完整word版,河北省2017年对口升学高考数学试题

合集下载

河北省对口升学高考数学试题

河北省对口升学高考数学试题

2016年河北省普通高等学校对口招生考试数学试题一、选择题1、设集合{}{}2=1,2,3,4,5=650,M N x x x MN -+<=,则A 、{1;2;3};B 、{2;3;4};C 、{3;4;5};D 、{2;4;5}.. 2、设a<b;那么下列各不等式恒成立的是A 、22a b <; B 、ac bc <; C 、2log ()0b a ->;D 、22a b <.. 3、“a=b ”是“lg lg a b =”的A 、充分不必要条件;B 、必要不充分条件;C 、充分必要条件;D 、既不充分也不必要条件.. 4、下列函数是奇函数且在02π⎛⎫⎪⎝⎭,内单调递增的是 A 、cos()y x π=+;B 、sin()y x π=-;C 、sin()2y x π=-;D 、sin 2y x =..5、将函数3sin 6y x π⎛⎫=+ ⎪⎝⎭的图像向右平移14个周期后;所得到的图像对应的函数的解析式是 A 、3sin 4y x π⎛⎫=+⎪⎝⎭;B 、3sin 4y x π⎛⎫=- ⎪⎝⎭;C 、3sin 3y x π⎛⎫=+ ⎪⎝⎭;D 、3sin 3y x π⎛⎫=- ⎪⎝⎭6、设向量(1,),(1,2)//,23a x b a b a b =-=-=且则 A 、5;10; B 、-5;-10; C 、10;5; D 、-10;-5..7、下列函数中;周期为π的奇函数是A 、cos sin y x x =;B 、22cos sin y x x =-;C 、1cos y x =-;D 、sin 2cos 2y x x =-.. 8、在等差数列{}n a 中;已知384,11,a a ==则10S =A 、70;B 、75;C 、80;D 、85..9、等比数列{}n a 中;若27364a a a a +=;则次数列的前8项之积为 A 、4; B 、8; C 、16; D 、32.. 10、下列四组函数中表示同一个函数的是A 、y x y ==与 B 、22ln ln y x y x ==与;C 、3sin cos 2y x y x π⎛⎫==+⎪⎝⎭与; D 、cos(2)sin()y x y x ππ=-=-与.. 11、等轴双曲线的离心率为A 、12; B 、12; C ; D 、1.. 12、某地生态园有4个出入口;若某游客从任意一个出入口进入;并且从另外3个出入口之一走出;进出方案的种数为A 、4;B 、7、C 、10;D 、12..13、已知15的第k 项为常数项;则k 的值为A 、6;B 、7;C 、8;D 、9.. 14、点M3;4关于x 轴对称的点的坐标为A 、-3;4;B 、3;-4;C 、3;4;D 、-3;-4..15、已知点p 是△ABC 所在平面外一点;若PA=PB=PC;则点P 在平面ABC 内的射影O 是△ABC 的A 、重心;B 、内心;C 、外心;D 、垂心.. 二、填空题:16、已知函数23,(,0],()2,(0,),x x x f x x +∈-∞⎧=⎨-∈+∞⎩;则[(1)]f f = ..17、函数21()lg()2f x x x x =-+-的定义域是 ..18、计算:132015220161log 16cos 27C π-⎛⎫++-+= ⎪⎝⎭.. 19、若13log 1x >;则x 的取值范围是 ..20、设()sin 1,()2,()1212f x a x f f ππ=+=-=若则 ..21、等差数列{}n a 中;已知公差为3;且13512a a a ++=;则6S = .. 22、设向量(,1),(1,2),a x x b a b =+=⊥且;则x= ..23、已知3sin log 0,22πααπα⎛⎫-=<<=⎪⎝⎭且则 .. 24、过直线380250x y x y ++=++=与的交点;且与直线10x y -+=垂直的直线的方程为 ..25、若1311ln ,,a b e c e e===;则a;b;c 由小到大的顺序是 ..26、点M3;λ关于点N μ;4的对称点为(5,7)M ';则λ= ;μ= ..27、直线l //平面α;直线b ⊥平面α;则直线l 与直线b 所成的角是 .. 28、在△ABC 中;90,3,4,C AC BC AB BC ∠=︒==•=则 .. 29、已知正方形ABCD 所在的平面与正方形ABEF 所在的平面成直二面角;则FBD ∠= ..30、从1、2、3、4、5中任选3个数字组成一个无重复数字的三位数;则这个三位数是偶数的概率是 .. 三、解答题:31、5分已知集合{}{}22610,350A x x mx B x x x n =+-==++=;且{}1A B =-;求AB ..32、7分如图;用一块宽为60cm60°60°的长方形铝板;两边折起做成一个横截面为等腰梯形的水槽上口敞开;已知梯形的腰与底的夹角为60︒;求每边折起的长度为多少时;才能使水槽的横截面面积最大 最大面积是多少33、7分在等差数列{}n a 中;已知320,n S a =与2的等差中项等于4a 与3的等比中项.. 1求数列{}n a 的通项公式;2求数列{}n a 的第8项到第18项的和..34、7分已知向量(1,cos ),(sin ,2)a b θθ=-=;且a b ⊥;求23cos ()4sin 2πθθ-+的值..35、6分设抛物线的对称轴为坐标轴;顶点为坐标原点;焦点在圆2220x y x ++=的圆心;过焦点作倾斜角为34π的直线与抛物线交于A 、B 两点.. 1求直线与抛物线的方程;2求AB 的长..36、7分如图;已知PA 垂直于矩形ABCD 所在平面;E 、F 分别为AB 、PC 的中点.. 1求证://EF PAD 平面;2若平面PDC 与平面ABCD 所成的角为60°;且PA=4cm;求EF 的长.. 37、6分某实验室有5名男研究员;3名女研究员;现从中任选3人参加学术会议..求所选3人中女研究员人数ξ的概率分布..FE PDCBA。

