅导员在学习期间对我的严格要求,感谢他们对我学习上和生活上的帮助,使我了解了许多专业知识和为人的道理,能够在今后的生活道路上有继续奋斗的力量。

另外,我还要感谢大学四年和我一起走过的同学朋友对我的关心与支持,与他们一起学习、生活,让我在大学期间生活的很充实,给我留下了很多难忘的回忆。

最后,我要感谢我的父母对我的关系和理解,如果没有他们在我的学习生涯中的无私奉献和默默支持,我将无法顺利完成今天的学业。

致谢

四年的大学生活就快走入尾声,我们的校园生活就要划上句号,心中是无尽的难舍与眷恋。从这里走出,对我的人生来说,将是踏上一个新的征程,要把所学的知识应用到实际工作中去。

回首四年,取得了些许成绩,生活中有快乐也有艰辛。感谢老师四年来对我孜孜不倦的教诲,对我成长的关心和爱护。

学友情深,情同兄妹。四年的风风雨雨,我们一同走过,充满着关爱,给我留下了值得珍藏的最美好的记忆。

在我的十几年求学历程里,离不开父母的鼓励和支持,是他们辛勤的劳作,无私的付出,为我创造良好的学习条件,我才能顺利完成完成学业,感激他们一直以来对我的抚养与培育。

最后,我要特别感谢我的导师刘望蜀老师、和研究生助教吴子仪老师。是他们在我毕业的最后关头给了我们巨大的帮助与鼓励,给了我很多解决问题的思路,在此表示衷心的感激。老师们认真负责的工作态度,严谨的治学精神和深厚的理论水平都使我收益匪浅。他无论在理论上还是在实践中,都给与我很大的帮助,使我得到不少的提高这对于我以后的工作和学习都有一种巨大的帮助,感谢他耐心的辅导。在论文的撰写过程中老师们给予我很大的帮助,帮助解决了不少

的难点,使得论文能够及时完成,这里一并表示真诚的感谢。

自动驾驶汽车硬件系统概述

自动驾驶汽车硬件系统概述 自动驾驶汽车的硬件架构、传感器、线控等硬件系统 如果说人工智能技术将是自动驾驶汽车的大脑,那么硬件系统就是它的神经与四肢。从自动驾驶汽车周边环境信息的采集、传导、处理、反应再到各种复杂情景的解析,硬件系统的构造与升级对于自动驾驶汽车至关重要。 自动驾驶汽车硬件系统概述 从五个方面为大家做自动驾驶汽车硬件系统概述的内容分享,希望大家可以通过我的分享,对硬件系统的基础有个全面的了解: 一、自动驾驶系统的硬件架构 二、自动驾驶的传感器 三、自动驾驶传感器的产品定义 四、自动驾驶的大脑 五、自动驾驶汽车的线控系统

自动驾驶事故分析 根据美国国家运输安全委员会的调查报告,当时涉事Uber汽车——一辆沃尔沃SUV系统上的传感器在撞击发生6s前就检测到了受害者,而且在事故发生前1.3秒,原车自动驾驶系统确定有必要采取紧急刹车,此时车辆处于计算机控制下时,原车的紧急刹车功能无法启用。于是刹车的责任由司机负责,但司机在事故发生前0.5s低头观看视频未能抬头看路。 从事故视频和后续调查报告可以看出,事故的主要原因是车辆不在环和司机不在环造成的。Uber在改造原车加装自动驾驶系统时,将原车自带的AEB功能执行部分截断造成原车ADAS功能失效。自动驾驶系统感知到受害者确定要执行应急制动时,并没有声音或图像警报,此时司机正低头看手机也没有及时接管刹车。

目前绝大多数自动驾驶研发车都是改装车辆,相关传感器加装到车顶,改变车辆的动力学模型;改装车辆的刹车和转向系统,也缺乏不同的工况和两冬一夏的测试。图中Uber研发用车是SUV车型自身重心就较高,车顶加装的设备进一步造成重心上移,在避让转向的过程中转向过急过度,发生碰撞时都会比原车更容易侧翻。 自动驾驶研发仿真测试流程 所以在自动驾驶中,安全是自动驾驶技术开发的第一天条。为了降低和避免实际道路测试中的风险,在实际道路测试前要做好充分的仿真、台架、封闭场地的测试验证。 软件在环(Software in loop),通过软件仿真来构建自动驾驶所需的各类场景,复现真实世界道路交通环境,从而进行自动驾驶技术的开发测试工作。软件在环效率取决于仿真软件可复现场景的程度。对交通环境与场景的模拟,包括复杂交通场景、真实交通流、自然天气(雨、雪、雾、夜晚、灯光等)各种交通参与者(汽车、摩托车、自行车、行人等)。采用软件对交通场景、道路、以及传感器模拟仿

