物探电法勘探
地球物理勘探---电法勘探

主要岩矿石电阻率及其变化范围: ρ 沉<ρ 变<ρ 火 沉积岩:10~10²Ω ·m;火成岩:10²~10 Ω ·m 变质岩:介于两者之间
6
(二)、影响电阻率的因素 ①岩、矿石矿物成分(良导金属含量) 一般来说,岩、矿石中良导金属含量增高,电阻率就 降低。但 相比之下岩石的结构更具有关键性的影响。 ②结构
U E
AB M
U U
A M
B M
I 1 1 ( ) 2 AM BM
AB M
I 1 AM 1 BM ( ) 2 2 2 AM AM BM BM
结论: ①靠近电极,电位变化越大 ②在A极(正极)附近,电位迅速升高;在B极(负极)附近, 电位迅速下降。在 AB(正负极)中点 电位为零。 ③在AB中部(1/2— 1/3)地段,电位梯 度很小,场强也较均 匀,在AB中点电位 为零,电场强度为一 常数。(中间梯度法 的原理)
介绍最基本的电阻率法
电阻率法是传导类电法勘探方法之一。建立在地壳中各种岩 矿石具有各种导电性差异的基础上,通过观测和研究与这些差异 有关的天然电场或人工电场的分布规律,从而达到查明地下构造 或者寻找有用矿产的目的。
第一节
一、电阻率法的理论基础
电阻率法
(一)、岩土介质的电阻率 岩土介质的电阻率差异是电阻率法的物理前提,电阻率是 描述物质导电性能的一个电性参数,从中学物理中我们知道, 当电流沿着一段导体的延伸方向流过时,导体的电阻R与其长 度L成正比,与垂直于电流方向的导体横截面积S成反比,即 R=ρl/s 式中比例系数ρ成为该导体的电阻率。因此电阻率在数值 上等于电流垂直通过单位面积立方体截面时,该导体所呈现的 电阻。 电阻率的倒数即为导电率ν,直接表征了岩石的导电性能。
地球物理勘探电法电磁法

Hale Waihona Puke (4)固体电解质:离子导电,绝大多数造岩矿物,
如石英、云母、方解石、长石等,电阻率高
4、主要岩矿石电阻率及其变化范围
● ρ沉 < ρ变 < ρ火
● 沉积岩: 10 ~102Ω · m
● 火成岩: 102 ~106Ω · m
● 变质岩:介于两者之间。
5、影响电阻率的主要因素 (1)矿物成分、含量及结构 金属矿物含量↑,电阻率↓ 结构:侵染状 > 细脉状 (2)岩矿石的孔隙度、湿度 孔隙度↑,含水量↑,电阻率↓ 风化带、破碎带,含水量↑,电阻率↓ (3)水溶液矿化度 矿化度↑,电阻率↓
电化学活动性(η) 介电性(ε) 导磁性(μ)
直流电(稳定场) 人工场源
②利用场源多 天然场源
交电流(交变场)
传导类电法勘探(直 流电法)研究稳定电 流场 ③方法
电阻率法* 充电法
自然电场法 激发极化法 低频电磁法
种类多
感应类电法勘探(交 频率测深法 流电法)研究交变电 甚低频法 流场 电磁波法 大地电磁法
U MN s k I
ρ3
ρ1 ρ2
※ 视电阻率 —— 在电场有效作用范围内 各种地质体电阻率的综合影响值。
(3)影响视电阻率的因素
电极装置—供电电极(A、B)及测量电极(M、N) 的排列形式和移动方式 ① 电极装置类型及电极距的大小 ② 测点相对于地质体的位置; ③ 电场有效作用范围内各种地质体的真电阻率; ④ 各地质体的分布状态(即形状、大小、埋深及相 对位置)
地球物理勘探 电法、电磁法
什么是电法勘探:
它是以岩、矿石的电学性质(如导电性)差异为基 础,通过观测和研究与这些电性差异有关的(天然或 人工)电场或电磁场分布规律来查明地下地质构造及 有用矿产的一种物探方法,称为“电法”。
物探--2电法勘探

电法勘探是以岩石或矿石与围岩之间的电性差异为基础,对 天然产生的或人工建立起来的电场或电磁场的空间的或时间 的分布特征进行观测,以查明地质构造和有用矿产的一种物 探方法。
电法勘探分类 根据供电电源的性质可分为:直流电法和交流电法。 按场源分为:天然场源(被动)和人工场源(主动)。 按工作方法分为:电阻率法、天然电场法、充电法、激发极
电地面
电源
A
MN
B
地面
高阻体
电阻率法
度梯半 度空 法间 视中 电存
