考点12 平面向量的数量积、线段的定比分点与平移
平面向量

平面向量1.理解向量的概念,掌握向量的几何表示,了解共线向量的概念.2.掌握向量的加法和减法的运算法则及运算律.3.掌握实数与向量的积的运算法则及运算律,理解两个向量共线的充要条件.4.了解平面向量基本定理,理解平面向量的坐标的概念,掌握平面向量的坐标运算.5.掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直的问题,掌握向量垂直的条件.6.掌握平面两点间的距离公式以及线段的定比分点和中点坐标公式,并且能熟练运用;掌握平移公式.向量由于具有几何形式与代数形式的“双重身份”,使它成为中学数学知识的一个交汇点,成为多项内容的媒介.主要考查:1.平面向量的性质和运算法则,共线定理、基本定理、平行四边形法则及三角形法则.2.向量的坐标运算及应用.3.向量和其它数学知识的结合.如和三角函数、数列、曲线方程等及向量在物理中的应用.4.正弦定理、余弦定理及利用三角公式进行恒等变形的能力.以化简、求值或判断三角形的形状为主.解三角形常常作为解题工具用于立体几何中的计算或证明.第1课时向量的概念与几何运算⑴既有又有的量叫向量.的向量叫零向量. 的向量,叫单位向量.⑵ 叫平行向量,也叫共线向量.规定零向量与任一向量 .⑶ 且 的向量叫相等向量.2.向量的加法与减法⑴ 求两个向量的和的运算,叫向量的加法.向量加法按 法则或 法则进行.加法满足 律和 律.⑵ 求两个向量差的运算,叫向量的减法.作法是将两向量的 重合,连结两向量的 ,方向指向 .3.实数与向量的积⑴ 实数λ与向量的积是一个向量,记作λ.它的长度与方向规定如下:① | λ |= .② 当λ>0时,λ的方向与的方向 ; 当λ<0时,λ的方向与的方向 ; 当λ=0时,λ .⑵ λ(μ)= . (λ+μ)= .λ(+b )= .⑶ 共线定理:向量b 与非零向量共线的充要条件是有且只有一个实数λ使得 .4.⑴ 平面向量基本定理:如果1e 、2e 是同一平面内的两个不共线的向量,那么对于这一平面内的任一向量,有且只有一对实数1λ、2λ,使得 .⑵ 设1e 、2e 是一组基底,=2111e y e x +,b =2212e y e x +,则与b 共线的充要条件是 .例1.已知△ABC 中,D 为BC 的中点,E 为AD 的中点.设=,=,求.解:=AE -=41(+)-=-43a +41b 变式训练1.如图所示,D 是△ABC 边AB 上的中点,则向量等于( )A .-+21B .--BA 21C .-21D .+21解:A例2. 已知向量2132e e -=,2132e e +=,2192e e -=,其中1e 、2e 不共线,求实数λ、μ,BC使μλ+=.解:c =λ+μb ⇒21e -92e =(2λ+2μ)1e +(-3λ+3μ)2e ⇒2λ+2μ=2,且-3λ+3μ=-9⇒λ=2,且μ=-1变式训练2:已知平行四边形ABCD 的对角线相交于O 点,点P 为平面上任意一点,求证:4=+++证明 +PC =2PO ,+=2PO ⇒++PC +=4PO例3. 已知ABCD 是一个梯形,AB 、CD 是梯形的两底边,且AB =2CD ,M 、N 分别是DC和AB 的中点,若a =,b =,试用a 、b 表示和.解:连NC ,则==-=+=+=4141;21-=-=变式训练3:如图所示,OADB 是以向量=,=为邻边的平行四边形,又=31,=31,试用、表示,,.解:=61a +65b ,=32a +32b ,=21-61b 例4. 设,是两个不共线向量,若与起点相同,t ∈R ,t 为何值时,,t ,31(+)三向量的终点在一条直线上?解:设])(31[t +-=-λ (λ∈R)化简整理得:)31()132(=-+-t λλ∵不共线与,∴⎪⎪⎩⎪⎪⎨⎧==⇒⎪⎪⎩⎪⎪⎨⎧=-=-2123030132t t λλλ故21=t 时,)(31,,t +三向量的向量的终点在一直线上.变式训练4:已知,,,,OA a OB b OC c OD d OE e ===== ,设t R ∈,如果3,2,a c b d ==()e t a b =+,那么t 为何值时,,,C D E 三点在一条直线上?解:由题设知,23,(3)CD d c b a CE e c t a tb =-=-=-=-+,,,C D E 三点在一条直线上的充要条件是存在实数k ,使得CE kCD = ,即(3)32t a tb ka kb -+=-+,整理得(33)(2)t k a k t b -+=-.①若,a b共线,则t 可为任意实数;②若,a b 不共线,则有33020t k t k -+=⎧⎨-=⎩,解之得,65t =.综上,,a b 共线时,则t 可为任意实数;,a b 不共线时,65t =.D1.认识向量的几何特性.对于向量问题一定要结合图形进行研究.向量方法可以解决几何中的证明.2.注意与O 的区别.零向量与任一向量平行.3.注意平行向量与平行线段的区别.用向量方法证明AB ∥CD ,需证∥,且AB 与CD 不共线.要证A 、B 、C 三点共线,则证∥即可.4.向量加法的三角形法则可以推广为多个向量求和的多边形法则,特点:首尾相接首尾连;向量减法的三角形法则特点:首首相接连终点.第2课时 平面向量的坐标运算1.平面向量的坐标表示分别取与x 轴、y 轴方向相同的两个单位向量i 、j 作为基底,对于一个向量,有且只有一对实数x 、y ,使得=x i +y j .我们把(x 、y)叫做向量的直角坐标,记作 .并且||= .2.向量的坐标表示与起点为 的向量是一一对应的关系.3.