05-异方差

合集下载

异方差性的检验方法

异方差性的检验方法

而lnˆ 2 9.157326, 故ˆ 2 =0.000105444,
因此异方差的结构为
ˆ
2 ui

0.00010544
x3.056229 i
五、格莱泽检验法 格莱泽 (H.Glejser)检验法致力于寻找εi与xji之间 显著成立的关系,因而是用残差绝对值|εi| 对xji的各种函数形式进行回归,将其中显著成立 的函数关系,作为异方差结构的函数形式。这种 检验的计算步骤是:
二、斯皮尔曼(Spearman)等级相关检验法 我们以一元线性回归模型为例,说明斯皮尔曼 等级相关检验法的步骤: 第一步,对原模型应用OLS法,计算残差 i yi yˆi ,i =1,2,…,n。 第二步,计算|εi|与xi的等级差di。将|εi| 和自变量观察值xi按由小到大或由大到小的顺序 分成等级。
然后,计算|εi|与xi的等级差di
di = xi的等级-∣εi∣的等级
(5.3.2)
第三步,计算|εi|与xi的等级相关系数
rs
1
6 n(n2
di2 1)
其中n为样本容量。
(5.3.3)
第四步,对总体等级相关系数 s进行显著性检验 H 0 : s 0, H1 : s 0 。当H0成立时,可以证明统
由于不同的观察值随机误差项具有不同的方差因此检验异方差的主要问题是判断随机误差项的方差与解释变量之间的相关性下列这些方法都是围绕这个思路通过建立不同的模型和验判标准来检验异方差
§5.3 异方差性的检验方法
• 由于异方差的存在会导致OLS估计量的最佳性 丧失,降低精确度。所以,对所取得的样本数 据(尤其是横截面数据)判断是否存在异方差, 是我们在进行正确回归分析之前要考虑的事情。 异方差的检验主要有图示法和解析法,下面我 们将介绍几种常用的检验方法。

计量习题答案

计量习题答案

第一章习题解答1.怎样理解产生于西方国家的计量经济学能够在中国的经济理论研究和现代化中发挥重要作用。

答:计量经济学的产生源于对经济问题的定量研究,是社会经济发展到一定阶段的客观需要。

经济学从定性研究向定量分析的发展,是经济学向更加精密更加科学发展的表现,反映了社会化大生产对各种经济问题和经济活动进行精确数量分析的客观要求。

毫无疑问,我国经济的发展需要科学化和现代化,要真正成为一门科学,成为一门能够指导中国社会主义市场经济体制的建立和经济发展的科学,那么重要的内容之一就是要学习代西方经济学先进的研究方法。

这就需要我们多学习多研究计量经济学,把计量经济学的方法原理运用到实际的经济活动中去,从实践中不断探索和发展计量经济学。

2.理论计量经济学和应用计量经济学的区别和联系是什么?P23.怎样理解计量经济学与理论经济学、数理经济学、经济统计学的关系?P3~44.假如你是中国人民银行的顾问,需要你对增加货币供应量促进经济增长提出建议,你将考虑哪些因素?你认为可以怎样运用计量经济学的研究方法?答:可以考虑以下因素:投资规模、通货膨胀、物价总水平、失业率、就业者人数及其受教育程度、资本存量、技术进步,国民生产总值等等;我们从这些所有因素中选择一些因素,比如投资规模、劳动人口数、技术进步速度、通货膨胀率对国民生产总值回归,建立回归方程;收集数据;作回归;然后检验、修正;5.你能分别举出三个时间序列数据、截面数据、混合数据、虚拟变量数据的实际例子吗?答:(1)时间序列数据如:每年的国民生产总值、各年商品的零售总额、各年的年均人口增长数、年出口额、年进口额等等;(2)截面数据如:西南财大2002年各位教师年收入、2002年各省总产值、2002年5月成都市各区罪案发生率等等;(3)混合数据如:1990年~2000年各省的人均收入、消费支出、教育投入等等;(4)虚拟变量数据如:婚否,身高是否大于170厘米,受教育年数是否达到10年等等。