曲阻在 率低 与阻 电体 位中
线梯间
电均
阻匀
率半
与 电 位 梯
空 间 中 间 梯
度度
曲法
线视
岩矿石的电阻率(1)
电阻率(ρ):电阻率是表征物体导电性能的一个最基本的物理量。 数值上为对边长各为1米的正方体物质,垂直于一对横截面通电时, 所产生电阻的大小。其单位为:欧姆.米(Ω.m)。
ρo
图2 探测远离示意图
图3 探测方法剖面图
I
2r 2 ( E )
4r 2
( u ) r
4r 2
c r2
得 c I 2
则 U= I 2r
或 =2r U
I
E U I r 2r 2
j I
2r 2
在上式中:设I=20mA p=3.14Ω·m I 100
2
r=0.1 m
U=1000mV
r=1.0 m U=100mV
系中,
E du r dr r
在直角坐标系中
E EX i EY j EZ k
而
EX
U X
EY
U Y
EZ
U Z
由前几个式子得:
地震勘探基础知识

1.有关地震勘探的一些基本概念1.1 地震勘探是勘探石油的有效方法勘探石油的方法和技术,按其勘探手段划分,可分为地质法、物探法和钻探法三种基本类型。
地球物理勘探法(物探法)运用物理学的原理和方法,即利用地壳中岩石的物理性质(如岩石的弹性、密度、磁性和电性)上的差异来研究地球,了解地下岩层的起伏情况和组成情况,从而达到寻找储油构造以勘探石油的一种勘探方法。
依据研究对象的不同,物探法主要分为以下几种:✍地震勘探(利用岩石的弹性差异)✍重力勘探(利用岩石的密度差异)✍磁法勘探(利用岩石的磁性差异)✍电法勘探(利用岩石的电性差异)在石油勘探中,最经济的方法是物探法。
首先用物探法对工区的含油气远景作出评价,为钻探提供探井井位。
然后钻探法通过实际钻进,以对物探法进行验证。
如果构造含油,又可根据物探资料和探边井计算出含油面积和地质储量。
在我国,陆上是广大的地表松散沉积(如松辽平原、华北平原等)和沙漠覆盖区(如塔什拉玛干大沙漠),海上是被辽阔的海水所覆盖的“一片汪洋”,已看不到岩层的地面露头的出露。
而钻井法成本高、效率低。
如何解决这些地区的地质构造和地质储量问题呢?在这时就充分显示了物探法应用的威力。
在各种物探方法中,地震勘探具有精度高的突出优点,而其它物探方法都不可能象地震勘探那样详细而准确地了解地下由浅至深一整套地层的构造特点。
因此,地震勘探已成为石油勘探中一种最有效的方法。
1.2 地震勘探基本原理地震勘探是利用人工激发地震波的方法引起地壳的振动,并用仪器把来自地下各个地层分界面的反射波引起地面上各点的振动情况记录下来。
利用记录下来的数据,对其进行过处理分析,从而推断地下地质构造和地层岩性的特点。
地震勘探查明地下地质构造特点的原理并不难理解。
利用声波反射现象可测定障碍物离开声源的距离,是我们都知道的物理原则。
其计算公式为:其中:S障碍物离开声源的距离v波传播速度t波旅行时间如声波速度为v=340m/s,波由发声到回声的旅行时间为t=10s,则障碍物到声源的距离为:地震勘探的基本原理与此极为类似,如图1、图2所示。
地球物理勘探知识点

地球物理勘探知识点一、地球物理勘探概述。
1. 定义。
- 地球物理勘探简称物探,它是指通过研究和观测各种地球物理场的变化来探测地层岩性、地质构造等地质条件。
这些地球物理场包括重力场、磁场、电场、弹性波场等。
2. 目的。
- 寻找矿产资源,如石油、天然气、金属矿等。
- 查明地下地质构造,为工程建设(如建筑、桥梁、隧道等)提供地质依据。
- 研究地球内部结构,了解地球的演化过程。
3. 方法分类。
- 重力勘探:利用地球重力场的变化来探测地下地质体的分布和密度差异。
- 磁法勘探:通过测量地球磁场的变化来寻找具有磁性差异的地质体,如磁铁矿等磁性矿体。
- 电法勘探:包括电阻率法、充电法等多种方法,依据地下地质体电学性质(如电阻率、极化率等)的差异进行勘探。
- 地震勘探:是最重要的地球物理勘探方法之一,利用人工激发的地震波在地下介质中的传播特性来推断地下地质构造和岩性。