导航系统

第1 章绪论 1.1 导航的基本概念 导航是引导运载体到达预定目的地的过程。导航分两类:(1)自主式导航,用飞行器或船舶上的设备导航,有惯性导航、多普勒导航和天文导航等;(2)非自主式导航,用于飞行器、船舶、汽车等交通设备与有关的地面或空中设备相配合导航,有无线电导航、卫星导航。在军事上,导航还要配合完成武器投射、侦察、巡逻、反潜和援救等任务。高效、高精度的导航系统更是我国这种发展中国家赶超发达国家的战略性资源和倍能器。在军用方面,随着新时期军事战略方针的转变及高新技术武器装备的发展,导航定位定向系统已经成为我军现代化建设中一项不可缺少的重要军事技术装备,其重要性表现在:它是信息战必不可少的基础设备,是建立战场统一坐标的前提,是快速、准确火力部署的保障,同时又是实现武器精确打击能力的必要条件。所以,导航定位定向系统对迅速提高我军的综合作战能力,加快数字化部队建设至关重要;在民用方面,国外的导航定位定向系统己在大地测量、定向钻并、隧道掘进、地面车辆导航、飞机进场着陆、航天航空遥感、机载重力测量、公路监测、地下油气管道监测、矿井监测、激光断面监测等方面得到广泛地的应用,并取得了巨大的经济效益。 在日常生活中我们经常接触到的导航是车载导航,车载导航属于非自主式导航,车载导航是利用车载GPS(全球定位系统)配合电子地图来进行的,汽车GPS导航系统由两部分组成:一部分由安装在汽车上的GPS接收机和显示设备组成;另一部分由计算机控制中心组成,两部分通过定位卫星进行联系。 1.2 惯性导航(INS)概述 通常说的惯性技术,是惯性器件、惯性测量、惯性导航、惯性制导和惯性稳定等技术的统称。惯性技术既是一门学科,也是一门工程技术,在陆、海、空、天各个领域有着广泛应用。惯性器件(陀螺仪和加速度计)、惯性仪表、惯性导航系统都是以牛顿力学定律为基础的。惯性导航系统通过加速度计实时测量载体运动的加速度,经积分运算得到载体的实时速度和位置信息。 惯性技术是对载体进行导航的关键技术之一,惯性技术是利用惯性原理或其它有关原理,自主测量和控制运载体运动过程的技术,惯性测量和惯性敏感器技。

人工智能在自动驾驶技术中的的应用

人工智能在自动驾驶技术中的应用 摘要:随着技术的快速发展云计算、大数据、人工智能一些新名词进入大众的视野,人工智能是人类进入信息时代后的又一技术革命正受到越来越广泛的重视。作为人工智能等术在汽车行业、交通领域的延伸与应用,无人驾驶近几年在世界范围内受到了产学界甚至国家层面的密切关注。自动驾驶汽车依靠人工智能、视觉计算、雷达、监控装置和全球定位系统协同合作,让电脑可以在没有任何人类主动的操作下,自动安全地操作机动车辆。自动驾驶技术将成为未来汽车一个全新的发展方向。本文将主要介绍人工智能技术在自动驾驶中的应用领域,并对自动技术的发展前景进行一个简单的分析。 关键词:人工智能;自动驾驶;智能汽车;图像识别 0. 引言 人工智能是一门起步晚却发展快速的科学。20 世纪以来科学工作者们不断寻求着赋予机器人类智慧的方法。现代人工智能这一概念是从英国科学家图灵的寻求智能机发展而来,直到1937年图灵发表的论文《理想自动机》给人工智能下了严格的数学定义,现实世界中实际要处理的很多问题不能单纯地是数值计算,如言语理解与表达、图形图像及声音理解、医疗诊断等等。1955 年Newell 和Simon 的Logic Theorist证明了《数学原理》中前52 个定理中的38 个。Simon 断言他们已经解决了物质构成的系统如何获得心灵性质的问题( 这种论断在后来的哲学领域被称为“强人工智能”) ,认为机器具有像人一样逻辑思维的能力。1956 年,“人工智能”( AI) 由美国的JohnMcCarthy 提出,经过早期的探索阶段,人工智能向着更加体系化的方向发展,至此成为一门独立的学科。五十年代,以游戏博弈为对象开始了人工智能的研究;六十年代,以搜索法求解一般问题的研究为主;七十年代,人工智能学者进行了有成效的人工智能研究;八十年代,开始了不确定推理、非单调推理、定理推理方法的研究;九十年代,知识表示、机器学习、分布式人工智能等基础性研究方面都取得了突破性的进展。 1. 人工智能在自动驾驶技术中的应用概述 人工智能发展六十年,几起几落,如今迎来又一次热潮,深度学习、计算机

汽车导航系统

汽车导航系统 即车载GPS导航系统,其内置的GPS天线会接收到来自环绕地球的24颗GPS卫星中的至少3颗所传递的数据信息,结合储存在车载导航仪内的电子地图,通过GPS卫星信号确定的位置坐标与此相匹配,进行确定汽车在电子地图中的准确位置,这就是平常所说的定位功能。在定位的基础上,可以通过多功能显视器,提供最佳行车路线,前方路况以及最近的加油站、饭店、旅馆等信息。假如不幸GPS信号中断,你因此而迷了路,也不用担心,GPS已记录了你的行车路线,你还可以按原路返回。当然,这些功能都离不开已经事先编制好的使用地区的地图软件。 如何选购 1.地图设计要人性 硬件是基础,软件是灵魂,GPS导航仪的“灵魂”包括两个方面——软件引擎和地图数据,这两者是导航仪能否把你带到目的地的关键所在。电子导航地图是GPS导航仪赖以工作的另一个重要组件,电子导航地图的正确与否就直接决定了车主能否更快捷、更轻松地到达目的地。在当前的市场上,不论是国产还是完全进口,车载GPS产品内置的地图无非都是国内仅有的几个图商的资源,质量也是参差不齐。一般来说,正规品牌的GPS导航仪都会提供一年的免费更新,或者按次数计算,支持2次左右的免费更新服务。而在此之后更新地图就需要缴纳一定费用,一般来说GPS图商的地图更新维持在半年一次的水平,也有一些厂商每三个月更新一次数据,更新一次的费用在两百元左右。 2.搜星定位要快捷 作为导航产品,消费者最关心的当属它的收星能力,即信号接收能力。目前市场上销售的车载GPS大多数都会采用SiRFStarIII第三代芯片,这类芯片的优势是在有遮挡和天气情况恶劣的情况下可以捕捉和跟踪信号、减轻高楼林立带来的的信号干扰。此外,芯片的好坏还直接关系到计算路径时快捷准确的好坏。去同一个目的地,芯片的不同可能会出现不同的路线,而我们需要的是最佳路线。购买大品牌的产品不仅本身质量有保证,同时也可以享受一定年限的免费升级服务。选品牌其实也是在选售后,对于GPS导航产品来说,后续的服务问题更为重要,因为地图是在实时更新的。不同的厂商,获取地图数据的来源不同,免费的更新方式也有多种多样。购买时做好了解,可以避免使用后一些不避免的麻烦。此外,开机速度和反应速度都是重要参数,由于开车时要时刻注意安全并且汽车在高速行进中,因此速度快可以提升车辆导航的精确度,同时也可以节约使用者的操作时间,省时更省心。 3.导航要注重实用性

