2019-2020高中数学题分类汇编(一)——集合(100题)
2019-2020高考数学试题分类汇编

A. 2B. 3C. 4D. 6
5.(2020•江苏卷)已知集合 ,则 _____.
6.(2020•新全国1山东)设集合A={x|1≤x≤3},B={x|2<x<4},则A∪B=( )
A. {x|2<x≤3} B. {x|2≤x≤3} C. {x|1≤x<4} D. {x|1<x<4}
A. B. C. D.
6,(北京,理、文2)已知复数z=2+i,则
(A) (B) (C)3(D)5
7,(天津理、文9) 是虚数单位,则 的值为_____________.
8,(浙江11)复数 ( 为虚数单位),则 =___________.
9,(江苏2)已知复数 的实部为0,其中 为虚数单位,则实数a的值是.
A. B. C. D.
8,(全国2文,10)曲线y=2sinx+cosx在点(π,-1)处的切线方程为
A. B.
C. D.
9,(全国3理6、文7).已知曲线 在点(1,ae)处的切线方程为y=2x+b,则
2019---2020年真题分类汇编
一、 集合(2019)
1,(全国1理1)已知集合 ,则 =
A. B. C. D.
2,(全国1文2)已知集合 ,则
A. B. C. D.
3,(全国2理1)设集合A={x|x2–5x+6>0},B={x|x–1<0},则A∩B=
A.(–∞,1)B.(–2,1)C.(–3,–1)D.(3,+∞)
4,(全国2文1)已知集合 , ,则A∩B=
A.(-1,+∞) B.(-∞,2) C.(-1,2) D.
2019年高考数学真题分类汇编:集合.doc

2019 年高考数学真题分类汇编专题 01:集合一、单选题1.(2019?浙江)已知全集 U={-1 ,0,1,2,3} ,集合 A={0,1,2} ,B={-1 ,0,1} ,则=()A. {-1}B. {0 ,1}C. {-1 ,2,3}D. {-1 , 0,1,3}【答案】 A2.(2019?天津)设集合,则()A.{2}B.{2 ,3}C.{-1 ,2,3}D.{1 ,2,3,4}【答案】 D3.(2019?全国Ⅲ)已知集合 A={-1 ,0,1,2} ,B={x|x 2≤1} ,则 A∩B= ()A.{-1 ,0,1}B.{0,1}C.{-1 ,1}D.{0,1,2}【答案】 A4.(2019?卷Ⅱ)已知集合 A={x|x>-1} ,B={x|x<2} ,则 A∩B=()A. (-1 ,+∞)B. ( - ∞, 2)C.( -1 ,2)D.【答案】 C5. (2019?卷Ⅱ)设集合 A={x|x 2-5x+6>0} ,B={ x|x-1<0},则A∩B= ()A.(- ∞, 1)B.(-2,1)C.(-3 ,-1)D.(3,+∞)【答案】 A6. (2019?北京)已知集合A={x|-1<x<2} ,B={x|x>1} ,则 AUB= ()A. (-1 ,1)B. (1,2)C.(-1 ,+∞)D.(1,+∞)【答案】 C7.(2019?卷Ⅰ)已知集合 U=,A=,B=则=()A. B.C. D.【答案】 C8. (2019?卷Ⅰ)已知集合M=,N=,则M N=()A. B.C. D.【答案】 C9.(2019?全国Ⅲ)《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并成为中国古典小说四大名著。
某中学为了了解本校学生阅读四大名著的情况,随机调查了 100 位学生,其中阅读过《西游记》或《红楼梦》的学生共有 90 位,阅读过《红楼梦》的学生共有 80 位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为()A.0.5B.0.6C.0.7D.0.8【答案】 C二、填空题10. (2019?江苏)已知集合,,则________.【答案】。
2019年高考数学真题分类汇编01:集合

2019年高考数学真题分类汇编专题01:集合一、单选题1.(2019•浙江)已知全集U={-1,0,1,2,3},集合A={0,1,2},B={-1,0,1},则 =()A. {-1}B. {0,1}C. {-1,2,3}D. {-1,0,1,3}【答案】 A2.(2019•天津)设集合,则()A.{2}B.{2,3}C.{-1,2,3}D.{1,2,3,4}【答案】 D3.(2019•全国Ⅲ)已知集合A={-1,0,1,2},B={x|x2≤1},则A∩B=()A.{-1,0,1}B.{0,1}C.{-1,1}D.{0,1,2}【答案】 A4.(2019•卷Ⅱ)已知集合A={x|x>-1},B={x|x<2},则A∩B=()A.(-1,+∞)B.( -∞,2)C.( -1,2)D.【答案】 C5.(2019•卷Ⅱ)设集合A={x|x2-5x+6>0},B={ x|x-1<0},则A∩B=()A.(-∞,1)B.(-2,1)C.(-3,-1)D.(3,+∞)【答案】 A6.(2019•北京)已知集合A={x|-1<x<2},B={x|x>1},则AUB=()A.(-1,1)B.(1,2)C.(-1,+∞)D.(1,+∞)【答案】 C7.(2019•卷Ⅰ)已知集合U= ,A= ,B= 则 =()A. B.C. D.【答案】C8.(2019•卷Ⅰ)已知集合M= ,N= ,则M N=()A. B.C. D.【答案】 C9.(2019•全国Ⅲ)《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并成为中国古典小说四大名著。
某中学为了了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为()A.0.5 【答案】C二、填空题10.(2019•江苏)已知集合,,则 ________.【答案】。
历年(2019-2023)全国高考数学真题分项(集合与常用逻辑用语)汇编(附答案)