- 放射性勘探:测量地质体的放射性强度,主要用于寻找放射性矿产(如铀矿)和研究地质构造。
二、重力勘探。
1. 重力场基本概念。
- 重力是地球对物体的引力与地球自转产生的离心力的合力。
- 重力加速度g,在地球表面不同位置其值略有不同,主要受地球内部物质分布不均匀的影响。
2. 重力异常。
- 理论上地球表面的重力值可以根据地球的理想模型计算出来,但实际测量的重力值与理论值存在差异,这种差异称为重力异常。
- 正重力异常:当测量点下方存在高密度地质体时,实测重力值大于理论值。
- 负重力异常:如果测量点下方是低密度地质体,实测重力值小于理论值。
3. 重力勘探仪器。
- 重力仪是用于测量重力加速度的仪器。
现代重力仪具有高精度、高灵敏度的特点,能够测量出极其微小的重力变化。
4. 重力勘探的应用。
- 寻找金属矿,如铜、铅、锌等金属矿往往与高密度的岩石有关,会引起正重力异常。
- 研究地质构造,如盆地、山脉等不同地质构造单元具有不同的密度结构,会在重力场上有明显反映。
- 探测地下洞穴,地下洞穴相对于周围岩石密度较低,会产生负重力异常。
工程施工物探检测

工程施工物探检测是指在工程建设过程中,利用地球物理勘探技术对地质条件、地下管线、地下障碍物等进行探测和分析的一种方法。
物探检测技术在工程施工中具有重要作用,可以帮助施工人员了解地质状况,避免施工过程中出现意外情况,确保工程顺利进行。
本文将简要介绍工程施工物探检测的方法、应用范围及重要性。
一、工程施工物探检测方法1. 地震勘探:地震勘探是利用地震波在地下传播的原理,通过观测地震波的传播速度、反射、折射等特性来推断地下地质结构的一种方法。
地震勘探在工程施工中可以用来探测地下断层、岩层分布等地质情况。
2. 电法勘探:电法勘探是利用地下岩石的电性差异来探测地下地质结构的一种方法。
电法勘探包括直流电法、交流电法、电磁法等,可用于探测地下管线、地下洞室、地下水位等地质情况。
3. 磁法勘探:磁法勘探是利用地下岩石的磁性差异来探测地下地质结构的一种方法。
磁法勘探可以用来探测地下磁性矿物分布、古磁场等地质情况。
4. 重力勘探:重力勘探是利用地下岩石的质量差异和地球重力场的关系来探测地下地质结构的一种方法。
重力勘探可以用来推断地下岩层的密度、厚度等地质情况。
5. 钻探:钻探是利用钻机在地下进行钻孔,通过取芯、观察岩芯样品等方法来了解地下地质状况的一种直接勘探方法。
钻探在工程施工中可以用来确定地下管线、地下洞室、地下水位等地质情况。
二、工程施工物探检测应用范围1. 道路工程:在道路工程中,物探检测可以用来探测地下管线、地下洞室等障碍物,避免施工过程中损坏现有管线和设施,确保道路工程的顺利进行。
2. 桥梁工程:在桥梁工程中,物探检测可以用来探测地下地质结构,为桥梁基础设计和施工提供可靠的地质数据。
3. 隧道工程:在隧道工程中,物探检测可以用来探测地下断层、岩层分布等地质情况,为隧道设计和施工提供可靠的地质数据。
4. 水利工程:在水利工程中,物探检测可以用来探测地下管线、地下洞室等障碍物,避免施工过程中损坏现有管线和设施,确保水利工程的顺利进行。
普通物探-第3-2节-电法勘探之激发极化法

(华东)
激电测深曲线的特点
• 激电测深曲线的横轴(AB/2)采用对数坐标,纵 轴(a /1 或 Pa / P )可以采用对数坐标,也可以采 1 用算术坐标。激电测深曲线的形状取决于相邻层激 电强度参数值( 、P 等)的相对大小,并据此划 分曲线类型。
(华东)
(华东)
1. 岩(矿)石大多数金属矿和石 墨及其矿化岩石)的激发极化机理与电化学中供电 电极的电解极化相同,是电子导体与其周围溶液的 界面上发生过电位(Overvoltage)的结果。 • 一般造岩矿物为固体电解质,属离子导体,在野外 和室内也能观测到较明显的激电效应。关于离子导 体的激发极化,一般都认为与岩石颗粒和周围溶液 界面上的双电层有关。
