第二章 非线性方程的数值解法

合集下载

5-非线性方程组的数值解法及最优化方法

5-非线性方程组的数值解法及最优化方法
然后通过各种下降法或优化算法求出模函数的极小值点,此 极小值点即为非线性方程组的一组解。
非线性方程组的数值解法
不动点迭代法:根据非线性方程求根的迭代法,将方程组改 写为如下等价方程组
xi i x1, x2,, xn , i 1,2,, n
构造迭代公式
xik 1 i x1k , x2k ,, xnk , i 1,2,, n
非线性方程组的数值解法
若对任意A Cmn 都有一个实数 A 与之对应,且满足:
(1)非负性:当 A O 时, A 0 ;当A O 时,A 0;
(2)齐次性:对任何 C ,A A ;
(3)三角不等式:对任意 A, B C nn ,都有A B A B ;
(4)相容性:对任意A, B C nn ,都有 AB A B ,


18
(0.2325670051,0.0564515197)
19
(0.2325670051,0.0564515197)
max
1 i 2
xik
xik
1
0.2250 0.0546679688 0.0138638640 0.0032704648 0.0008430541 0.0001985303 0.0000519694 0.0000122370 0.0000032485 0.0000007649
10-9
非线性方程组的数值解法
练习题:用牛顿迭代法求解方程组
取 X 0 1.6,1.2T
xx1122
x22 x22
4 1
结果:1.5811,1.2247
非线性方程组的数值解法
应用经过海底一次反射到达水听器阵的特征声线传播时间, 来反演海底参数。假设水中和沉积层声速都是恒定的,海底 沉积层上界面水平,下界面倾斜。特征声线由水中声源出发 折射进入沉积层,经过沉积层的下界面反射后,再折射进入 水中,由水中水听器阵接收。特征声线的传播时间为声线在 水中和沉积层中的传播时间之和。 三维坐标关系如图所示:

数值计算方法第2章2-1节

数值计算方法第2章2-1节

(2)计算
f
(
a
2
b)

(3)若
f
(
a
2
b
)
0
,计算停止;若
f
(
a
2
b
)
f
(a)
0
,用

f
(
a
2
b)
f
(b)
0
,以
a
2
b
代替
a

a
2
b
代替
b

(4)反复执行第二步与第三步,直到区间长缩小到允许误差范围
之内,此时区间中点即可作为所求的近似解。
18
证明方程 x3 3x2 6x 1 0 在区间(0,1)内有唯一的实根,并
在[-1,-0.25],[0.5,1.25],[1.25,2]各区间内至少有一个实根。
10
2.1.3 区间二分法
定理 函数f(x)在[a,b]上单调连续,且f(a)f(b)<0, 则方程f(x)=0在区间[a,b]上有且仅有一个实根x*。
二分法的基本思想 将有根的区间二分为两个小区间,然后判断根在那 个小区间,舍去无根的小区间,而把有根的小区间 再一分为二,再判断根属于哪个更小的区间,如此 反复 ,直到求出满足精度要求的近似根。
5
有根区间
介值定理 若函数 f (x) 在[a, b] 连续,且
f (a) f (b) 0 ,则方程 f ( x) 0 在(a,b) 内至
少有一个实根。将[a, b] 称为 f (x) 的有根区间。
6
2.1.2 逐步搜索法
假设f(x)在区间[a,b]内有一
个实根x*,若 b – a较小,则可 在(a,b)上任取一点x0作为初始 近似根。