平面向量的坐标运算:若=(x 1、y 1),=(x 2、y 2),λ∈R ,则:+= -= λ=已知A(x 1、y 1),B(x 2、y 2),则= .4.两个向量=(x 1、y 1)和=(x 2、y 2)共线的充要条件是 .例1.已知点A (2,3),B (-1,5),且=31AB ,求点C 的坐标.解=31=(-1,32),=+=(1, 311),即C(1, 311)变式训练1.若(2,8)OA = ,(7,2)OB =- ,则31AB= .解: (3,2)--提示:(9,6)AB OB OA =-=--例2. 已知向量=(cos 2α,sin 2α),=(cos 2β,sin 2β),|-|=552,求cos(α-β)的值.解:|-|=55222552=--⇒)cos(βα2cos 22552βα--⇒=55222552=--⇒)cos(βα⇒cos 2βα-=53⇒cos(α-β)=257-变式训练2.已知-2b =(-3,1),2+b =(-1,2),求+b .解 a =(-1,1),b =(1,0),∴a +b =(0,1)例3. 已知向量=(1, 2),=(x, 1),1e =+2,2e =2-,且1e ∥2e ,求x .解:1e =(1+2x ,4),2e =(2-x ,3),1e ∥2e ⇒3(1+2x)=4(2-x)⇒x =21变式训练3.设=(ksinθ, 1),b =(2-cosθ, 1) (0 <θ<π),∥,求证:k≥3.证明: k =θθsin cos 2- ∴k -3=θπθsin )3cos(22--≥0 ∴k≥3例4. 在平行四边形ABCD 中,A(1,1),=(6,0),点M 是线段AB 的中点,线段CM 与BD 交于点P .(1) 若=(3,5),求点C 的坐标;(2) 当||=||时,求点P 的轨迹.解:(1)设点C 的坐标为(x 0,y 0),)5,1()5,9()0,6()5,3(00--==+=+=y x得x 0=10 y 0=6 即点C(10,6)(2) ∵= ∴点D 的轨迹为(x -1)2+(y -1)2=36 (y ≠1) ∵M 为AB 的中点∴P 分的比为21设P(x ,y),由B(7,1) 则D(3x -14,3y -2) ∴点P 的轨迹方程为)1(4)1()5(22≠=-+-y y x变式训练4.在直角坐标系x 、y 中,已知点A(0,1)和点B(-3,4),若点C 在∠AOB 的平分线上,且||=2,求的坐标.解 已知A (0,1),B (-3,4) 设C (0,5), D (-3,9)则四边形OBDC 为菱形 ∴∠AOB 的角平分线是菱形OBDC 的对角线OD ∵2103==∴)5103,510(1032-==1.认识向量的代数特性.向量的坐标表示,实现了“形”与“数”的互相转化.以向量为工具,几何问题可以代数化,代数问题可以几何化.2.由于向量有几何法和坐标法两种表示方法,所以我们应根据题目的特点去选择向量的表示方法,由于坐标运算方便,可操作性强,因此应优先选用向量的坐标运算.第3课时 平面向量的数量积1.两个向量的夹角:已知两个非零向量和b ,过O 点作=,=b ,则∠AOB =θ (0°≤θ≤180°) 叫做向量a 与b 的 .当θ=0°时,a 与b ;当θ=180°时,a 与b ;如果与b 的夹角是90°,我们说与b 垂直,记作 .2.两个向量的数量积的定义:已知两个非零向量a 与b ,它们的夹角为θ,则数量叫做与b 的数量积(或内积),记作·b ,即·b = .规定零向量与任一向量的数量积为0.若=(x 1, y 1),b =(x 2, y 2),则·b = . 3.向量的数量积的几何意义:|b |cosθ叫做向量b 在方向上的投影 (θ是向量与b 的夹角).·b 的几何意义是,数量·b 等于 .4.向量数量积的性质:设、b 都是非零向量,是单位向量,θ是与b 的夹角.⑴ ·=·= ⑵ ⊥b ⇔⑶ 当与b 同向时,·b = ;当与b 反向时,·b = . ⑷ cos θ= .⑸ |·b |≤ 5.向量数量积的运算律:⑴ ·b = ; ⑵ (λ)·b = =·(λb ) ⑶ (+)·c =4,|b |=5,且与b 的夹角为60°,求:(2+3b )·(3-2b ). 解:(2+3b )(3-2b )=-4变式训练1.已知||=3,|b |=4,|+b |=5,求|2-3b |的值. 解:56例2. 已知向量=(sin θ,1),b =(1,cos θ),-22πθπ<<.(1) 若a ⊥b ,求θ; (2) 求|a +b |的最大值.解:(1)若⊥,则0cos sin =+θθ 即1tan -=θ 而)2,2(ππθ-∈,所以4πθ-=(2))4sin(223)cos (sin 23πθθθ++=++=+当4πθ=时,+的最大值为12+变式训练2:已知(cos ,sin )a αα= ,(cos ,sin )b ββ=,其中0αβπ<<<. (1)求证:a b + 与a b -互相垂直;(2)若ka →+→b 与a k →-→b 的长度相等,求βα-的值(k 为非零的常数).证明:222222()()(cos sin )(cos sin )0a b a b a b ααββ+⋅-=-=+-+= a b ∴+ 与a b -互相垂直(2)k a →+(cos cos ,sin sin )b k k αβαβ→=++,a k →-(cos cos ,sin sin )b k k αβαβ→=--,k a b →+= a kb →-= ,cos()0βα-=,2πβα-=例3. 已知O 是△ABC 所在平面内一点,且满足(-)·(+-2)=0,判断△ABC 是哪类三角形.