历年(2019-2023)全国高考数学真题分项(集合与常用逻辑用语)汇编考点一 元素与集合关系的判断1.(2023•上海)已知{1P =,2},{2Q =,3},若{|M x x P =∈,}x Q ∉,则(M = ) A .{1}B .{2}C .{3}D .{1,2,3}考点二 集合的包含关系判断及应用2.(2023•新高考Ⅱ)设集合{0A =,}a -,{1B =,2a -,22}a -,若A B ⊆,则(a = ) A .2B .1C .23D .1-3.(2021•上海)已知集合{|1A x x =>-,}x R ∈,2{|20B x x x =--…,}x R ∈,则下列关系中,正确的是( ) A .A B ⊆B .R RA B ⊆痧C .A B =∅D .A B R=考点三 并集及其运算4.(2022•浙江)设集合{1A =,2},{2B =,4,6},则(A B = ) A .{2}B .{1,2}C .{2,4,6}D .{1,2,4,6}5.(2020•山东)设集合{|13}A x x =剟,{|24}B x x =<<,则(A B = ) A .{|23}x x <…B .{|23}x x 剟C .{|14}x x <…D .{|14}x x <<考点四 交集及其运算6.(2023•新高考Ⅰ)已知集合{2M =-,1-,0,1,2},2{|60}N x x x =--…,则(M N = ) A .{2-,1-,0,1} B .{0,1,2}C .{2}-D .{2}7.(2022•上海)若集合[1A =-,2),B Z =,则(A B = ) A .{2-,1-,0,1} B .{1-,0,1}C .{1-,0}D .{1}-8.(2022•新高考Ⅰ)若集合{4}M x =<,{|31}N x x =…,则(M N = ) A .{|02}x x <…B .1{|2}3x x <…C .{|316}x x <…D .1{|16}3x x <…9.(2022•新高考Ⅱ)已知集合{1A =-,1,2,4},{||1|1}B x x =-…,则(A B = ) A .{1-,2}B .{1,2}C .{1,4}D .{1-,4}10.(2021•新高考Ⅰ)设集合{|24}A x x =-<<,{2B =,3,4,5},则(A B = ) A .{2,3,4}B .{3,4}C .{2,3}D .{2}11.(2021•浙江)设集合{|1}A x x =…,{|12}B x x =-<<,则(A B = ) A .{|1}x x >-B .{|1}x x …C .{|11}x x -<<D .{|12}x x <…12.(2020•浙江)已知集合{|14}P x x =<<,{|23}Q x x =<<,则(P Q = ) A .{|12}x x <…B .{|23}x x <<C .{|34}x x <…D .{|14}x x <<13.(2021•上海)已知{|21}A x x =…,{1B =-,0,1},则A B = .14.(2020•上海)已知集合{1A =,2,4},集合{2B =,4,5},则A B = . 15.(2019•上海)已知集合(,3)A =-∞,(2,)B =+∞,则A B = .考点五 交、并、补集的混合运算16.(2021•新高考Ⅱ)若全集{1U =,2,3,4,5,6},集合{1A =,3,6},{2B =,3,4},则 (U A B = ð )A .{3}B .{1,6}C .{5,6}D .{1,3}17.(2019•浙江)已知全集{1U =-,0,1,2,3},集合{0A =,1,2},{1B =-,0,1},则()(U A B = ð )A .{1}-B .{0,1}C .{1-,2,3}D .{1-,0,1,3}考点六 命题的真假判断与应用18.(2020•浙江)设集合S ,T ,*S N ⊆,*T N ⊆,S ,T 中至少有2个元素,且S ,T 满足: ①对于任意的x ,y S ∈,若x y ≠,则xy T ∈; ②对于任意的x ,y T ∈,若x y <,则yS x∈.下列命题正确的是( ) A .若S 有4个元素,则S T 有7个元素 B .若S 有4个元素,则S T 有6个元素 C .若S 有3个元素,则S T 有5个元素D .若S 有3个元素,则S T 有4个元素考点七 充分条件与必要条件19.(2020•上海)命题p :存在a R ∈且0a ≠,对于任意的x R ∈,使得()()f x a f x f +<+(a ); 命题1:()q f x 单调递减且()0f x >恒成立;命题2:()q f x 单调递增,存在00x <使得0()0f x =, 则下列说法正确的是( ) A .只有1q 是p 的充分条件 B .只有2q 是p 的充分条件C .1q ,2q 都是p 的充分条件D .1q ,2q 都不是p 的充分条件20.(2020•浙江)已知空间中不过同一点的三条直线l ,m ,n .则“l ,m ,n 共面”是“l ,m ,n 两两相交”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件21.(2019•浙江)若0a >,0b >,则“4a b +…”是“4ab …”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件22.(2019•上海)已知a 、b R ∈,则“22a b >”是“||||a b >”的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分又非必要条件参考答案考点一 元素与集合关系的判断1.(2023•上海)已知{1P =,2},{2Q =,3},若{|M x x P =∈,}x Q ∉,则(M = ) A .{1}B .{2}C .{3}D .{1,2,3}【详细解析】{1P = ,2},{2Q =,3},{|M x x P =∈,}x Q ∉, {1}M ∴=. 故选:A .考点二 集合的包含关系判断及应用2.