《计量经济学》第五章 异方差性

《计量经济学》第五章 异方差性
由OLS法得到残差,取得绝对值,然后将对某个 解释变量回归,根据回归模型的显著性和拟合优 度来判断是否存在异方差。
(二)检验的特点
不仅能对异方差的存在进行判断,而且还能对异 方差随某个解释变量变化的函数形式 进行诊断。 该检验要求变量的观测值为大样本。
36
(三)检验的步骤
1.建立模型并求 ei 根据样本数据建立回归模型,并求残差序列
4
第一节 异方差性的概念
本节基本内容:
●异方差性的实质 ●异方差产生的原因
5
一、异方差性的实质
同方差的含义
同方差性:对所有的 i (i 1,2,...,n)有:
Var(ui ) = σ 2
(5.1)
因为方差是度量被解释变量 Y的观测值围绕回归线
E(Yi ) 1 2 X 2i 3X3i ... k X ki (5.2)
1.求回归估计式并计算 et2
用OLS估计式(5.14),计算残差
差的平方 et2 。
et
Yt
-Yˆt
,并求残
2.求辅助函数
用残差平方
et2
作为异方差
σ
2 t
的估计,并建立
X
2t
,
X
3t
,
X
2 2t
,
X
2 3t
,
X
2t
X
3t
的辅助回归,即
eˆt2
=
αˆ1
+
αˆ2
X
2t
+
αˆ3
X
3t
+
αˆ4
X
2 2t
+
αˆ5
X
2 3t
+
αˆ6