解:设BC 的中点为D ,则(-)(2-+)=0⇒2·=0⇒BC ⊥AD ⇒△ABC 是等腰三角形.变式训练3:若(1,2),(2,3),(2,5)A B C -,则△ABC 的形状是 .解: 直角三角形.提示:(1,1),(3,3),0,AB AC AB AC AB AC ==-⋅=⊥例4. 已知向量m =(cosθ, sinθ)和n =(2-sinθ, cosθ) θ∈(π, 2π)且|n m +|=528,求cos(82πθ+)的值.解:+=(cos θ-sin θ+2, cos θ+sin θ)由已知(cos θ-sin θ+2)2+(cos θ+sin θ)2=25128化简:cos 257)4(=+πθ又cos 225162)4cos(1)82(=++=+πθπθ∵θ∈(π, 2π) ∴cos 25162)4cos(1)82(=++=+παπθ<0 ∴cos 25162)4cos(1)82(=++=+παπθ=-54 变式训练4.平面向量11),(2a b =-=,若存在不同时为0的实数k 和t ,使2(3)x a t b =+- ,,y ka tb =-+ 且x y ⊥ ,试求函数关系式()k f t =. 解:由11),(2a b =-=得0,||2,||1a b a b ⋅===22222[(3)]()0,(3)(3)0a t b ka tb ka ta b k t a b t t b +-⋅-+=-+⋅--⋅+-=33311(3),()(3)44k t t f t t t =-=- 1.运用向量的数量积可以解决有关长度、角度等问题.因此充分挖掘题目所包含的几何意义,往往能得出巧妙的解法.2.注意·b 与ab 的区别.·b =0≠>=,或b =. 3.应根据定义找两个向量的夹角。
向量知识点与公式总结

向量知识点与公式总结向量知识点与公式总结篇1考点一:向量的概念、向量的基本定理了解向量的实际背景,掌握向量、零向量、平行向量、共线向量、单位向量、相等向量等概念,理解向量的几何表示,掌握平面向量的基本定理。
注意对向量概念的理解,向量是可以自由移动的,平移后所得向量与原向量相同;两个向量无法比较大小,它们的模可比较大小。
考点二:向量的运算向量的运算要求掌握向量的加减法运算,会用平行四边形法则、三角形法则进行向量的加减运算;掌握实数与向量的积运算,理解两个向量共线的含义,会推断两个向量的平行关系;掌握向量的数量积的运算,体会平面向量的数量积与向量投影的关系,并理解其几何意义,掌握数量积的坐标表达式,会进行平面向量积的运算,能运用数量积表示两个向量的夹角,会用向量积推断两个平面向量的垂直关系。
命题形式重要以选择、填空题型显现,难度不大,考查重点为模和向量夹角的定义、夹角公式、向量的坐标运算,有时也会与其它内容相结合。
考点三:定比分点掌握线段的定比分点和中点坐标公式,并能娴熟应用,求点分有向线段所成比时,可借助图形来帮忙理解。
重点考查定义和公式,重要以选择题或填空题型显现,难度一般。
由于向量应用的广泛性,常常也会与三角函数,解析几何一并考查,若显现在解答题中,难度以中档题为主,偶然也以难度略高的题目。
考点四:向量与三角函数的综合问题向量与三角函数的综合问题是高考常常显现的问题,考查了向量的知识,三角函数的知识,实现了高考中试题的掩盖面的要求。
命题以三角函数作为坐标,以向量的坐标运算或向量与解三角形的内容相结合,也有向量与三角函数图象平移结合的问题,属中档偏易题。
考点五:平面向量与函数问题的.交汇平面向量与函数交汇的问题,重要是向量与二次函数结合的问题为主,要注意自变量的取值范围。
命题多以解答题为主,属中档题。
考点六:平面向量在平面几何中的应用向量的坐标表示实际上就是向量的代数表示.在引入向量的坐标表示后,使向量之间的运算代数化,这样就可以将“形”和“数”紧密地结合在一起.因此,很多平面几何问题中较难解决的问题,都可以转化为大家熟识的代数运算的论证.也就是把平面几何图形放到适当的坐标系中,给予几何图形有关点与平面向量具体的坐标,这样将有关平面几何问题转化为相应的代数运算和向量运算,从而使问题得到解决.命题多以解答题为主,属中等偏难的试题。
高三数学平面向量考点解析

高三数学平面向量考点解析1、高中数学知识点总结平面向量的概念:平面向量是既有大小又有方向的量。
向量和数量是数学中讨论的两种量的形式,数量是实数。
2、平面向量的三种形式:(1)字母形式:用单独的小写字母带箭头或者用两个大写字母带箭头表示向量;(2)几何形式;用平面内的有向线段表示向量,零向量是一个点;(3)坐标形式:向量可以在坐标平面内用坐标表示,向量坐标等于它的终点坐标减去始点坐标。
3、平面向量的相关概念,(1)模(绝对值):向量的大小或者向量的长度叫做向量的模,模是大于等于的实数。
模也叫作绝对值、大小、长度,这几个说法是一个意思。
(2)相等向量:方向相同、大小相等的向量叫做相等向量(或者叫相同向量),两个相等向量的x,y坐标对应相等。
(3)相反向量:方向相反、大小相等的向量叫做相反向量。
一个向量加负号即变为其相反向量,在向量化简和运算中很常见、很重要。
(4)平行(共线)向量:平面内两个向量所在的直线平行或者重合,则说这两个向量平行(或者共线),用平行符号表示。
因为向量可以自由平移,所以对向量来讲平行和共线是一个意思。
两个非零向量平行时,必定方向相同或相反。
规定零向量和任意向量都平行,但不能说零向量和其它向量方向相同或相反。
(5)垂直向量:两向量所在的直线垂直(或者说夹角为90度),则说这两个向量为垂直向量,用垂直符号表示。
规定零向量和任意向量都垂直,但不能说夹角90度。