(2023•新高考Ⅱ)设集合{0A =,}a -,{1B =,2a -,22}a -,若A B ⊆,则(a = ) A .2B .1C .23D .1-【详细解析】依题意,20a -=或220a -=,当20a -=时,解得2a =,此时{0A =,2}-,{1B =,0,2},不符合题意; 当220a -=时,解得1a =,此时{0A =,1}-,{1B =,1-,0},符合题意. 故选:B .3.(2021•上海)已知集合{|1A x x =>-,}x R ∈,2{|20B x x x =--…,}x R ∈,则下列关系中,正确的是( ) A .A B ⊆B .R RA B ⊆痧C .A B =∅D .A B R =【详细解析】已知集合{|1A x x =>-,}x R ∈,2{|20B x x x =--…,}x R ∈, 解得{|2B x x =…或1x -…,}x R ∈,{|1R A x x =-…ð,}x R ∈,{|12}R B x x =-<<ð;则A B R = ,{|2}A B x x = …, 故选:D .考点三 并集及其运算4.(2022•浙江)设集合{1A =,2},{2B =,4,6},则(A B = ) A .{2}B .{1,2}C .{2,4,6}D .{1,2,4,6}【详细解析】{1A = ,2},{2B =,4,6}, {1A B ∴= ,2,4,6},故选:D .5.(2020•山东)设集合{|13}A x x =剟,{|24}B x x =<<,则(A B = ) A .{|23}x x <…B .{|23}x x 剟C .{|14}x x <…D .{|14}x x <<【详细解析】 集合{|13}A x x =剟,{|24}B x x =<<, {|14}A B x x ∴=< ….故选:C .考点四 交集及其运算6.(2023•新高考Ⅰ)已知集合{2M =-,1-,0,1,2},2{|60}N x x x =--…,则(M N = ) A .{2-,1-,0,1} B .{0,1,2}C .{2}-D .{2}【详细解析】260x x -- …,(3)(2)0x x ∴-+…,3x ∴…或2x -…, (N =-∞,2][3- ,)+∞,则{2}M N =- . 故选:C .7.(2022•上海)若集合[1A =-,2),B Z =,则(A B = ) A .{2-,1-,0,1} B .{1-,0,1} C .{1-,0} D .{1}-【详细解析】[1A =- ,2),B Z =, {1A B ∴=- ,0,1},故选:B .8.(2022•新高考Ⅰ)若集合{4}M x =<,{|31}N x x =…,则(M N = ) A .{|02}x x <…B .1{|2}3x x <…C .{|316}x x <…D .1{|16}3x x <…4<,得016x <…,{4}{|016}M x x x ∴=<=<…, 由31x …,得13x …,1{|31}{|}3N x x x x ∴==厖,11{|016}{|}{|16}33M N x x x xx x ∴=<=< 剠?. 故选:D .9.(2022•新高考Ⅱ)已知集合{1A =-,1,2,4},{||1|1}B x x =-…,则(A B = ) A .{1-,2}B .{1,2}C .{1,4}D .{1-,4}【详细解析】|1|1x -…,解得:02x 剟, ∴集合{|02}B x x =剟{1A B ∴= ,2}.故选:B .10.(2021•新高考Ⅰ)设集合{|24}A x x =-<<,{2B =,3,4,5},则(A B = ) A .{2,3,4}B .{3,4}C .{2,3}D .{2}【详细解析】 集合{|24}A x x =-<<,{2B =,3,4,5}, {2A B ∴= ,3}.故选:C .11.(2021•浙江)设集合{|1}A x x =…,{|12}B x x =-<<,则(A B = ) A .{|1}x x >-B .{|1}x x …C .{|11}x x -<<D .{|12}x x <…【详细解析】因为集合{|1}A x x =…,{|12}B x x =-<<,所以{|12}A B x x =< …. 故选:D .12.(2020•浙江)已知集合{|14}P x x =<<,{|23}Q x x =<<,则(P Q = ) A .{|12}x x <…B .{|23}x x <<C .{|34}x x <…D .{|14}x x <<【详细解析】集合{|14}P x x =<<,{|23}Q x x =<<, 则{|23}P Q x x =<< . 故选:B .13.(2021•上海)已知{|21}A x x =…,{1B =-,0,1},则A B = . 【详细解析】因为1{|21}{|}2A x x x x ==剟,{1B =-,0,1}, 所以{1A B =- ,0}. 故答案为:{1-,0}.14.(2020•上海)已知集合{1A =,2,4},集合{2B =,4,5},则A B = . 【详细解析】因为{1A =,2,4},{2B =,4,5}, 则{2A B = ,4}. 故答案为:{2,4}.15.(2019•上海)已知集合(,3)A =-∞,(2,)B =+∞,则A B = . 【详细解析】根据交集的概念可得(2,3)A B = . 故答案为:(2,3).考点五 交、并、补集的混合运算16.(2021•新高考Ⅱ)若全集{1U =,2,3,4,5,6},集合{1A =,3,6},{2B =,3,4},则(U A B = ð ) A .{3}B .{1,6}C .{5,6}D .{1,3}【详细解析】因为全集{1U =,2,3,4,5,6},集合{1A =,3,6},{2B =,3,4}, 所以{1U B =ð,5,6}, 故{1U A B = ð,6}. 故选:B .17.(2019•浙江)已知全集{1U =-,0,1,2,3},集合{0A =,1,2},{1B =-,0,1},则()(U A B = ð)A .{1}-B .{0,1}C .{1-,2,3}D .{1-,0,1,3}【详细解析】{1U A =- ð,3},()U A B ∴ ð{1=-,3}{1-⋂,0,1}{1}=- 故选:A .考点六 命题的真假判断与应用18.