全球四大导航系统

全球四大卫星定位系统 目前,世界上只有少数几个国家能够自主研制生产卫星导航系统。当前全球有四大卫星定位系统,分别是美国的全球卫星导航定位系统GPS、俄罗斯的格罗纳斯GLONASS系统、欧洲在建的"伽利略"系统、和中国的北斗卫星导航系统。 一、美国GPS长期垄断 美国国防部从1973年开始实施的GPS系统,这是世界上第一个全球卫星导航系统,在相当长的一段时间内垄断了全球军用和民用卫星导航市场。GPS全球定位系统计划自1973年至今,先后共发射了41颗卫星,总共耗资190亿美元。GPS原来是专门用于为洲际导弹导航的秘密军事系统,在1991年的海湾战争中首次得到实战应用。随后,在科索沃战争、阿富汗战争和伊拉克战争中大显身手。从克林顿时代起,该系统开始应用在了民用方面。现运行的GPS系统由24颗工作卫星和4颗备用卫星组成。美国利用GPS获得了巨大的经济利益,多年来在出售信号接收设备方面赚取了巨额利润。以1986年为例,当时一台一般精度的GPS定位仪价格5万美元,高精度的则达到10万美元。现在价格虽然有所下降,但也可推算出20年来GPS"收获颇丰"。以GPS为代表的卫星导航定位应用产业,已成为八大无线产业之一。据美国国家公共管理研究院进行的调查评估表明,GPS的全球销售额将以每年38%的速度增长,2005年全球GPS市场已达到310亿美元。长期以来,美国对本国军方提供的是精确定位信号,对其他用户提供的则是加了干扰的低精度信号--也就是说,地球上任何一个目标的准确位置,只有美国人掌握,其他国家只知道个"大概"。在海湾战争时,美国还曾置欧盟各国利益不顾,一度关闭对欧洲GPS服务。 2003年3月20日,伊拉克战争爆发。大批轰炸机、战斗机猛扑向伊拉克首都巴格达,用炸弹准确地将一座建筑彻底摧毁,行动代号:"斩首行动";4月,一架B-1B"枪骑兵"轰炸机临时接到任务,用炸弹摧毁了另一座建筑。他们的目标都是一个人:萨达姆侯赛因,他们所使用的炸弹都是一种:联合攻击炸弹(JDAM),这些炸弹之所以都能够精确的打击目标,是因为他们都是通过卫星定位来实现定位,提供这种定位服务的正是由24颗美国卫星组成的全球定位系统--GPS。 由于GPS技术所具有的全天候、高精度和自动测量的特点,作为先进的测量手段和新的生产力,已经融入了国民经济建设、国防建设和社会发展的各个应用领域。 随着冷战结束和全球经济的蓬勃发展,美国政府宣布,在保证美国国家安全不受威胁的前提下,取消SA政策,GPS民用信号精度在全球范围内得到改善,利用C/A码进行单点定位的精度由100米提高到10米,这将进一步推动GPS技术的应用,提高生产力、作业效率、科学水平以及人们的生活质量,刺激GPS市场的增长。 二、俄罗斯GLONASS(格洛纳斯)系统 "格洛纳斯GLONASS"是俄语中"全球卫星导航系统GLOBAL NAVIGATION SATELLITE SYSTE"的缩写。作用类似于美国的GPS、欧洲的伽利略卫星定位系统。最早开发于苏联时期,后由俄罗斯继续该计划。俄罗斯1993年开始独自建立本国的全球卫星导航系统。1995年俄罗斯耗资30多亿美元,完成了GLONASS导航卫星星座的组网工作。它也由24颗卫星组成,原理和方案都与GPS类似,不过,其24颗卫星分布在3个轨道平面上,这3个轨道平面两两相隔120°,同平面内的卫星之间相隔45°。每颗卫星都在19100千米高、64.8°倾角的轨道上运行,轨道周期为11小时15分钟。地面控制部分全部都在俄罗斯领土境内。俄罗斯自称,多功能的GLONASS系统定位精度可达1米,速度误差仅为15厘米/秒。如果必要,该

(完整版)基于VC++的电子导航系统_毕业设计

基于VC++的电子导航系统 摘要 地理信息系统(GIS)自二十世纪六十年代开始发展至今,已经逐渐成为一门成熟的技术,其在交通、旅游、环境等诸多领域的应用使地理信息系统被越来越多的用户所接受,成为人们工作、生活中一个强有力的工具。 本设计以VC++为开发平台,以MapX控件为图形平台,以MSComm 控件为通信平台,设计具有电子导航的基本功能(如地图的放大缩小、全图、漫游等)、自定义工具测量折线距离、图层控制、最优路径分析、GPS 导航等功能的GIS应用软件。 本文介绍了电子导航系统设计的背景及设计中需要用到的MapX控件、VC++、MSComm控件,分析了GIS开发三种实现方式,提出系统设计方案:集成二次开发。在集成二次开发的基础上,首先实现了地图的导入、地图放大缩小及图层控制等电子导航的基本功能,其次以测量折线距离为例实现了自定义工具的功能,再次介绍了最优路径分析,最后实现GPS导航功能。 关键词:电子导航;GIS开发;VC++;MapX控件;最优路径

