计量经济学第五章异方差讲解
庞浩 计量经济学5第五章 异方差性

同方差
递增型异方差
递减型异方差
复杂型异方差
18
2.借助X-e2散点图进行判断 观察散点的纵坐标是否随解释变量Xi的变化而 变化。
~2 e2e i ei e2 ~2
X 同方差 递增异方差
X
e2
~2 e i
~2 e 2 e i
X 递减异方差 复杂型异方差
X
19
二、戈德菲尔德—夸特 (Goldfeld-Quanadt)检验
3
说明1
矩阵表示: Y X u 随机扰动项向量 其方差—协 u1 u 方差矩阵不 2 u 再是: un n1 而是:
2 2 Var Cov ( ui ) 2 nn
ei X i v i
ei
1 vi Xi
ei X i v i 1 ei vi Xi
③利用上述回归的R2、t统计量、F统计量等判断,R2 好、t统计量和F统计量显著,即可判定存在异方差。 28
说明: 1.也可以用 e i 与可能产生异方差的多个解释变 量进行回归模拟; 2.戈里瑟检验的优点在于不仅检验了异方差是否 存在,同时也给出了异方差存在时的具体表现 形式,为克服异方差提供了方便。 3.试验模型选得不好,也可能导致检验不出是否 存在异方差性。
12 2 2 Var Cov ( ui ) 2 n nn
4
说明2
随机扰动项 ui具有异方差性,可理解释为被解释变量 的条件分散程度随解释变量的变化而变化,如下图所 示:var( ui ) i2 2 f ( X i)(i 1,2,, n)
10
第二节 异方差性的后果
计量经济学课件第五章 异方差性

计量经济学课件第五章异方差性第五章异方差性1 / 80计量经济学课件第五章 异方差性 2 / 80引子:更为接近真实的结论是什么?根据四川省2000年21个地市州医疗机构数及人口数资料,分析医疗机构及人口数量的关系,建立卫生医疗机构数及人口数的回归模型。
对模型估计的结果如下:ˆ Yi -563.0548 5.3735 X i(291.5778) (0.644284) t (-1.931062) (8.340265) R2 0.785456 R 2 0.774146 F 69.56003式中 Y 表示卫生医疗机构数(个), X 表示人口数量(万人)。
计量经济学课件第五章 异方差性3 / 80模型显示的结果和问题 ●人口数量对应参数的标准误差较小;● t 统计量远大于临界值,可决系数和修正的可决系数结果较好,F 检验结果明显显著;表明该模型的估计效果不错,可以认为人口数量每增加1万人,平均说来医疗机构将增加5.3735人。
然而,这里得出的结论可能是不可靠的,平均说来每增加1万人口可能并不需要增加这样多的医疗机构,所得结论并不符合真实情况。
有什么充分的理由说明这一回归结果不可靠呢?更为接近真实的结论又是什么呢?计量经济学课件第五章 异方差性4 / 80第五章 异 方 差 性 本章讨论四个问题:●异方差的实质和产生的原因●异方差产生的后果●异方差的检测方法●异方差的补救计量经济学课件第五章 异方差性5 / 80第一节 异方差性的概念 本节基本内容:●异方差性的实质●异方差产生的原因计量经济学课件第五章 异方差性6 / 80一、异方差性的实质 同方差的含义同方差性:对所有的 i (i1,2,..., n)有: Var(ui ) = 2 (5.1) 因为方差是度量被解释变量 Y 的观测值围绕回归线 E(Yi ) 1 2 X 2i 3 X 3i ... k X ki (5.2) 的分散程度,因此同方差性指的是所有观测值的分散程度相同。
第五章异方差ppt课件

f
ˆ 2
2
w i (Yˆ ( ˆ1 ˆ2 X i ))( X i ) 0
ˆ2
wi xi* yi*
w
i
x
* i
2
ˆ1 Y * ˆ 2 X *
其中, X * w i X i , Y * w iYi
wi
wi
xi*
Xi
X
* i
,
yi*
Yi
Yi*
Econometrics 2005
将是不可靠的。
Econometrics 2005
13
5.3 异方差的检验