(2020•浙江)设集合S ,T ,*S N ⊆,*T N ⊆,S ,T 中至少有2个元素,且S ,T 满足: ①对于任意的x ,y S ∈,若x y ≠,则xy T ∈; ②对于任意的x ,y T ∈,若x y <,则yS x∈.下列命题正确的是( ) A .若S 有4个元素,则S T 有7个元素 B .若S 有4个元素,则S T 有6个元素 C .若S 有3个元素,则S T 有5个元素D .若S 有3个元素,则S T 有4个元素【详细解析】取:{1S =,2,4},则{2T =,4,8},{1S T = ,2,4,8},4个元素,排除C . {2S =,4,8},则{8T =,16,32},{2S T = ,4,8,16,32},5个元素,排除D ;{2S =,4,8,16}则{8T =,16,32,64,128},{2S T = ,4,8,16,32,64,128},7个元素,排除B ; 故选:A .考点七 充分条件与必要条件19.(2020•上海)命题p :存在a R ∈且0a ≠,对于任意的x R ∈,使得()()f x a f x f +<+(a ); 命题1:()q f x 单调递减且()0f x >恒成立;命题2:()q f x 单调递增,存在00x <使得0()0f x =, 则下列说法正确的是( ) A .只有1q 是p 的充分条件 B .只有2q 是p 的充分条件C .1q ,2q 都是p 的充分条件D .1q ,2q 都不是p 的充分条件【详细解析】对于命题1q :当()f x 单调递减且()0f x >恒成立时, 当0a >时,此时x a x +>, 又因为()f x 单调递减,所以()()f x a f x +< 又因为()0f x >恒成立时, 所以()()f x f x f <+(a ), 所以()()f x a f x f +<+(a ), 所以命题1q ⇒命题p ,对于命题2q :当()f x 单调递增,存在00x <使得0()0f x =, 当00a x =<时,此时x a x +<,f (a )0()0f x ==, 又因为()f x 单调递增, 所以()()f x a f x +<, 所以()()f x a f x f +<+(a ), 所以命题2p ⇒命题p , 所以1q ,2q 都是p 的充分条件, 故选:C .20.(2020•浙江)已知空间中不过同一点的三条直线l ,m ,n .则“l ,m ,n 共面”是“l ,m ,n 两两相交”的( ) A .充分不必要条件 B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【详细解析】空间中不过同一点的三条直线m ,n ,l ,若m ,n ,l 在同一平面,则m ,n ,l 相交或m ,n ,l 有两个平行,另一直线与之相交,或三条直线两两平行.而若“m ,n ,l 两两相交”,则“m ,n ,l 在同一平面”成立. 故m ,n ,l 在同一平面”是“m ,n ,l 两两相交”的必要不充分条件, 故选:B .21.(2019•浙江)若0a >,0b >,则“4a b +…”是“4ab …”的( ) A .充分不必要条件 B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【详细解析】0a > ,0b >,4a b ∴+厖,2∴4ab ∴…,即44a b ab +⇒剟,若4a =,14b =,则14ab =…, 但1444a b +=+>, 即4ab …推不出4a b +…,4a b ∴+…是4ab …的充分不必要条件故选:A .22.(2019•上海)已知a 、b R ∈,则“22a b >”是“||||a b >”的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分又非必要条件 【详细解析】22a b > 等价,22||||a b >,得“||||a b >”, ∴ “22a b >”是“||||a b >”的充要条件,故选:C .。
2019年高考数学真题分类汇编 1.1 集合的概念及运算 文

2019年高考数学真题分类汇编 1.1 集合的概念及运算文考点一集合的含义与表示1.(xx课标Ⅱ,1,5分)已知集合A={-2,0,2},B={x|x2-x-2=0},则A∩B=()A.⌀B.{2}C.{0}D.{-2}答案B2.(xx四川,1,5分)已知集合A={x|(x+1)(x-2)≤0},集合B为整数集,则A∩B=()A.{-1,0}B.{0,1}C.{-2,-1,0,1}D.{-1,0,1,2}答案D考点三集合间的基本运算3.(xx课标Ⅰ,1,5分)已知集合M={x|-1<x<3},N={x|-2<x<1},则M∩N=()A.(-2,1)B.(-1,1)C.(1,3)D.(-2,3)答案B4.(xx山东,2,5分)设集合A={x|x2-2x<0},B={x|1≤x≤4},则A∩B=()A.(0,2]B.(1,2)C.[1,2)D.(1,4)答案C5.(xx北京,1,5分)若集合A={0,1,2,4},B={1,2,3},则A∩B=()A.{0,1,2,3,4}B.{0,4}C.{1,2}D.{3}答案C6.(xx福建,1,5分)若集合P={x|2≤x<4},Q={x|x≥3},则P∩Q等于()A.{x|3≤x<4}B.{x|3<x<4}C.{x|2≤x<3}D.{x|2≤x≤3}答案A7.(xx湖南,2,5分)已知集合A={x|x>2},B={x|1<x<3},则A∩B=()A.{x|x>2}B.{x|x>1}C.{x|2<x<3}D.{x|1<x<3}答案C8.(xx辽宁,1,5分)已知全集U=R,A={x|x≤0},B={x|x≥1},则集合∁U(A∪B)=()A.{x|x≥0}B.{x|x≤1}C.{x|0≤x≤1}D.{x|0<x<1}答案D9.(xx浙江,1,5分)设集合S={x|x≥2},T={x|x≤5},则S∩T=()A.(-∞,5]B.[2,+∞)C.(2,5)D.[2,5]答案D10.