数值分析非线性方程的数值解法

数值分析非线性方程的数值解法

数值分析非线性方程的数值解法数值分析是一种应用数学方法来分析和解决数学问题的领域。

非线性方程是数值分析中一类重要的问题,其解法包括了迭代法、牛顿法、割线法等。

本文将详细介绍这些数值解法及其原理和应用。

一、迭代法迭代法是解非线性方程的一种常用数值方法。

该方法的基本思想是通过不断迭代逼近方程的根,直到达到所需精度或满足停止准则为止。

迭代法的求根过程如下:1.选择适当的初始值x0。

2. 利用迭代公式xn+1 = g(xn),计算下一个近似根。

3.重复步骤2,直到满足停止准则为止。

常用的迭代法有简单迭代法、弦截法和牛顿法。

简单迭代法的迭代公式为xn+1 = f(xn),其中f(x)为原方程的一个改写形式。

该方法的收敛性要求函数f(x)在解附近有收敛性且导数在一个区间内收敛。

弦截法的迭代公式为xn+1 = xn - f(xn) * (xn-xn-1) / (f(xn)-f(xn-1))。

该方法通过连接两个点上的函数值的割线来逼近方程的根。

牛顿法的迭代公式为xn+1 = xn - f(xn) / f'(xn),其中f'(x)为f(x)的导数。

该方法通过用切线来逼近方程的根。

二、牛顿法牛顿法是解非线性方程的一种常用迭代法。

该方法通过使用方程的导数来逼近方程的根。

迭代过程如下:1.选择适当的初始值x0。

2. 利用迭代公式xn+1 = xn - f(xn) / f'(xn),计算下一个近似根。

3.重复步骤2,直到满足停止准则为止。

牛顿法的收敛速度较快,但要求方程的导数存在且不为0。

三、割线法割线法是解非线性方程的另一种常用迭代法。

该方法通过连接两个点上的函数值的割线来逼近方程的根。

迭代过程如下:1.选择适当的初始值x0和x12. 计算下一个近似根xn+1 = xn - f(xn) * (xn-xn-1) / (f(xn)-f(xn-1))。

3.重复步骤2,直到满足停止准则为止。

割线法的收敛速度介于简单迭代法和牛顿法之间。

数值分析_第2章

数值分析_第2章

证:由1。 f '( x) C[a, b],由2。 f '( x)不变号,故f ( x) 知 知 单调,再由3。 唯一的 [a, b],使f ( ) 0. 知
由1 3 知f ( x)在[a, b]上必属于下列四种情形之一:
。 。
f ''( x) 0 f (a) 0, f (b) 0, f '( x) 0(增) f ''( x) 0
二.收敛性:
mn . n .
◆判定二分次数:
1 lim n 1 b0 a0 0 n 2
1 对 0,若要求 mn n 1 b0 a0 2
b0 a0 则2 n log 2 1与取整的 1抵消 .
定理1.(单点法收敛的充分条件) 设f ( x)在[a, b]上二阶 可导,且满足:
。 1. f ''( x)在[a, b]上不变号(凹凸不变性);
2。 f '( x)在[a, b]上不为0(单调性); . 3。 f (a) f (b) 0; . 4。取x0 [a, b], 使f ( x0 ) f ''( x0 ) 0.x1 [a, b], f ( x1 ) f ( x0 ) 0. . 则由(6)所得 xn 单调收敛于f ( x) 0在[a, b]上的唯一根。
列表计算:
n
0 1 2 3 4 5
xn
2 1 1.33333 1.40000 1.41176 1.40378
2
f ( xn )
2 -1 -0.22223 -0.04000 -0.00692
hn

非线性方程数值求解法总结

非线性方程数值求解法总结

(一)非线性方程的迭代解法1.非线性方程的一般形式:f(x)=02.非线性方程的分类:⎩⎨⎧=为其他函数。

超越方程,次代数多项式;为代数方程,)()(0)(x f n x f x f 3.方程的根:若存在常数s 使f(s)=0,则称s 是方程(4.1)的根,又称s 是函数f(x)的零点。

4.重根:若f(x)能分解为)()()(x s x x f m ϕ-= 则称s 是方程(4.1)的m 重根和f(x)的m 重零点。

当m=1时,s 称为方程(4.1)的单根和f(x)的单零点。

5.结论:(1)零点存在定理:设函数f(x)在闭区间[a,b]上连续,且f(a)•f(b)<0,那么在开区间(a,b )内至少有一点ξ,使f(ξ)=0.(2)根的唯一性判别:一阶导数不变号且不为零(3)n 次代数方程在复数域上恰有n 个根(4)高于4次的代数方程没有求根公式6.方法:(1)搜索根方法:①作图法:②逐步搜索法:确定方程根的范围的步骤:步骤1 取含f(x)=0根的区间[a,b],即f(a)•f(b)<0;步骤2 从a 开始,按某个预定的步长h ,不断地向右跨一步进行一次搜索, 即检查kh a x k +=上的函数)(k x f 值的符号。