方法有 (1)图示法( X _ e2); (2)解析法:
戈德菲尔德-匡特检验 怀特检验 ARCH检验
Econometrics 2005
14
5.3.1 图示法及其类型
1. 异方差指u的方差随着x的变化而变化。 2. 故可以根据x-e2的散点图,对异方差是否
Y的预测值的精度降低;
2
(2)由于 i 难以确定, Y的方差也就难以确定, Y
的预测区间的确定也出 现困难;
2
(3)在 = ei2 /( n k )是 2的无偏的证明中用到了
2
同方差的假定,由于异 方差性,使得 = ei2 /( n k )
是有偏的。在此区间估 计基础上区间估计和假 设检验
基本思路:
(以二元回归为例Y:t 1 2 X2t 3X3t ut)
如果有异方差,则i2与解释变量有关系。:如
i2=0
1X2i
3 X3i
2
X
2 2i
4 X32i
5 X2i
X3i+vi
但是i2一般未知,用模型回剩归余ei2作为i2的渐进
计量经济学第五章异方差性

计量经济学第五章异⽅差性第五章异⽅差性本章教学要求:根据类型,异⽅差性是违背古典假定情况下线性回归模型建⽴的另⼀问题。
通过本章的学习应达到,掌握异⽅差的基本概念包括经济学解释,异⽅差的出现对模型的不良影响,诊断异⽅差的⽅法和修正异⽅差的若⼲⽅法。
经过学习能够处理模型中出现的异⽅差问题。
第⼀节异⽅差性的概念⼀、⼆个例⼦例1,研究我国制造业利润函数,选取销售收⼊作为解释变量,数据为1998年的⾷品年制造业、饮料制造业等28个截⾯数据(即n=28)。
数据如下表,其中y表⽰制造业利润函数,x表⽰销售收⼊(单位为亿元)。
Y对X的散点图为从散点图可以看出,在线性的基础上,有的点分散幅度较⼩,有的点分散幅度较⼤。
因此,这种分散幅度的⼤⼩不⼀致,可以认为是由于销售收⼊的影响,使得制造业利润偏离均值的程度发⽣变化,⽽偏离均值的程度⼤⼩的不同,就是所谓的随机误差的⽅差存在变异,即异⽅差。
如果⾮线性,则属于哪类⾮线性,从图形所反映的特征看,并不明显。
下⾯给出制造业利润对销售收⼊的回归估计。
模型的书写格式为212.03350.1044(0.6165)(12.3666)0.8547,..56.9046,152.9322213.4639,146.4905Y Y X R S E F Y s =+=====通过变量的散点图、参数估计、残差图,可以看到模型中(随机误差)很有可能存在异⽅差性。
例2,改⾰开放以来,各地区的医疗机构都有了较快发展,不仅政府建⽴了⼀批医疗机构,还建⽴了不少民营医疗机构。
各地医疗机构的发展状况,除了其他因素外主要决定于对医疗服务的需求量,⽽医疗服务需求与⼈⼝数量有关。
为了给制定医疗机构的规划提供依据,分析⽐较医疗机构与⼈⼝数量的关系,建⽴卫⽣医疗机构数与⼈⼝数的回归模型。
根据四川省2000年21个地市州医疗机构数与⼈⼝数资料对模型估计的结果如下:i iX Y 3735.50548.563?+-= (291.5778) (0.644284) t =(-1.931062) (8.340265)785456.02=R 774146.02=R 56003.69=F式中Y 表⽰卫⽣医疗机构数(个),X 表⽰⼈⼝数量(万⼈)。
计量经济学 第五章 异方差性

的分散程度,因此同方差性指的是所有观测值的
分散程度相同。
6
异方差性的含义
设模型为
Y i 1 2 X 2 i 3 X 3 i . . . k X k i u i i 1 , 2 , . . . , n
如果对于模型中随机误差项 u i 有:
V a r(u i)i2 , i 1 ,2 ,3 ,...,n (5.3)
的替代变量,对所选函数形式回归。用回归所得
到的 β 、 t 、F 等信息判断,若参数 显β 著不为零,
即认为存在异方差性。
38
第四节 异方差性的补救措施
主要方法:
●模型变换法 ● 加权最小二乘法 ● 模型的对数变换
39
一、模型变换法
以一元线性回归模型为例:
Yi 12Xiui
经检验
u
存在异方差,且
26
(二)检验的特点