(xx大纲全国,1,5分)设集合M={1,2,4,6,8},N={1,2,3,5,6,7},则M∩N中元素的个数为()A.2B.3C.5D.7答案B11.(xx广东,1,5分)已知集合M={2,3,4},N={0,2,3,5},则M∩N=()A.{0,2}B.{2,3}C.{3,4}D.{3,5}答案B12.(xx陕西,1,5分)设集合M={x|x≥0,x∈R},N={x|x2<1,x∈R},则M∩N=()A.[0,1]B.(0,1)C.(0,1]D.[0,1)答案D13.(xx江西,2,5分)设全集为R,集合A={x|x2-9<0},B={x|-1<x≤5},则A∩(∁R B)=()A.(-3,0)B.(-3,-1)C.(-3,-1]D.(-3,3)答案C14.(xx湖北,1,5分)已知全集U={1,2,3,4,5,6,7},集合A={1,3,5,6},则∁U A=()A.{1,3,5,6}B.{2,3,7}C.{2,4,7}D.{2,5,7}答案C15.(xx重庆,11,5分)已知集合A={3,4,5,12,13},B={2,3,5,8,13},则A∩B=.答案{3,5,13}.。
江苏省2019-2020期末复习专题——集合

江苏省灌南高级中学2019-2020学年第一学期期末集合专题复习一、 课前测试 1.已知集合,,则______.2.已知数集M ={0,1,x +2},那么x 不能取3.集合A={x|0≤x <3,x ∈Z}的非空真子集的个数为______. 4.已知集合,则______.5.已知集合{}{}21,,9,,1A mB m ==,若AB B =,则实数m =_______二、 典型例题分析例题1、已知集合A ={a +2,2a 2+a },若3∈A ,求a 的值.例题2、若a ,b ∈R ,集合{1,a +b ,a }={0,b a,b },求b -a 的值.例题3、若集合A={{}{}|-25,=|1210,A x x B x m x m =≤≤+≤≤-=B A m ⊆若,求实数的取值范围例题4、已知集合,,全集.(1) 当时, 求B A ,B A ,()()B C A C U U ;(2) 若,求实数a 的取值范围.(3) 若没有元素x x x A x B ∈∈若没有元素使与同时成立,求实数a 的取值范围三、巩固练习、 一.选择题1.已知集合M ={1,2,3},N ={2,3,4},则正确的是 A .N ⊆M B .M ⊆N C .M ∪N ={1,4}D .M ∩N ={2,3}2.下列关系中,正确的是 A .B .C .D .3.已知集合A ={2,0,1,9},则集合A 的非空真子集的个数为__________. A .16 B .15 C .14D .134.设集合A ={(x ,y )|x +y =2},B ={(x ,y )|y =x 2},则A ∩B = A .{(1,1)}B .{(–2,4)}C .{(1,1),(–2,4)}D .∅5.已知集合P ={x |–4<x <2},Q ={x |x 2–x –6<0},则P ∪Q = A .{x |–4<x <3} B .{x |–4<x <–2} C .{x |–2<x <2}D .{x |2<x <3}6.已知集合M ={x ∈N |–5<x <4},N ={–2,0,2,4,6},则M ∩N = A .{0,2} B .{–2,0,2} C .{2}D .{0,2,4}7.若集合A ={x |–6≤x ≤2},B ={x |–2<x <3},则A ∩(∁R B )= A .{x |–6<x ≤3} B .{x |–6≤x <2} C .{x |–6≤x ≤–2}D .{x |x <–6或x ≥3}8.若{}2|2,A x ax ax R a =++=则的取值范围为A .{0}B .(0,8)C .(-,0)+U ∞∞(8,)D .(-,0][+U ∞∞8,)二.填空题9.已知全集U ={1,2,3,4,5},A ={1,3},则∁U A =__________.10.已知集合A ={x |x 2-2x +a >0},且1∉A ,则实数a 的取值范围是________. 11.已知集合{}{}21,,9,,1A m B m ==,若AB B =,则实数m =______________12.下列各组集合中,满足P =Q 的有________.(填序号)①P ={(1,2)},Q ={(2,1)}; ②P ={1,2,3},Q ={3,1,2};③P ={(x ,y )|y =x -1,x ∈R },Q ={y |y =x -1,x ∈R }.三.解答题13.已知集合,.(1)若,求;(2)若,求实数的取值范围.14. 已知集合.(1)若是空集,求的取值范围;(2)若中只有一个元素,求的值,并把这个元素写出来.15. 已知全集U=R,集合A={x|–2<x<1},B={x|2≤4x≤8},C={x|a–1<x≤3a–2}.(1)(∁U A)∩B;(2)若A∩C=C,求实数a的取值范围.。
(完整)2019年高考数学真题分类汇编01:集合,推荐文档

2019年高考数学真题分类汇编专题01:集合一、单选题1.(2019•浙江)已知全集U={-1,0,1,2,3},集合A={0,1,2},B={-1,0,1},则=()A. {-1}B. {0,1}C. {-1,2,3}D. {-1,0,1,3}【答案】 A2.(2019•天津)设集合,则()A.{2}B.{2,3}C.{-1,2,3}D.{1,2,3,4}【答案】 D3.(2019•全国Ⅲ)已知集合A={-1,0,1,2},B={x|x2≤1},则A∩B=()A.{-1,0,1}B.{0,1}C.{-1,1}D.{0,1,2}【答案】 A4.(2019•卷Ⅱ)已知集合A={x|x>-1},B={x|x<2},则A∩B=()A.(-1,+∞)B.( -∞,2)C.( -1,2)D.【答案】 C5.(2019•卷Ⅱ)设集合A={x|x2-5x+6>0},B={ x|x-1<0},则A∩B=()A.(-∞,1)B.(-2,1)C.(-3,-1)D.(3,+∞)【答案】 A6.(2019•北京)已知集合A={x|-1<x<2},B={x|x>1},则AUB=()A.(-1,1)B.(1,2)C.(-1,+∞)D.(1,+∞)【答案】 C7.(2019•卷Ⅰ)已知集合U= ,A= ,B=则=()A. B.C. D.【答案】C8.(2019•卷Ⅰ)已知集合M= ,N= ,则M N=()A. B.C. D.【答案】 C9.(2019•全国Ⅲ)《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并成为中国古典小说四大名著。