若0)()(1<•-k k x f x f ,则可以确定一个有根区间],[1k k x x -.步骤3 继续向右搜索,直到找出[a,b]上的全部有根区间],[1k k x x -(k=1,2,…,n).(2)二分法①基本思想:含根区间逐次分半缩小,得到一个区间长度以1/2的比例减小的含根区间序列 {}k I ,在给定根的误差界时,利用长度趋于零的特点,可得到在某个区间中满足要求的近似根。

②迭代终止的条件ε<)(k x fε2<-k k a b或者ε<-≤-2k k k a b s x(3)简单迭代法及其收敛性)(0)(x x x f ϕ=⇔=,2,1,0),(1==+k x x k k ϕ迭代法是一种逐次逼近法,用某个固定公式反复校正根的近似值,使之逐 步精确化,最后得到满足精度要求的解。

非线性方程数值解法及其应用

非线性方程数值解法及其应用

非线性方程数值解法及其应用摘要:数值计算方法主要研究如何运用计算机去获得数学问题的数值解的理论和算法。

本文主要介绍非线性方程的数值解法以及它在各个领域的应用。

是直接从方程出发,逐步缩小根的存在区间,或逐步将根的近似值精确化,直到满足问题对精度的要求。

我将从二分法、Steffensen加速收敛法、Newton迭代法、弦截法来分析非线性方程的解法及应用。

关键字:非线性方程;二分法;Steffensen加速收敛法;代数Newton法;弦截法一、前言随着科技技术的飞速发展,科学计算越来越显示出其重要性。

科学计算的应用之广已遍及各行各业,例如气象资料的分析图像,飞机、汽车及轮船的外形设计,高科技研究等都离不开科学计算。

因此经常需要求非线性方程 f(x) = O的根。

方程f(x) = O 的根叫做函数f(x)的零点。

由连续函数的特性知:若f(x)在闭区间[a,b]上连续,且f(a)·f(b)<O,则f(x) = O在开区间(a,b)内至少有一个实根。

这时称[a,b]为方程f(x) = O的根的存在区间。

本文主要是对在区间[1.2]的根的数值解法进行分析,介绍了非线性方程数值解法的四种方法,从而得到在实际问题中遇到非线性方程根的求解问题的解决方法。

二、非线性方程的数值解法1、二分法二分法的基本思想是将方程根的区间平分为两个小区间,把有根的小区间再平分为两个更小的区间,进一步考察根在哪个更小的区间内。

如此继续下去,直到求出满足精度要求的近似值。

设函数f(x)在区间[a,b]上连续,且f(a)·f(b)<O,则[a,b]是方程f(x)=O 的根的存在区间,设其内有一实根,记为。

取区间[a,b]的中点,并计算,则必有下列三种情况之一成立:(1)= O,就是方程的根;(2)f(a)·f()<O,方程的根位于区间[a,]之中,此时令,;(3)f()·f(b)<O,方程的根位于区间[,b]之中,此时令。