要求变量的取值为大样本 不仅能够检验异方差的存在性,同时在多变量的 情况下,还能判断出是哪一个变量引起的异方差。
27
(三)检验的基本步骤:
以一个二元线性回归模型为例,设模型为: Y t= β 1+ β2X 2t+ β3X 3t+ ut
并且,设异方差与 X 2t , X 3t 的一般关系为 σ t 2 = α 1 + α 2 X 2 t+ α 3 X 3 t+ α 4 X 2 2 t+ α 5 X 3 2 t+ α 6 X 2 tX 3 t+ v t
Yi 1 2X2i ui*
X 3i
(u 5i* .5)
当被略去的 X 3 i 与 X 2 i 有呈同方向或反方向变 化的趋势时,随 X 2 i 的有规律变化会体现在(5.5)
计量经济学-5异方差

ˆ Yi |ei| |ei|等级
9 8 6 7 5 4 1 2 3 10
di
0 -1 2 -1 -1 1 2 0 -2 -9
d
2 i
0 1 4 1 1 1 4 0 4 81
计量经济学
解:根据表中的数据, ˆ Y = 4 . 5615 − 0 . 7965 X
t
利用普通最小二乘得:
t
R
2
= 0 . 93
计量经济学
四、帕克(Pack)检验 帕克( )
假定σ i2与某一解释变量X k 有关 :
σ i2 = σ 2 X β e v , 或 ln(σ i2 ) = ln(σ 2 ) + β ln( X k ) + vi
i k
由于σ i2未知,以同方差假定下OLS估计得到的e i2 代替: ln(ei2 ) = α + β ln( X k ) + vi 进行回归,对β作显著性检验。若显著,则存在异方差。
且能确定影响随机项的解释变量。 且能确定影响随机项的解释变量。
计量经济学
夸特( 五、戈德菲尔德—夸特(Goldfied-Quandt)检验 戈德菲尔德 夸特 ) G-Q检验适用于大样本、随机项的方差与某异解释变量 检验适用于大样本、 检验适用于大样本 存在正相关的情况。检验的前提条件是: 存在正相关的情况。检验的前提条件是:随机项服从正态分 无序列相关。步骤: 布;无序列相关。步骤:
计量经济学
三、异方差的后果 基于CLRM假定的 假定的OLS估计参数结果将受到影响。 估计参数结果将受到影响。 基于 假定的 估计参数结果将受到影响 1、考虑异方差性的 、考虑异方差性的OLS估计 估计 E (u i ) = σ i2 ≠ 常数 ,保留其它的 保留其它的CLRM假定, 假定, 如果假定 假定 以双变量回归模型为例,普通OLS估计为: 估计为: 以双变量回归模型为例,普通 估计为
第五章-异方差性-答案说课讲解

第五章-异方差性-答案第五章 异方差性一、判断题1. 在异方差的情况下,通常预测失效。
( T )2. 当模型存在异方差时,普通最小二乘法是有偏的。
( F )3. 存在异方差时,可以用广义差分法进行补救。
(F )4. 存在异方差时,普通最小二乘法会低估参数估计量的方差。
(F )5. 如果回归模型遗漏一个重要变量,则OLS 残差必定表现出明显的趋势。
( T )二、单项选择题1.Goldfeld-Quandt 方法用于检验( A )A.异方差性B.自相关性C.随机解释变量D.多重共线性2.在异方差性情况下,常用的估计方法是( D )A.一阶差分法B.广义差分法C.工具变量法D.加权最小二乘法3.White 检验方法主要用于检验( A )A.异方差性B.自相关性C.随机解释变量D.多重共线性4.下列哪种方法不是检验异方差的方法( D )A.戈德菲尔特——匡特检验B.怀特检验C.戈里瑟检验D.方差膨胀因子检验5.加权最小二乘法克服异方差的主要原理是通过赋予不同观测点以不同的权数,从而提高估计精度,即( B )A.重视大误差的作用,轻视小误差的作用B.重视小误差的作用,轻视大误差的作用C.重视小误差和大误差的作用D.轻视小误差和大误差的作用6.如果戈里瑟检验表明,普通最小二乘估计结果的残差与有显著的形式的相关关系(满足线性模型的全部经典假设),则用加权最小二乘法估计模型参数时,权数应为( B )A. B. C. D. 7.设回归模型为,其中()2i2i x u Var σ=,则b 的最有效估计量为( D )i e i x i i i v x e +=28715.0i v i x 21i x i x 1ix 1i i i u bx y +=A. B. C. D. ∑=i i x y n 1b ˆ 8.容易产生异方差的数据是( C )A. 时间序列数据B.平均数据C.横截面数据D.年度数据9.假设回归模型为i i i u X Y ++=βα,其中()2i 2i X u Var σ=,则使用加权最小二乘法估计模型时,应将模型变换为( C )。
