博弈论和纳什均衡
纳什均衡大白话解释

纳什均衡大白话解释纳什均衡是一个在经济学和博弈论中非常重要的概念,由著名数学家和经济学家约翰·纳什提出。
虽然这个概念在理论上可能显得有些复杂,但其实我们可以通过一些日常生活中的例子,以及通俗易懂的语言来解释它。
什么是博弈?首先,我们要明白什么是“博弈”。
博弈,简单来说,就是多个参与者之间为了各自利益而进行的一种策略性互动。
这种互动可以是合作,也可以是竞争,关键在于每个参与者的行动都会影响到其他人的利益。
纳什均衡的概念那么,什么是纳什均衡呢?纳什均衡指的是这样一个状态:在一个博弈中,所有参与者都选择了一个策略,并且没有哪个参与者可以通过单独改变策略来获得更好的结果。
换句话说,就是大家都觉得“这样挺好,我不想再变了”。
日常生活中的纳什均衡交通拥堵想象一下你每天上班都要经过的一个拥堵的路口。
如果大家都遵守交通规则,有序通过,虽然可能还是会有点慢,但至少能保持一定的流动性。
这个时候,就形成了一个纳什均衡:没有人愿意冒险去闯红灯或者插队,因为那样做虽然可能暂时让自己快一点点,但很可能会引发更大的混乱,到头来反而得不偿失。
价格战再来看一个商业竞争的例子。
假设市场上有两家卖相似产品的公司A和B。
如果A降价,可能会吸引更多顾客,从而增加销量;但B看到A降价后,为了不失去市场份额,也可能跟着降价。
这样一来二去,最后两家公司可能都会因为价格过低而赚不到钱,甚至亏损。
这种情况下,如果两家公司都能意识到这一点,并且决定保持一个合理的价格水平,那么它们就达到了一个纳什均衡:谁也不想先降价,因为那样做对自己没好处。
合作与竞争中的纳什均衡在合作中,纳什均衡表现为一种稳定的合作关系。
比如两个人一起抬一张桌子,如果大家都出力,桌子就能稳稳当当地被抬起来;但如果其中一个人偷懒不出力,那么另一个人就会感到吃力甚至可能受伤。
在这种情况下,出力均衡就是一种纳什均衡:没有人愿意单方面减少出力,因为那样做对自己和对方都没好处。
在竞争中,纳什均衡则可能表现为一种僵持状态。
博弈论和纳什均衡

博弈论和纳什均衡博弈论是一门研究决策者在特定情境下进行策略选择的学科,它主要研究个体或团体之间的冲突与合作关系,并提供一种分析和解决这些问题的方法。
在博弈论中,纳什均衡是一个非常重要的概念,它被广泛应用于社会科学、经济学、政治学、生物学等领域。
一、博弈论的基本概念1. 博弈博弈是指在特定情境下,两个或多个决策者进行策略选择的过程。
每个决策者都有自己的目标和利益,他们通过选择不同的策略来达到自己的目标。
2. 策略策略是指在博弈中每个决策者可以采取的行动方案。
每个决策者根据自己的利益和目标选择最优的行动方案。
3. 支配策略支配策略是指在某种情况下,一个决策者采取某种行动方案时,其他所有决策者都会采取同样的行动方案。
这种情况下,该行动方案被称为支配策略。
4. 纳什均衡纳什均衡是指在博弈中,每个决策者都采取最优的策略,且没有任何一方可以通过改变自己的策略来获得更多的利益。
在纳什均衡下,每个决策者都做出了最优的选择,整个博弈过程达到了一个稳定状态。
二、纳什均衡的应用1. 社会科学在社会科学领域中,纳什均衡被广泛应用于研究人类行为和社会现象。
例如,在政治学中,研究政治家之间的竞争和合作关系时可以使用博弈论模型,并通过计算纳什均衡来预测政治家们可能采取的行动。
2. 经济学在经济学领域中,博弈论和纳什均衡被广泛应用于市场竞争分析、价格战、拍卖等问题。
例如,在拍卖中,参与者可以根据自己的信息和目标选择不同的出价策略。
通过计算纳什均衡,可以预测最终获胜者以及他所支付的价格。
