CASS池设计计算

合集下载

CASS池参数计算

CASS池参数计算

3.4
进水BOD5浓度
S0 Vmax=7.4*104*t*X
活性污泥界面的初始沉降
-1.7 0
速度
Vmax=4.6*104*X0-
1.26
300.0 1.2 2.5
2.4
沉淀时间
Ts=[H*(1/m)+ ε]/Vmax
1.6 0.8
反应器有效水深
H
5.0
活性污泥界面上最小水深
ε
0.5
易生化 可生化 难生化 mg/L 满足
CS(T)
混合液水温
T
混合液溶解氧浓度
CL
KLa的修正系数
α
饱和溶解氧修正系数
β
曝气头水深修正
曝气头水深 曝气装置距池底深度 处理厂所在地大气压
1天的曝气时间 氧利用率
总供风量
室外空气温度 拟采用风机数量
r=1/2*[(10.33+ HA)/10.33+1]
HA=H安-HA`
HA` P t EA GS=SOR/[0.28EA* (273+T`)/273] T` n机
TD
CASS池需要总容积
BOD容积负荷
反应器实际总容积 单个反应器需要容积 实际单个反应器容积 进入污水有机物浓度 混合液残存BOD5浓度
混合液污泥浓度 反应器个数
反应器有效高度 单个反应器面积 曝气盘服务面积
所有曝气盘总数量 排水比 校核体积
反应器安全高度
池高
V=m*n*Q*C*TC/Lv *Ta
5.41
5.9 11.2 116.0 29.0 29.0
2
3.0
2 5 小于4m 6m
h h h 次/天
m3

cass工艺设计计算书

cass工艺设计计算书

cass工艺设计计算书CASS(循环活性污泥系统)工艺是一种常用的污水处理工艺,以下是一个简单的 CASS 工艺设计计算书的示例,供参考:1. 设计基础数据:- 设计流量:[具体数值]m³/d- 进水水质:BOD5 = [数值]mg/L,COD = [数值]mg/L,SS = [数值]mg/L- 出水水质:BOD5 ≤ [数值]mg/L,COD ≤ [数值]mg/L,SS ≤ [数值]mg/L2. 反应器容积计算:- 有效容积(V):根据进水水质和出水水质要求,按照负荷法计算有效容积。

通常 CASS 工艺的 BOD5 负荷为[数值]kgBOD5/m³·d,COD 负荷为[数值]kgCOD/m³·d。

计算得到有效容积为 V = [具体数值]m³。

- 反应器数量(n):根据有效容积和单个反应器容积确定反应器数量。

假设单个反应器容积为[数值]m³,则反应器数量为 n = V/[数值],取整得到[具体数值]个反应器。

3. 曝气系统设计:- 需氧量计算:根据进水水质和出水水质要求,按照 BOD5 去除量和氨氮硝化需氧量计算需氧量。

通常 CASS 工艺的需氧量为[数值]kgO2/kgBOD5 去除,[数值]kgO2/kgNH4-N 硝化。

计算得到总需氧量为[具体数值]kgO2/d。

- 曝气设备选择:根据需氧量和反应器布局,选择合适的曝气设备。

常见的曝气设备包括鼓风机、曝气头、曝气软管等。

- 曝气量调节:根据进水负荷和水质变化,设置曝气量调节装置,以保证反应器内的溶解氧浓度在合适范围内。

4. 沉淀系统设计:- 沉淀时间:根据反应器容积和进出水流量,确定沉淀时间。

通常 CASS 工艺的沉淀时间为[数值]h。

- 沉淀区容积:根据沉淀时间和进出水流量,计算沉淀区容积。

沉淀区容积一般为反应器容积的[数值]%。

- 排泥系统设计:设置排泥泵和排泥管道,定期将沉淀区的污泥排出。

污水处理CASS池设计计算

污水处理CASS池设计计算

2.5 生物反应池(CASS反应池)2.5.1 CASS反应池的介绍CASS是周期性循环活性污泥法的简称,是间歇式活性污泥法的一种变革,并保留了其它间歇式活性污泥法的优点,是近年来国际公认的生活污水及工业污水处理的先进工艺。