计量经济学第五章 异方差

X 20000
5.3异方差的侦查
利用残差图——绘制残差平方与X散点图
(一般把异方差看成是由于解释变量的变化而引起的)
5.1异方差的概念
三、异方差产生的原因 模型设定误差:省略了重要的解释变量
例:真实模型 Yi 1 2 X 2i 3 X 3i i 采用模型 Yi 1 2 X 2i i
如果X3随着X2的不同而对Y产生不同的影响,则 该影响体现在扰动项中。
测量误差: 一方面,测量误差常常在一定时间内逐渐增加,如X 越大,测量误差就会趋于增大 另一方面,测量误差随时间变化趋于减少,如抽样技 术的改进使得测量误差减少。
)
2 i
5.1异方差的概念
6 Y
4
300 Y
200
2
100
0 0
X
0
X
10
20
30
0
5000
10000
15000
20000
250
Y
二、常见的异方差类型: 200
递增型异方差:
150
100
递减型异方差:
50
条件异方差(略):
0 0
X
10
20
30
时间序列数据和截面数据中都有可能存在异方差。
经济时间序列中的异方差常为递增型异方差。
ˆ 2 ei2 (Yi ˆX i )2 (( ˆ) X i i )2
n 1
n 1
n 1
5.2异方差的后果
E (vaˆr(ˆ ))
E(
ˆ 2
X
2 i
)
E(
(( ˆ)X
(n 1)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.2 异方差来源与后果
异方差来源:
(1) 时间序列数据和截面数据中都有可能存在异方差。 (2) 经济时间序列中的异方差常为递增型异方差。金 融时间序列中的异方差常表现为自回归条件异方差。
1.2E+12 1.0E+12
GDP of Philippin
8.0E+11
6.0E+11
4.0E+11
2.0E+11
8
6
4
2
0
-2 0
X
50
100
150
200
5.1异方差概念
当这个假定不成立时,Var(u) 不再是一个纯量对角矩阵。
11
0
Var(u) = 2 = σ 2
22
2 I
0
TT
当误差向量u的方差协方差矩阵主对角线上的元素不相等时,称该随机误差
系列存在异方差。非主对角线上的元素表示误差项之间的协方差值。若 非
H0:ut不存在异方差, H1:ut存在异方差。
5.4 异方差检验
(2) White检验
④在同方差假设条件下,统计量
TR 2 2(5)
其中T表示样本容量,R2是辅助回归式的OLS估计的可决系数。 自由度5表示辅助回归式中解释变量项数(注意,不计算常数 项)。T R 2属于LM统计量。 ⑤判别规则是
(2) 利用散点图做初步判断。
(3) 利用残差图做初步判断(以解释变量为横坐标 2
3 Y
2
1
0
-1
1
0 20 40 60 80 100 120 140 160 180 200
-2
-3 0
T
50
100
150
200
散点图
残差图
5.4 异方差检验
(1) Goldfeld-Quandt 检验
①首先对上式进行OLS回归,求残差ut 。
②做如下辅助回归式,
uˆ t 2 = 0 +1 xt1 +2 xt2 + 3 xt12 +4 xt22 + 5 xt1 xt2 + vt
即用 uˆ t 2 对原回归式中的各解释变量、解释变量的平方项、交叉积项进行
OLS回归。注意,上式中要保留常数项。求辅助回归式的可决系数R2。 ③White检验的零假设和备择假设是
5.4 异方差检验
(2) White检验