(6)零向量:大小为零(或者说模、绝对值、长度为零都是一个意思)的向量叫做零向量,规定零向量的方向是任意的,不能讨论零向量和其它向量方向的关系及夹角问题。
规定零向量和任意向量都平行且垂直。
(7)单位向量:长度为1的向量叫做单位向量。
一个向量除以自己的模得到和这个向量同方向的单位向量;单位向量乘以一个向量的模得到这个向量。
(8)位置向量:向量AB可以表示点B相对点A的位置,所以向量AB可以叫做点B关于点A的位置向量。
(9)方向向量:一个非零向量与一条直线平行,则这个向量叫做这条直线的平行向量。
2022年高考数学一轮复习必备 线段的定比分点及平移

第42课时:第五章 平面向量——线段的定比分点及平移课题:线段的定比分点及平移一.复习目标:1.掌握线段的定比分点坐标公式和中点坐标公式,会用定比分点坐标公式求分点坐标和,会用中点坐标公式解决对称问题;2.掌握平移公式,会用平移公式化简函数式或求平移后的函数解析式.二.知识要点:1.线段的定比分点:内分点、外分点、的确定;2.定比分点坐标公式是 ;线段的中点坐标公式是 ; 3.平移公式是 .三.课前预习:1.若点分的比为34,则点分的比是 . 2.把函数1124y x =-的图象,按向量(2,4)a =-平移后,图象的解析式是( ) 12124y x =- 11324y x =- 11924y x =+ 12124y x =-- 3.将函数241y x x =--顶点按向量平移后得到点(1,3)P '-,则 .4.ABC ∆中三边中点分别是(2,1),(3,4),(2,1)D E F --,则ABC ∆的重心是 .四.例题分析:例1.已知两点(,5)A x ,(2,)B y -,点(1,1)P 在直线上,且||2||AP BP =,求点和点的坐标.例2.已知(1,2),(1,3),(2,2)A B C --,点分的比为,点在线段上,且ABC AMNC S S ∆=32,求点的坐标.例3.已知函数 22(2)1y x =---的图象经过按平移后使得抛物线顶点在轴上,且在轴上截得的弦长为,求平移后函数解析式和.例4.已知,,D E F 分比是ABC ∆的三边,,BC CA AB 上的点,且使BD CE AF DC EA FB==,证明:ABC ∆与DEF ∆的重心相同.五.课后作业:1.已知点按向量平移后得到点,则点按向量平移后的坐标是( )(5,1)-- (5,1)- (5,1)-2.平面上有(2,1)A -,(1,4)B ,(4,3)D -三点,点在直线上,且12AC BC =,连并延长到,使1||||4CE ED =,则点的坐标为( ) 或811(,)33 811(,)33- 5(8,)3-- 3.平移曲线()y f x =使曲线上的点变为,这时曲线方程为( )(1)2y f x =-+ (1)2y f x =++(1)2y f x =-- (2)1y f x =-+4.把一个函数的图象向量(,2)4a π=平移后图象的解析式为sin()24y x π=++,则原来函数图象的解析式为 .5.已知函数11x y x-=+,按向量平移该函数图形,使其化简为反比例函数的解析式,则向量= ,化简后的函数式为 .6.已知(1,0)A ,(0,1)B -,(,)P x y ,为坐标原点,若1OA OB OP λλ+=+,则点的轨迹方程为 .7.已知三角形的三个顶点为(1,2),(4,1),(3,4)A B C ,(1)求三边的长;(2)求边上的中线的长;(3)求重心的坐标;(4)求的平分线的长;(5)在上取一点,使过且平行于的直线把ABC ∆的面积分成的两部分,求点的坐标.8.如图已知三点(0,8),(4,0),(5,3)A B C --,点内分的比是,在上,且BDE ∆的面积是ABC ∆面积的一半,求点的坐标.9.将函数2y x =-的图象进行怎样的平移,才能使平移后得到的图象与函数22y x x =--的两交点关于原点对称并求平移后的图象的解析式。
(完整版)平面向量重要基础知识点

平面向量重要知识点1、向量相关观点 :( 1)向量的观点 :既有大小又有方向的量,向量是能够平移的,(2)零向量 :长度为 0的向量叫零向量,记作: 0 ,注意零向量的方向是随意的 ;( 3)单位向量 :长度为一个单位长度的向量叫做单位向量uuur( 与 AB 共线的单位向量是uuur uuur AB) ;|AB|( 4)相等向量 :长度相等且方向同样的两个向量叫相等向量,相等向量有传达性;( 5)平行向量(也叫共线向量) :方向 同样或相反 的非零向量 a 、 b 叫做平行向量,记r作: a ∥ b ,规定零向量和任何向量平行 。
提示平行向量 无传达性 !(由于有 0 )2. 平面向量的基本定理 :假如 e 1 和 e 2 是同一平面内的两个不共线向量,那么对该平面内的任一直量 a ,有且只有一对实数 1 、 2 ,使 a= 1 e 1 + 2 e 2。
3、实数与向量的积 :实数与向量 a 的积是一个向量,记作a :当 >0 时,a 的方向与 a 的方向同样,当<0 时,a 的方向与 a 的方向相反4、平面向量的数目积 :(1)两个向量的夹角 :( 2)平面向量的数目积 :规定:零向量与任一直量的数目积是注意数目 积是一个实数,不再是一个向量 。
r0。
(4) a ? b 的几何意( 3) b 在 a 上的投影 为 | b | cos ,它是一个实数,但不必定大于r义:数目积 a ? b 等于 a 的模 | a | 与 b 在 a 上的投影的积。