Electronic Navigation Systems Based On VC++ Abstract Since the beginning of 1960s,Geographic Information System (GIS) transportation, tourism, environment and many other fields of application GIS accepted by an increasing number of users for the people working and living as a powerful tool. The design used VC + + as a development platform, MapX control as a graphics platform, MSComm control as a communications platform.It Basic functions(zoom control,the whole map,Roaming, for example), Calculating the distance, Layer Control, Analysis of the optimal path and GPS Navigation Features. This article of electronic navigation systems background, MapX control,VC++ and MSComm control. It three ways and proposed system design:Secondary development of integrated. First of all, It the integrated development of the basis of secondary. Second, it example to measure the distance, and then it . Key words: Electronic navigation; GIS Development;VC++; MapX control; Optimal path

电子海图导航系统

船舶电子海图综合 导航系统 大连海大航运科技有限公司

公司简介 大连海大航运科技有限公司(简称“海大航科”)是大连海事大学与深圳沃金实业有限公司共同投资2000万元创办的高新技术企业,拥有一批教授、博士、硕士等高素质人才,主要从事交通航运领域的信息技术产品开发和信息技术服务。 海大航科以具有自主知识产权的专利技术-电子海图应用平台为基础,致力于为交通航运领域的企事业单位提供优质的信息技术产品和完善的服务。 海大航科位于大连市高新园区七贤岭学子街2号,是大连市高新技术园区创业中心的重点孵化企业。 海大航科自主开发的系统产品有:船舶电子海图/江图综合导航系统(符合IHO S-57、S-52标准)、港口/船舶引航系统、船舶动态监控系统、机务管理信息系统(含PMS)、船舶运输企业管理信息系统、航道测绘管理信息系统、搜救与溢油应急系统、船舶通讯软件等。

系统简介 “EAR 意尔?导航系统”是一套船用导航系统,它以国际标准(IHO-S57、S-52)的电子海图显示与信息系统为核心,集成了GPS、AIS、雷达/ARPA、电罗经、计程仪、测深仪、自动舵、Inmarsat-C、Inmarsat-B、 CDMA/GSM/GPRS等多种导航通讯设备,能够综合处理海上地理信息、本船航行状态信息、多种目标船动态信息、雷达图像信息、航行环境信息、具有完善的船舶导航、进出港引航、避碰辅助和航行管理功能,有助于保障船舶航行安全和提高营运效率。

遵循标准 本系统符合下列标准: IMO Resolution A.817(19)(电子海图显示与信息系统性能标准)IHO S-52(ECDIS海图内容及显示性能规范,第3版) IHO S-57(数字化水道测量数据传输标准,第3版) ITU-RM.1165(用于ECDIS更新的数字数据传输) IMO Resolution A.197(22)(船载AIS操作运行指南) IEC 61162(海上导航及通信设备与系统-数字接口) Q/DMT.001-2003(电子海图导航系统企业标准)

GATOR综合导航系统浅析

GATOR综合导航系统浅析 摘要 GATOR系统是目前世界上最先进的海底电缆地震勘探综合导航系统之一,文中阐述了该系统集成化的数据采集及同步控制接口、灵活可变的系统配置、基于无线网络的数据交互及管理等技术特点。 关键词地震勘探海底电缆综合导航 GATOR 系统 引言 综合导航系统是海上地震勘探的控制核心,其作用为: (1)为地震船行驶提供导航信息; (2)为地震测线、炮点、检波点定位; (3)控制点火放炮; (4)共反射点面元计算; (5)实时质量控制; (6)与地震勘探仪器交换信息。综合导航系统实时采集所有定位传感器的数据,对其进行实时计算处理,在此基础上进行实时控制。 在海上综合导航方面,中海油服物探事业部新组建的海底电缆队采用世界地球物理勘探领域最先进的GATOR综合导航系统进行施工作业,给项目的施工带来极大的方便。

GATOR系统的关键技术 集成化的数据采集及同步控制接口 综合导航系统所用到的各种导航定位设备,如GPS、电罗经及测深仪等的实时输入数据,通过PowerRTNu(Power Real Time Navigation Unit),进入到GATOR综合导航系统中。PowerRTNu是英国ION Concept 公司专门为海上地震勘探导航作业设计的一个集成了多种导航定位设备,及采集同步控制的轻便的集成化实时数据采集处理接口单元。它广泛应用于各种海洋地震勘探中。 PowerRTNu为综合导航系统及整个海上地震勘探的资料采集,提供了精确的基于GPS时间框架的时间同步信息、多个串口通讯协议的外部输入输出设备接口以及多个外部输入输出触发信号。PRTNU同导航系统的数据接口通讯,通过Ethernet TCP/IP协议实现。 PowerRTNu由MVME微处理单元、输入输出缓冲接口卡、数据通讯接口卡、GPS芯片、通用电源组成。 1.MVME微处理单元 MVME微处理单元是一个多协议处理器,内部集成了微处理器和一些控制领域的常用外围组件。它提供了与外部操作系统之间通讯协议。每个VME处理器板中的RTOS(实时操作系统)是Vxworks,但是它不储存在PowerRTNu里,每次启动需要从工作站或者网络上加载。 2.输入输出缓冲接口卡 输入输出缓冲接口卡可以产生闭合或TTL电平形式的触发信号,也可以接收外部设备输入的闭合或TTL电平形式的触发信号。