2017年河北省普通高等学校对口招生考试数学试卷

2017年河北省普通高等学校对口招生考试数学试卷

2017年河北省普通高等学校对口招生考试数 学说明:一、本试卷共6页,包括三道大题37道小题,共120分。

其中第一道大题(15个小题)为选择题二、答题前请仔细阅读答题卡上的“注意事项”,按照“注意事项”的规定答题。

在答题卡上与题号相对应的答题区域内答题,写在试卷、草稿纸上或答题卡非题号对应的答题区域的答案一律无效。

不得用规定以外的笔和纸答题,不得在答题卡上做任何标记。

三、做选择题时,如需改动,请用橡皮将原选涂答案擦干净,再选涂其他答案。

四、考试结束后,将本试卷与答题卡一并交回。

一、选择题(本大题共15小题,每小题3分,共45分。

在每小题所给出的四个选项中,只有一个符合题目要求)1.设集合{|||2}A x x =<,集合{2,0,1}B =-,则A B =( )A .{|02}x x ≤<B .{|22}x x -<<C .{|22}x x -≤<D .{|21}x x -≤<2.设a b >,c d <,则( )A .22ac bc >B .a c b d +<+C .ln()ln()a c b d -<-D .a d b c +<+3.“A B B =”是“A B ⊆”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.设奇函数()f x 在[1,4]上为增函数,且最大值为6,那么()f x 在[4,1]--上为( )A .增函数,且最小值为6-B .增函数,且最大值为6C .减函数,且最小值为6-D .减函数,且最大值为65.在△ABC 中,若cos cos a B b A =,则△ABC 的形状为( )A .等边三角形B .等腰三角形C .直角三角形D .等腰直角三角形6.已知向量(2,)a x =-,(,1)b y =-,(4,2)c =-,,且a b ⊥,b ∥c ,则( )A .4,2x y ==-B .4,2x y ==7.设α为第三象限角,则点(cos ,tan )P αα在( )A .第一象限B .第二象限C .第三象限D .第四象限8.设{}n a 为等差数列,3a ,14a 是方程2230x x --=的两个根,则前16项的和16S 为( )A .8B .12C .16D .20 9.若函数2log a y x =在(0,)+∞内为增函数,且函数4xa y ⎛⎫= ⎪⎝⎭为减函数,则a 的取值范围是( ) A .(0,2) B .(2,4)C .(0,4)D .(4,)+∞10.设函数()f x 是一次函数,3(1)2(2)2f f -=,2(1)(0)2f f -+=-,则()f x 等于( )A .86x -+B .86x -C . 86x +D .86x --11.直线21y x =+与圆22240x y x y +-+=的位置关系是( )A .相切B .相交且过圆心C .相离D .相交且不过圆心12.设方程224kx y +=表示焦点在x 轴上的椭圆,则k 的取值范围是( )A .(,1)-∞B .(0,1)C .(0,4)D .(4,)+∞13.二项式2017(34)x -的展开式中,各项系数的和为( )A .1-B .1C .20172D .2017714.从4种花卉中任选3种,分别种在不同形状的3个花盆中,不同的种植方法有( )A .81种B .64种C .24种D .4种15.设直线1l ∥平面α,直线2l ⊥平面α,则下列说法正确的是( )A .1l ∥2lB .12l l ⊥C .12l l ⊥且异面D .12l l ⊥且相交二、填空题(本大题有15个小题,每小题2分,共30分。

17年高考数学真题高考题(3套)

17年高考数学真题高考题(3套)

2017年普通高等学校招生全国统一考试全国Ⅰ(文数)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2017·全国Ⅰ卷,文1)已知集合A={x|x<2},B={x|3-2x>0},则( A )(A)A∩B=(x|x<错误!未找到引用源。

)(B)A∩B=(C)A∪B=(x|x<错误!未找到引用源。

)(D)A∪B=R解析:B={x|3-2x>0}=(x|x<错误!未找到引用源。

),A∩B=(x|x<错误!未找到引用源。

),故选A.2.(2017·全国Ⅰ卷,文2)为评估一种农作物的种植效果,选了n块地作试验田.这n块地的亩产量(单位:kg)分别为x1,x2,…,xn,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是( B )(A)x1,x2,…,xn的平均数(B)x1,x2,…,xn的标准差(C)x1,x2,…,xn的最大值(D)x1,x2,…,xn的中位数解析:标准差衡量样本的稳定程度,故选B.3.(2017·全国Ⅰ卷,文3)下列各式的运算结果为纯虚数的是( C )(A)i(1+i)2(B)i2(1-i)(C)(1+i)2(D)i(1+i)解析:(1+i)2=2i,故选C.4.(2017·全国Ⅰ卷,文4)如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( B )(A)错误!未找到引用源。

(B)错误!未找到引用源。

(C)错误!未找到引用源。

(D)错误!未找到引用源。

解析:不妨设正方形的边长为2,则正方形的面积为4,圆的半径为1,圆的面积为πr2=π.黑色部分的面积为圆面积的错误!未找到引用源。

,即为错误!未找到引用源。

,所以点取自黑色部分的概率是错误!未找到引用源。

普通高等学校对口招生考试数学试卷

普通高等学校对口招生考试数学试卷

湖南省2017年普通高等学校对口招生考试数学试题(附答案)本试题卷包括选择题、填空题和解答题三部分.时量120分钟.满分120分一、选择题(每小题4分,共40分.每小题只有一项是符合题目要求的)1.已知集合{},2,1=A ,{}4,32,=B ,则B A 等于 【答案】DA.{}2 B. {}4,32, C. {}4,3,1 D. {}4,3,2,12.已知32-=a,212=b ,2)21(=c ,则c b a ,,的大小关系为 【答案】BA .c b a <<B . b c a <<C .c a b <<D . a b c <<3.已知()παα,0,21cos ∈= ,则=αsin 【答案】A A .23 B . 23- C .21 D .21-4.已知两条直线1)2(2++=-=x a y ax y和互相垂直,则=a 【答案】DA .2B . 1C .0D .1-5.下列函数中,在区间()+∞,0上单调递增的是 【答案】C A.x ysin = B. x y 1=C. 2x y = D. x y 31log = 6.已知函数)(x f 的定义域为R ,则“)(x f 为偶函数” 是“)1()1(f f =-”的【答案】CA . 充分必要条件B . 必要不充分条件C . 充分不必要条件D . 既不充分也不必要条件 7.不等式0652<+-x x 的解集是 【答案】DA .{}2<x x B .{}3>x x C .{}32><x x x 或 D .{}32<<x x8.设m l 、 是两条不同的直线,α是平面,则下列命题正确的是 【答案】B A .若α⊂⊥m m l,,则α⊥l B .若l m l //,α⊥,则α⊥mC .若αα⊂m l ,//,则l m //D .若αα//,//m l ,则l m //9. 从1,2,3,4,5,6,7,8,9这9个数中取2个不同的数,使其和为偶数,则不同的取法共有A. 72种B. 36种C. 32种D. 16种 【答案】D10.在三棱锥ABC P - 中,PA ,PB ,PC 两两互相垂直,且PA=PB=PC=1 ,则该三棱锥的体积为 【答案】A A .61 B .31 C .21D .1 二、填空题(本大题共5小题,每小题4分,共20分)11、在一次中学生田径运动会上,参加男子跳高的10名运动员的成绩如下表所示:成绩/m 人数2242则这些运动员成绩的平均数是__________(m ). 【答案】 12.若直线06=+-y kx 经过圆4)2()122=-+-y x (的圆心,则=k ______. 【答案】4-13.函数()x x f cos 21-=的最小值为 . 【答案】1-14.若关于x 的不等式32<+b x 的解集为{}03<<-x x ,则=b .【答案】3 15.若双曲线)0,0(12222>>=-b a by a x 上存在四点A ,B ,C ,D ,使四边形ABCD 为正方形,则此双曲线的离心率的取值范围为 .【答案】()∞+,2三、解答题(本大题共7小题,其中第21,22题为选做题.满分60分.解答题应写出文字说明、证明过程或演算步骤)16. (本小题满分10分) 已知函数()1)1(),1,0(1)5(log 2=-≠>-+=f a a x x f a 且.(I )求a 的值,并写出()x f 的定义域;(II )当[]11,4-∈x 时,求()x f 的取值范围.解:(I )依题意,有:()11)51(log 21=-+-=-a f ,解得:4=a ,由505->>+x x 得∴4=a ,()x f 的定义域为),(∞+-5(II )由(1)得:()1)5(log 24-+=x x f ∵4>1,∴()1)5(log 24-+=x x f 为增函数,而314116log 2)11(,111log 2)4(44=-=-=-=-=-f f∴当[]11,4-∈x 时,()x f 的取值范围为[]3,1-.17. (本小题满分10分)某射击运动员射击3次,每次射击击中目标的概率为32,求: (I )3次射击都击中目标的概率; (II )击中次数ξ的分布列.解:(I )278323)3(==)(P(II )随机变量ξ的分布列为:18. (本小题满分10分)已知数列{}n a 为等差数列,若1231,1a a a a +==,求: (I )求数列{}n a 的通项公式;(II )设na nn a b )21(+=,求数列{}n b 的前n 项和n S . 解:(I )设数列{}n a 的首项为1a ,公差为d ,依题意,有:⎩⎨⎧==⇒⎩⎨⎧++=+=,1,12111111d a a d a d a a ∴n d n a a n =-+=)1(1∴数列{}n a 的通项公式为n a n =;(II )n an n a b )21(+==nn )(21+∴n nn n n n n ⎪⎭⎫ ⎝⎛-++=-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-++=21221211211212)1(S 2)(19. (本小题满分10分)ξ 0 1 2 3P271 92 94 278已知向量),1(m a =,向量)3,2(=b(I )若b a //,求m 的值; (II )若b a ⊥,求)3()3a b a-⋅(的值.解:(1)由b a //得:32=m ,23=∴m(2)由b a⊥得023=+m 32-=∴m∴ ),((3213)3-=a =),(23- )(),()(5,1233,2)3(-=--=-a b ∴135213)3()3-=⨯-+-⨯=-⋅)()((a b a20. (本小题满分10分)已知抛物线px y C 2:2=的焦点为().0,2F(I )求抛物线C 的方程;(II )过点M (1,2)的直线l 与C 相交于B A ,两点,且M 为AB 的中点,求直线l 的方程. 解:(I )∵抛物线px y C 2:2=的焦点为()0,2F ,∴22=p,解得4=p , 故抛物线C 的方程为:x y82=;(2)设)A 11y x ,(、)B 22y x ,( ,则依题意有422121=+=+y y x x ,易知若直线l 的斜率不存在,则直线方程为1=x ,此时4021≠=+y y ,不合题意,由⎪⎩⎪⎨⎧==22212188x y x y 得:)(8212221x x y y -=- 即2121218y y x x y y +=-- ∴2488212121==+=--==y y x x y y k k AB l∴ 直线l 的方程为02=-y x注意:第21题,22题为选做题,请考生选择其中一题作答. 21.(本小题满分10分)已知c b a ,,,分别为△ABC 内角A ,B ,C 的对边,已知ab c22=,(I )若 90=C ,且1=a ,求ABC ∆的面积; (II )若C A sin sin =,求C cos 的值解:(I )由 90=C,且1=a ,则222c b a =+,又ab c 22=∴0122=+-b b ,解得1=b ∴2121S ==∆ab ABC (II )由正弦定理caC A C c A a =⇒=sin sin sin sin , 又C A sin sin =, ∴c a =,又ab c22= ∴b c a 2==4122cos 2222==-+=ab b ab c b a C 由余弦定理得:22.某公司有40万元资金,计划投资甲、乙两个项目,按要求对项目甲的投资不小于对乙项目投资的31倍,且对每个项目的投资都不能低于5万元。