( 5)向量数目积的性质 :设两个非零向量 a , b ,其夹角为 ,则:r r r r 0 ;① ab a ? br rr 2 r r r 2 r r 2 ②当 a , b 同向时, a ? b = a b ,特别地, a a ?a a , a a ;当 a 与 b 反向时,r r r r r r 0是 为锐角的必需非充足 a ? b =- a b ;当 为锐角时, a ? b > 0,且 a 、b 不一样向, a b1 / 4条件;当r r r r0是为钝角的必需非充足条件;为钝角时, a ? b <0,且 a、b 不反向, a br rr r r r③非零向量 a , b 夹角的计算公式: cos a ?b;④ | a ?b | | a ||b | 。
平面向量的数量积和点积

平面向量的数量积和点积在数学中,向量是用来表示有大小和方向的量的。
而平面向量是指在一个平面内的向量,它由两个实数(或复数)组成。
平面向量的数量积和点积是两个重要的概念,它们在向量运算中起着关键的作用。
一、平面向量的数量积平面向量的数量积,也称为内积或点积,表示了两个向量之间的夹角关系。
设有两个平面向量$\vec{a}=(x_1,y_1)$和$\vec{b}=(x_2,y_2)$,它们的数量积可以用如下公式表示:$$\vec{a}\cdot\vec{b}=x_1x_2+y_1y_2$$其中,$\cdot$表示数量积的运算符。
从公式中可以看出,数量积的结果是一个标量,即一个实数。
根据数量积的定义,我们可以得到一些重要的性质:1. 交换律:$\vec{a}\cdot\vec{b}=\vec{b}\cdot\vec{a}$,表示数量积满足交换律,与向量的顺序无关。
2. 分配律:$(\vec{a}+\vec{b})\cdot\vec{c}=\vec{a}\cdot\vec{c}+\vec{b}\cdot\vec{c} $,表示数量积满足分配律,可以按照矩阵乘法的性质进行运算。
二、点积与夹角的关系数量积不仅可以表示两个向量之间的夹角关系,还可以通过夹角的余弦值来计算数量积。
根据余弦定理,两个向量$\vec{a}$和$\vec{b}$之间的夹角$\theta$可以用下面的公式表示:$$\cos\theta=\frac{\vec{a}\cdot\vec{b}}{|\vec{a}||\vec{b}|}$$其中,$|\vec{a}|$和$|\vec{b}|$分别表示向量$\vec{a}$和$\vec{b}$的模。
这个公式非常重要,因为它可以帮助我们计算向量的夹角,而不需要直接通过几何图形进行推导。
三、数量积的几何意义数量积还有一个重要的几何意义,它可以帮助我们计算向量之间的投影。
设有向量$\vec{a}$和$\vec{b}$,以及它们之间的夹角$\theta$,那么$\vec{b}$在$\vec{a}$上的投影可以表示为:$$\text{proj}_\vec{a}\vec{b}=|\vec{b}|\cos\theta$$通过数量积的计算,我们可以轻松得到投影的结果。
【巧解妙解】高考数学向量与其他问题结合的经典题型

平面向量综合应用与解题技巧【命题趋向】由2019年高考题分析可知:1.这部分内容高考中所占分数一般在10分左右.2.题目类型为一个选择或填空题,一个与其他知识综合的解答题. 3.考查内容以向量的概念、运算、数量积和模的运算为主. 【考点透视】“平面向量”是高中新课程新增加的内容之一,高考每年都考,题型主要有选择题、填空题,也可以与其他知识相结合在解答题中出现,试题多以低、中档题为主. 透析高考试题,知命题热点为:1.向量的概念,几何表示,向量的加法、减法,实数与向量的积. 2.平面向量的坐标运算,平面向量的数量积及其几何意义. 3.两非零向量平行、垂直的充要条件. 4.图形平移、线段的定比分点坐标公式.5.由于向量具有“数”与“形”双重身份,加之向量的工具性作用,向量经常与数列、三角、解析几何、立体几何等知识相结合,综合解决三角函数的化简、求值及三角形中的有关问题,处理有关长度、夹角、垂直与平行等问题以及圆锥曲线中的典型问题等.6.利用化归思想处理共线、平行、垂直问题向向量的坐标运算方面转化,向量模的运算转化为向量的运算等;利用数形结合思想将几何问题代数化,通过代数运算解决几何问题. 【例题解析】1. 向量的概念,向量的基本运算(1)理解向量的概念,掌握向量的几何意义,了解共线向量的概念. (2)掌握向量的加法和减法.(3)掌握实数与向量的积,理解两个向量共线的充要条件.(4)了解平面向量的基本定理,理解平面向量的坐标的概念,掌握平面向量的坐标运算. (5)掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直的问题,掌握向量垂直的条件. (6)掌握平面两点间的距离公式.例1(北京卷理)已知O 是ABC △所在平面内一点,D 为BC 边中点,且2OA OB OC ++=0,那么( ) A.AO OD = B.2AO OD = C.3AO OD = D.2AO OD = 命题意图:本题考查能够结合图形进行向量计算的能力.解: 22()(,22.OA OB OC OA DB OD DC OD DB DC OA OD AO OD ∴∴++=++++=-+==)=0,0, 故选A . 例2.(安徽卷)在ABCD 中,,,3AB a AD b AN NC ===,M 为BC 的中点,则MN =______.(用a b 、表示)命题意图: 本题主要考查向量的加法和减法,以及实数与向量的积. 解:343A =3()AN NC AN C a b ==+由得,12AM a b =+,所以,3111()()4244MN a b a b a b =+-+=-+. 例3.(广东卷)如图1所示,D 是△ABC 的边AB 上的中点,则向量=( ) (A )BA BC 21+- (B ) 21--(C ) 21- (D )21+命题意图: 本题主要考查向量的加法和减法运算能力. 