非线性方程与方程组数值解法

非线性方程与方程组数值解法

2.2 二分法
表2-2 计算结果
k
0 1 2 3 4 5 6 7
ak
1 1 1.25 1.25 1.3125 1.3125 1.3125 1.3203
bk
2 1.5 1.5 1.375 1.375 1.3438 1.3281 1.3281
xk
1.5 1.25 1.375 1.3125 1.3438 1.3281 1.3203 1.3242
ab ;否则,回 2
5.2 二分法
说明:
x*
(ⅰ)上述计算步骤(2)和(3)每执行一次就把新的区间分成两份,根的范围也 缩小一半. 如果第 k 次二分后得到的区间记 为 [ak , bk ],根的近似值记为 xk ,则 ba (a b ) 有 bk ak k , xk k k ,那么当时 k , bk ak 0,这说明如果二分过 2 2 程无限继续下去,这些区间必将收敛于一点,即为所求根. (ⅱ) 第
3
2 f ( x ) 3 x 1 0, x [1, 2] 解 已知 f (1) 1 0, f (2) 5 0 且 ,
则方程
f ( x) x 3 x 1 0
在区间
(1, 2)
内只有一个实根.
当 k 1 , x1
bk ak 102 ,继续二分;
2.1 引言
通常隔离区间的确定方法为 (1)作 y f ( x) 的草图, 由 y f ( x)与横轴交点的大致位置来确定; 或 者将 f1 ( x) f 2 ( x) 改写成 f ( x) 0 , 根据 y f1 ( x) 和 y f 2 ( x) 交点横坐标来确定
根的隔离区间.
当 k 2 , x2

非线性方程(组)的解法

非线性方程(组)的解法

lnim(bn
an )
lim
n
2n1
(b
a)
0
lim
n
an
lim
n
bn
x

x
cn
1 2
(an
bn
)为
x 的近似解。
7
二分法
迭代终止准则
an - bn

x - cn
bn an 2
2
8
2.2一般迭代法
2.2.1 迭代法及收敛性
对于 f (x) 0 有时可以写成 x (x) 形式 如: x3 x 1 0 x 3 x 1
12
例题
例2.2.1 试用迭代法求方程 f (x) x3 x 1 0
在区间(1,2)内的实根。 解:由 x 3 x 1建立迭代关系
xk1 3 xk 1 k=0,1,2,3…… 计算结果如下:
13
例题
精确到小数点后五位
x 1.32472 1 105
2
14
例题 但如果由x x3 1建立迭代公式
xk1 xk3 1 k 1,2,...
仍取 x0 1.5,则有 x1 2.375 ,x2 12.39 显 然结果越来越大,{xk }是发散序列
15
2.3 Newton迭代法
设x*是方程f (x) = 0的根, 又x0 为x* 附近的一个值,
将f (x) 在x0 附近做泰勒展式:
f (x)
二分法
用二分法(将区间对平分)求解。

a1
a, b1
b, c1
1 2
(a1
b1 )
若 f (a1) f (c1) 0,则[a1, c1] 为有根区间,否 则 [c1,b1]为有根区间
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Step 4 If |x| < TOL , STOP; Output the solution x.
Step 5 If x*f(a)<0 , Set b=x; Else Set a=x;
Step 6 Set k=k+1; Compute x=f((a+b)/2);Go To Step 3 ;
Step 7 Output the solution of equation: x; STOP.
几何意义
y
p1 p0
y=x y=g(x)

x
x0
x1 x*
y
y=g(x) y = x
p0
p1
x x1 x0 x*
y p0
y=x

y=g(x) p1
x0
x*
y
y=g(x) p0
x x1
y=x
p1
x x0 x* x1
例2:已知方程 x3 4x2 10 0在[1, 2]上有一个根(正根)
下面选取5种迭代格式:
从一个初值 x0 出发,计算 x1 = g(x0), x2 = g(x1), …,

xk+1 = g(xk), … 若
xk
k0
收敛,即存在 x* 使得

lim
k
xk
x *,且
g
连续,则由
lim
k
xk 1
l可im知g
k
x*k
=
g(x* ),即x* 是 g 的不动点,也就是f 的根。
如看何起判来定很这简种单方,法令人 有是点收不敛相的信呢,?那么问 题是什么呢?
2
5、x x x3 4x 2 10 3x2 8x
f (x)