现代电子导航信息系统习题集

现代电子导航信息系统 习题集 1.目前世界上主要的全球卫星导航系统和区域性卫星导航系统分别有哪些? GNSS:GPS,GLONASS,Galileo,北斗系统。RNSS:DORIS,IRNSS,QZSS,北斗双星系统2.GPS 卫星导航系统的注入站、跟踪站和监控站各自的功能是什么? 注入站:在主控站的控制下,在卫星通过其上空时,将该卫星的导航电文利用S 波段载波注入给该卫星 跟踪站:将伪距,多普勒积分值,气象信息,卫星时钟及海军水面兵器中心发来的参考星历等数据送给主控站 监控站:用以对GPS星座的所有卫星进行实时跟踪测量的设施,所有收集到的数据送给主控站 3.GPS 卫星发射的信号是由哪三部分组成的? 载波,测距码,导航电文 4.GPS 信号各自采用哪两种频率的载波和伪随机码? 载波L1:1575.42MHz,载波L2:1227.60MHz C/A码:1.023MHz,P码:10.23MHz 5.简述 C/A 码和 P 码的特点。 C/A码是一种低速,短周期的伪随机码,码长较短,易于捕获,测距精度较低,也称粗码。 P码是一种快速,长周期的伪随机码,由两个码长为互素的字码复合而成。测距精度高,也称精码。 6.简述 GPS 导航电文(D 码)的基本结构。 导航电文是二进制编码的文件,一个完整的导航电文有25帧,共37500bit,需 12.5min才能播放完,每帧导航电文共1500bit,占30s。每帧导航电文被均分成 5个子帧,各占6s,第4和第5子帧包含所有卫星星历,各包含25页,每个子帧又可以分成10个字,每个字0.6s。 7.GPS 卫星导航系统的误差主要来自哪几个方面? 1.用户距离误差包括卫星误差,信号传播误差及接收机噪声, 2.几何误差, 3.速 度测量误差,4.海图标绘误差 8.GPS 接收机定位误差的大小与什么有关? 1.接收机通道间偏差:多通道接收机包含多个并行的通道,每个通道都能独立连 续跟踪一颗或以上的卫星,多通道接收机因各通道硬件路径不同会产生通道偏差。 2.噪声误差:噪声是电路或系统中不含信息量的电压或电流。各种电气设备可引 起不同形式的干扰。 3.量化误差:GPS接收机通过本机伪码与接收机伪码跟踪并同步来测量伪距,根据 码元的宽度,测量误差可以量化在一定范围内。 9.用户与 GPS 卫星间的位置对定位精度有何影响? 用户与卫星间的几何位置好,定位误差小,几何位置差,定位误差大。用户与卫星间的几何关系对定位误差影响的大小,可用几何精度因子GDOP来表征。GDOP 值越小,表明选用的卫星的几何形状越理想,使位置和时间的误差值也相应减小10.GPS 接收机通常选用仰角大于多少的卫星?为什么? 卫星信号在对流层中产生的传播延迟与大气温度,压力,卫星的仰角等因素有关,而对于频率低于30GHz的电磁波与频率无关因此GPS双频道接收机不能校正对流层折射误差。对流层传播延时误差与卫星仰角有关,仰角越小,误差越大。 因此需选用仰角为5°~85°之间的卫星。

综合导航显控台综合检测系统设计

自动化技术与应用 2006年第25卷第2期仪器仪表与检测技术 Instrumentation and Measu rement 综合导航显控台综合检测系统设计 戴运桃,万扬,刘利强 (哈尔滨工程大学自动化学院,黑龙江哈尔滨150001) 摘要:综合导航显控台是船舶综合导航系统的核心导航设备,文章针对综合导航显控台设计了综合导航显控台综合检测系统,给出了综合检测系统的结构模型,在充分研究VxWorks操作系统的基础上提出了综合检测系统检测软件的功能设计与结构设计思路。本系统已经应用到实践,能够很好的完成对综合导航显控台的系统检测及故障点定位。 关键词:综合检测;系统设计;嵌入式操作系统 中图分类号:TP274 5文献标识码:B文章编号:1003 7241(2006)02 0062 03 A S upervisio n System for Integrated Navigatio n Display and Contro l Co nsole DAI Yun-tao,WA N Yang,LIU Li-qiang (School of Automation,Harbin Engineering University,Harbin150001,China) Abstract:Integrated Navi gation Display Control Console is the core navi gation equipment of INS.This paper introduces a supervision system for Inte grated Navigation Display and Control Console.It presents the basic structure of the in tegrated supervision sys tem based on the Vxworks real -time operating system.The system has been put into practice. Key words:Integrated supervision;System design;Embedded system 1引言 综合导航显控台是综合导航系统的核心导航设备,是应用组合导航技术和信息融合技术把各个导航设备有机地组合起来,在不改变各导航设备的情况下,采用滤波技术,对各种导航信息进行处理,实现各种导航信息互相取长补短,提高导航定位精度;通过对导航信息进行集中显示,集中控制和综合处理,实现最大限度发挥每一个导航信息的作用,实时向使用部门提供全面的、最佳的导航信息,在综合导航系统中起着非常重要的作用。 综合导航显控台综合检测系统是为了对综合导航显控台进行系统硬件功能检测而研制的。在综合导航显控台出现硬件故障后,维修保障人员可应用!替换法?使用综合检测系统对综合导航显控台进行系统检测、模块检测和电路板检测,定位出故障点或故障模块,从而进行有针对性的维修或更换。 收稿日期:2005-07-212系统结构及功能 综合检测系统应该尽量搭建与用户实际使用环境相同的检测平台,保证被检测系统的完整性,对临时没有的系统设备部件,也应有相应的模拟手段[1]。系统检测时,应该参考面向对象分析的结果,对应描述的对象、属性和各种服务,检测软件是否能够完全!再现?问题空间。系统可以给维修部门对设备故障进行排除提供方便。其总体检测流程如图 1: 图1总体检测流程 2.1综合检测系统结构 综合检测系统主要由主检测平台和辅助检测平台两部分组成,系统的结构模型如图二所示。主检测平台硬件系统采用嵌入式PC104架构,是综合检测系统的主控制单元,包括整机检测