2017年普通高等学校招生全国统一考试数学(含答案)

2017年普通高等学校招生全国统一考试数学(含答案)

2017年普通高等学校招生全国统一考试(课标全国卷Ⅰ)文数本卷满分150分,考试时间120分钟.第Ⅰ卷(选择题,共60分)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的1.已知集合A={x|x<2},B={x|3-2x>0},则( )A.A∩B={x|x<32}B.A∩B=⌀C.A∪B={x|x<32}D.A∪B=R2.为评估一种农作物的种植效果,选了n块地作试验田.这n块地的亩产量(单位:kg)分别为x1,x2,…,x n,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是( )A.x1,x2,…,x n的平均数B.x1,x2,…,x n的标准差C.x1,x2,…,x n的最大值D.x1,x2,…,x n的中位数3.下列各式的运算结果为纯虚数的是( )A.i(1+i)2B.i2(1-i)C.(1+i)2D.i(1+i)4.如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( )A.14B.π8C.12D.π45.已知F是双曲线C:x2-y 23=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3),则△APF的面积为( )A.13B.12C.23D.326.如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是( )7.设x,y满足约束条件{x+3y≤3,x-y≥1,y≥0,则z=x+y的最大值为( )A.0B.1C.2D.38.函数y=sin2x1-cosx的部分图象大致为( )9.已知函数f(x)=ln x+ln(2-x),则( )A. f(x)在(0,2)单调递增B. f(x)在(0,2)单调递减C.y=f(x)的图象关于直线x=1对称D.y=f(x)的图象关于点(1,0)对称10.下面程序框图是为了求出满足3n-2n>1 000的最小偶数n,那么在和两个空白框中,可以分别填入( )A.A>1 000和n=n+1B.A>1 000和n=n+2C.A≤1 000和n=n+1D.A≤1 000和n=n+211.△ABC的内角A,B,C的对边分别为a,b,c.已知sin B+sin A(sin C-cos C)=0,a=2,c=√2,则C=( )A.π12B.π6C.π4D.π312.设A,B是椭圆C:x 23+y2m=1长轴的两个端点.若C上存在点M满足∠AMB=120°,则m的取值范围是( )A.(0,1]∪[9,+∞)B.(0,√3]∪[9,+∞)C.(0,1]∪[4,+∞)D.(0,√3]∪[4,+∞)第Ⅱ卷(非选择题,共90分)二、填空题:本题共4小题,每小题5分,共20分.13.已知向量a=(-1,2),b=(m,1).若向量a+b与a垂直,则m= .14.曲线y=x2+1x在点(1,2)处的切线方程为.15.已知α∈(0,π2),tan α=2,则cos(α-π4)= .16.已知三棱锥S-ABC的所有顶点都在球O的球面上,SC是球O的直径.若平面SCA⊥平面SCB,SA=AC,SB=BC,三棱锥S-ABC的体积为9,则球O的表面积为.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)记S n为等比数列{a n}的前n项和.已知S2=2,S3=-6.(1)求{a n}的通项公式;(2)求S n,并判断S n+1,S n,S n+2是否成等差数列.18.(12分)如图,在四棱锥P-ABCD中,AB∥CD,且∠BAP=∠CDP=90°.(1)证明:平面PAB⊥平面PAD;,求该四棱锥的侧面积.(2)若PA=PD=AB=DC,∠APD=90°,且四棱锥P-ABCD的体积为8319.(12分)为了监控某种零件的一条生产线的生产过程,检验员每隔30 min 从该生产线上随机抽取一个零件,并测量其尺寸(单位:cm).下面是检验员在一天内依次抽取的16个零件的尺寸:抽取次序 1 2 3 4 5 6 7 8零件尺寸 9.95 10.12 9.96 9.96 10.01 9.92 9.98 10.04抽取次序9 10 11 12 13 14 15 16零件尺寸10.26 9.91 10.13 10.02 9.22 10.04 10.05 9.95经计算得x =116∑i=116x i =9.97,s=√116∑i=116(x i -x )2=√116(∑i=116x i 2-16x 2)≈0.212,√∑i=116(i -8.5)2≈18.439,∑i=116(x i -x )(i-8.5)=-2.78,其中x i 为抽取的第i 个零件的尺寸,i=1,2, (16)(1)求(x i ,i)(i=1,2,…,16)的相关系数r,并回答是否可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小(若|r|<0.25,则可以认为零件的尺寸不随生产过程的进行而系统地变大或变小);(2)一天内抽检零件中,如果出现了尺寸在(x -3s,x +3s)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查. (i)从这一天抽检的结果看,是否需对当天的生产过程进行检查?(ii)在(x -3s,x +3s)之外的数据称为离群值,试剔除离群值,估计这条生产线当天生产的零件尺寸的均值与标准差.(精确到0.01) 附:样本(x i ,y i )(i=1,2,…,n)的相关系数r=∑i=1n(x i -x )(y i -y )√∑i=1n (x i -x )√∑i=1n(y i -y ).√0.008≈0.09.20.(12分)设A,B 为曲线C:y=x 24上两点,A 与B 的横坐标之和为4.(1)求直线AB 的斜率;(2)设M 为曲线C 上一点,C 在M 处的切线与直线AB 平行,且AM⊥BM,求直线AB 的方程.21.(12分)已知函数f(x)=e x(e x-a)-a2x.(1)讨论f(x)的单调性;(2)若f(x)≥0,求a的取值范围.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.[选修4—4:坐标系与参数方程](10分)在直角坐标系xOy 中,曲线C 的参数方程为{x =3cosθ,y =sinθ(θ为参数),直线l 的参数方程为{x =a +4t ,y =1-t(t 为参数). (1)若a=-1,求C 与l 的交点坐标;(2)若C 上的点到l 距离的最大值为√17,求a.23.[选修4—5:不等式选讲](10分)已知函数f(x)=-x 2+ax+4,g(x)=|x+1|+|x-1|. (1)当a=1时,求不等式f(x)≥g(x)的解集;(2)若不等式f(x)≥g(x)的解集包含[-1,1],求a 的取值范围.2017年普通高等学校招生全国统一考试(课标全国卷Ⅰ)一、选择题1.A 本题考查集合的运算.由3-2x>0得x<32,则B={x |x <32},所以A∩B={x |x <32},故选A.2.B 本题考查样本的数字特征.统计问题中,体现数据的稳定程度的指标为数据的方差或标准差.故选B.3.C 本题考查复数的运算和纯虚数的定义. A.i(1+i)2=i×2i=-2; B.i 2(1-i)=-(1-i)=-1+i; C.(1+i)2=2i;D.i(1+i)=-1+i,故选C. 4.B 本题考查几何概型.设正方形的边长为2,则正方形的内切圆的半径为1,其中黑色部分和白色部分关于正方形的中心对称,则黑色部分的面积为π2,所以在正方形内随机取一点,此点取自黑色部分的概率P=π22×2=π8,故选B.5.D 本题考查双曲线的几何性质. 易知F(2,0),不妨取P 点在x 轴上方,如图.∵PF⊥x 轴,∴P(2,3),|PF|=3,又A(1,3), ∴|AP|=1,AP⊥PF, ∴S △APF =12×3×1=32.故选D.6.A 本题考查线面平行的判定.B 选项中,AB ∥MQ,且AB ⊄平面MNQ,MQ ⊂平面MNQ,则AB ∥平面MNQ;C 选项中,AB ∥MQ,且AB ⊄平面MNQ,MQ ⊂平面MNQ,则AB ∥平面MNQ;D 选项中,AB ∥NQ,且AB ⊄平面MNQ,NQ ⊂平面MNQ,则AB ∥平面MNQ.故选A.7.D 本题考查简单的线性规划问题. 作出约束条件表示的可行域如图:平移直线x+y=0,可得目标函数z=x+y 在A(3,0)处取得最大值,z max =3,故选D.8.C 本题考查函数图象的识辨.易知y=sin2x1-cosx 为奇函数,图象关于原点对称,故排除B 选项;sin 2≈sin 120°=√32,cos 1≈cos 60°=12,则f(1)=sin21-cos1=√3,故排除A 选项; f(π)=sin2π1-cos π=0,故排除D 选项,故选C.9.C 本题考查函数的图象与性质.函数f(x)=ln x+ln(2-x)=ln[x(2-x)],其中0<x<2,则函数f(x)由f(t)=ln t,t(x)=x(2-x)复合而成,由复合函数的单调性可知,x ∈(0,1)时, f(x)单调递增,x ∈(1,2)时, f(x)单调递减,则A 、B 选项错误;t(x)的图象关于直线x=1对称,即t(x)=t(2-x),则f(x)=f(2-x),即f(x)的图象关于直线x=1对称,故C 选项正确,D 选项错误.