CASS工艺的核心为CASS池,其基本结构是:在SBR的基础上,反应池沿池长方向设计为两部分,前部为生物选择区也称预反应区,后部为主反应区,其主反应区后部安装了可升降的自动撇水装置。

整个工艺的曝气、沉淀、排水等过程在同一池子内周期循环运行,省去了常规活性污泥法中的二沉池和污泥回流系统,同时可连续进水,间断排水。

CASS工艺与传统活性污泥法的相比,具有以下优点:●建设费用低。

省去了初次沉淀池、二次沉淀池及污泥回流设备,建设费用可节省20%~30%。

工艺流程简单,污水厂主要构筑物为集水池、沉砂池、CASS曝气池、污泥池,布局紧凑,占地面积可减少35%;●运转费用省。

由于曝气是周期性的,池内溶解氧的浓度也是变化的,沉淀阶段和排水阶段溶解氧降低,重新开始曝气时,氧浓度梯度大,传递效率高,节能效果显著,运转费用可节省10%~25%;●有机物去除率高。

出水水质好,不仅能有效去除污水中有机碳源污染物,而且具有良好的脱氮除磷功能;●管理简单,运行可靠,不易发生污泥膨胀。

污水处理厂设备种类和数量较少,控制系统简单,运行安全可靠;●污泥产量低,性质稳定。

2.5.2 CASS反应池的设计计算图2-4 CASS工艺原理图(1)基本设计参数考虑格栅和沉砂池可去除部分有机物及SS,取COD,BOD5,NH3-N,TP去除率为20%,SS去除率为35%。

此时进水水质:COD=380mg/L×(1-20%)=304mg/LBOD5=150mg/L×(1-20%)=120mg/LNH3-N=45mg/L×(1-20%)=36mg/LTP=8mg/L×(1-20%)=6.4mg/LSS=440mg/L ×(1-35%)=286mg/L处理规模:Q=14400m 3/d,总变化系数1.53 混合液悬浮固体浓度(MLSS ):Nw=3200mg/L反应池有效水深H 一般取3-5m,本水厂设计选用4.0m排水比:λ=m 1 =5.21=0.4 (2)BOD-污泥负荷(或称BOD-SS 负荷率)(Ns )Ns=ηfS K ⨯⨯e 2Ns ——BOD-污泥负荷(或称BOD-SS 负荷率),kgBOD 5/(kgMLSS ·d);K 2——有机基质降解速率常数,L/(mg ·d),生活污水K 2取值范围为0.0168-0.0281,本水厂取值0.0244;η——有机基质降解率,%;η=SaSeSa - f ——混合液中挥发性悬浮固体与总悬浮固体浓度的比值,一般在生活污水中,f 值为0.7-0.8,本水厂设计选用0.75。

CASS池设计计算(互联网+)

CASS池设计计算(互联网+)

2.5 生物反应池(CASS反应池)2.5.1 CASS反应池的介绍CASS是周期性循环活性污泥法的简称,是间歇式活性污泥法的一种变革,并保留了其它间歇式活性污泥法的优点,是近年来国际公认的生活污水及工业污水处理的先进工艺。

CASS工艺的核心为CASS池,其基本结构是:在SBR的基础上,反应池沿池长方向设计为两部分,前部为生物选择区也称预反应区,后部为主反应区,其主反应区后部安装了可升降的自动撇水装置。

整个工艺的曝气、沉淀、排水等过程在同一池子内周期循环运行,省去了常规活性污泥法中的二沉池和污泥回流系统,同时可连续进水,间断排水。

CASS工艺与传统活性污泥法的相比,具有以下优点:●建设费用低。

省去了初次沉淀池、二次沉淀池及污泥回流设备,建设费用可节省20%~30%。

工艺流程简单,污水厂主要构筑物为集水池、沉砂池、CASS 曝气池、污泥池,布局紧凑,占地面积可减少35%;●运转费用省。

由于曝气是周期性的,池内溶解氧的浓度也是变化的,沉淀阶段和排水阶段溶解氧降低,重新开始曝气时,氧浓度梯度大,传递效率高,节能效果显著,运转费用可节省10%~25%;●有机物去除率高。