异方差检验结果解读

异方差检验结果解读

异方差检验结果解读
异方差检验(Heteroscedasticity test)是一种用于检验不同组之间是否存在方差
差异的统计方法。

该检验通常用于回归分析中,以确定回归模型的合理性和精确性。

异方差性可能导致回归模型的预测能力下降,因此解读异方差检验结果对于正确分析数据非常重要。

在异方差检验中,常用的检验方法包括Park、White、Goldfeld-Quandt等。


验结果通常以显著性水平为基准进行判断。

检验结果显示显著性水平小于或等于设定的阈值(通常为0.05),则可以认为不存在异方差;反之,如果显著性水平大于阈值,则可以认为存在异方差。

异方差检验的结果还提供了其他有用的信息,如异方差性的模式或形式。

一种
常用的方法是绘制残差图,通过观察残差与预测值的关系,可以初步判断异方差性的模式。

常见的异方差性模式包括上升或下降斜线、漏斗形状等。

在图形分析的基础上,可以进一步使用更专业的统计方法,如白噪声检验(White noise test)或Breusch-Pagan检验,来验证异方差性的模式。

在回归分析中,若检验结果显示存在异方差,需要采取相应的纠正措施。

常用
的纠正方法包括回归模型的转换、加权最小二乘法等。

这些方法可以有效地纠正异方差性,提高模型的准确性和稳定性。

总结来说,异方差检验结果的解读需要关注显著性水平、残差图以及其他专业
统计方法的检验结果。

通过综合分析这些信息,我们能够确定回归模型是否受到异方差性的影响,进而采取相应的纠正措施。

正确解读异方差检验结果对于准确分析数据和得出可靠的结论至关重要。

9第九章 异方差

9第九章  异方差
如果确实存在异方差,则被有效地消除了; 如果不存在异方差性,则加权最小二乘法 等价于普通最小二乘法
七、案例—例9-2P207
现考虑工人的工资主要由受教育程度和工作年限所影响, 现收集了523个工人的工资、受教育程度、工作年限的数 据,详见表9-2。构建如下回归模型:
wagei B1 B2Edui B3Experi ui
一、异方差的性质---异方差举例
例图9-1:截面资料下研究居民家庭的储蓄行为
Yi=0+1Xi+i
Yi:第i个家庭的储蓄额 Xi:第i个家庭的可支配收入
高收入家庭:储蓄的差异较大 低收入家庭:储蓄则更有规律性,差异较小
i的方差呈现单调递增型变化
例9-1股票交易所经纪人佣金
• Y:佣金额;X:交易额; • Y对X的斜率:佣金率 • 结论:
如果存在异方差性,则表明确与解释变量的 某种组合有显著的相关性,这时往往显示出有 较高的可决系数以及某一参数的t检验值较大。
当然,在多元回归中,由于辅助回归方程中 可能有太多解释变量,从而使自由度减少,有 时可去掉交叉项。
四、异方差的修正:补救措施1-加权最小二乘法wls
模型检验出存在异方差性,可用加权最小二乘 法(Weighted Least Squares, WLS)进行估计。
X越大,对应的方差越小; X越小,对应的方差越大。 • 解读: 经纪公司对大机构投资者收取的佣金率差异小
对小机构投资者收取的佣金率差异大
例9-2 523个工人的工资等数据
• Y:工资;X1:教育程度;X2:工作年限 • 讨论: X1越大,Y的波动越大,扰动项的方差越大; X2越大, Y的波动越大,扰动项的方差越大。

Yi Xi

数学05异方差

数学05异方差

7 Y
6
5
4
3
2
1
x
0 20 40 60 80 100 120 140 160 180 200
散点图
3
RYESID
2
1
0
-1
-2
-3
0
50
100
150
残差图
T 200
第8页/共36页
5.4 异方差检验
(1) Goldfeld-Quandt 检验
H0: ut 具有同方差, H1: ut 具有递增型异方差。
第5章 异方差
异方差概念 异方差来源与后果 异方差检验(Goldfeld-Quandt 检验、
white检验、Glejser检验) 异方差的解决方法(GLS、WLS) 异方差案例分析
第1页/共36页
5.1异方差概念
同方差假定:模型的假定条件给出误差项的方差协方差矩
阵Var(u) 即E(u u' )是一个对角矩阵,且主对角线上的元
(1) 截面数据中的异方差常由解释变量变动幅度较大造成的。
(2) 时间序列数据也会存在异方差(随着时间增加变量波动幅度 增加)。经济时间序列中的异方差常为递增型异方差。
(3) 金融时间序列中的异方差常表现为复杂型异方差(自回归条 件异方差)。
1.2E+12
1.0E+12
GDP of Philippin
①把原样本分成两个子样本。具体方法是把成对(组)的观 测值按解释变量顺序排列,略去m个处于中心位置的观测值 (通常T 30时,取m T / 4,余下的T- m个观测值自然分成 容量相等,(T- m) / 2,的两个子样本。)
7 6 5 4 3 2 1 0
0

异方差的修正方法

异方差的修正方法

异方差的修正方法在统计学和经济学中,异方差是指误差项的方差不是恒定的情况。

当误差项的方差不恒定时,会对统计分析结果产生影响,导致参数估计的不准确性。

因此,需要对异方差进行修正,以确保统计分析结果的准确性和可靠性。

异方差的修正方法主要包括加权最小二乘法(Weighted Least Squares, WLS)、异方差稳健标准误(Heteroscedasticity-Robust Standard Errors)和异方差稳健回归(Heteroscedasticity-Robust Regression)。