故选C. 10.D 本题考查程序框图问题.本题求解的是满足3n-2n>1 000的最小偶数n,判断循环结构为当型循环结构,即满足条件要执行循环体,不满足条件应输出结果,所以判断语句应为A≤1 000,另外,所求为满足不等式的偶数解,因此中语句应为n=n+2,故选D.11.B 本题考查正弦定理和两角和的正弦公式.在△ABC 中,sin B=sin(A+C),则sin B+sin A(sin C-cos C) =sin(A+C)+sin A(sin C-cos C)=0,即sin Acos C+cos Asin C+sin Asin C-sin Acos C=0,∴cos Asin C+sin Asin C=0,∵sin C≠0,∴cos A+sin A=0,即tan A=-1,即A=34π. 由a sinA =c sinC 得√22=√2sinC ,∴sin C=12,又0<C<π4,∴C=π6,故选B.12.A 本题考查圆锥曲线的几何性质.当0<m<3时,椭圆C 的长轴在x 轴上,如图(1),A(-√3,0),B(√3,0),M(0,1).图(1)当点M 运动到短轴的端点时,∠AMB 取最大值,此时∠AMB≥120°,则|MO|≤1,即0<m≤1; 当m>3时,椭圆C 的长轴在y 轴上,如图(2),A(0,√m ),B(0,-√m ),M(√3,0)图(2)当点M 运动到短轴的端点时,∠AMB 取最大值,此时∠AMB≥120°,则|OA|≥3,即√m ≥3,即m≥9.综上,m ∈(0,1]∪[9,+∞),故选A.二、填空题 13.答案 7解析 本题考查向量数量积的坐标运算. ∵a=(-1,2),b=(m,1),∴a+b=(m -1,3),又(a+b)⊥a, ∴(a+b)·a=-(m-1)+6=0,解得m=7. 14.答案 x-y+1=0解析 本题考查导数的几何意义.∵y=x 2+1x,∴y'=2x -1x2,∴y'|x=1=2-1=1,∴所求切线方程为y-2=x-1,即x-y+1=0.15.答案3√1010解析 因为α∈(0,π2),且tan α=sinαcosα=2,所以sin α=2cos α,又sin 2α+cos 2α=1,所以sin α=2√55,cos α=√55,则cos (α-π4)=cos αcos π4+sin αsin π4=√55×√22+2√55×√22=3√1010.16.答案 36π解析 由题意作出图形,如图.设球O 的半径为R,由题意知SB⊥BC,SA⊥AC,又SB=BC,SA=AC,则SB=BC=SA=AC=√2R.连接OA,OB,则OA⊥SC,OB⊥SC,因为平面SCA⊥平面SCB,平面SCA∩平面SCB=SC,所以OA⊥平面SCB,所以OA⊥OB,则AB=√2R,所以△ABC 是边长为√2R 的等边三角形,设△ABC 的中心为O 1,连接OO 1,CO 1. 则OO 1⊥平面ABC,CO 1=23×√32×√2R=√63R,则OO 1=√R 2-(√63R)2=√33R,则V S-ABC =2V O-ABC =2×13×√34(√2R)2×√33R=13R 3=9, 所以R=3.所以球O 的表面积S=4πR 2=36π.三、解答题17.解析 本题考查等差、等比数列. (1)设{a n }的公比为q,由题设可得{a 1(1+q )=2,a 1(1+q +q 2)=-6.解得q=-2,a 1=-2.故{a n }的通项公式为a n =(-2)n . (2)由(1)可得S n =a 1(1-q n )1-q=-23+(-1)n·2n+13.由于S n+2+S n+1=-43+(-1)n·2n+3-2n+23=2[-23+(-1)n·2n+13]=2S n ,故S n+1,S n ,S n+2成等差数列.18.解析 本题考查立体几何中面面垂直的证明和几何体侧面积的计算. (1)证明:由已知∠BAP=∠CDP=90°, 得AB⊥AP,CD⊥PD. 由于AB∥CD,故AB⊥PD, 从而AB⊥平面PAD. 又AB ⊂平面PAB, 所以平面PAB⊥平面PAD.(2)在平面PAD 内作PE⊥AD,垂足为E.由(1)知,AB⊥平面PAD, 故AB⊥PE,可得PE⊥平面ABCD. 设AB=x,则由已知可得AD=√2x,PE=√22x. 故四棱锥P-ABCD 的体积V P-ABCD =13AB·AD·PE=13x 3.由题设得13x 3=83,故x=2.从而PA=PD=2,AD=BC=2√2,PB=PC=2√2.可得四棱锥P-ABCD 的侧面积为12PA·PD+12PA·AB+12PD·DC+12BC 2sin 60°=6+2√3.19.解析 本题考查统计问题中的相关系数及样本数据的均值与方差. (1)由样本数据得(x i ,i)(i=1,2,…,16)的相关系数为r=∑i=116(x i -x )(i -8.5)√∑i=1(x i -x )2√∑i=1(i -8.5)2=0.212×√16×18.439≈-0.18.由于|r|<0.25,因此可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小.(2)(i)由于x =9.97,s≈0.212,由样本数据可以看出抽取的第13个零件的尺寸在(x -3s,x +3s)以外,因此需对当天的生产过程进行检查.(ii)剔除离群值,即第13个数据,剩下数据的平均数为115×(16×9.97-9.22)=10.02, 这条生产线当天生产的零件尺寸的均值的估计值为10.02.∑i=116x i 2=16×0.2122+16×9.972≈1 591.134,剔除第13个数据,剩下数据的样本方差为115×(1 591.134-9.222-15×10.022)≈0.008,这条生产线当天生产的零件尺寸的标准差的估计值为√0.008≈0.09.20.解析 本题考查直线与抛物线的位置关系. (1)设A(x 1,y 1),B(x 2,y 2),则x 1≠x 2,y 1=x 124,y 2=x 224,x 1+x 2=4, 于是直线AB 的斜率k=y 1-y2x 1-x 2=x 1+x 24=1.(2)由y=x 24,得y'=x2,设M(x3,y3),由题设知x32=1,解得x3=2,于是M(2,1).设直线AB的方程为y=x+m,故线段AB的中点为N(2,2+m),|MN|=|m+1|.将y=x+m代入y=x 24得x2-4x-4m=0.当Δ=16(m+1)>0,即m>-1时,x1,2=2±2√m+1.从而|AB|=√2|x1-x2|=4√2(m+1).由题设知|AB|=2|MN|,即4√2(m+1)=2(m+1),解得m=7.所以直线AB的方程为y=x+7.21.解析本题考查了利用导数研究函数的单调性、最值.(1)函数f(x)的定义域为(-∞,+∞), f '(x)=2e2x-ae x-a2=(2e x+a)(e x-a).①若a=0,则f(x)=e2x,在(-∞,+∞)单调递增.②若a>0,则由f '(x)=0得x=ln a.当x∈(-∞,ln a)时, f '(x)<0;当x∈(ln a,+∞)时, f '(x)>0.故f(x)在(-∞,ln a)单调递减,在(ln a,+∞)单调递增.③若a<0,则由f '(x)=0得x=ln(-a2).当x∈(-∞,ln(-a2))时,f '(x)<0;当x∈(ln(-a2),+∞)时, f '(x)>0.故f(x)在(-∞,ln(-a2))单调递减,在(ln(-a2),+∞)单调递增.(2)①若a=0,则f(x)=e2x,所以f(x)≥0.②若a>0,则由(1)得,当x=ln a时, f(x)取得最小值,最小值为f(ln a)=-a2ln a,从而当且仅当-a 2ln a≥0,即a≤1时, f(x)≥0.③若a<0,则由(1)得,当x=ln (-a 2)时, f(x)取得最小值,最小值为f (ln (-a2))=a 2[34-ln (-a2)].从而当且仅当a 2[34-ln (-a2)]≥0, 即a≥-2e 34时, f(x)≥0. 综上,a 的取值范围是[-2e 34,1].22.解析 本题考查极坐标与参数方程的应用. (1)曲线C 的普通方程为x 29+y 2=1.当a=-1时,直线l 的普通方程为x+4y-3=0. 由{x +4y -3=0,x 29+y 2=1解得{x =3,y =0或{x =-2125,y =2425.从而C 与l 的交点坐标为(3,0),(-2125,2425).(2)直线l 的普通方程为x+4y-a-4=0,故C 上的点(3cos θ,sin θ)到l 的距离为d=√17.当a≥-4时,d 的最大值为√17,由题设得√17=√17,所以a=8;当a<-4时,d 的最大值为√17,由题设得17=√17,所以a=-16.综上,a=8或a=-16.23.解析 本题考查含绝对值不等式的求解问题.(1)当a=1时,不等式f(x)≥g(x)等价于x2-x+|x+1|+|x-1|-4≤0.①当x<-1时,①式化为x2-3x-4≤0,无解;当-1≤x≤1时,①式化为x2-x-2≤0,从而-1≤x≤1;当x>1时,①式化为x2+x-4≤0,从而1<x≤-1+√17.2所以f(x)≥g(x)的解集为}.{x|-1≤x≤-1+√172(2)当x∈[-1,1]时,g(x)=2.所以f(x)≥g(x)的解集包含[-1,1],等价于当x∈[-1,1]时f(x)≥2.又f(x)在[-1,1]的最小值必为f(-1)与f(1)之一,所以f(-1)≥2且f(1)≥2,得-1≤a≤1.所以a的取值范围为[-1,1].。