出水水质好,不仅能有效去除污水中有机碳源污染物,而且具有良好的脱氮除磷功能;●管理简单,运行可靠,不易发生污泥膨胀。

污水处理厂设备种类和数量较少,控制系统简单,运行安全可靠;●污泥产量低,性质稳定。

2.5.2 CASS 反应池的设计计算图2-4 CASS 工艺原理图(1)基本设计参数考虑格栅和沉砂池可去除部分有机物及SS ,取COD,BOD 5,NH 3-N,TP 去除率为20%,SS 去除率为35%。

此时进水水质:COD=380mg/L ×(1-20%)=304mg/L BOD 5=150mg/L ×(1-20%)=120mg/L NH 3-N=45mg/L ×(1-20%)=36mg/L TP=8mg/L ×(1-20%)=6.4mg/L SS=440mg/L ×(1-35%)=286mg/L处理规模:Q=14400m 3/d,总变化系数1.53 混合液悬浮固体浓度(MLSS ):Nw=3200mg/L 反应池有效水深H 一般取3-5m,本水厂设计选用4.0m排水比:λ=m 1 =5.21=0.4 (2)BOD-污泥负荷(或称BOD-SS 负荷率)(Ns ) Ns=ηfS K ⨯⨯e 2Ns ——BOD-污泥负荷(或称BOD-SS 负荷率),kgBOD 5/(kgMLSS ·d);K 2——有机基质降解速率常数,L/(mg ·d),生活污水K 2取值范围为0.0168-0.0281,本水厂取值0.0244; η——有机基质降解率,%;η=SaSeSa - f ——混合液中挥发性悬浮固体与总悬浮固体浓度的比值,一般在生活污水中,f 值为0.7-0.8,本水厂设计选用0.75。

CASS池设计计算

CASS池设计计算

CASS池设计计算1、1功能描述CASS(Cyelic activated sludge system)工艺就是SRB技术衍生得一种新形式。

CASS反应池沿长度方向分为两部分,前部为生物选择区也称预反应区,后部为主反应区,在主反应区后部安装了可升降得滗水装置,实现了连续进水间歇排水得周期循环运行,集曝气、沉淀、排水于一体。

CASS工艺就是一个好氧/缺氧/厌氧交替运行得过程,具有一定脱氮除磷效果,废水以推流方式运行,而各反应区则以完全混合得形式运行以实现同步硝化一反硝化与生物除磷。

1、2设计要点(1)C ASS池容积确定式中:Q ——设计水量,m3/d;Nw ——混合液MLSS污泥浓度(kg/m3),取2、5~4、0 kg/m3,设计一般为3、0 kg/m3Ne ——BOD5-泥负荷,取0、05~0、2(kgBOD5/kgMLSS·d),设计一般为0、1 kgBOD5/kgMLSS·d;Sa ——进水BOD5浓度,kg/m3;Se ——出水BOD5浓度,kg/m3;f ——混合液中挥发性悬浮固体浓度与总悬浮固体浓度得比值,一般为0、7~0、1,设计为0、75。

(0、0175—0、64)(2)C ASS池尺寸设计首先根据废水水质水量确定池子得格数N1,一般为2—4中间取整数值,即可确定CASS池得循环周期时间T及周期数N2。

下表为对应得选择值A.确定CASS池高度H0(m)CASS池得有效水深H一般取3-5m。

有效高度H校核:CASS池单格面积A0(m2)滗水高度H1(m);滗水结束时泥面高度H2(m);式中:SVI ——污泥指数,取150设计。

撇水水位与泥面之间得安全距离H3(m):(H3必须大于1、0m才能满足要求)负荷计算法算出得结果,如不能满足H3得条件,则必须减少污泥负荷,增大CASS池得有效容积。