3. 生物学在生物学领域中,博弈论和纳什均衡被用于研究动物之间的竞争和合作关系。
例如,在动物群体中,个体之间会存在资源的竞争和合作,通过使用博弈论模型并计算纳什均衡,可以预测不同类型的动物在不同情境下采取的行动。
三、纳什均衡的局限性虽然纳什均衡在博弈论中被广泛应用,并且在很多情况下能够提供准确的预测结果,但是它也存在一些局限性。
1. 纳什均衡不一定是唯一的在某些情况下,博弈模型可能存在多个纳什均衡。
博弈论和纳什均衡

博弈论和纳什均衡引言博弈论是一门研究决策制定者之间相互作用的学科。
纳什均衡是博弈论中的一个重要概念,表示在每个决策制定者根据自己的利益进行选择的情况下,不存在个体可以通过单独改变自己的策略来进一步获益的状态。
本文将介绍博弈论的基本概念和纳什均衡的理论,并探讨其在现实生活中的应用。
博弈论基本概念博弈论研究的对象是决策制定者之间的相互作用,其中包括两个或更多个决策制定者,每个决策制定者可以选择不同的策略。
博弈论的基本元素包括玩家、策略和收益。
玩家是决策制定者的角色,策略是玩家在每个决策点上可以采取的行动,收益是每个玩家在不同策略组合下所获得的利益。
博弈论中常见的博弈形式包括合作博弈和非合作博弈。
在合作博弈中,玩家之间可以进行合作并达成协议,而在非合作博弈中,玩家之间相互独立且没有协作的能力。
纳什均衡的概念纳什均衡是博弈论中的一个重要概念,由诺贝尔经济学奖得主约翰·纳什提出。
纳什均衡指的是在每个决策制定者根据自己的利益进行选择的情况下,不存在个体可以通过单独改变自己的策略来进一步获益的状态。
具体来说,在一个博弈中,如果每个玩家选择了一个策略组合,且任何一个玩家单独改变自己的策略都无法提高自己的收益,那么这个策略组合就是一个纳什均衡。
纳什均衡可以通过数学方法进行计算,其中最常用的方法是利用最优响应函数。
最优响应函数指的是一个玩家在其他玩家的策略给定时,可以最大化自己的收益的策略选择。
纳什均衡的特性纳什均衡具有以下几个重要的特性:1.独立于个体的理性决策:纳什均衡的形成不依赖于玩家之间的协商或合作,而是由每个玩家根据自己的利益进行独立的决策而达成的。
2.稳定性:在纳什均衡中,每个玩家都在最优响应下选择策略,没有动机或能力单独改变自己的策略来获得更好的结果。
这种稳定性使得纳什均衡成为一种理想的博弈状态。
3.不一定最优:纳什均衡并非一定是博弈的最优结果,即每个玩家获得的收益并不一定是最大化的。
纳什均衡是一种均衡状态,每个玩家在给定其他玩家的策略下无法获得更多的收益。
博弈论纳什均衡

博弈论纳什均衡什么是纳什均衡?1、纳什均衡(Nash equilibrium ),又称非合作博弈均衡,是博弈论概念,指的是:一种博弈稳定结果,谁单方改变策略,谁就会损失。
两个囚徒互相揭发,就是一种纳什均衡。
对于每个囚徒来说,如果打破纳什均衡,在对方实施揭发策略时,改变揭发策略,保持沉默,自己就会由判刑2年,变成判刑5年。
也就是说,两个囚徒互相揭发是稳定博弈结果,谁单方改变策略,就会受到损失。
这也就是均衡涵义所在,两个囚徒从利己角度,都不会单方改变策略。
博弈策略稳定,博弈结果也稳定。
之所以命名为纳什均衡,是因为提出者是经济学家、博弈论创始人约翰.纳什。
之所以称为非合作博弈均衡,原因就是:两个囚徒如果合作,互相保持沉默,各自只要坐牢1年;但最终博弈结果,也就是纳什均衡显著特征,是不合作。
2、纳什均衡意义重大。
纳什均衡提出,震动整个经济学界。
诺贝尔经济学奖得主萨缪尔森曾说:“你只要教会鹦鹉说‘需求和供给’,它也是经济学家。
”博弈论专家坎多瑞则说:“这只鹦鹉现在必须多学一个词了,那就是‘纳什均衡’。