某中学为了了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为()A.0.5B.0.6C.0.7D.0.8【答案】C二、填空题10.(2019•江苏)已知集合,,则________.【答案】。
2019-2020学年度最新人教版高考数学复习题---集合、常用逻辑用语Word版

2019-2020学年度最新人教版高考数学复习题---集合、常用逻辑用语Word 版(附参考答案)(建议用时40分钟)一、选择题(在每小题给出的四个选项中,只有一项是符合要求的)1.已知全集U ={1,2,3,4,5,6,7},集合A ={1,3,5,6},则∁U A =( )A .{1,3,5,6}B .{2,3,7}C .{2,4,7}D .{2,5,7}解析:选C.由补集的定义,得∁U A ={2,4,7}.故选C.2.已知集合A ={y |y =|x |-1,x ∈R },B ={x |x ≥2},则下列结论正确的是( )A .-3∈AB .3∉BC .A ∩B =BD .A ∪B =B解析:选C.由题知A ={y |y ≥-1},因此A ∩B ={x |x ≥2}=B ,故选C.3.设集合M ={x |x 2=x },N ={x |lg x ≤0},则M ∪N =( )A .[0,1]B .(0,1]C .[0,1)D .(-∞,1]解析:选A.M ={x |x 2=x }={0,1},N ={x |lg x ≤0}={x |0<x ≤1},M ∪N =[0,1],故选A.4.(2016·山东聊城模拟)集合A ={0,2,a },B ={1,a 2},若A ∪B ={0,1,2,4,16},则a 的值为( )A .0B .1C .2D .4解析:选D.因为A ={0,2,a },B ={1,a 2},A ∪B ={0,1,2,4,16},所以⎩⎨⎧a 2=16,a =4,则a =4. 5.(2016·湖北八校模拟)已知a ∈R ,则“a >2”是“a 2>2a ”成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D.既不充分也不必要条件解析:选A.因为a>2,则a2>2a成立,反之不成立,所以“a>2”是“a2>2a”成立的充分不必要条件.6.已知集合A={z∈C|z=1-2a i,a∈R},B={z∈C||z|=2},则A∩B等于() A.{1+3i,1-3i} B.{3-i}C.{1+23i,1-23i} D.{1-3i}解析:选A.问题等价于|1-2a i|=2,a∈R,解得a=±32.故选A.7.已知命题p:对任意x>0,总有e x≥1,则綈p为()A.存在x0≤0,使得e x0<1B.存在x0>0,使得e x0<1C.对任意x>0,总有e x<1D.对任意x≤0,总有e x<1解析:选B.因为全称命题的否定是特称命题,所以,命题p:对任意x>0,总有e x≥1的否定綈p为:存在x0>0,使得e x0<1.故选B.8.已知命题p:∃x0∈R,tan x0=1,命题q:∀x∈R,x2>0.下面结论正确的是()A.命题“p∧q”是真命题B.命题“p∧(綈q)”是假命题C.命题“(綈p)∨q”是真命题D.命题“(綈p)∧(綈q)”是假命题解析:选D.取x0=π4,有tanπ4=1,故命题p是真命题;当x=0时,x2=0,故命题q是假命题.再根据复合命题的真值表,知选项D是正确的.9.给出下列命题:①∀x∈R,不等式x2+2x>4x-3均成立;②若log2x+log x2≥2,则x>1;③“若a>b>0且c<0,则ca>cb”的逆否命题;④若p且q为假命题,则p,q均为假命题.其中真命题是()A.①②③B.①②④C.①③④D.②③④解析:选A.①中不等式可表示为(x-1)2+2>0,恒成立;②中不等式可变为log2x+1log2x≥2,得x>1;③中由a>b>0,得1a<1b,而c<0,所以原命题是真命题,则它的逆否命题也为真;④由p且q为假只能得出p,q中至少有一个为假,④不正确.10.(2016·山东济南模拟)设A,B是两个非空集合,定义运算A×B={x|x∈A∪B,且x∉A∩B}.已知A={x|y=2x-x2},B={y|y=2x,x>0},则A×B=() A.[0,1]∪(2,+∞) B.[0,1)∪[2,+∞)C.[0,1] D.[0,2]解析:选A.由题意得A={x|2x-x2≥0}={x|0≤x≤2},B={y|y>1},所以A∪B =[0,+∞),A∩B=(1,2],所以A×B=[0,1]或(2,+∞).11.“直线y=x+b与圆x2+y2=1相交”是“0<b<1”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选B.若“直线y=x+b与圆x2+y2=1相交”,则圆心到直线的距离为d=|b|2<1,即|b|<2,不能得到0<b<1;反过来,若0<b<1,则圆心到直线的距离为d=|b|2<12<1,所以直线y=x+b与圆x2+y2=1相交,故选B.12.(2016·陕西五校二模)下列命题正确的个数是()①命题“∃x0∈R,x20+1>3x0”的否定是“∀x∈R,x2+1≤3x”;②“函数f(x)=cos2ax-sin2ax的最小正周期为π”是“a=1”的必要不充分条件;③x 2+2x ≥ax 在x ∈[1,2]上恒成立⇔(x 2+2x )min ≥(ax )max 在x ∈[1,2]上恒成立; ④“平面向量a 与b 的夹角是钝角”的充要条件是“a·b <0”.A .1B .2C .3D .4解析:选B.