这些方法能够有效地处理异方差的问题,提高了统计分析结果的准确性。

加权最小二乘法是一种常用的异方差修正方法。

它通过赋予观测值不同的权重,对方差不恒定的数据进行加权处理,从而得到更为准确的参数估计值。

加权最小二乘法的核心思想是将方差不恒定的数据进行加权,使得方差较大的数据点在估计过程中起到较小的作用,从而降低了异方差对参数估计的影响。

另一种常用的异方差修正方法是异方差稳健标准误。

在普通最小二乘法中,通常假设误差项的方差是恒定的,但当误差项的方差不恒定时,普通最小二乘法的标准误就会产生偏误。

异方差稳健标准误通过对标准误进行修正,考虑了误差项方差的不恒定性,从而得到更为准确的统计推断结果。

此外,异方差稳健回归也是一种常用的异方差修正方法。

它通过对残差进行加权,从而得到更为准确的参数估计值。

异方差稳健回归在实际应用中具有较强的鲁棒性,能够有效地处理异方差的问题,提高了回归分析的准确性和可靠性。

总的来说,针对异方差的修正方法有多种选择,可以根据具体情况进行合理选择。

在进行统计分析时,需要对数据是否存在异方差进行检验,并采用适当的异方差修正方法,以确保统计分析结果的准确性和可靠性。

异方差的修正方法在实际应用中具有重要的意义,对于提高统计分析的准确性和可靠性具有重要作用。

计量经济学的异方差性

计量经济学的异方差性

一、 异方差性1. 中国农村居民人均消费支出主要由人均纯收入来决定。

农村人均纯收入除从事农业经营的收入外,还包括从事其他产业的经营性收入以及工资性收入、财产收入和转移支出收入等。

为了考察从事农业经营的收入和其他收入对中国农村居民消费支出增长的影响,可使用如下双对数模型:01122ln ln ln Y X X u βββ=+++其中Y 表示农村家庭人均消费支出,1X 表示从事农业经营的收入,2X 表示其他收入。

表4.1.1列出了中国2001年各地区农村居民家庭人均纯收入及消费支出的相关数据。

表4.1.1中国2001年各地区农村居民家庭人均纯收入与消费支出建立工作文件输入数据,输入命令:data y x1 x2 取对数:genr ly=log(y) 回车 Genr lx1=log(x1)回车Genr lx2=log(x2)回车估计参数:lsly c lx1 lx2 回车,得结果如下:用OLS 法进行估计,结果如下:对应的表达式为:12ln 1.6030.325ln 0.507ln Y X X =++(1.86) (3.14) (10.43)20.7965,0.78,0.8117R R RSS ===不同地区农村人均消费支出的差别主要来源于非农经营收入及其他收入的差别,因此,如果存在异方差性,则可能是2X 引起的。