g(x) x f ( x)
取 x0 1.5 计算结果如下:
法1
法2
法3
x1 0.875
x1 1.28695 x1 0.81650
x2 6.732
x2 1.40254 x2 2.99691
x3 469.720 x3 1.34546 x4 1.0275108section Method */
原理:若 f C[a, b],且 f (a) ·f (b) < 0,则 f 在 (a, b) 上至 少有一实根。
基本思想:逐步将区间分半,通过判别区间端点函数值的符号, 进一步搜索有根区间,将有根区间缩小到充分小,从而求
出满足给定精度的根 x的近似值。
§2 迭代法的理论 /* Theory of Iteration Method*/
一、不动点迭代 /*Fixed-Point Iteration*/
等价变换
f (x) = 0
x = g (x)(迭代函数)
f (x) 的根x
g (x) 的不动点 x
xk1 g( xk ) k 0,1, 2,
(*)
找到了三次、四次方程的求根公式,但直到19世纪才证明大于 等于5次的一般代数方程式不能用代数公式求解,而对于超越 方程就复杂的多,如果有解,其解可能是一个或几个,也可能 是无穷多个。一般也不存在根的解析表达式。因此需要研究数 值方法求得满足一定精度要求的根的近似解。
求方程 f ( x) 0 几何意义 y
ln 2
4.64
n5
优点
①简单; ② 对f (x) 要求不高(只要连续即可) .
缺点
①无法求复根及偶重根 ②收敛慢
注:用二分法求根,最好先给出 f (x) 草图以确定根的大概 位置。或用搜索程序,将[a, b]分为若干小区间,对每一个 满足 f (ak)·f (bk) < 0 的区间调用二分法程序,可找出区间 [a, b]内的多个根,且不必要求 f (a)·f (b) < 0 。
由二分法的过程可知:
1、 a,b a1,b1 ak ,bk
f ak f bk 0, x ak ,bk
2、
1 bk ak 2
bk1 ak1
1 2k b a
3、
误差
xk1
分析
ak
bk 2
,且
x xk1
1 2k 1
b
a
,
k
1, 2,
Th2.2
4、对分次数的计算公式:
y f (x)
a
x*
o
b
x
基本定理
Th2.如1 果函数 在f ( x) 上连[a续, b],且
则至少有一个数 使得 f ( ),若0同时
在 f内(存x)在且[a保, b]持定号,即
(或
在 f 内( x唯) 一0 。
[a,b]
f (a) f (b) 0 的一f (阶x)导数
)f则(这x)样 的0
1、x x x3 4x2 10 即 g( x) x x3 4x2 10
2、4x2 10 x3
x1
10 x3
1 2

gx 1
10 x3
1 2
2
2
1
1
3、x2 10 4x x
x
10 x
4
x
2

g
x
10 x
4
x
2
1
4、x
10 4 x
2
1

g
x
10 4 x
[a1, b1] [a2 , b2 ] [a3, b3]
以 此 类 推
y
a3
a
2
b
x3
a1
oa
•••
x
y f (x) bx
a2
a1
b1 2
x2
x1
a
2
b
b1
b2
b3
W终h止en法to则st?op?
a
xa1 x*
xb2 b
xk1 xk ε1 或 f ( xk ) ε2
不能保证 x 的精 度
2
x*
x
二分法算法
给定区间[a,b] ,求f(x)=0 在该区间上的根x. 输入: a和b; 容许误差 TOL; 最大对分次数 Nmax. 输出: 近似根 x. Step 1 Set k = 1; Step 2 Compute x=f((a+b)/2); Step 3 While ( k Nmax) do steps 4-6
x xk1
1 2k 1
b a 令
ln b a ln
k
1
ln 2
例1:用二分法求方程 x3 x 在1 区0间
限为 ,问至少1需0对2 分多少次?
解:
a 1,b 1.5, 102;
上[的1,1根.5,] 误差
n ln(b a) ln 1
ln 2
ln(1.5 1) ln102
1
第二章 非线性方程的数值解法
/* Numerical Solutions of Nonlinear Equations*/
本章主要内容: 1、二分法(重点) 2、不动点迭代的构造及其收敛性判定 3、Newton(重点)和Steffensen迭代 4、割线法 5、非线性方程组的迭代解法
历史背景
n 代数方程的求根问题是一个古老的数学问题。理论上, 次 n 代数方程在复数域内一定有 个根(考虑重数)。早在16世纪就
相关文档
最新文档