”诺贝尔经济学奖得主迈尔森也说:“发现纳什均衡意义,可以和生命科学中发现DNA 双螺旋结构相媲美。
”纳什也因为提出纳什均衡,创立博弈论,而获得1994年诺贝尔经济学家奖。
纳值均衡意义重大,简单来说,就是它对于经济学具有重大意义。
读友们如果了解经济学看不见的手原理,就知道,古典经济学认为,通过市场这只‘看不见的手’调节,个体追求私利行为,会促进集体利益最大化。
但纳什均衡却违反上述原理:两个囚徒分别追求私利行为,并没有促进集体(囚徒整体)利益最大化,反而是损人不利己。
这正是市场失灵软肋之处,通过博弈论视角可以得到合乎逻辑解释,更有条件找到合适解决方案。
从上述这点,读友们可以“一斑窥全豹”,感受到博弈论重要性。
更重要的是,纳什均衡非常普遍,小至个人沟通,中到公司竞争,大到国家往来,都可以观察到。
Q2:怎样运用纳什均衡?1、分析囚徒困境。
博弈论-混合策略纳什均衡

政治学的案例分析
总结词:国际关系
详细描述:在国际关系中,混合策略纳什均衡可以用来解释 国家之间的竞争和合作。例如,两个国家可能会以一定的概 率选择不同的外交政策,例如结盟、中立或对抗,以达到各 自的利益最大化。
生物学的案例分析
总结词
捕食者-猎物博弈
详细描述
在生物学中,混合策略纳什均衡可以用来解释捕食者与猎物之间的博弈。例如,捕食者 可能会采用追逐和放弃两种策略来捕猎猎物,而猎物也可能会采用逃跑和装死两种策略 来避免被捕食。最终,捕食者和猎物都以一定的概率随机选择不同的策略,以达到均衡
非合作博弈论
研究个体如何在不知道其 他个体如何行动的情况下 做出最优决策。
博弈论的基本概念
参与者
参与博弈的决策主体, 可以是个人、组织或国
家。
行动
参与者根据给定的信息 所做出的决策。
信息
参与者在进行决策时所 拥有的数据、情报或知
识。
策略
参与者为达到最优结果 而采取的一系列行动的
方案。
博弈论的应用场景
状态。
生物学的案例分析
总结词:繁殖竞争
VS
详细描述:在生物种群中,不同个体 之间会存在繁殖竞争。为了最大化自 己的遗传贡献,个体可能会采用不同 的交配策略,例如追求高繁殖成功率 的策略或避免过度竞争的策略。混合 策略纳什均衡可以用来描述这种竞争 状态下的交配行为。
THANKS FOR WATCHING
繁殖博弈
在繁殖博弈中,生物个体通过选择不同的繁殖和竞争策略来繁衍后代。混合策略纳什均衡可以用来分 析繁殖过程的均衡结果,解释生物多样性的形成机制。
05 混合策略纳什均衡的案例 分析
经济学的案例分析
博弈论和纳什均衡

博弈论和纳什均衡关于博弈论和纳什均衡你应该知道这些美股腾讯财经[微博]2015-05-25 10:05我要分享139[摘要]纳什在与命运的博弈中找到均衡,纪念大师最好的方式就是尝试了解博弈论。
腾讯财经综合报道(风生)奥斯卡获奖电影《美丽心灵》主角原型、诺贝尔奖得主、美国数学家约翰-纳什日前与妻子在美国新泽西州乘搭的士时遇上车祸,两人均不幸遇难。
事发当时,这辆出租车失控撞向栏杆,两人均被抛出车外。
约翰-纳什因发表两篇关于非合作博弈论的重要论文,彻底改变了人们对竞争和市场的看法。
他证明了非合作博弈及其均衡解,并证明了均衡解的存在性,即著名的纳什均衡。
不均衡人生中孕育出均衡论纳什于1928年在美国西弗吉尼亚州出生,曾在麻省理工学院任教,晚年为普林斯顿大学担任数学系教授,死前与82岁妻子艾丽西亚在普林斯顿居住。
纳什以研究博弈论闻名,1994年获颁诺贝尔经济学奖。
他的理论被运用在市场经济、计算、演化生物学、人工智能、会计、政策和军事理论等多个领域。