近十年的河北省对口升学计算机高考word题

近十年的河北省对口升学计算机高考word题

2011年高考一.选择题12.在Word2000编辑状态下,当工具栏中的“剪切”和“复制”按钮呈灰色时,表明( )(2011年高考)A 选定的对象是非文本B 选定的文本内容太长C 剪贴板上已经存放了信息D 没有选定任何对象13.下列关于“Word2000文档窗口”的叙述,不正确的是( ) (2011年高考)A 可以同时打开多个文档B 文档窗口最多可以拆分为两部分C 同一个文档不能在多个窗口中打开D 可以同时关闭全部窗口14.在Word2000编辑状态下,对打开的文档Mydoc.doc进行编辑后,选择“文件”下拉菜单的“另存为”菜单项,进行换名保存为Mydocnew.doc后,则( ) (2011年高考)A 文件Mydoc.doc中的内容被Mydocnew.doc内容所覆盖B 文件Mydoc.doc改名为Mydocnew.docC 文件Mydoc.doc被删除,编辑后的内容保存在Mydocnew.doc中D 文件Mydoc.doc中的内容不变,编辑后的内容保存在Mydocnew.doc中二.判断题5.在word2000页面视图中,左右边距分别是指文本区域到显示屏左右两边的距离( ) (2011年高考)6.在word2000中,对象可以链接到文档中,被链接的对象必须是文本文件( ) (2011年高考)三.填空题5.word2000中,快速将光标移到文档起始位置的快捷键是______________(2011年高考)2010年高考12.在Word 2000编辑状态下,进行段落间距调整,要使用的菜单选项是( )(2010年高考) A.插入 B.格式C、编辑 D.视图13.下列打开Word 2000文档的方法中,叙述错误是( ) (2010年高考)A.可能通过Windows 2000 “开始”菜单的“打开Office 文档”命令来打开B.可以在Word 2000中按“Ctrl+P”键打开C.可以在Word 2000中使用“文件”菜单的“打开”命令D.可以使用Word 2000 “文件“菜单中列出的历史记录来打开文档14.下面哪一个不是Word 2000能直接保存的文档类型( ) (2010年高考)A.HTML格式文档B.RTF格式文档C.PSD 格式文档D.TXT 格式文档1.在Word 2000的查找替换操作中,可以指定查找文字的格式,但不可以指定替换文字的格式。

河北省2019-2010年十年对口招生高考(对口升学)数学试题含答案

河北省2019-2010年十年对口招生高考(对口升学)数学试题含答案

河北省对口招生高考数学历年真题(2010-2019)目录✧..2019年河北省普通高等学校对口招生考试数学试题 (1)✧..2019年河北省对口招生考试数学参考答案 (4)✧..2018年河北省普通高等学校对口招生考试数学试题 (7)✧..2018年河北省对口招生考试数学参考答案 (12)✧..2017年河北省普通高等学校对口招生考试数学试题 (13)✧..2017年河北省对口招生考试数学参考答案 (18)✧..2016年河北省普通高等学校对口招生考试数学试题 (23)✧..2016年河北省对口招生考试数学参考答案 (28)✧..2015年河北省普通高等学校对口招生考试数学试题 (29)✧..2015年河北省对口招生考试数学参考答案 (34)✧..2014年河北省普通高等学校对口招生考试数学试题 (36)✧..2014年河北省对口招生考试数学参考答案 (41)✧..2013年河北省普通高等学校对口招生考试数学试题 (42)✧..2013年河北省对口招生考试数学参考答案 (47)✧..2012年河北省普通高等学校对口招生考试数学试题 (50)✧..2012年河北省对口招生考试数学参考答案 (54)✧..2011年河北省普通高等学校对口招生考试数学试题 (55)✧..2011年河北省对口招生考试数学参考答案 (59)✧..2010年河北省普通高等学校对口招生考试数学试题 (63)✧..2010年河北省对口招生考试数学参考答案 (67)2019年河北省普通高等学校对口招生考试数学试题一、选择题(每题3分,共45分)1.设集合A={b,c,d},则集合A 的子集共有()A.5个B.6个C.7个D.8个2.若22b a <,则下列不等式成立的是()A.ba < B.ba 22< C.0)(log 222<-a b D.||||b a <3.在ABC ∆中,“sinA=sinB ”是“A=B ”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分又不必要条件4.已知一次函数b kx y +=关于原点对称,则二次函数)0(2≠++=a c bx ax y 一定是()A.奇函数B.偶函数C.非奇非偶函数D.奇偶性和c 有关5.函数|cos sin |x x y =的最小正周期为()A.2π B.πC.π2D.π46.设向量b a x b a ∥且),1,(),2,4(==,则x=()A.2B.3C.4D.57二次函数b ax x y ++=2图像的顶点坐标为(-3,1),则b a ,的值为()A.10,6=-=b a B.10,6-=-=b a C.10,6==b a D.10,6-==b a 8.在等差数列}{n a 中,n S 为前n 项和,===642,8,0a S S 则若()A.5B.7C.9D.169.在等比数列}{n a 中,=+=⋅>1047498log log ,161.0a a a a a n 则若()A.-2 B.-1 C.0 D.210.下列四组函数中,图像相同的是()A.x x y x y 220cos sin +==和B.xy x y lg 10==和C.xy x y 222log 2log ==和 D.)2cos(sin x y x y -==π和11.过点A(1,2)且与直线012=-+y x 平行的直线方程为()A.042=-+y x B.052=-+y x C.02=-y x D.032=++y x 12.北京至雄安将开通高铁,共设有6个高铁站(包含北京站和雄安站),则需设计不同车票的种类有()A.12种B.15种C.20种D.30种13.二项式于的展开式中,常数项等122)12(x x -()A.84122⋅C B.84122⋅-C C.66122⋅C D.66122⋅-C 14.在正方体1111D C B A ABCD -中,棱C D D A 11与所成的角为()A.6π B.4π C.3π D.32π15.已知双曲线方程为192522=-y x ,则其渐近线方程为()A.x y 45±=B.xy 35±= C.xy 54±= D.xy 53±=二、填空题(每题2分,共30分)16.已知函数3)(3++=bx ax x f 满足=-=)1(,6)1(f f 则.17.函数|3|lg 37121)(2-++-=x x x x f 的定义域为.18.计算:=-+++|3|281log 45tan2log 31e e π.19.若不等式02<-+b ax x 的解集为(1,2),则)(log 6ab =.20.数列1,22241-3121,,-的通项公式为.21.若|b |3b a 4b a 4|a |→→→→→→==⋅=,则,,,π=.22.已知ααααα2cos 137cos sin 1317cos sin ,则,=-=+=.23.已知以21F F ,为焦点的椭圆1361622=+y x 交x 轴正半轴于点A ,则21F AF ∆的面积为.24.已知99.0log 10099.010099.0100===c b a ,,,则c b a ,,按由小到大的顺序排列为.25.在正方体1111D C B A ABCD -中,与AB 为异面直线的棱共有条.26.某学校参加2019北京世界园艺博览会志愿活动,计划从5名女生,3名男生中选出4人组成小分队,则选出的4人中2名女生2名男生的选法有种.27.已知αβαβαβαβα2sin 81)sin()cos()cos()sin(,则=-++-+=.28.设,,,,)sin 11()1cos 1(A n A m +-=+=→→其中∠A 为ABC ∆的内角.→→⊥n m 若,则∠A=.29.不等式x x 5log )6(log 222>+的解集为.30.一口袋里装有4个白球和4个红球,现在从中任意取3个球,则取到既有白球又有红球的概率为.三、解答题(7个小题,共45分)31.(5分)设集合R B A m x x B x x x A =≥+=>--= ,若,}1|{}012|{2,求m 的取值范围.32.(6分)某广告公司计划设计一块周长为16米的矩形广告牌,设计费为每平方米500元.设该矩形一条边长为x 米,面积为y 平方米.(1)写出y 与x 的函数关系式;(2)问矩形广告牌长和宽各为多少米时,设计费最多,最多费用为多少元?33.(8分)若数列}{n a 是公差为23的等差数列,且前5项和155=S .(1)求数列}{n a 的通项公式;(2)若n a n e b =,求证}{n b 为等比数列并指出公比q ;(3)求数列}{n b 的前5项之积.34.(6分)函数x x y 2sin )23sin(+-=π(1)求该函数的最小正周期;(2)当x 为何值时,函数取最小值,最小值为多少?35.(6分)过抛物线x y 42=的焦点,且斜率为2的直线l 交抛物线于A ,B 两点.(1)求直线l 的方程;(2)求线段AB 的长度.36.(7分)如图所示,底面ABCD 为矩形,PD ⊥平面ABCD ,|PD|=2,平面PBC 与底面ABCD所成角为45°,M 为PC 中点.(1)求DM 的长度;(2)求证:平面BDM ⊥平面PBC.37.(7分)一颗骰子连续抛掷3次,设出现能被3整除的点的次数为ξ,(1)求)2(=ξP ;(2)求ξ的概率分布.P DMCAB2019年河北省对口招生考试数学参考答案一、选择题题号123456789101112131415答案DDCBAACCADBDACD二、填空题16.017.),3()3,(+∞-∞ 18.019.120.21)1(n a n n +-=21.222.169119-23.5824.ba c <<25.426.3027.8128.4π29.),3()2,0(+∞ 30.76三、解答题31.解:}34|{}012|{2-<>=>--=x x x x x x A 或}1|{}1|{m x x m x x B -≥=≥+=因为R B A = 所以431≥-≤-m m 即所以m 的取值范围为),4[+∞.32.解:矩形的另一边长为)(82216米x x-=-则x x x x y 8)8(2+-=-=(0<x<8)(2)16)4(822+--=+-=x x x y 当x=4米时,矩形的面积最大,最大面积为16平方米此时广告费为)(800016500元=⨯所以当广告牌长和宽都为4米时矩形面积最大,设计费用最多,最多费用为8000元.33.解:(1)由已知23,155==d S 得1552)(53515==+=a a a S 解得33=a所以232323)3(3)3(3-=⋅-+=-+=n n d n a a n (2)由)2323(-==n a n eeb n所以n eb 231=+所以23a 111e e e ee b b d a a a n n n n n n ====-+++,又101==e b 所以}{n b 为以1为首项23e 为公比的等比数列.(3)由题意可得155)13(235354321)(e eb b b b b b ===⋅⋅⋅⋅-,所以}{n b 的前5项积为15e .34.解:x x x x x y 2sin 2sin 3cos 2cos 3sin 2sin )23sin(+-=+-=πππ=)32sin(2cos 232sin 21π+=+x x x 所以函数的最小正周期为ππ==22T (2)当1-)(125)(2232小值为时,函数有最小值,最即Z k k x Z k k x ∈-=∈-=+πππππ.35.解:(1)由抛物线方程x y 42=得焦点F(1,0),又直线l 的斜率为2,所以直线方程为022)1(2=---=y x x y 即.(2).设抛物线与直线的交点坐标为),(),,(2211y x B y x A 联立两方程得01322422=+-⎩⎨⎧-==x x x y xy 整理得由韦达定理得1,32121==+x x x x 由弦长公式得549414)(1||212212=-+=-++=x x x x k AB 36.解:(1)因为PD ⊥平面ABCD 所以PD ⊥BC又因为ABCD 为矩形,得BC ⊥CD 所以BC ⊥平面PCD 所以BC ⊥PC所以∠PCD 为平面PBC 与平面ABCD 所成角即∠PCD=45°从而△PDC 为等腰直角三角形在RT ∆PDC 中||||45sin PC PD =︒得2245sin ||||=︒=PD PC 又M 为PC 的中点,则DM ⊥PC所以在2||21||==∆PC DM DMC RT 中,(2)证明:由(1)可知BC ⊥平面PCD 所以BC ⊥DM由(1)可知DM ⊥PC ,且BC PC=C,所以DM ⊥平面PBC又DM ⊆平面BDM ,所以平面BDM ⊥平面PBC37.解:(1)能被3整除的只有3和6,则在一次抛掷中出现的概率为31,从而出现不能被3整除的点的概率为32所以9232()31(223=⨯⨯=C P (2)ξ的可能取值为0,1,2,3且278)32()31()0(3003=⨯⨯==C P ξ94)32(31()1(2113=⨯⨯==C P ξ9232()31()2(1223=⨯⨯==C P ξ271)32()31()3(0333=⨯⨯==C P ξ所以ξ的概率分布为ξ0123P27894922712018年河北省普通高等学校对口招生考试数学试题一、选择题(本大题共15小题,每小题3分,共45分)1、设集合M={0,1,2,3,4},N={xl0<x ≤3},则N M ⋂=()A{1,2}B{0,1,2}C{1,2,3}D{0,1,2,3}2、若a,b,c 为实数,且a>b,则()A a-c>b-cB a 2>b 2C ac>bcD ac 2>bc 23、2>x 是x>2的()A 充分不必要条件B 必要不充分条件C 充分必要条件D 既不充分也不必要条件4、下列函数中,既是奇函数又是减函数的是()A xy 31=B 22x y =C 3x y -=D xy 1=5、函数42sin(π-=x y 的图像可以有函数x y 2sin =的图像如何得到()A 向左平移4π个单位B 向右平移4π个单位C 向左平移8π个单位D 向右平移8π个单位6、已知),,3(),2,1(m b a =-=b a b a -=+则m=()A -23B23C 6D -67、下列函数中,周期为π的偶函数是()A xy sin =B xy 2sin =C xy sin =D 2cosx y =8、在等差数列{a n }中,若a 1+a 2+a 3=12,a 2+a 3+a 4=18,则a 3+a 4+a 5=()A 22B 24C 26D 309、记S n 为等比数列{a n }的前n 项和,若S 2=10,S 4=40,则S 6=()A 50B 70C 90D 13010、下列各组函数中,表示同一个函数的是()A x y =与2x y =B x y =与33x y =C x y =与2x y =D 2x y =与33x y =11、过圆2522=+y x 上一点(3,4)的切线方程为()A 3x+4y-25=0B 3x+4y+25=0C 3x-4y-25=0D 3x-4y+25=012、某体育兴趣小组共有4名同学,如果随机分为两组进行对抗赛,每组两名队员,分配方案共有()A2种B3种C6种D12种13、设(2x-1)2018=a 0+a 1x+a 2x 2+……….+a 2018x 2018,则a 0+a 1+a 2+…….+a 2018=()A 0B 1C -1D 22018-114、已知平面上三点A (1,-2),B (3,0),C (4,3),则点B 关于AC 中点是对称点的坐标是()A (1,4)B (5,6)C (-1,-4)D (2,1)15、下列命题中正确的是()(1)平行于同一直线的两条直线平行(2)平行于同一平面的两条直线平行(3)平行于同一直线的两个平面平行(4)平行于同一平面的两个平面平行A(1)(2)B(1)(3)C(1)(4)D(2)(4)二、填空题(共15小题。

2017年河北省普通高等学校对口招生考试试题及答案2017.11.23

2017年河北省普通高等学校对口招生考试试题及答案2017.11.23

2017年河北省普通高等学校对口招生考试语文说明:一、本试卷共8页,包括七道大题31道小题。

共120分。

二、答题前请仔细阅读答题卡上的“注意事项”,按照“注意事项”的规定答题。

在答题卡上与题号相对应的答题区域内答题。

写在试卷、草稿纸上或答题卡非题号对应的答题区域的答案一律无效。

不得用规定以外的笔和纸答题,不得在答卷上做任何标记。

三、做选择题时,如需改动,请用橡皮将原选涂答案擦干净,再选涂其他答案。

四、考试结束后,将本试卷与答卷一并交回。

一、单项选择I(每小题2分,共24分)1.下列各组词语中加点字的读音,全部正确的一组是()A.安步当.车(dàng)摈.除(bìn)钟磬泠.然(líng)埋.单(mái)B.掎.角之势(jī)参与.(yù)方兴未艾.(ài)可.汗(kè)C.高屋建瓴.(líng)创.伤(chuàng)苦心孤诣.(yì)号.哭(háo)D.间.不容发(jiàn)省.察(xǐng)书声琅琅.(láng)和.泥(huó)2.下列各组词语中,有错别字的一组是()A.唉声叹气力图闹饥荒瘦骨嶙峋B.百步穿杨妨碍绊脚石水涨船高C.金榜题名搬师破落户天怒人怨D.昂首阔步平添度假村泾渭分明3.依次填入下列各句横线处的词语,最恰当的一项是()①我们要学会反省自己,不能别人。

②这部影片应该如何拍摄,请您一下。

③两国的文化交流已经了一千多年。

A.抱怨策动继续B.报怨策划继续C.报怨策动持续D.抱怨策划持续4.下列各句加点的成语,使用恰当的一项是()A.雄安新区的成立,让当地百姓对未来自鸣得意....,干劲十足。

B.和风细雨....地解决问题,比横加指责收到的效果更好。

C.这位新生代作家写的文章,内容深奥,章法紊乱,让读者不忍卒读....。

D.爱迪生年轻时善于听取别人的意见,师心自用....,有许多伟大的发明。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年高考试题
一、选择题:
1、设集合{}{}2,2,0,1A x x B =<=-,则A B =U ( )
A 、{}02x x ≤<;
B 、{}22x x -<<;
C 、{}22x x -≤<;
D 、{}
21x x -≤<。

2、若,a b c d ><,则( )
A 、22ac bc >;
B 、a c b d +>+;
C 、ln()ln()a c b d ->-;
D 、a d b c +>+。

3、“A B B =U ”是“A B ⊆”的( )
A 、充分不必要条件;
B 、必要不充分条件;
C 、充要条件;
D 、既不充分也不必要条件。

4、设奇函数()f x 在[1,4]上为增函数,且最大值为6,那么()f x 在[]4,1--为( )
A 、增函数,且最小值为-6;
B 、增函数,且最大值为6;
C 、减函数,且最小值为-6;
D 、减函数,且最大值为6。

5、在△ABC 中,若cos cos a B b A =,则△ABC 的形状为( )
A 、等边三角形;
B 、等腰三角形;
C 、直角三角形;
D 、等腰直角三角形。

6、已知向量(2,),(,1),(4,2),,//a x b y c a b b c =-=-=-⊥r r r r r r r 且,则( )
A 、4,2x y ==-;
B 、4,2x y ==;
C 、4,2x y =-=-;
D 、4,2x y =-=。

7、设α是第三象限角,则点(cos ,tan )P αα在( )
A 、第一象限;
B 、第二象限;
C 、第三象限;
D 、第四象限。

8、设{}n a 为等差数列,34a a 和是方程2
230x x --=的两个根,则其前16项的和16S 为( )
A 、8;
B 、12;
C 、16;
D 、20。

9、若函数2
log a y x =在(0,)+∞内为增函数,且函数4x
a y ⎛⎫= ⎪⎝⎭为减函数,则a 的取值范
围是( )
A 、()0,2;
B 、()2,4;
C 、()0,4;
D 、()4,+∞。

10、设函数()f x 是一次函数,且3(1)2(2)2,2(1)(0)2f f f f -=-+=-,则()f x 等于( )
A 、86x -+;
B 、86x -;
C 、86x +;
D 、86x --。

11、直线21y x =+与圆22240x y x y +-+=的位置关系是( )
A 、相切;
B 、相交且过圆心;
C 、相离;
D 、相交且不过圆心。

12、设方程224kx y +=表示焦点在x 轴上的椭圆,则k 的取值范围是( )
A 、(),1-∞;
B 、()0,1;
C 、()0,4;
D 、()4,+∞。

13、二项式()201734x -展开式中,各项系数和为( )
A 、1-;
B 、1;
C 、20172;
D 、20177。

14、从4种花卉中任选3种分别种在不同形状的3个花盆中,不同的种植方法有(
) A 、81种; B 、64种; C 、24种; D 、4种。

15、设直线1l //平面α,直线2l ⊥平面α,下列说法正确的是( )
A 、12//l l ;
B 、12l l ⊥;
C 、12l l ⊥且异面;
D 、12l l ⊥且相交。

二、填空题
16、已知函数1,(,0]()2,(0,
)x x x f x x -⎧+∈-∞⎪=⎨∈+∞⎪⎩,则(){1}f f f -=⎡⎤⎣⎦ 。

17、函数
3log (2)y x =++的定义域是 。

18、00
220171
2log cos 43C π
+++= 。

19、如果不等式20x ax b ++<的解集是()1,4,则3log ()a b -= 。

20
、已知13cos ,sin 0,,,2222ππαβαβπ⎛⎫⎛⎫==∈∈ ⎪ ⎪⎝⎭⎝⎭
,则()sin αβ+= 。

21、在等比数列{}n a 中,如果2182a a =,那么13519a a a a =L 。

22、已知向量()11,2,1,,2a b ⎛⎫==- ⎪⎝
⎭r r 则32a b -=r r 。

23
、已知sin()πα+=,且32
ππα<<,则α= 。

24、已知点(2,3),(4,1)A B -,则线段AB 的垂直平分线的方程为 。

25、若()221x k ππ-+⎛⎫= ⎪⎝⎭,则k 的最小值为 。

26、已知抛物线顶点在坐标原点,对称轴为x 轴,点(2,)A k 在抛物线上,且点A 到焦点的距离为5,则抛物线的方程为 。

27、设函数()215x f x a +=+,若()213f =,则()1f -= 。

28、将等腰直角三角形ABC 沿斜边AB 上的高CD 折成直二面角后,边CA 与CB 的夹角为 。

29、取一个正方形及其外接圆,在圆内随机取一点,该点在正方形内的概率为 。

30、已知二面角l αβ--的度数为70︒,点M 是二面角l αβ--内的一点,过M 作MA α⊥于A ,MB β⊥于B ,则ANB ∠= 。

三、解答题:
31、已知集合{}
2520A x kx x =++=,若A φ≠,且k N ∈,求k 的所有的值组成的集合。

32、某物业管理公司有75套公寓对外出租,经市场调查发现,每套公寓租价为2500元时,可全部租出。

租价每上涨100元就会少租出一套公寓,问每套公寓租价为多少元时,租金总收入最大?最大收入为多少元?
33、等比数列{}n a 前n 项和为n S ,已知232,6S S ==-。

(1)求数列{}n a 的通项公式n a ;
(2)求数列{}n a 的前10项的和10.S
34
、已知函数23sin 2y x x =+。

(1)求函数的值域;(2)求函数的最小正周期;(3)求函数取得最大值时x 的集合。

35、为加强精准扶贫工作,某地市委计划从8名处级干部(包括甲、乙、丙三位同志)中选派4名同志去4个贫困村工作,每个村一人。

(1)甲、乙必须去,但是丙不去,不同的选派方案有多少种?
(2)甲必须去,但是乙和丙不去,不同的选派方案有多少种?
(3)甲、乙、丙都不去,不同的选派方案有多少种?
36、如图,已知90,//CDP PAB AB CD ∠=∠=︒。

(1)求证:平面PAD ⊥平面ABCD 。

(2)若二面角60,4,7,
P DC A PD PB --︒==为求PB 与平面ABCD 所成角的正弦值。

37、已知椭圆22
14x y m
+=与抛物线24y x =有共同的焦点2F ,过椭圆的左焦点1F 作倾斜角为4
π的直线,与椭圆交于M 、N 两点。

(1)求直线MN 的方程和椭圆的方程;
(2)求△OMN 的面积。

P
D C B
A。

相关文档
最新文档