• 供电时的二次场电位差ΔU2(t)可由总场电位差减去一 次场电位差求得,如图中曲线b所示。 • 断电后测到的仅为二次场 的变化,断电瞬间的二次 场电位差等于供电过程末 尾的二次场电位差,其后 随断电时间 t 的增大而衰 减,直到最后消失,该曲 线称为放电曲线。 黄铁矿化岩石标本上的激电场测量结果
a: 实测的ΔU(t)充电曲线 b: 换算的ΔU2(t)充电曲线 c: 实测的ΔU2’(t)放电曲线
U (t ) U1 U 2 (t ) U (0) U 2 (t )
黄铁矿化岩石标本上的激电场测量结果
a: 实测的ΔU(t)充电曲线 b: 换算的ΔU2(t)充电曲线 c: 实测的ΔU2’(t)放电曲线
(华东)
激电场的时间特性
• 总场电位差的变化曲线称为充电曲线,它反映了激电 效应在供电后的充电过程。
• 矿化岩石和石墨化岩石可能产生明显的激电异常, 称为激电法应用中的干扰。
(华东)
(5)等效电阻率
• 由于激电效应的存在,供稳定电流时,岩(矿)石 上测量得到的电位差随供电时间延长而增加,从电 子导体和离子导体激发极化现象的起因可以理解为 二次电场阻碍电流通过的结果。 • 从电阻率的角度,表明岩(矿)石的激电效应等效 于介质电阻率的增加。 • 为与无激电效应时的真电阻率相区别,将有激电效 应的情况下,极化体相对于极化总场的电阻率称为 等效电阻率。
环境与工程物探:电法勘探(充电法)

充电法的基本理论
•
• 当导电球体的规模不大或埋藏较深时, 可用“简单加倍”的方法近似考虑地 表—空气分界面 对水平地表电场的影响, 理想导电球体的充电电场实际上与位于 球心的点电源场没有区别。
• 由于电位梯度曲线较电位曲线有较强的 分辨能力,所以应用较多。
• 若导电球体位于电阻率为ρ的均匀岩石中, 球心埋深为h0,对球体的充电电流强 度为I,则按地下点电流源场可写出地表 电位的表达式:
将充电法的测量结果绘制成如下图件:
1、电位剖面图 2、电位剖面平面图 3、电位平面等值线图 4、电位梯度剖面图 5、电位梯度剖面平面图 6、电位梯度平面等值线图。
(三)充电法资料的解释
※根据等电位线的形状及密集带,可判定充电体在地 面上投影的形状和走向,并初步圈定其边界;
※根据剖面电位曲线:
利用其极值点推断充电体的顶部位置;利用其拐点 推断充电体的边界位置;利用其对称性推断充电体 的倾向。
(二)充电法的装备及工作方法
1、装备
B(∞)
与电阻率法相同
2、工作方法
(1) 电位观测法:Nቤተ መጻሕፍቲ ባይዱ置
基N点
于距充电体足够远的某一
固定基点上。M极沿测线
逐点移动,观测各测点相
对于固定基点的电位差,
即为该点的电位值)V。
(2)电位梯度观测法:MN置于同一测线上,保持相 对位置和间距不变,沿测线逐点移动,计算电位梯度 Δv /Δx = ΔvMN /MN
第二节 充电法和自然电场法
一、充电法
什么是充电法: 对地面上、坑道内或者钻孔中已经揭露的良导体直 接充电,以解决某些地质问题的一种电法勘探方法。
充电法的提出: 详查及勘探阶段,良导性地质体有露头但不知道其分 布情况,如矿体是否相连;矿体走向、产状;盲矿; 地下水流速、流向;滑坡
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
E
dU Er dr
则测量电极M、N间视电阻率s为:
U MN s K I K M N jMN MN dl I
当M、N间距离很小时,可以认为电流密度jMN、 岩石电阻率MN为常量,则:
K s I
M
N
K MN jMN MN dl jMN MN I
半导体:大多数硫化矿物如黄铜矿、黄铁 矿、方铅矿等电阻率小于1· m。 氧化矿物如铬铁矿、赤铁矿、软锰 矿等电阻率大于1· m。 固体电解质:造岩矿物如长石、石英、辉 石、云母、方解石等电阻率大, 大于106· m。
岩石的电阻率:
火成岩和变质岩:电阻率很大,电阻率变化范围102 ~105· m。 沉积岩:电阻率较小。例如:粘土的电阻率变化范围100~101· m,
第一章 电法勘探
电法勘探的分类(1)
电法勘探的分类
方法分类(2):