对异方差性的检验:做OLS 回归得到的残差平方项与ln 2X 的散点图:从散点图可以看出,两者存在异方差性。

下面进行统计检验。

采用White异方差检验:EViews提供了包含交叉项和没有交叉项两个选择。

本例选择没有包含交叉项。

得到如下结果:所以辅助回归结果为:2221122ˆ 3.9820.579ln 0.042(ln )0.563ln 0.04(ln )eX X X X =-+-+ (1.38) (-0.63) (0.63) (-2.77) (2.9)其他收入2X 与2X 的平方项的参数的t 检验是显著的,且White 统计量为13.36,在5%的显著性水平下,拒绝同方差性这一原假设,方程确实存在异方差性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(第3版教材第90页)
5.1 异方差概念
当这个假定不成立时,Var(u) 不再是一个纯量对角矩阵。
0 11 22 2 2 2 I Var(u) = = σ 0 TT
(第3版教材第91页)
异方差通常有三种表现形式, (1)递增型, (2)递减型, (3)条件自回归型。
5.4 异方差检验
(第3版教材第93页)
(2) White 检验 White 检验由 H. White 1980 年提出。White 检验不需要对观测值排序,也 不依赖于随机误差项服从正态分布, 它是通过一个辅助回归式构造 2 统计 量进行异方差检验。以二元回归模型为例,White 检验的具体步骤如下。 yt = 0 +1 xt1 +2 xt2 + ut ①首先对上式进行 OLS 回归,求残差 ut 。 ②做如下辅助回归式,
同方差假定:模型的假定条件⑴ 给出Var(u) 是一个对角 矩阵,且主对角线上的元素都是常数且相等。 Var(u) = E(u u' ) =
12 10 8 6 4 2 0 X -2 0 50 100 150 200 Y
0 1 1 2 2I = σ 0 1 T T
消除了异方差。OLS 估计后,把回归参数的估计值代入原模型。
5.5 异方差的修正方法
异方差来源: (1) 时间序列数据和截面数据中都有可能存在异方差。 (2) 经济时间序列中的异方差常为递增型异方差。金融时间序 列中的异方差常表现为自回归条件异方差。
1.2E+12 1.0E+12 8.0E+11 GDP of Philippin
1.2E+11 RESID 8.0E+10
4.0E+10
-1 -2 T -3 0 50 100 150 200
散点图
残差图
5.4 异方差检验
(第3版教材第93页)
(1) Goldfeld-Quandt 检验
H0: ut 具有同方差, H1: ut 具有递增型异方差。 ①把原样本分成两个子样本。具体方法是把成对(组)的观测值按解释变
量顺序排列,略去m个处于中心位置的观测值(通常T 30时,取m T / 4,
7 6 5 4 3 2 1 0 20 40 60 80 100 120 140 160 180 200 Y
7 6 5 4 3 2 1 0 0 50 100 150 200 X Y
6 4 2 0 -2 -4 -6 -8 400 DJ PY
500
600
700
800
900 1000 1100 1200
5.2 异方差来源与后果
5.4 异方差检验
(2) White 检验 ④在同方差假设条件下,统计量 TR 2 2(5) 其中 T 表示样本容量,R2 是辅助回归式的 OLS 估计的可决系数。自由度 5 表示辅助回归式中解释变量项数(注意,不计算常数项) 。T R 2 属于 LM 统 计量。 ⑤判别规则是 若 TR2 2(5), 接受 H0(ut 具有同方差) 若 TR2 > 2(5), 拒绝 H0(ut 具有异方差)
5.5 异方差的修正方法(GLS) (不讲)
设模型为 Y = X + u 其中 E(u) = 0,Var(u) = E(u u') = 2 。 已知, 与 k 未知。因为 I,违反了假定条件,所以应该对模型进行适当修正。 因为 是一个 T 阶正定矩阵,所以必存在一个非退化 TT 阶矩阵 M 使下式成立。 M M ' = I TT 从上式得 M 'M = -1 用 M 左乘上述回归模型两侧得 MY=MX+Mu 取 Y* = M Y, X * = M X, u* = M u , 上式变换为 则 u* 的方差协方差矩阵为 Var(u*) = E(u* u*' ) = E (M u u' M ' ) = M 2 M ' = 2 M M ' = 2 I 对变换后模型进行 OLS 估计,得到的是 的最佳线性无偏估计量。 这种估计方法称作广义最小二乘法。 的广义最小二乘 (GLS) 估计量定义为 ˆ (GLS) = (X*' X*)-1 X*' Y* = (X 'M ' M X ) -1 X ' M 'M Y = (X ' -1X) -1 X ' -1Y Y* = X* + u*