纳什在数学领域上取得多项突破,但他同时深受精神分裂症困扰,其生平故事在2001年被改编成电影《美丽心灵》,赢得包括最佳电影在内的4项奥斯卡奖项。
尽管西维亚-纳萨斯(Sylvia Nasars)广为人知的小说《美丽心灵》(A Beautiful Mind)和改编自该书的、由拉塞尔-克罗(Russell Crowe)主演的同名奥斯卡电影探究了纳什错综复杂的生平,但都没有深入挖掘他的数学思想。
他的数学成果依然不被大众所熟知。
在当今科学界,人们普遍认为,与牛顿和爱因斯坦的数学理论相比,纳什的数学理论触及到的学科更多。
牛顿和爱因斯坦的数学旨在处理物理问题,而纳什的数学却可以应用在生物学和社会学领域。
如若不是精神疾病的困扰,纳什今天可能已与那些科学伟人齐名。
尽管如此,他在几个数学领域的重要贡献大家有目共睹。
他最大的成就来自于经济学方面。
由于他在博弈论上的开创性成就,他与约翰海萨尼(John Harsanyi)和莱茵哈德-泽尔腾(Reinhard Selten)一起获得了1994年诺贝尔经济学奖。
博弈论(潜在博弈、纳什均衡
博弈论(潜在博弈、纳什均衡潜在博弈和纳什均衡是博弈论中的重要概念。
潜在博弈是指在博弈开始之前,参与者对博弈规则和结果的假设和预期。
纳什均衡是指在博弈中,各参与者都采取最优策略时所达到的结果。
在现实生活中,我们经常会遇到各种潜在博弈的情况。
比如,在一个拍卖会上,卖家和买家都会根据对市场的了解和对对方行为的预期来制定自己的策略。
卖家希望以最高的价格卖出物品,而买家则希望以最低的价格购买物品。
他们的策略取决于对对方行为的预期,以及对市场供求关系的判断。
在这种情况下,纳什均衡的概念就显得尤为重要。
纳什均衡是指在博弈中,各参与者都选择了最优策略,没有人可以通过改变自己的策略来获得更好的结果。
换句话说,纳什均衡是一种稳定的状态,参与者不会主动改变自己的策略。
然而,纳什均衡并不一定是最优解。
在某些情况下,博弈参与者可能会因为缺乏信息或信任问题而无法达到纳什均衡。
在这种情况下,博弈参与者可能会采取非最优策略,导致整个博弈结果下降。
潜在博弈和纳什均衡的概念不仅适用于经济学领域,也可以应用于其他领域。
比如在政治上,各国之间的战略决策也可以看作是一种博弈。
每个国家都会根据对其他国家行为的预期来制定自己的策略,以达到自己的最大利益。
而纳什均衡的概念则可以帮助我们理解为什么有些国家会选择合作,而有些国家会选择对抗。
潜在博弈和纳什均衡是博弈论中的重要概念,可以帮助我们理解各种博弈情况下参与者的策略选择和结果。
在现实生活中,这些概念也可以应用于经济学、政治学等领域,帮助我们分析和解决各种复杂的决策问题。
通过理解和应用潜在博弈和纳什均衡的原理,我们可以更好地把握博弈中的机会和挑战,做出更明智的决策。
博弈论中的均衡
博弈论中的均衡一、博弈论的定义博弈论是研究决策者之间相互影响的一种数学工具。
它主要关注的是在决策者之间存在相互作用和相互依存的情况下,如何做出最优决策。
二、博弈论中的均衡概念均衡是博弈论中一个重要的概念。
它指的是在一个博弈中,每个参与者都采取了最优策略,并且没有任何一个参与者能够通过改变自己的策略来获得更多的收益。
三、纳什均衡纳什均衡是博弈论中最为常见和重要的均衡概念之一。
它指的是在一个非合作博弈中,每个参与者都采取了最优策略,并且这些最优策略构成了一个稳定状态,即没有任何一个参与者能够通过改变自己的策略来获得更多的收益。
四、纳什均衡存在定理纳什均衡存在定理指出,在任何一个有限制性条件(例如有限次迭代)下满足某些基本条件(例如紧致性)的非合作博弈中,至少存在一个纳什均衡。
五、纳什均衡的计算方法在一些简单的博弈中,可以通过列出参与者的收益矩阵来计算纳什均衡。
具体方法是找到每个参与者的最优策略,并检查这些最优策略是否构成了一个稳定状态。
在一些复杂的博弈中,计算纳什均衡可能非常困难甚至不可能。
此时,可以采用数值方法(例如迭代法)或者近似方法(例如线性规划)来求解。
六、纳什均衡的应用纳什均衡在经济学、政治学、生物学等领域都有广泛应用。
在市场竞争中,企业可以通过分析竞争对手的行为和策略来制定自己的最优策略;在国际关系中,各国可以通过分析其他国家的行为和策略来制定自己的外交政策。
七、纳什均衡存在局限性尽管纳什均衡是博弈论中最为常见和重要的均衡概念之一,但它也存在一些局限性。
在一些博弈中,存在多个纳什均衡,而且这些纳什均衡可能会导致非常不同的结果;在一些博弈中,参与者的收益函数可能并不是凸函数,因此纳什均衡可能不存在或者不唯一。
八、总结博弈论中的均衡是一个重要的概念,其中纳什均衡是最为常见和重要的一种。
通过计算纳什均衡,参与者可以找到自己的最优策略,并且预测其他参与者的行为和策略。
然而,纳什均衡也存在局限性,在实际应用中需要注意。
纳什均衡
纳什均衡在政治学中的应用
选举策略:候选人在竞选活动中的决策和策略选择 政治谈判:国家间在谈判过程中的策略选择和利益平衡 国际关系:国家间在合作与竞争中的决策和策略选择 政治制度设计:政治制度设计中的决策和策略选择,如选举制度、议会制度等
纳什均衡在管理学中的应用
战略决策:企业在市场竞争中,通过纳什均衡分析,制定最优策略。 组织结构:纳什均衡理论可以帮助企业优化组织结构,提高管理效率。 激励机制:纳什均衡理论在企业激励机制设计中,可以指导企业制定有效的激励措施。 谈判与合作:纳什均衡理论在企业谈判与合作中,可以帮助企业实现利益最大化。
纳什均衡的应用
博弈论:纳什均衡是博弈论的核心概念,用于分析各种博弈问题 经济学:纳什均衡在经济学中广泛应用,如市场均衡、价格均衡等 政治学:纳什均衡在政治学中用于分析政治博弈,如选举、谈判等 社会学:纳什均衡在社会学中用于分析社会现象,如群体行为、社会规范等
纳什均衡的求解方法
第二章
纳什均衡的求解条件
纳什均衡
目录
CONTENTS
01 纳什均衡的概念 02 纳什均衡的求解方法 03 纳什均衡与博弈论 04 纳什均衡的局限性
05 纳什均衡纳什均衡的定义
纳什均衡是指在 一个博弈中,每 个参与者的策略 都是对其他参与 者策略的最优反 应。
纳什均衡是博弈 论中的一个重要 概念,由约翰·纳 什提出。
纳什均衡的求解步骤
确定博弈的 参与者和策 略集
建立支付矩 阵,表示参 与者在不同 策略下的收 益
计算每个参 与者的最佳 反应策略
检查是否存 在纳什均衡, 即每个参与 者的策略都 是对其他参 与者策略的 最佳反应
如果存在纳 什均衡,则 求解得到均 衡策略;如 果不存在, 则重新调整 策略集或支 付矩阵,重 复步骤3-4。
博弈论与纳什均衡
《博弈论与纳什均衡理论》姓名张贺祺学号 2010010404 专业政治经济学指导老师张秉云摘要博弈论是研究决策主体的行为发生直接相互作用时候的决策以及这种决策的均衡问题,具有斗争或竞争性质现象的数学理论和方法,也是运筹学的一个重要学科。
博弈论考虑游戏中的个体的预测行为和实际行为,并研究它们的优化策略。
纳什均衡指的是这样一种战略组合,这种策略组合由所有参与人最优策略组成。
即在给定别人策略的情况下,没有人有足够理由打破这种均衡。
纳什均衡,从实质上说,是一种非合作博弈状态。
关键字:博弈论;纳什均衡;合作博弈;非合作博弈目录摘要 (2)关键字 (2)一、引言 (4)二、博弈论与纳什均衡的主要内容 (4)(一)博弈论的主要思想 (4)(二)博弈论的分类 (5)三、经典案例 (7)(一)博弈论的经典案例 (7)(二)纳什均衡经典案例 (7)四、博弈论和纳什均衡的重要影响 (8)(一)博弈论的重要影响 (8)(二)纳什均衡的重要影响 (8)参考文献 (9)博弈论与纳什均衡理论一、引言近代对于博弈论的研究,开始于策墨咯(Zermelo),波雷尔(Borel)及冯·诺伊曼(von Neumann)。
1928年,冯·诺依曼证明了博弈论的基本原理,从而宣告了博弈论的正式诞生。
1944年,冯·诺依曼和摩根斯坦共著的划时代巨著《博弈论与经济行为》将二人博弈推广到n人博弈结构并将博弈论系统的应用于经济领域,从而奠定了这一学科的基础和理论体系。
1950~1951年,约翰·福布斯·纳什(John Forbes Nash Jr)利用不动点定理证明了均衡点的存在,为博弈论的一般化奠定了坚实的基础。
纳什的开创性论文《n人博弈的均衡点》(1950),《非合作博弈》(1951)等等,给出了纳什均衡的概念和均衡存在定理。
此外,塞尔顿、哈桑尼的研究也对博弈论发展起到推动作用。
今天博弈论已发展成一门较完善的学科。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
博弈论和纳什均衡文件管理序列号:[K8UY-K9IO69-O6M243-OL889-F88688]关于博弈论和纳什均衡你应该知道这些腾讯财经[]2015-05-25 10:05我要分享[摘要]纳什在与命运的博弈中找到均衡,纪念大师最好的方式就是尝试了解博弈论。
腾讯财经综合报道(风生)奥斯卡获奖电影《美丽心灵》主角原型、诺贝尔奖得主、美国数学家约翰-纳什日前与妻子在美国新泽西州乘搭的士时遇上车祸,两人均不幸遇难。
事发当时,这辆出租车失控撞向栏杆,两人均被抛出车外。
约翰-纳什因发表两篇关于非合作博弈论的重要论文,彻底改变了人们对竞争和市场的看法。
他证明了非合作博弈及其均衡解,并证明了均衡解的存在性,即着名的纳什均衡。
不均衡人生中孕育出均衡论纳什于1928年在美国西弗吉尼亚州出生,曾在麻省理工学院任教,晚年为普林斯顿大学担任数学系教授,死前与82岁妻子艾丽西亚在普林斯顿居住。
纳什以研究博弈论闻名,1994年获颁诺贝尔经济学奖。
他的理论被运用在市场经济、计算、演化生物学、人工智能、会计、政策和军事理论等多个领域。
纳什在数学领域上取得多项突破,但他同时深受精神分裂症困扰,其生平故事在2001年被改编成电影《美丽心灵》,赢得包括最佳电影在内的4项奥斯卡奖项。
尽管西维亚-纳萨斯(Sylvia Nasars)广为人知的小说《美丽心灵》(A Beautiful Mind)和改编自该书的、由拉塞尔-克罗(Russell Crowe)主演的同名奥斯卡电影探究了纳什错综复杂的生平,但都没有深入挖掘他的数学思想。
他的数学成果依然不被大众所熟知。
在当今科学界,人们普遍认为,与牛顿和爱因斯坦的数学理论相比,纳什的数学理论触及到的学科更多。
牛顿和爱因斯坦的数学旨在处理物理问题,而纳什的数学却可以应用在生物学和社会学领域。
如若不是精神疾病的困扰,纳什今天可能已与那些科学伟人齐名。
尽管如此,他在几个数学领域的重要贡献大家有目共睹。
他最大的成就来自于经济学方面。
由于他在博弈论上的开创性成就,他与约翰海萨尼(John Harsanyi)和莱茵哈德-泽尔腾(Reinhard Selten)一起获得了1994年诺贝尔经济学奖。
什么是博弈论与纳什均衡博弈论 :亦名“对策论”、“赛局理论”,属应用数学的一个分支,主要研究公式化了的激励结构间的相互作用。