取超高0、5m,则CASS池总高:B、确定CASS池总长L(m)、总宽B(m)CASS池单格要求宽高比B1:H=2~1,长宽比要求L1:B=4~6(一般取4、6),则:其中,由上可确定:(3)设备选型A.曝气器选择所需旋混曝气器数量(个)所需曝气软管数量(m)。

污水处理CASS池设计计算

污水处理CASS池设计计算

污水处理CASS池设计计算污水处理是将污水中的污染物去除,使其达到排放标准的过程。

其中,CASS池是一种常用的污水处理设备,可以进行混凝沉淀、厌氧消化和活性污泥法处理等工艺。

下面将详细介绍CASS池的设计计算。

首先,需要确定CASS池的体积大小。

CASS池的体积大小可以根据污水处理工艺的要求以及污水产量进行估算。

一般情况下,可以根据单位面积的水力负荷来计算CASS池的尺寸。

水力负荷是指单位面积的污水量,单位通常为m3/(m2·d)。

根据国家标准和实际经验,可根据不同的处理工艺设计进水污水的水力负荷。

其次,需要确定CASS池的沉淀时间。

沉淀时间是指污水在CASS池中停留的时间,也称为污泥停留时间。

污水中的悬浮物在CASS池中通过重力沉淀下来,从而去除污染物。

沉淀时间的选择既要考虑污物的沉淀速度,又要考虑处理效果和设备结构等因素。

根据经验,一般沉淀时间可选择为2-6小时。

此外,还需要确定CASS池的深度。

CASS池的深度一般可以根据进水和出水口的位置来确定。

进水口位于CASS池的上部,污水由上部向下流动,通过重力沉淀。

出水口位于CASS池的底部,出水后进行后续的处理。

深度的选择要保证污水在CASS池中停留足够的时间,以便污染物得到充分的沉淀。

另外,还需要考虑CASS池的通气和搅拌设备。

通气设备有助于提供氧气供给好氧微生物进行降解有机物质的过程,从而提高处理效果。

搅拌设备可以促进污水中悬浮物的混合,防止沉淀物的堆积,同时也有助于组织和活化污泥。

最后,还需要充分考虑CASS池的建设和维护成本。

CASS池的建设成本包括设备投资、土建投资等,维护成本包括设备维修、能耗等。

在设计过程中,要充分考虑处理效果和经济效益的平衡,选择合适的设备和工艺。

综上所述,污水处理CASS池的设计计算主要包括确定CASS池的体积大小、沉淀时间、深度,以及考虑通气和搅拌设备等因素,并综合考虑建设和维护成本。

这样可以有效地设计和运行CASS池,实现污水的有效处理,保护环境。

CASS池设计计算

CASS池设计计算

2.5 生物反应池(CASS反应池)2.5.1 CASS反应池的介绍CASS是周期性循环活性污泥法的简称,是间歇式活性污泥法的一种变革,并保留了其它间歇式活性污泥法的优点,是近年来国际公认的生活污水及工业污水处理的先进工艺。

CASS工艺的核心为CASS池,其基本结构是:在SBR的基础上,反应池沿池长方向设计为两部分,前部为生物选择区也称预反应区,后部为主反应区,其主反应区后部安装了可升降的自动撇水装置。

整个工艺的曝气、沉淀、排水等过程在同一池子内周期循环运行,省去了常规活性污泥法中的二沉池和污泥回流系统,同时可连续进水,间断排水。

CASS工艺与传统活性污泥法的相比,具有以下优点:●建设费用低。

省去了初次沉淀池、二次沉淀池及污泥回流设备,建设费用可节省20%~30%。

工艺流程简单,污水厂主要构筑物为集水池、沉砂池、CASS 曝气池、污泥池,布局紧凑,占地面积可减少35%;●运转费用省。

由于曝气是周期性的,池内溶解氧的浓度也是变化的,沉淀阶段和排水阶段溶解氧降低,重新开始曝气时,氧浓度梯度大,传递效率高,节能效果显著,运转费用可节省10%~25%;●有机物去除率高。