解:21+-=+=,故选A.例4. (重庆卷)与向量a =71,,22b ⎛⎫= ⎪⎝⎭⎪⎭⎫ ⎝⎛27,21的夹解相等,且模为1的向量是 ( ) (A) ⎪⎭⎫- ⎝⎛53,54 (B) ⎪⎭⎫- ⎝⎛53,54或⎪⎭⎫ ⎝⎛-53,54 (C )⎪⎭⎫- ⎝⎛31,322 (D )⎪⎭⎫- ⎝⎛31,322或⎪⎭⎫ ⎝⎛-31,322 命题意图: 本题主要考查平面向量的坐标运算和用平面向量处理有关角度的问题.解:设所求平面向量为,c 由433,,, 1.555c c ⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭4或-时5另一方面,当7413431,,cos ,.5527a c c a c a c ⎛⎫⨯+⨯- ⎪⋅⎛⎫=-=== ⎪⋅⎝⎭⎛⎫时 当7413431,,cos ,.5527a c c a c a c ⎛⎫⎛⎫⨯-+⨯ ⎪ ⎪⋅⎛⎫=-==- ⎪⋅⎝⎭⎛⎫时 故平面向量c 与向量a =71,,22b ⎛⎫= ⎪⎝⎭⎪⎭⎫ ⎝⎛27,21的夹角相等.故选B. 例5.(天津卷)设向量a 与b 的夹角为θ,且)3,3(=a,)1,1(2-=-a b ,则=θcos __. 命题意图: 本题主要考查平面向量的坐标运算和平面向量的数量积,以及用平面向量的数量积处理有关角度的问题.解: ()()()()(),,22,3,323,231,1.b x y b a x y x y =-=-=--=-设由 ()2311,1,2.231 2.x xb y y -=-=⎧⎧⇒∴=⎨⎨-==⎩⎩得 2cos ,33a b a b a b⋅===⋅+例6.(2006年湖北卷)已知向量()3,1a =,b 是不平行于x 轴的单位向量,且3a b ⋅=,则b = ()(A ) ⎪⎪⎭⎫⎝⎛21,23 (B ) ⎪⎪⎭⎫ ⎝⎛23,21 (C )⎪⎪⎭⎫ ⎝⎛433,41 (D ) ()0,1 命题意图: 本题主要考查应用平面向量的坐标运算和平面向量的数量积,以及方程的思想解题的能力.解:设(),()b x y x y =≠,则依题意有1,y +=1,2x y ⎧=⎪⎪⎨⎪⎪⎩ 故选B.例7.设平面向量1a 、2a 、3a 的和1230a a a ++=.如果向量1b 、2b 、3b ,满足2i i b a =,且i a 顺时针旋转30o 后与i b 同向,其中1,2,3i =,则( )(A )1230b b b -++= (B )1230b b b -+= (C )1230b b b +-= (D )1230b b b ++=命题意图: 本题主要考查向量加法的几何意义及向量的模的夹角等基本概念.常规解法:∵1230a a a ++=,∴ 1232220.a a a ++=故把2i a (i=1,2,3),分别按顺时针旋转30 后与i b 重合,故1230b b b ++=,应选D.巧妙解法:令1a =0,则2a =3a -,由题意知2b =3b -,从而排除B ,C ,同理排除A ,故选(D). 点评:巧妙解法巧在取1a =0,使问题简单化.本题也可通过画图,利用数形结合的方法来解决.2. 平面向量与三角函数,解析几何等问题结合(1) 平面向量与三角函数、三角变换、数列、不等式及其他代数问题,由于结合性强,因而综合能力较强,所以复习时,通过解题过程,力争达到既回顾知识要点,又感悟思维方法的双重效果,解题要点是运用向量知识,将所给问题转化为代数问题求解.(2)解答题考查圆锥曲线中典型问题,如垂直、平行、共线等,此类题综合性比较强,难度大. 例8.(2007年陕西卷理17.)设函数f (x )=a-b ,其中向量a =(m,cos2x ),b =(1+sin2x ,1),x ∈R ,且函数y=f (x )的图象经过点⎪⎭⎫⎝⎛2,4π,(Ⅰ)求实数m 的值;(Ⅱ)求函数f (x )的最小值及此时x 的值的集合. 解:(Ⅰ)()(1sin 2)cos 2f x a b m x x ==++,由已知πππ1sin cos 2422f m ⎛⎫⎛⎫=++=⎪ ⎪⎝⎭⎝⎭,得1m =.(Ⅱ)由(Ⅰ)得π()1sin 2cos 2124f x x x x ⎛⎫=++=+⎪⎝⎭,∴当πsin 214x ⎛⎫+=- ⎪⎝⎭时,()f x 的最小值为1,由πsin 214x ⎛⎫+=- ⎪⎝⎭,得x 值的集合为3ππ8x x k k ⎧⎫=-∈⎨⎬⎩⎭Z , 例2.(2007年陕西卷文17)设函数b a x f 、=)(.其中向量2)2π(R,),1,sin 1(),cos ,(=∈+==f x x b x m a 且.(Ⅰ)求实数m 的值; (Ⅱ)求函数)(x f 的最小值.解:(Ⅰ)()(1sin )cos f x m x x ==++a b ,πππ1sin cos 2222f m ⎛⎫⎛⎫=++=⎪ ⎪⎝⎭⎝⎭,得1m =.(Ⅱ)由(Ⅰ)得π()sin cos 114f x x x x ⎛⎫=++=++ ⎪⎝⎭,∴当πsin 14x ⎛⎫+=- ⎪⎝⎭时,()f x 的最小值为1例9.(湖北卷理16)已知ABC △的面积为3,且满足06AB AC ≤≤,设AB 和AC 的夹角为θ. (I )求θ的取值范围;(II )求函数2()2sin 24f θθθ⎛⎫=+⎪⎝⎭π的最大 解:(Ⅰ)设ABC △中角A B C ,,的对边分别为a b c ,,, 则由1sin 32bc θ=,0cos 6bc θ≤≤,可得0cot 1θ≤≤,ππ42θ⎡⎤∈⎢⎥⎣⎦,∴.