易知①正确;因为f (x )=cos 2ax ,所以2π|2a |=π,即a =±1,因此②正确;因为x 2+2x ≥ax 在x ∈[1,2]上恒成立⇒a ≤x +2在x ∈[1,2]上恒成立⇒a ≤(x +2)min ,x ∈[1,2],因此③不正确;因为钝角不包含180°,而由a·b <0得向量夹角包含180°,因此“平面向量a 与b 的夹角是钝角”的充要条件是“a·b <0且a 与b 不反向”,故④不正确.二、填空题(把答案填在题中横线上)13.若关于x 的不等式|x -m |<2成立的充分不必要条件是2≤x ≤3,则实数m 的取值范围是________.解析:由|x -m |<2得-2<x -m <2,即m -2<x <m +2.依题意有集合{x |2≤x ≤3}是{x |m -2<x <m +2}的真子集,于是有⎩⎨⎧m -2<2m +2>3,由此解得1<m <4,即实数m 的取值范围是(1,4).答案:(1,4)14.若命题“∃x 0∈R ,x 20-2x 0+m ≤0”是假命题,则m 的取值范围是________. 解析:由题意,命题“∀x ∈R ,x 2-2x +m >0”是真命题,故Δ=(-2)2-4m <0,即m >1.答案:(1,+∞)15.已知p :∃x 0∈R ,mx 20+2≤0,q :∀x ∈R ,x 2-2mx +1>0,若p ∨q 为假命题,则实数m 的取值范围是________.解析:因为p ∨q 是假命题,所以p 和q 都是假命题.由p :∃x 0∈R ,mx 20+2≤0为假命题知,綈p :∀x ∈R ,mx 2+2>0为真命题,所以m ≥0.①由q :∀x ∈R ,x 2-2mx +1>0为假命题知,綈q :∃x 0∈R ,x 20-2mx 0+1≤0为真命题,所以Δ=(-2m )2-4≥0⇒m 2≥1⇒m ≤-1或m ≥1.②由①和②得m ≥1.答案:[1,+∞)16.下列四个命题中,真命题有________.(写出所有真命题的序号)①若a ,b ,c ∈R ,则“ac 2>bc 2”是“a >b ”成立的充分不必要条件;②命题“∃x 0∈R ,x 20+x 0+1<0”的否定是“∀x ∈R ,x 2+x +1≥0”;③命题“若|x |≥2,则x ≥2或x ≤-2”的否命题是“若|x |<2,则-2<x <2”;④函数f (x )=ln x +x -32在区间(1,2)上有且仅有一个零点. 解析:①若c =0,则不论a ,b 的大小关系如何,都有ac 2=bc 2,而若ac 2>bc 2,则有a >b ,故“ac 2>bc 2”是“a >b ”成立的充分不必要条件,故①为真命题;②特称命题的否定是全称命题,故命题“∃x 0∈R ,x 20+x 0+1<0”的否定是“∀x ∈R ,x 2+x +1≥0”,故②为真命题;③命题“若p ,则q ”形式的命题的否命题是“若綈p ,则綈q ”,故命题“若|x |≥2,则x ≥2或x ≤-2”的否命题是“若|x |<2,则-2<x <2”,故③为真命题;④由于f (1)f (2)=⎝ ⎛⎭⎪⎫ln 1+1-32⎝ ⎛⎭⎪⎫ln 2+2-32=⎝ ⎛⎭⎪⎫-12×⎝ ⎛⎭⎪⎫ln 2+12<0,则函数f (x )=ln x +x -32在区间(1,2)上存在零点,又函数f (x )=ln x +x -32在区间(1,2)上为增函数,所以函数f (x )=ln x +x -32在区间(1,2)上有且仅有一个零点,故④为真命题.答案:①②③④。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.设集合,,,则()。
A. B. C. D.2.已知集合,,则_____。
3.设非空集合、满足,则()。
A.任意,都有B.存在,使得C.存在,使得D.任意,都有4.已知集合,。
(1)求,;(2)已知,若,求实数的取值的集合。
5.已知集合,,,全集为。
(1)求。
(2)若,求的取值范围。
6.已知集合,集合,若,则的取值范围是()。
A. B. C. D.7.已知全集,集合,,则()。
A. B. C. D.8.设集合,,分别求满足下列条件的实数的取值范围:(1);(2)。
9.已知集合全集,,,则10.已知集合,,当时,实数的取值范围是,则_____。
11.已知全集,,,则()。
A. B. C. D.12.若集合,,则()。
A. B. C. D.13.若集合,,,则实数的取值范围为14.设全集,集合,,则_____。
15.已知全集,集合,,则()。
A. B. C. D.16.已知集合,,,,则()。
A. B., C., D.,,17.设、是非空集合,定义,已知,,则_____。
18.设全集为实数集,集合,,则()。
A. B. C. D.19.已知集合,。
(1)求集合,。
(2)已知集合,若集合,求实数的取值范围。
20.已知全集,集合,集合,则集合()。
A. B. C. D.21.设全集为,,。
(1)求及;(2),且,求的取值范围。
22.集合,,若,则的值为()。
A. B. C. D.23.设全集,,,(1)求。
(2)若,求实数的取值范围。
24.已知集合,,则()。
A.或B.C. D.或25.定义一个集合的所有子集组成的集合叫做集合的幂集,记为,用表示有限集的元素个数,给出下列命题:对于任意集合,都有;存在集合,使得;用表示空集,若,则;若,则;若,则,其中正确的命题个数为()。
A. B. C. D.26.已知集合,,则集合中元素的个数为()。
A. B. C. D.27.设全集是三角形,是锐角三角形,是钝角三角形,则()。
A.是锐角三角形B.是直角三角形C.是斜三角形D.是钝角三角形28.已知集合,,。
(1)求;(2)若,求的取值范围。
29.设集合,若,则集合可以是()。
A. B. C. D.30.集合,集合,则()。
A. B. C. D.31.集合,,则()。
32.已知集合,,若,则的值是。
33.已知全集,,,则()。
A. B. C. D.34.已知集合,。
(1)若,求;(2)若,求实数的取值范围。
35.如图,若集合,,则图中阴影部分表示的集合为_____。