出水水质好,不仅能有效去除污水中有机碳源污染物,而且具有良好的脱氮除磷功能;●管理简单,运行可靠,不易发生污泥膨胀。

污水处理厂设备种类和数量较少,控制系统简单,运行安全可靠;●污泥产量低,性质稳定。

2.5.2 CASS 反应池的设计计算图2-4 CASS 工艺原理图(1)基本设计参数考虑格栅和沉砂池可去除部分有机物及SS ,取COD,BOD 5,NH 3-N,TP 去除率为20%,SS 去除率为35%。

此时进水水质:COD=380mg/L ×(1-20%)=304mg/L BOD 5=150mg/L ×(1-20%)=120mg/L NH 3-N=45mg/L ×(1-20%)=36mg/L TP=8mg/L ×(1-20%)=6.4mg/L SS=440mg/L ×(1-35%)=286mg/L处理规模:Q=14400m 3/d,总变化系数1.53 混合液悬浮固体浓度(MLSS ):Nw=3200mg/L 反应池有效水深H 一般取3-5m,本水厂设计选用4.0m排水比:λ=m 1 =5.21=0.4 (2)BOD-污泥负荷(或称BOD-SS 负荷率)(Ns ) Ns=ηfS K ⨯⨯e 2Ns ——BOD-污泥负荷(或称BOD-SS 负荷率),kgBOD 5/(kgMLSS ·d);K 2——有机基质降解速率常数,L/(mg ·d),生活污水K 2取值范围为0.0168-0.0281,本水厂取值0.0244; η——有机基质降解率,%;η=SaSeSa - f ——混合液中挥发性悬浮固体与总悬浮固体浓度的比值,一般在生活污水中,f 值为0.7-0.8,本水厂设计选用0.75。

CASS池设计计算

CASS池设计计算

CASS池设计计算1.1功能描述CASS(Cyelic activated sludge system)工艺是SRB技术衍生的一种新形式。

CASS反应池沿长度方向分为两部分,前部为生物选择区也称预反应区,后部为主反应区,在主反应区后部安装了可升降的滗水装置,实现了连续进水间歇排水的周期循环运行,集曝气、沉淀、排水于一体。

CASS工艺是一个好氧/缺氧/厌氧交替运行的过程,具有一定脱氮除磷效果,废水以推流方式运行,而各反应区则以完全混合的形式运行以实现同步硝化一反硝化和生物除磷。

1.2设计要点(1)C ASS池容积确定式中:Q ——设计水量,m3/d;Nw ——混合液MLSS污泥浓度(kg/m3),取2.5~4.0 kg/m3,设计一般为3.0 kg/m3Ne ——BOD5-泥负荷,取0.05~0.2(kgBOD5/kgMLSS·d),设计一般为0.1 kgBOD5/kgMLSS·d;Sa ——进水BOD5浓度,kg/m3;Se ——出水BOD5浓度,kg/m3;f ——混合液中挥发性悬浮固体浓度与总悬浮固体浓度的比值,一般为0.7~0.1,设计为0.75。

(0.0175—0.64)(2)C ASS池尺寸设计首先根据废水水质水量确定池子的格数N 1,一般为2—4中间取整数值,即可确定CASS 池的循环周期时间T 及周期数N 2。

下表为对应的选择值 CASS 池格数循环周期T (h ) 周期数N 2 21 3 31 3 46 4A. 确定CASS 池高度H 0(m )CASS 池的有效水深H 一般取3-5m 。

有效高度H 校核: CASS 池单格面积A 0(m 2)滗水高度H 1(m );滗水结束时泥面高度H 2(m );式中:SVI ——污泥指数,取150设计。

撇水水位和泥面之间的安全距离H 3(m ):(H 3必须大于1.0m 才能满足要求)负荷计算法算出的结果,如不能满足H 3的条件,则必须减少污泥负荷,增大CASS 池的有效容积。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