从而使 Var(M u) = E (M u u' M ' ) = M 2 M ' = 2 M M '
0 1/ x1 ... =2 1/ xT 0
x12 0 ... 2 0 x T
0 1/ x1 = 2I ... TT 1/ xT 0
(第3版教材第94页)
yt 0 x u = + 1 + 2 t 2 + t xt1 xt1 xt1 xt1 ut ut 1 1 2 2 2 因为 Var( ) = 2 Var(ut) = 2 xt1 = ,随机项 是同方差的。 xt1 xt1 xt1 xt1
OLS 估计后,把回归参数的估计值代入原模型。 对变换式应用 OLS 法估计参数,求 (ut / xt1) 2 最小。其实际意义是 在求 (ut / xt1)2 最小的过程中给相应误差项分布方差小的观测值以更大 的权数。所以此法亦称为加权最小二乘法,是件
(第5讲)
南开大学数量经济研究所教授 数量经济学专业博士生导师 张晓峒 nkeviews@
以下讨论都是在某一个假定条件违反,而其他 假定条件都成立的情况下进行。分 5 个步骤。 回顾假定条件。 假定条件不成立对模型参数估计带来的影响。 定性分析假定条件是否成立。 假定条件是否成立的检验(定量判断) 。 假定条件不成立时的补救措施。
= + (X 'X)-1 X ' E(u) =
ˆ ) = E [( ˆ- )( ˆ - )' ] = E [(X 'X )-1 X ' u u' X (X 'X)-1 ] Var(
= (X ' X)-1 X ' E (u u' ) X (X ' X )-1 = 2 (X 'X )-1 X ' X (X ' X )-1
6.0E+11
0.0E+00
4.0E+11 2.0E+11 0.0E+00 84 86 88 90 92 94 96 98 00 02
-4.0E+10
-8.0E+10 84 86 88 90 92 94 96 98 00 02
(第3版教材第92页)
5.2 异方差来源与后果
B1F1 12 10 8 6 4 2
第 5 章 异方差
第5章 异方差
异方差概念 异方差来源与后果 异方差检验(Goldfeld-Quandt 检验、 White 检验、Glejser 检验) 异方差的修正方法(GLS、WLS) 异方差案例分析
file:li-5-1, file:hete01, file:hete02
5.1 异方差概念
SSE2 /(n 2 k ) SSE2 , (k 为模型中被估参数个数) SSE1 /(n1 k ) SSE1
在 H0 成立条件下,F F(n2 - k, n1 - k) ④ 判别规则如下, 若 F F (n2 - k, n1 - k), 接受 H0(ut 具有同方差) 若 F > F(n2 - k, n1 - k), 拒绝 H0(递增型异方差) 注意: ① 当摸型含有多个解释变量时,应以每一个解释变量为基准检验异方差。 ② 此法只适用于递增型异方差。 ③ 对于截面样本,计算 F 统计量之前,必须先把数据按解释变量的值从小 到大排序。
(第3版教材第93页)
5.5 异方差的修正方法(GLS)
(1)对模型 yt = 0 + 1 xt1 + 2 xt2 + ut 通常假定异方差形式是 Var(ut) = ( xt1)2。
ˆ t = xt1)用 xt1 同除上式两侧得 (因为 Var(ut) = E(ut)2,相当于认为 u
误差项已消除了异方差。
5.5 异方差的修正方法(GLS)
(2)利用Glejser检验结果消除异方差
假设 Glejser 检验结果是
ˆt = a ˆ0 + a ˆ 1 xt u ˆ0 + a ˆ 1 xt)22。用 ( a ˆ0 + a ˆ 1 xt) 除原模型各项, 说明异方差形式是 Var(ut) = ( a
ˆ t 2 = 0 +1 xt1 +2 xt2 + 3 xt12 +4 xt22 + 5 xt1 xt2 + vt u ˆ t 2 对原回归式中的各解释变量、解释变量的平方项、交叉积项进行 即用 u
OLS 回归。注意,上式中要保留常数项。求辅助回归式的可决系数 R2。 ③White 检验的零假设和备择假设是 H0:ut 不存在异方差, H1:ut 存在异方差。
Glejser 检验的特点是: ①既可检验递增型异方差,也可检验递减型异方差。 ②一旦发现异方差,同时也就发现了异方差的具体表现形式。 ˆ t 拟合成多变量回归形式。 ③当原模型含有多个解释变量值时,可以把 u (4)自回归条件异方差(ARCH)检验(不要求掌握) (5)Spearman 等级相关系数检验(不要求掌握)
余下的T- m个观测值自然分成容量相等,(T- m) / 2,的两个子样本。)
7 6 5 4 3 2 1 X 0 0 50 100 150 200 Y Y
相关文档
最新文档