(Ⅱ)2π()2sin 24f θθθ⎛⎫=+⎪⎝⎭π1cos 222θθ⎡⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦(1sin 2)2θθ=+-πsin 2212sin 213θθθ⎛⎫=-+=-+ ⎪⎝⎭.ππ42θ⎡⎤∈⎢⎥⎣⎦,∵,ππ2π2363θ⎡⎤-∈⎢⎥⎣⎦,,π22sin 2133θ⎛⎫-+ ⎪⎝⎭∴≤≤.即当5π12θ=时,max ()3f θ=;当π4θ=时,min ()2f θ=. 例10.(广东卷理)已知ABC 的三个顶点的直角坐标分别为A(3,4)、B(0,0)、C(c,0) (1)若c=5,求sin ∠A 的值;(2)若∠A 为钝角,求c 的取值范围; 解:(1)(3,4)AB =--,(3,4)AC c =--,若c=5, 则(2,4)AC =-,∴cos cos ,A AC AB ∠=<>=sin ∠A ; (2)∠A 为钝角,则39160,0,c c -++<⎧⎨≠⎩解得253c >,∴c 的取值范围是25(,)3+∞例11.(山东卷文17)在ABC △中,角A B C ,,的对边分别为tan a b c C =,,,(1)求cos C ;(2)若52CB CA =,且9a b +=,求c .解:(1)sin tan cos CC C=∴=又22sin cos 1C C +=解得1cos 8C =±. tan 0C >,C ∴是锐角. 1cos 8C ∴=. (2)52CB CA =, 5cos 2ab C ∴=,20ab ∴=. 又9a b += 22281a ab b ∴++=. 2241a b ∴+=.2222cos 36c a b ab C ∴=+-=.6c ∴=.例12. (湖北卷)设函数()()f x a b c =⋅+,其中向量()()sin ,cos ,sin ,3cos a x x b x x =-=-, ()cos ,sin ,c x x x R =-∈.(Ⅰ)求函数()x f 的最大值和最小正周期;(Ⅱ)将函数()x f y =的图像按向量d 平移,使平移后得到的图像关于坐标原点成中心对称,求长度最小的d . 命题意图:本小题主要考查平面向量数量积的计算方法、三角公式、三角函数的性质及图像的基本知识,考查推理和运算能力.解:(Ⅰ)由题意得,f(x)=a ·(b c +)=(sinx,-cosx)·(sinx-cosx,sinx -3cosx)=sin 2x -2sinxcosx+3cos 2x =2+cos2x -sin2x =2+2sin(2x+43π).所以,f(x)的最大值为2+2,最小正周期是22π=π.(Ⅱ)由sin(2x+43π)=0得2x+43π=k.π,即x =832ππ-k ,k ∈Z ,于是d =(832ππ-k ,-2),(k d π=-k ∈Z.因为k 为整数,要使d 最小,则只有k =1,此时d =(―8π,―2)即为所求.例13.(2006年全国卷II )已知向量a =(sin θ,1),b =(1,cos θ),-π2<θ<π2.(Ⅰ)若a ⊥b ,求θ;(Ⅱ)求|a +b |的最大值. 命题意图:本小题主要考查平面向量数量积和平面向量的模的计算方法、以及三角公式、三角函数的性质等基本知识,考查推理和运算能力.解:(Ⅰ)若a ⊥b ,则sin θ+cos θ=0,由此得 tan θ=-1(-π2<θ<π2),所以 θ=-π4;(Ⅱ)由a =(sin θ,1),b =(1,cos θ)得|a +b |=(sin θ+1)2+(1+cos θ)2=3+2(sin θ+cos θ)=3+22sin(θ+π4),当sin(θ+π4)=1时,|a +b |取得最大值,即当θ=π4时,|a +b |最大值为2+1.例14.(2006年陕西卷)如图,三定点(2,1),(0,1),(2,1);A B C --,,AD t AB BE tBC == ,[0,1].DM tDE t =∈(I )求动直线DE 斜率的变化范围; (II )求动点M 的轨迹方程。
2022河南省单招数学知识点

2022河南省单招数学知识点
1.集合,简易逻辑考试内容:集合、子集、交集、补集、交集、并集。
2.排列组合:排列、数列数公式,组合、组合数公式,二项式定理展开式。
3.概率,随机事件的概率、可能性事件的概率。
几何部分:
1.平面向量考试内容:向量、向量的加减法、实数与向量的积、平面向量的坐标表示,线段的定比分点、平面向量的数量积、平面两点的距离、平移。
2.函数,映射、函数的单调性、奇偶性,反函数及图像关系,对数的运算、对数函数
3.不等式的基本性质、证明、解法,含值的不等式。
4.三角函数,单位圆中的三角函数、正余弦函数、正切函数及其图像,正弦定理、余弦定理。
5.数列:等差、等比数列及其通向公式,前N项和公式。
6.直线和圆的方程,直线的倾斜角和斜率,点斜式和两点式、一般式平行线与垂直的关系,点到线的距离。
7.圆锥曲线方程:椭圆的几何性质和参数方程,双曲线、抛物线的标准方程和基本性质。
8.直线、平面、简单几何体,直线和平面的判定,距离,三垂线定理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
温馨提示:
此题库为Word 版,请按住Ctrl,滑动鼠标滚轴,调节合适的观 看比例,关闭Word 文档返回原板块。
考点12 平面向量的数量积、线段的定比分点与平移
1.(2010·重庆高考理科·T2)已知向量a ,b 满足0,1,2a b a b ∙===,则2a b -=( )
(A )0
(B ) (C )4 (D )8
【命题立意】本小题考查向量的基础知识、数量积的运算及性质,考查向量运算的几何意义,考查数形结合的思想方法.
【思路点拨】根据公式2
a a =
进行计算,或数形结合法,根据向量的三角形法则、平行四边形法则求解.
【规范解答】选B (方法一)
222242a b a b a a b b -=-=-⋅+2() ==(方法二)数形结合法:由条件0a b ∙=a ,b 所在线段为邻边的平行四边形为矩形,又因为1,2a b ==,所以
2=2a ,则2a b -是边长为2【方法技巧】方法一:灵活应用公式2
a a =, 方法二:熟记向量0a
b a b ⊥⇔∙=(a ,b 为非零向量)及向量和的三角形法则
2.(2010·重庆高考文科·T3)若向量(3,)a m =,(2,1)b =-, 0a b ∙=,则实数m 的值为( )
(A )32- (B )32
(C )2 (D )6 【命题立意】本小题考查平面向量的基础知识及其应用,考查数量积的运算,考查方程思想.
【思路点拨】将坐标代入数量积的坐标公式计算即可.
【规范解答】选D. 因为0a b ∙=,向量(3,)a m =,(2,1)b =-,所以32(1)0m ⨯+-=,所以6m =.
【方法技巧】熟记向量数量积的坐标运算公式.
3.(2010·四川高考理科·T5)设点M 是线段BC 的中点,点A 在直线BC 外,
2
16,BC AB AC AB AC =∣+∣=∣-∣,则AM ∣∣=( ).
(A )8 (B )4 (C ) 2 (D )1
4
【命题立意】本题主要考查平面向量加、减运算的几何表示,向量模的意义,平行四边形的性质.
【思路点拨】平行四边形法则,22BC BC =.
【规范解答】选C. 以AB ,AC 为邻边作平行四边形ABDC ,由 22=16BC BC =,知=4BC ,又由AB AC AB AC +=-可知,四边形ABCD 为 矩形.∴242AD BC AM AM ===⇒=,故选C
【方法技巧】平行四边形法则和数形结合思想的
应用. 如图:
4.(2010·全国高考卷Ⅱ理科·T8)在△ABC 中,点D 在
边AB 上,CD 平分∠ACB ,若CB = a , CA = b , 1,2a b ==, 则CD =( )
(A )13a + 23b (B )23a +13b (C )35a +45b (D )45
a +35
b 【命题立意】本题考查了平面向量基本定理及三角形法则的知识.
【思路点拨】运用平面向量三角形法则解决.由角平分线性质知DB:AD=CB ︰CA =1︰2,
这样可以用向量a , b 表示CD .
【规范解答】选B.由题意得AD ︰DB=AC ︰CB=2︰1,AD=
32AB,所以CD =CA +=b +23 =3
2a +13b 5.(2010·湖北高考理科·T5)已知△ABC 和点M 满足0MA MB MC ++=.若存在实数m 使得AB AC mAM +=成立,则m =( )
(A )2 (B )3 (C )4 (D )5
【命题立意】本题主要考查向量加法的平行四边形法则、两向量共线的充要条件以及三角形重心的性质,同时考查考生的运算求解能力.
【思路点拨】先由0MA MB MC ++=确定M 点的位置,再利用向量加法的平行四边形法则表示出AB AC m +=,最后利用两向量共线的充要条件即可求出m 的值.
【规范解答】选B.由0MA MB MC ++=得MA MB MC +=-,设AB 中点为D,则2MA MB MD +=,从而2MC MD -=,即2C M M D =,所以M 点为ABC ∆的重心.设BC 的中点为E ,则2A B A C A E +=,
所以m 2
AE AM =,由三角形重心的性质知. 3m =. 【方法技巧】已知0MA MB MC ++=确定点M 的位置时,解题的依据是若(0)b a a λ=≠则b a b a λ⎧⎪⎨=⎪⎩
与共线.
.因此务必要将多个向量的运算转化为两向量的关系,再利用两向量共线的充要条件加以判断.再如已知ABC ∆,230MA MB MC ++=时,设AC,BC 的中点分别为E ,F ,则232MA MB MC MA MC MB MC ++=+++()()240ME MF =+=,
从而2ME MF =-,因此可判断M 点为ABC ∆的中位线EF 上靠近F 的一个三等分点.
6.(2010·上海高考理科·T16)直线l 的参数方程是)(221R t t y t x ∈⎩⎨
⎧-=+=,则l 的方向向量d 可以 是( )
(A)(1,2) (B)(2,1) (C)(-2,1) (D)(1,-2)
【命题立意】本题考查了参数方程及直线、向量的有关知识.
【思路点拨】先求出直线的方程,再写出直线的一个方向向量,再找与此方向向量平行的向量.
【规范解答】选C.由参数方程消去t 得,2521+-=x y ,21-=k ,与向量)2
1,1(-平行的向量只有(-2,1). 【方法技巧】必须掌握对于直线y kx b =+,(1,k )是它的方向向量及两向量共线的充要条件.
7.(2010·江西高考理科·T13)已知向量,a b 满足1,2,a b a ==与b 的夹角为60°,
则a b -=______________.
【命题立意】本题主要考查平面向量数量积、平面向量的模、夹角等概念及平面向量的运算.
【思路点拨】
利用模长公式和数量积的知识直接求解.
【规范解答】由题意知a b -
=
=
= 【方法技巧】灵活应用公式2
a a =. 8.(2010·江西高考文科·T13)已知向量a ,
b 满足||2b =,a 与b 的夹角为60︒,则b 在a 上的投影是 .
【命题立意】本题主要考查向量的基本知识,考查向量的概念.
【思路点拨】由向量投影定义直接求.
【规范解答】
【答案】1
【方法技巧】熟记向量投影的定义,可联想向量数量积的定义表达式及其几何意义.
关闭Word文档返回原板块。