GPS自动导航驾驶系统

GPS自动导航驾驶系统 天宝Autopilot自动导航驾驶系统可以为您从起垄到收割整个过程提供2.5厘米的重复测量精度,为您的操作增加无可比拟的精确度。 详细介绍: 起垄作业在整个农业生产过程中至关重要,起垄作业的质量直接关系到以后播种,喷药作业的“重漏”,关系到作业成本的高低。 传统的起垄作业完全依赖驾驶员的驾驶经验,在直线度和结合线的精度上很难得到保证,尤其在地块较大的情况下,偏航的情况在所难免.返工,以及播种时的重漏,结合线偏差过大直接造成生产成本的加大和地块利用效率的降低。 Trimble的autopilot自动导航驾驶系统通过高精度的GPS+GLONASS卫星定位系统,通过控制农机的转向液压系统,控制农机按照设定的路线(直线或曲线)自动行驶,不需驾驶方向盘。在保证农机直线行驶的同时,结合线之间的偏差可以控制在2.5厘米,充分解决播种重漏的问题,降低生产成本,提高土地利用效率。 工作原理: l 在导航光靶上设定车辆行走线,设置导航模式(直线或者曲线)。 l 接收基站差分数据,实现厘米级的RTK卫星定位,实时向控制器发送精确的定位信息。 l 方向传感器实时向控制器发送车轮的运动方向。 l 导航控制器根据卫星定位的坐标及车轮的转动情况,实时向液压控制阀发送指令,通过控制液压系统油量的流量和流向,控制车辆的行驶,确保车辆按照导航光靶设定的路线行驶。 系统组成 l EZ-GUIDE500导航光靶:内置双频GPS接收机;31个醒目指示灯在任何能见度下快速给您在线信息反馈;多重导航模式可供选择,直线,曲线,环线;大按钮,一按即可完成所有主要导航功能,GPS状态,设置和帮助功能的控制;使用U盘简单快速的把每天的作业数据导入计算机,用于出图和打印报告。 l 方向传感器:独特的方向传感器向导航控制器发送高精度的转角信息。 l 通信模块:通过GPRS/CDMA登陆服务器,接收基站的差分数据。 l 导航控制器:自动驾驶系统的核心,通过接收GPS的定位信息和方向传感器的转角信息,向液压系统发送指令。 l 液压控制器:液压控制器根据导航控制器发送的指令,改变油箱的流量和流向,保证农机按照设定的路线行驶。 优势 l 农机使用自动驾驶系统进行起垄、播种、喷药、收获等农田作业时,衔接行距的精度可达2公分,可以减少农作物生产投入成本,并使农作物的种植农艺特性优化,提高农艺作业质量,避免作业过程产生衔接 行的“重漏”,降低成本,增加经济效益

汽车导航系统技术解析car navigation system

汽车导航系统技术解析car navigation system GPS is a global positioning satellite 24 as a foundation, to provide all-weather around the world the three-dimensional position, three-dimensional velocity information such as a radio navigation and positioning system. GPS positioning principle is: the user to receive satellite signals, obtaining the distance, clock correction and atmospheric correction parameters between the satellite and the user from, to determine the location of the user through data processing. Now, the special function within the civil GPS positioning precision can reach 10m does GPS has long aroused the automobile profession's attention, when the United States announced the opening of a part of the GPS system in the Gulf War, the automobile industry to seize this opportunity immediately, invest in the development of automotive navigation system, positioning and orientation of automobile

导航电子地图制作.

导航电子地图制作-----------------张铁成 1、导航系统帮助驾驶者准确、快捷的到达目的地,其功能一般不包括()。 A、实时定位 B、目的地检索 C、自动驾驶 D、路线规划 答案:C 解答:导航系统能够实现实时定位、目的地检索、路线规划、画面和语音引导等功能,一般不包括自动驾驶。 2、导航系统一般由()构成。 A、定位系统 B、电视接收 C、硬件系统 D、软件系统 E、导航电子地图答案:ACDE 3、目前主要的定位系统是以航天技术为基础,以高速运动的卫星瞬间位置为已知数据,采用空间距离()的方法,技术待测点位置的系统。 A、前方交会 B、后方交会 C、侧方交会 D、成果汇交 答案:B 4、定位系统组成通常由()组成。 A、空间部分 B、控制部分 C、客户端 D、车载电子狗 答案:ABC 5、目前世界上的卫星导航定位系统有()。 A、GPS B、格洛纳斯 C、高德 D、北斗 E、伽利略 答案:ABDE 6、()是整个GPS车载导航系统的心脏。 A、车载主机 B、显示器 C、定位系统 D、其他控制模块 答案:C 7、导航应用软件的基本功能包括()。 A、定位与显示 B、地图浏览与信息查询 C、地图编辑 D、语音引导 E、智能路线规划 答案:ABDE 8、导航电子地图的特点包括()。 A、能够查询目的地信息 B、存有大量能够用于引导的交通信息 C、用户能够编辑导航电子地图 D、需要不断进行实地信息更新和扩大采集答案:ABD 9、导航硬件平台包括()。 A、车载主机 B、电视接收机 C、显示器 D、DVD播放机 E、定位系统 答案:ACE

10、()是含有空间位置地理坐标,能够与空间定位系统结合,准确引导人或交通工具从出发地到达目的地的电子地图或数据库。 A、多媒体地图 B、数字地图 C、导航电子地图 D、云地图 答案:C 11、高质量电子地图数据的关键因素不包括()。 A、数据信息丰富 B、图面清晰美观 C、信息内容准确 D、数据现势性高答案:B 12、()不是导航电子地图具有的特点。 A、能够查询目的地信息 B、存有大量能够用于引导的交通信息 C、集成了影音娱乐平台 D、需要不断进行实地信息更新和扩大采集 答案:C 13、导航电子地图的POI的内容部不包括()。 A、道路名 B、交叉点 C、邮编检索 D、铁路数据 答案:D 14、导航电子地图的背景数据不包括()。 A、地貌 B、水系 C、植被 D、铁路数据 答案:A 15、导航电子地图产品设计阶段,根据需求分析的结果、生产计划、资源配置情况,进行产品设计,其设计内容不包括( )。 A、制作成导航电子地图数据库 B、成本预算、资源配置 C、品质要求、风险控制 D、产品计划、产品范围 答案:A 16、以下有关导航电子地图制作过程中不正确的说法是()。 A、导航电子地图制作需经过需求分析和需求评审 B、从国家权威部门或市场收集公共情报信息 C、导航电子地图数据库制作主要是根据现场采集成果进行相应的加工处理 D、导航地图经过制作单位的严格检查无误后可上市销售。 答案:D 17、导航电子地图生产中通过外业专业人员利用专业设备实地采集的相关信息不包括()。 A、新增或变化道路的形状 B、道路网络连接方式 C、道路属性、兴趣点 D、国界和国内各级行政区划界线 答案:D 18、导航电子地图数据采集过程中所要遵循的规格要求不包括()。 A、采集对象 B、采集条件 C、记录方式 D、数据库制作标准

基于惯性导航系统的车辆自动驾驶装置设计

中图分类号:TN967.1;V249.3文献标识码:A文章编号:1009-2552(2011)02-0069-03基于惯性导航系统的车辆自动驾驶装置设计 寇超1,陈志佳1,杨茂林1,倪蕾2 (1.军械工程学院光学与电子工程系,石家庄050003;2.62541部队,北京100025) 摘要:介绍了一种能够遥控和自主行驶的运动平台的设计方法。该运动平台以惯性导航仪提供的坐标为基础,可以由上位机规划路径和障碍,通过蓝牙模块将路径信息传递给自动驾驶控制器,自动驾驶控制器按照导航路径和惯性导航仪给出的实时坐标解算控制量,完成对运动平台的模糊控制,使运动平台按照指定路径前进。 关键词:惯性导航;自动驾驶;路径规划;路径跟踪 Design of vehicle auto m atic driving device base d on i nerti al navigation syste m KOU Chao1,C HEN Zh-i jia1,YANG M ao-lin1,N I Lei2 (1.Depart m ent of O ptics and E lectron i cs Engi n eer i ng,O rdnance Engi n eer i ng Co llege,Sh iji azhuang050003,Ch ina; 2.62541T roop s of PLA,B eijing100025,Ch i na) A bstract:The desi g n o f movable platfor m t h at can be re m ote contr o led and auto m atic dri v ed is i n troduced.The platfor m based on i n ertial nav i g ati o n i n stru m ent trans m its t h e i n for m ation o f t h e path to the auto m atic dri v i n g controller through blue tooth.The path and obstac l e can be planned by the co m puter.According to the nav i g ati o n and rea-l ti m e coor d i n ate,t h e auto m atic driv i n g contr o ller ca lculates the contro l para m eter and realizes fuzzy contro.l F i n ally,the m ovable platfor m m oves on the path that has been specifi e d. K ey words:i n ertia l navigation;auto m atic driving;path plann i n g;path fo ll o w i n g 0引言 自动驾驶车辆是地面无人作战平台的一种,它是一台可以在崎岖的地形上沿规划的路线自主导航及躲避障碍、必要时可重新规划路线的智能车辆。目前,对地面无人作战平台的研究主要集中在半自主无人车辆开发上。近期的发展趋势主要是不断增强车辆对不同任务的适应能力,如侦察、监视和目标探测、工程侦察、通信中继、战术欺骗、作战补给、反狙击部署等。同时也正在努力增强车辆自身的环境感知能力和自主导航能力,为完全自主无人车辆研究奠定技术基础[1]。 本设计的主要任务是设计一个自动驾驶控制装置,控制载体车辆在实验场地上按照预先规划好的路径行驶,为其他课题实验提供无人运动平台。1控制系统总体设计 整个自动驾驶装置分为运动车辆及控制其自动行驶的控制器、操纵杆和上位机路径规划软件三部分。各部分关系如图1所示,运动车辆作为运 动载 图1全系统组成示意图 收稿日期:2010-09-03 作者简介:寇超(1985-),男,硕士研究生,主要研究方向为通信与信息系统。 ) 69 )