CASS 池设计计算
1、1功能描述
CASS(Cyelic activated sludge system)工艺就是SRB 技术衍生的一种新形式。

CASS 反应池沿长度方向分为两部分,前部为生物选择区也称预反应区,后部为主反应区,在主反应区后部安装了可升降的滗水装置,实现了连续进水间歇排水的周期循环运行,集曝气、沉淀、排水于一体。

CASS 工艺就是一个好氧/缺氧/厌氧交替运行的过程,具有一定脱氮除磷效果,废水以推流方式运行,而各反应区则以完全混合的形式运行以实现同步硝化一反硝化与生物除磷。

1、2设计要点
(1) C ASS 池容积确定
f
Nw Ne Se Sa Q V ⨯⨯-⨯=)( 式中:Q ——设计水量,m 3/d;
Nw ——混合液MLSS 污泥浓度(kg/m 3),取2、5~4、0 kg/m 3,
设计一般为3、0 kg/m 3
Ne ——BOD 5-泥负荷,取0、05~0、2(kgBOD 5/kgMLSS·d),
设计一般为0、1 kgBOD 5/kgMLSS·d;
Sa ——进水BOD 5浓度,kg/m 3;
Se ——出水BOD 5浓度,kg/m 3;
f ——混合液中挥发性悬浮固体浓度与总悬浮固体浓度
的比值,一般为0、7~0、1,设计为0、75。

(0、0175—0、64)
(2) C ASS 池尺寸设计
首先根据废水水质水量确定池子的格数N 1,一般为2—4中间取整数值,即可确定CASS 池的循环周期时间T 及周期数N 2。

下表为对应的选择值
A. 确定CASS 池高度H 0(m)
CASS 池的有效水深H 一般取3-5m 。

有效高度H 校核: CASS 池单格面积A 0(m 2)
H N V
A ⨯=10
滗水高度H 1(m);
0211A N N Q
H ⨯⨯=
滗水结束时泥面高度H 2(m);
3210-⨯⨯⨯=SVI Nw H H
式中:SVI ——污泥指数,取150设计。

撇水水位与泥面之间的安全距离H 3(m):
)(213H H H H +-=
(H 3必须大于1、0m 才能满足要求)
负荷计算法算出的结果,如不能满足H 3的条件,则必须减少污泥负荷,增大CASS 池的有效容积。

取超高0、5m,则CASS 池总高:
5.00+=H H
B 、确定CASS 池总长L(m)、总宽B(m)
CASS 池单格要求宽高比B 1:H=2~1,长宽比要求L 1:B=4~6(一般取4、6),则:
211106.4B L B A =⨯=
其中,116.4B L ⨯=
由上可确定:
1L L =
11B N B ⨯=
(3)设备选型
A.曝气器选择
所需旋混曝气器数量
33.09.001⨯⨯=
A N N (个) 所需曝气软管数量
6
.09.0111B L N Z =(m)。

B. 鼓风机选择
鼓风机的选择主要瞧曝气量q(m 3/min)的大小,其计算如下:
60
201.1%2.235.1)(0212⨯⨯⨯⨯⨯⨯⨯⨯-⨯=T N N E K KgO C C Q q en in 式中:Q ——设计处理废水量,m 3/h;
C in ——进水BO
D 浓度,Kg/m 3;
C en ——出水BO
D 浓度,Kg/m 3;
E ——氧利用率,%
N 1 ——池子格数;
N 2 ——循环周期;
T 0 ——曝气时间,h
(1-1、5)KgO 2 ——去除单位BOD 需要的
O 2量;
K ——变化系数,一般取1、2-1、1,设计时
取1、5。

校核:a 、若选用旋混曝气头时,需满足: q>60
5.2⨯N b 、若选用曝气软管时,需满足:
q>
60
0.3⨯N C 、滗水器选择 CASS 工艺排水一般在1小时内排完,因此,滗水器流量:K=1、5
2
10N N Q Q ⨯=(m 3/h) 滗水高度
21A N N Q h ⨯⨯=(m) 根据以上两项,即可确定滗水器型号。

相关文档
最新文档