White检验由H. White 1980年提出。White检验不需要对观测值排序,也不
依赖于随机误差项服从正态分布,它是通过一个辅助回归式构造 2 统计量
进行异方差检验。以二元回归模型为例,White检验的具体步骤如下。
yt = 0 +1 xt1 +2 xt2 + ut
回归参数估计量仍具有无偏性和一致性。但是不再具有有效性。
E( ˆ ) = E[ (X 'X )-1 X 'Y ] = E[ (X 'X )-1 X ' (X + u) ] = + (X 'X)-1 X ' E(u) =
Var( ˆ ) = E [( ˆ - ) ( ˆ - )' ] = E [(X 'X )-1 X ' u u' X (X 'X)-1 ]
white检验、Glejser检验) 异方差的修正方法(GLS、WLS) 异方差案例分析
5.1异方差概念
同方差假定:模型的假定条件⑴ 给出Var(u) 是一个对角 矩阵,且主对角线上的元素都是常数且相等。
1 0
Var(u) = E(u u' ) = 2I =
σ2
1
0
1
12 10 Y
0
Y Y
50
100
150
X 200
5.4 异方差检验
(1) Goldfeld-Quandt 检验
②用两个子样本分别估计回归直线,并计算残差平方和。 相对于n2 和n1 分别用SSE2 和SSE1表式。
③ 构造F统计量。F = SS2E/(n2k)SS2E,(k为模型中被估参数个数)
SS1E/(n1k) SS1E
在H0成立条件下,F F(n2 - k, n1 - k) ④ 判别规则如下,
若 F F (n2 - k, n1 - k), 接受H0(ut 具有同方差) 若 F > F(n2 - k, n1 - k), 拒绝H0(递增型异方差) 注意: ① 当摸型含有多个解释变量时,应以每一个解释变量为基准检验异方差。 ② 此法只适用于递增型异方差。 ③ 对于截面样本,计算F统计量之前,必须先把数据按解释变量的值排序。
以下讨论都是在模型某一个假定条件违反,而其他 假定条件都成立的情况下进行。分5个步骤。
回顾假定条件。 假定条件不成立对模型参数估计带来的影响。 定性分析假定条件是否成立。 假定条件是否成立的检验(定量判断)。 假定条件不成立时的补救措施。
第5章 异方差
第5章 异方差
异方差概念 异方差来源与后果 异方差检验(Goldfeld-Quandt 检验、
0.0E+00 84 86 88 90 92 94 96 98 00 02
1. 2E+ 11 8. 0E+ 10
RESID
4. 0E+ 10
0. 0E+ 00
-4. 0E+ 10
-8. 0E+ 10 84 86 88 90 92 94 96 98 00 02
5.2 异方差来源与后果
异方差后果:
当 Var(ut) = t 2,为异方差时(t 2 是一个随时间或序数变化的量),
主对角线上的部分或全部元素都不为零,误差项就是自相关的。
异方差通常有三种表现形式,(1)递增型,(2)递减型,(3)条件自回
归型。 7
6
Y 6
4
DJ P Y
5
2
4
0
3
-2
2
-4
1
-6
0 20 40 60 80 100 120 140 160 180 200
-8 400 500 600 700 800 900 1000 1100 1200
= (X ' X)-1 X ' E (u u' ) X (X ' X )-1 = 2 (X 'X )-1 X ' X (X ' X )-1 不等于 (X ' X )-1,所以异方差条件下 ˆ 是非有效估计量。
5.4 异方差检验
5.4.1 定性分析异方差
(1) 宏观经济变量容易出现异方差(自回归条件异方差)。
H0: ut 具有同方差, H1: ut 具有递增型异方差。
①把原样本分成两个子样本。具体方法是把成对(组)的观 测值按解释变量顺序排列,略去m个处于中心位置的观测值 (通常T 30时,取m T / 4,余下的T- m个观测值自然分成 容量相等,(T- m) / 2,的两个子样本。)
7 6 5 4 3 2 1 0