36.设集合,,,(1)求;(2)若,求实数的取值范围。
37.已知全集为,集合,,则()。
A. B. C. D.38.设集合,,则满足的集合的个数是()。
A. B. C. D.39.下列六个关系式:①;②;③;④;⑤;⑥,其中正确的个数为()。
A.个B.个C.个D.少于个40.设集合,,,则()。
41.已知集合,,定义集合,则中所有元素之积为()。
A. B. C. D.42.集合,其中,且,的所有真子集的个数为()。
A.3个B.7个C.15个D.31个43.已知全集,集合,,则为()。
A. B. C. D.44.已知集合,,则下列结论正确的是()。
A. B. C. D.45.已知集合,,若,则_____。
46.下列说法正确的有()。
①大庆实验中学所有优秀的学生可以构成集合;②;③集合与集合表示同一集合;④空集是任何集合的真子集。
A.个B.个C.个D.个47.已知集合,,。
(1)若,求的值;(2)若,求的取值范围。
48.已知集合,,那么()。
B.A.C. D.49.已知集合,,则()。
A. B. C. D.50.设集合,,则()。
A. B. C. D.51.已知集合,,,。
(1)求;(2)若,求实数的取值范围。
52.已知集合,,则()。
A. B. C. D.53.方程组的解组成的集合为_____。
54.已知集合,,那么等于()。
A. B. C. D.55.某校高三()班共有人,现采用问卷调查统计有手机与平板电脑的人数。
从统计资料显示,此班有人有手机,有人有平板电脑。
设为同时拥有手机与平板电脑的人数;为有手机但没有平板电脑的人数;为没有手机但有平板电脑的人数;为没有手机也没有平板电脑的人数。
给出下列个不等式:①,②,③,④,⑤。
其中恒成立的不等式为()。
A.①②③B.②③④C.③④⑤D.①③⑤56.设集合,,若,则_____。
57.设全集为,集合,,(1)求:,;(2)若集合,满足,求实数的取值范围。
58.若,,,,则,的关系是()。
A. B. C. D.59.已知集合,。
(1)当时,求。
(2)若,求实数的取值范围。
60.设集合,,,,则()。
A. B. C. D.61.若集合,,则下面选项正确的是()。
A. B. C. D.62.若,则的值为()。
A. B. C. D.63.设集合,,若,求。
64.已知集合,集合,则()。
A. B. C. D.65.已知集合,,则集合的真子集个数为()。
A. B. C. D.66.已知全集为,集合,,则()。
A. B. C.或 D.或67.已知集合,满足运算且,若集合,,则()。
A. B. C. D.68.已知集合,,若,则实数的取值范围是_____。
69.设集合,,则()。
A. B. C. D.70.设集合,,则()。
A. B. C. D.71.设集合,,则满足且的集合的个数是()。
A. B. C. D.72.下列命题中正确的是()。
A.数不能构成集合B.数构成的集合是C.数构成的集合的元素是D.数构成的集合是73.已知集合,,,全集为实数集。
(1)求,。
(2)若,求的取值范围。
74.已知集合或,,。
(1)求。
(2)若,求实数的取值范围。
75.设集合,,则的所有子集个数为()。
A. B. C. D.76.设集合,选择的两个非空子集和,要使中的最小的数大于中的最大的数,则不同的选择方法共有()。
A.种B.种C.种D.种77.若集合只有一个元素,则实数的值为()。
A. B. C. D.或78.集合,,,,下列关系中正确的是()。
A. B. C. D.且79.已知集合,,,则()。
A.或B.或C.或D.或80.已知集合,,(1)若,,求,的值;(2)若,求实数,的值。
81.方程的解集为,方程的解集为,已知,则_____。
82.已知集合,则中元素的个数为()。
A. B. C. D.83.下列关系中正确的个数为()。
①,②,③,④A.1B.2C.3D.484.若集合具有以下性质:①,;②若,则,且时,,则称集合是“集”,则下列结论不正确的是()。
A.整数集是“集”B.有理数集是“集”C.对任意的一个“集”,若,,则必有D.对任意的一个“集”,若,,且,则必有85.已知不等式的解集为,函数()的值域为。
(1)求。
(2)若,且,求实数的取值范围。
86.设全集是实数集,、都是的子集,则图中阴影部分所表示的集合是()。
A.B.C.D.87.对于任意两个自然数,,定义某种运算如下:当,都为奇数或偶数时,;当,中一个为偶数,另一个为奇数时,。
则在此定义下,集合中的元素个数为()。
A. B. C. D.88.定义集合运算:,,,则。
89.已知集合,或,则为()。
A. B. C. D.90.设集合中含有三个元素,,。
(1)求实数应满足的条件。
(2)若,求实数。
91.已知,集合,。
(1)若,求集合(用区间表示)。
(2)若,求实数的取值范围。
92.已知集合,,若,则的取值集合是()。
A.,B.,C.,,D.,,93.下列五个问题:①;②;③;④;⑤。
其中错误的个数为()。
A. B. C. D.94.(本小题满分13分)已知集合,,集合,。
(1)若,求,;(2)若且,求的取值范围。
95.已知集合中的三个元素可构成的三边长,那么三角形一定不是()。
A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形96.设,,。
(1)若,且,求实数值;(2),求的值。
97.已知集合,集合,()。
A. B. C. D.98.对于非空实数集,定义对任意。
设非空实数集。
现给出以下命题:(1)对于任意给定符合题设条件的集合,,必有;(2)对于任意给定符合题设条件的集合,,必有;(3)对于任意给定符合题设条件的集合,,必有;(4)对于任意给定符合题设条件的集合,,必存在常数,使得对任意的,恒有。
以上命题正确的是。
99.已知集合,且,则集合与集合的关系是()。
A. B. C. D.以上答案都不对100.记关于的不等式的解集为,不等式的解集为。
(1)若,求实数的取值范围;(2)若,,求和。