是研究决策主体的行为发生直接相互作用时候的决策以及这种决策的均衡问题,具有斗争或竞争性质现象的数学理论和方法。
也是运筹学的一个重要学科。
博弈论考虑游戏中的个体的预测行为和实际行为,并研究它们的优化策略。
纳什均衡:又称为非合作博弈均衡,是博弈论的一个重要术语,以约翰-纳什命名。
假设有n人局中人参与博弈,给定其他人策略的条件下,每个局中人选择自己的最优策略(个人最优策略可能依赖于也可能不依赖于他人的战略),从而使自己利益最大化。
所有局中人策略构成一个策略组合。
纳什均衡指的是这样一种战略组合,这种策略组合由所有参与人最优策略组成。
即在给定别人策略的情况下,没有人有足够理由打破这种均衡。
纳什均衡,从实质上说,是一种非合作博弈状态。
近代对于博弈论的研究,开始于策墨咯,波雷尔及冯-诺伊曼。
1928年,冯-诺依曼证明了博弈论的基本原理,从而宣告了博弈论的正式诞生。
1944年,冯-诺依曼和摩根斯坦共着的划时代巨着《博弈论与经济行为》将二人博弈推广到n人博弈结构并将博弈论系统的应用于经济领域,从而奠定了这一学科的基础和理论体系。
1950~1951年,约翰-福布斯-纳什利用不动点定理证明了均衡点的存在,为博弈论的一般化奠定了坚实的基础。
纳什的开创性论文《n人博弈的均衡点》(1950),《非合作博弈》(1951)等等,给出了纳什均衡的概念和均衡存在定理。
此外,塞尔顿、哈桑尼的研究也对博弈论发展起到推动作用。
今天博弈论已发展成一门较完善的学科。
博弈论起源于研究人们玩扑克(poker)、象棋(chess)等室内游戏时的行为决策,后来作为一种研究人类经济行为的数学工具得到了充分的发展。
从根本上讲,博弈论涉及到从打网球到指挥战争的任何牵扯策略的情景。
博弈论提供了一种计算各种可能决策所产生效益的数学方法,该理论为在各种竞赛性场合做出最佳决定建立了一套具体的数学公式。
正如经济学家赫伯特-金迪斯(Herbert Gintis)所说,博弈论是我们“研究世界的一种工具”。
但它不仅仅是一种工具,“它不仅研究人们如何合作,而且研究人们如何竞争”。
同时,“博弈论还研究行为方式的产生、转变、散播和稳定。
”博弈论与纳什均衡的发展和应用博弈论不是纳什发明的,但他扩大了该理论的范围,为之提供了解决实际问题的更有力工具。
在一开始,他的研究成果并没有受到人们的重视。
他的文章发表在20世纪50年代,在当时博弈论仅在冷战分析家之间流传,这些分析家认为国际侵略和利益最大化之间有一些相似之处。
在经济学界,博弈论还被视为一种新奇事物。
经济学家萨缪-鲍尔斯(Samuel Bowles)告诉我说:“在当时博弈论羽翼未丰,如同经济学中其它许多优秀的思想一样,它还没有受到人们的关注。
”然而在20世纪70年代时情况发生了改变,进化论学派的生物学家开始采用博弈论研究动植物中的生存竞争现象。
紧接着在20世纪80年代,经济学家终于开始以各种不同方式将博弈论应用于经济学中,尤其是将它用在设计真实试验以验证经济学理论方面。
到80年代末博弈论在经济学领域已经充分显示了它的作用,这最终促成了纳什等1994年诺贝尔经济学奖的获得。
早在此之前,博弈论就已经出现在许多学科的课程中。
数学系、经济学系、生物学系、还有政治科学系、心理学系和社会科学系的课程中都含有博弈论的内容。
到了21世纪初,博弈论的应用更为广泛,涉及到从人类学到神经生物学等多个领域。
现今,经济学家继续使用博弈论分析人们如何做出有关金钱的决策;生物学家用它来建立假说以解释适者生存原理和利他主义的起源;人类学家使用它来研究原始文化,从而说明人性的多样化;神经科学者也加入了博弈论研究的行列,通过研究博弈者的大脑,试图发现决策如何反映人们的动机和情感。
简言之,纳什的数学理论连同在其在其基础上建立起来的现代博弈论已经成为科学家研究众多与人类行为相关课题时的首选方法。
博弈论和纳什均衡的几个经典案例【智猪博弈(Pigs’payoffs)】猪圈里有两头猪,一头大猪,一头小猪。
猪圈的一边有个踏板,每踩一下踏板,在远离踏板的猪圈的另一边的投食口就会落下少量的食物。
如果有一只猪去踩踏板,另一只猪就有机会抢先吃到另一边落下的食物。
当小猪踩动踏板时,大猪会在小猪跑到食槽之前刚好吃光所有的食物;若是大猪踩动了踏板,则还有机会在小猪吃完落下的食物之前跑到食槽,争吃到另一半残羹。
那么,两只猪各会采取什么策略?答案是:小猪将选择“搭便车”策略,也就是舒舒服服地等在食槽边;而大猪则为一点残羹不知疲倦地奔忙于踏板和食槽之间。
原因何在?因为,小猪踩踏板将一无所获,不踩踏板反而能吃上食物。
对小猪而言,无论大猪是否踩动踏板,不踩踏板总是好的选择。
反观大猪,已明知小猪是不会去踩动踏板的,自己亲自去踩踏板总比不踩强吧,所以只好亲力亲为了。
【枪手博弈】王者的悲哀。
三人对枪自决,甲乙丙枪法优劣递减。
最后无奈而神奇的结局,将不取决于同时开枪还是先后开枪,最优良的枪手,倒下的概率将最高;而最蹩脚的枪手,存活的希望却最大。
因为没有人会把威胁最小的枪手列为一号清楚目标。
在这里,后发制人的弱势者将胜出。
以弱胜强,绝不是神话。
【囚徒困境】假设有两个小偷A和B联合犯事、私入民宅被警察抓住。
警方将两人分别置于不同的两个房间内进行审讯,对每一个犯罪嫌疑人,警方给出的政策是:如果一个犯罪嫌疑人坦白了罪行,交出了赃物,于是证据确凿,两人都被判有罪。
如果另一个犯罪嫌疑人也作了坦白,则两人各被判刑8年;如果另一个犯罪嫌人没有坦白而是抵赖,则以妨碍公务罪(因已有证据表明其有罪)再加刑2年,而坦白者有功被减刑8年,立即释放。
如果两人都抵赖,则警方因证据不足不能判两人的偷窃罪,但可以私入民宅的罪名将两人各判入狱1年。
关于这个案例,显然最好的策略是双方都抵赖,结果是大家都只被判1年。
但是由于两人处于隔离的情况,首先应该是从心理学的角度来看,当事双方都会怀疑对方会出卖自己以求自保、其次才是亚当-斯密的理论,假设每个人都是“理性的经济人”,都会从利己的目的出发进行选择。
这两个人都会有这样一个盘算过程:假如A坦白,B抵赖,B得坐10年监狱,B坦白最多才8年;B要是抵赖,A就可以被释放,而B会坐10年牢。
综合以上几种情况考虑,不管A坦白与否,对B而言都是坦白了划算。
两个人都会动这样的脑筋,最终,两个人都选择了坦白,结果都被判8年刑期。
博弈论和纳什均衡的重要影响博弈论所研究的是理性的决策者之间冲突及合作的理论,可以为实际决策提供理论基础和方向指导。
其最终追求结果是使博弈方达到利益最大化的均衡。
在生活中,博弈仍然无处不在。
博弈论代表着一种全新的分析方法和全新的思想。
诺贝尔经济学奖获得者保罗-萨缪尔逊如是说:要想在现代社会做个有价值的人,你就必须对博弈论有个大致的了解也可以这样说,要想赢得生意,不可不学博弈论;要想赢得生活,同样不可不学博弈论。
纳什均衡理论奠定了现代主流博弈理论和经济理论的根本基础,正如克瑞普斯(Kreps,1990)在《博弈论和经济建模》一书的引言中所说,“在过去的一二十年内,经济学在方法论以及语言、概念等方面,经历了一场温和的革命,非合作博弈理论已经成为范式的中心,在经济学或者与经济学原理相关的、会计、营销和政治科学等学科中,现在人们已经很难找到不懂纳什均衡能够‘’近期文献的领域。
”(腾讯财经综合)。