导航电子地图制作

第十一章导航电子地图制作 第1节导航与导航电子地图 导航系统的构成 导航系统一般采用GPS与航位推算法(传感器+电子陀螺仪)组合方式实现定位,通过触摸显示屏或者遥控器进行交互操作,能够实现实时定位、目的地检索、路线规划、画面和语音引导等功能,帮助驾驶者准确、快捷地到达目的地。导航系统一般由定位系统、硬件系统、软件系统和导航电子地图四部分构成。 @#1 定位系统 1 定位系统 目前主要的定位系统是以航天技术为基础,以高速运动的卫星瞬间位置作为已知数据,采用空间距离后方交会的方法,计算待测点位置的系统。通常由空间部分、控制部分和客户端三部分组成。 除美国的全球定位系统gps外,目前世界上的卫星导航定位系统还有俄罗斯的"格洛纳斯"、欧盟"伽利略"以及我国的"北斗"。 到1994:年3月,全球覆盖率高达98%的24颗GPS卫星星座己布设完成。@#2硬件系统 2、硬件系统 导航硬件平台包括车载主机、显示器、定位系统和其他控制模块。车载主机是整个gps车载导航系统的心脏,车载主机由若干个电子控制单元(electric control unit,ecu)构成,它们可以独立完成特定的功能,并与其他单元模块协同工作。这些模块中最重要的是由gps接收机、航位推算(dead reckoning,dr)微处理器、车速传感器、陀螺传感器构成的定位模块。gps系统和dr系统组合构成的定位导航模块可以很好地解决短时间内丢失gps卫星信号的问题,又可以避免dr系统的误差随时间积累。目前普通民用gps和dr组合定位设备(gps惯性设备)已经可以达到1 000 m无gps信号的情况下的航向精度和10 m的距离精度。(惯性制导系统) @#3软件系统 3、软件系统 软件系统由系统软件和导航应用软件组成。 系统软件包括操作系统和设备驱动两部分。操作系统一般采用嵌入式实时操作系统(rtos),如国外的vx-work、qnx、palmos、windows ce和国内的hopen os 等。 导航应用软件是专门针对车载导航应用需求开发的软件系统,运行在车载主机中。基本功能包括:定位与显示、地图浏览与信息查询、智能路线规划、语

导航电子地图

导航电子地图 姓名:李海春 学院:测绘地理信息学院 专业:15级工程测量与监理 随着社会的发展,汽车已经成为人们必不可少的交通工具,这就造成了城市中日益严重的交通和环境污染问题。智能交通系统的产生能够减少和缓和这类问题。组合导航系统更是陆地车辆导航定位的趋势。在智能交通系统中,车辆导航系统是一个非常重要和基础的组成系统,是智能交通系统的中心部件。它可以有效地利用现有的道路设施,减少交通拥挤,便于集中管理、调度。关键词:GPS,导航,电子地图1电子地图概论 地图的出现对人类的社会活动和社会发展产生了极大的影响,而人类的社会活动和社会发展又促进了地图的完善和发展,使它不仅能描述山川、河流和海洋等自然物貌,还能将其他诸如行政区划、人口数据、矿藏分布、经济统计数据等表现出来。地图的发展,使它超出了纯地理信息的范畴,成为人们了解和认识世界的一个重要信息载体。 随着计算机技术的发展,为了方便地图的查询、制作、更新、复制和缩放的需求,由计算机支持的电子地图便应运而生。电子地图是以数字形式表示的,具有在屏幕上动态显示、编辑、查询、检索、分析和决策等功能的新型地图产品。它的出现,可以说是地图应用和发展史上的里程碑,它使地图的信息化特征得到了更好的展现和扩展,使二维的纸质地图信息向多维的空间信息发展,使孤立的地理信息能与其他社会信息相关联。由于科技含量高以及使用便捷,它的使用范围及发挥的作用已经触及到国计民生的许多方面,前景十分广阔。应用在政府管理与决策方面,可以最大限度地掌握所辖区域的各种信息,实现政府管理与决策的科学化;在城市规划与土地管理方面,可以实现土地管理信息的电子导航,完成各种变更管理和动态监测,实现效率最佳的宏观、中观、微观各层次管理目标,提高土地管理的科学水平;在城市公共设施管理方面,可以综合考虑规划及设计,使它们的相互干扰达到最小,效率达到最优,并发挥它们的整体优势;而以电子地图为基础的智能交通系统,借助实时交通信息、通讯网络、定位系统和智能化分析与选线系统,可以缓解道路阻塞和减少交通事故,提高驾车者的方便性和舒适性。近几年随着计算机信息系统的出现和硬件技术的迅猛发展,以电子地图为雏形,以信息系统为支撑,综合各领域前沿的最新技术,形成了地理信息系统GIS (Geographic Information System),它为表现地理空间数据提供了强有力的平台,并能对空间数据提供动态的传输信息。电子地图也完成了向地理信息系统的过渡。 1.1电子地图的基本性质: (1)电子地图首先是一种模拟地图产品;(2)电子地图的数据来源是数字地图; (3)电子地图的采集、设计等都是在计算机平台环境下实施的;(4)电子地图的表达载体是屏幕。1.2电子地图的特点: (1)数据与软件的集成性 (2)过程的交互性(3)信息表达的多样性(4)无级缩放与多尺度数据 (5)快速、高效的信息检索与地图分析(6)多维与动态可视化(7)共享性(8)低成本性 2 智能交通系统及其发展 由于社会飞速发展,汽车愈来愈成为人们不可缺少的最常用的交通工具,这造成了日益严重的交通和环境问题。由此产生了智能交通系统(Intelligent Traffic System)。车辆导航定位将成为全球卫星定位系统应用的最大潜在市场之一,是智能交通系统中一个非常重要和基础的

相关文档
最新文档