天然场源法:自然电位法、大地电流
法、大地电磁法等。
人工场源法:电阻率法、激发极化法、 电磁法等。
电法勘探的分类
方法分类(3):
传导类电法:电阻率法、充电法、自然电场法、激发极化法等。 电阻率法:剖面法(二、三极剖面、联合剖 面等)、测深法 感应类电法:电磁剖面法(偶极剖面、航空电磁法等)
1、电阻率测深法的实质 电阻率测深大多采用对称四极装置
AM AN K AB MN U MN AB s K AB I
特点:AM=BN,取MN中点为记录点
双对数坐标纸
1 9 8 7 6 5 4 3 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 9 8 7 6 5 4 3
1 2
水平三层电测深曲线类型图
H型:
A型:
1 2 3
1 2 3
Q型: 1 2 3
K型: 1 2 3
水平二层电测深曲线量板 及其使用
水平三层电测深曲线量板
3、电测深曲线的解释 (1)电测深曲线类型分析 (2)电测深曲线特征研究 (3)断层在电测深曲线上的反映 (4)电测深曲线的定量解释 4、电测深定性图件的绘制及解释 (1)曲线类型图 (2)等视电阻率断面图 (3)等视电阻率平面图 5、电测深法的应用
• 电阻率测深的应用
电阻率测深断面图 • 1-粘土;2-泥灰岩;3-岩溶泥灰岩 • 4-砂层;5-粘土; • 6-电阻率等值线 • 7-断层;8-煤层
2
2
1 9 8 7 6 5 4 3
1 9 8 7 6 5 4 3
2
2
1 9 8 7 6 5 4 3
1 9 8 7 6 5 4 3
2
2
1
2
3Leabharlann 4567
8 9 1
2
3
4
5
6
7
8 9 1
2
3
4
5
6
7
8 9 1
2
3
4
5
6
7
8 9
1
2、电测深曲线 水平二层电测深曲线类型 G型:
1 2
D型:
1
2
(3)岩石电阻率与层理的关系 • 层理构造是大多数沉积岩和变质岩的典型特征,如砂岩、泥岩、 片岩、板岩以及煤层等,它们均由很多薄层相互交替组成。这种 岩石的电阻率具有明显的方向性,即沿层理方向和垂直层理方向 岩石的导电性不同,称为岩石电阻率的各向异性。岩石电阻率的 各向异性可 用各向异性系数λ来表示,定义为
(2) 岩石电阻率与其含水性的关系 • 沉积岩主要依靠孔隙水溶液来传导电流,因此岩 层中水的导电性质将直接影响沉积岩的电阻率。 在其他条件相同的情况下,岩层电阻率与岩层中 水的电阻率成正比。影响水的导电性的主要因素 是水中离子的浓度和水的温度。常见的岩层水一 般含低或中等浓度的离子,岩层中水的含盐浓度 增大,离子数量随之增多,溶液导电性将变好。 同时岩层中水的导电性还与温度有关,它的电阻 率将随温度的升高而降低。这是因为,一方面水 中盐类的溶解度随温度的升高而增大,致使溶液 中离子数量增多;另一方面,温度的升高还会降 低溶液粘度,加快离子的迁移速度。
砂岩的电阻率变化范围102 ~103· m。
2、影响电阻率的因素
(1) 岩石电阻率与矿物成分的关系 • 岩石电阻率与组成岩石的矿物的电阻率、矿物的含量和 矿物的分布有关。当岩石中含有良导电矿物时,矿物导 电性能能否对岩石电阻率的大小产生影响取决于良导矿 物的分布状态和含量。如果岩石中的良导矿物颗粒彼此 隔离地分布着,且良导矿物的体积含量不大,那么岩石 的电阻率基本上与所含的良导矿物无关,只有当良导矿 物的体积含量较大时(大于30%),岩石的电阻率才会 随良导矿物的体积含量的增大而逐渐降低。但是,如果 良导矿物的电连通性较好,即使它们的体积含量并不大, 岩石的电阻率也会随良导矿物含量的增加而急剧减小。
式中,K为装置系数。
U MN K I
2、视电阻率
若进行测量的地段地下岩石电性分布不均匀时,
U MN s K 上式计算出的电阻率称为视电阻率,它不是岩 I
石的真电阻率,是地下岩石电性不均匀体的综
合反映,通常以s表示:
视电阻率s的微分表示:由欧姆定律微分形式和电 场强度定义,得
j
对称四极装置 (AMNB):
特点:AM=BN,取MN中点为记录点。
AM AN K AB MN U MN AB s K AB I
偶极装置 (ABMN):
特点:AB、MN为分开的偶极,取OO’中点为记录点。
AM AN BM BN K oo' 2 MN ( AM AN BM BN ) U MN oo ' s K oo' I
• • 式中,ρn代表垂直层理方向上的平均电阻率,称为横向电阻率; ρt代表沿层理方向的平均电阻率,称为纵向电阻率。
n t
层状结构岩石模型
(4)岩石电阻率与温度的关系 • 岩石电阻率随温度的变化遵循导电理论的有关定理。电 介质中离子的能动性随温度升高而增大,其运动能量积 累到一定值时,很容易脱离晶格,因此导电性增强。半 导体的温度升高时,导电区电子浓度增大,导电性也相 应增大。如前所述,在低温条件下,含水岩石中水溶液 的导电性随温度的升高而增大,这是由于温度升高导致 水溶液浓度增大和粘滞度降低,水溶液中离子数量增多、 活动性增强的缘故;当温度继续升高时,因水分蒸发, 岩石电阻率略有增加,只有温度继续升高时,电阻率才 开始减小。例如,对油页岩进行加温实验时,温度升高 到50~100℃时,试样的电阻率减小;温度继续升高至 200℃时,试样电阻率增大;温度继续升高超过200℃ 时,试样电阻率急剧下降;当温度超过600℃后,试样 电阻率又呈回升趋势。
电磁测深法(大地电磁测深、频率测深等)
实质:以岩、矿石之间电磁学性质及电化学性质
差异为基础,通过观测和研究电(磁)场在地 下的分布规律,探查地质构造和矿产资源 主要用途:探查深部和区域地质构造、寻找油气
田和煤田、金属非金属矿产、地下水、
工程地质和环境勘察等。
第一节 电法勘探基础知识
一、岩层的电阻率 1、电阻率的概念 由均匀材料制成的具有一定横截面积的导体, 其电阻R与长度L成正比,与横截面积S成反比, 即
由不同电性层所构成的断面。 二、电测深法装置
二极装置(AM):
特点:将B、N极置于“无穷远”处接地。取AM
中 点为记录点。
K AM 2 AM
s K AM
UM I
三极装置(AMN):
特点:只将B极置于“无穷远”处接地,取MN中点为记录点。
AM AN K AMN 2 MN U MN s K AMN I
B
I h /I
B
jh jh jAh
电流密度随深度的变化
三 、电阻率法的基本原理
1、岩、矿石电阻率的测定
岩、矿石电阻率的测定:由电阻定义及欧姆定律,得:
U MN RS S ( ) L I L
均匀大地电阻率的测定:
当地表由两个异性点电源A(+I)、B(-I)供电时,地表测点
M、N处的电位:
UM UN
岩石的导电方式大致可分为以下三种: 金属导电和半导体导电、溶液离子导电、固体电解质导电 岩石的电阻率由组成岩石的矿物成分决定 岩石和矿物的导电性或电阻率 :取决于物质中电荷 运移的难易程度。 矿物的电阻率: 金属导体:电阻率很小,例如:金的电阻 率为210-8· m,铜的电阻率 为1.2~30 10-8· m。
L R S
式中,ρ为比例系数,称为物体的电阻率。电 阻率仅与导体材料的性质有关,它是衡量物质导 电能力的物理量。不同岩石的电阻率变化范围很 大,常温下可从10-8Ω·m变化到1015Ω·m,与岩石 的导电方式不同有关。
电阻率是电法中最重要的物理参数,电法的
许多方法技术都与岩石和矿物的电阻率 (或其倒数-- 电导率)有关。
UM U
A M
U
B M
I I 2 rAM 2 rBM I 1 1 ( ) 2 AM BM
两个点电源的等位线和电流线
(a)平面图
(b)剖面图
(c)地表电位剖面
2、电流在地下的分布规律
j h /j 0 1 0.8 0.6 A 0.4 h 0.2 0 1 2 3 h L O j0
I 1 1 ( ) 2 AM BM
I 1 1 ( ) 2 AN BN
M、N两点的电位差:
U MN U M U N I 1 1 1 1 ( ) 2 AM AN BM BN
令:
K
2 1 1 1 1 AM AN BM BN
则均匀大地电阻率为: