2018年丰台区初三数学一模试题及答案
2018北京初三数学一模18区分类汇编_圆

F(2018朝阳一模)25.如图,△ABC 内接于⊙O ,AB 为直径,点D 在⊙O 上,过点D 作⊙O切线与AC 的延长线交于点E ,ED ∥BC ,连接AD 交BC 于点F. (1)求证:∠BAD =∠DAE ;(2)若AB =6,AD =5,求DF 的长.(2018东城一模)25. 如图,在⊙O 中,AB 为直径,OC AB ⊥,弦CD 与OB 交于点F ,过点,D A 分别作⊙O 的切线交于点G ,且GD 与AB E . (1)求证:12∠=∠;(2)已知::1:3OF OB =,⊙O 的半径为3,求AG 的长.(2018丰台一模)25.如图,⊙O 的直径AB 垂直于弦CD ,垂足为点E ,过点C作⊙O 的切线,交AB 的延长线于点P ,联结PD . (1)判断直线PD 与⊙O 的位置关系,并加以证明;(2)联结CO 并延长交⊙O 于点F ,联结FP 交CD 于点G ,如果CF =10,4cos 5APC ∠=,求EG 的长.GOPABCD EF(2018海淀一模)25.如图,在△ABC中,AB=AC,AD⊥BC于点D,过点C作⊙O与边AB相切于点E,交BC于点F,CE为⊙O的直径.(1)求证:OD⊥CE;(2)若DF=1, DC=3,求AE的长.(2018怀柔一模)25.如图,AB是⊙O的直径,C是弧AB的中点,D是⊙O的切线CN上一点,BD交AC于点E,且BA= BD.(1)求证:∠ACD=45°;(2)若OB=2,求DC的长.(2018门头沟一模)25.如图,在△ABC中,AB=AC,以AC为直径作⊙O交BC 于点D,过点D作⊙O的切线EF,交AB和AC的延长线于E、F.(1)求证:FE⊥AB;(2)当AE=6,sin∠CFD=35时,求EB的长.(2018平谷一模)25.如图,AB 为⊙O 的直径,BC 切⊙O 于点B ,AC 交⊙O 于点D ,∠BAC =2∠CBE ,交AC 于点E ,交⊙O 于点F ,连接AF . (1)求证:∠CBE =∠CAF ;(2)过点E 作EG ⊥BC 于点G ,若∠C =45°,CG =1,求⊙O 的半径.(2018石景山一模)25.如图,AB 是⊙O 的直径,C 是⊙O 上一点,D 是OB 中点,过点D 作AB 的垂线交AC 的延长线于点F .过点C 作⊙O 的切线交FD 于点E .(1)求证:CE EF =;(2)如果3sin 5F =,25=EF ,求AB 的长.(2018通州一模)25.如图,△ABC 内接于⊙O ,AB 是直径,⊙O 的切线PC 交BA 的延长线于点P ,OF ∥BC ,交AC 于点E ,交PC 于点F ,连接AF . (1)求证:AF 是⊙O 的切线;O F PECAB(2)已知⊙O 的半径为4,AF=3,求线段AC 的长.(2018西城一模)25.如图,AB 为⊙O 的直径,M 为⊙O 外一点,连接MA 与⊙O 交于点C ,连接MB 并延长交⊙O 于点D ,经过点M 的直线l 与MA 所在直线关于直线MD 对称.作BE ⊥l 于点E ,连接AD ,DE . (1)依题意补全图形;(2)在不添加新的线段的条件下,写出图中与∠BED 相等的角,并加以证明.(2018延庆一模)25.如图,AB 是⊙O 的直径,点C 在⊙O 上,过点C 作⊙O 的切线CM .[w(1)求证:∠ACM =∠ABC ;(2)延长BC 到D ,使CD = BC ,连接AD 与CM 交于点E ,若⊙O 的半径为2,ED =1,求AC 的长.(2018燕山一模)25.如图,△ABC 中,AB =AC ,以AB 为直径作⊙O 交BC 于点D ,过点D 作⊙O 的切线DE 交AC 于点E . (1)求证:∠CDE =90°;(2)若AB =13,sin ∠C =135,求CE 的长.(2018顺义一模)25.如图,AB是⊙O的直径,C是⊙O上一点,D是BC的中点,过点D作⊙O的切线,与AB,AC的延长线分别交于点E,F,连结AD.(1)求证:AF⊥EF;(2)若1tan2CAD∠=,AB=5,求线段BE的长.(2018大兴一模)25.已知:如图,在菱形ABCD中,P是对角线AC上的一点,且PA=PD,⊙O为△APD的外接圆.(1)试判断直线AB与⊙O的位置关系,并说明理由;(2)若AC=4,tan∠DAC=12,求⊙O的半径.(2018房山一模)25.如图,AB为⊙O直径,C是⊙O上一点,CO⊥AB于点O,弦CD与AB交于点F,过点D作∠CDE,使∠CDE=∠DFE,交AB的延长线于点E. 过点A作⊙O的切线交ED的延长线于点G.(1)求证:GE是⊙O的切线;(2)若OF:OB=1:3,⊙O的半径为3,求AG的长.EAGE第25题图。
北京市各区2018届九年级中考一模数学试卷精选汇编:压轴题专题(含答案)

--------------2 分
② △ MNE 是等边三角形,点 E 的坐标为 3,1 ; --------------5 分
③ 直线 y
3 x 2 交 y 轴于点 K ( 0, 2),交 x 轴于点 T 2 3, 0 .
3
∴ OK 2 , OT 2 3 .
∴ OKT 60 . 作 OG⊥ KT于点 G, 连接 MG.
在平面直角坐标系 xOy 中,⊙ O 的半径为 1.
22
22
( 1)如图 2, M
, 22
,N
, 2
2 .在 A( 1, 0),B( 1,1), C
20,
三点中 , 是线段 MN 关于点 O 的关联点的是
;
31
( 2)如图 3, M ( 0, 1),N
,
,点 D 是线段 MN 关于点 O 的关联点 .
3 / 21
y
M
O
Q
C
x 2
∵ Q( 1,0) , C(1,0) , r 1, ∴ CQ 2 , CM 1,
∴ MQ 3 ,
2MQ
此时 k CQ
3,
②如图,若直线 QM 与⊙ C 不相切,设直线 QM 与⊙ C 的另一个交点为 N (不妨设
QN QM ,点 N , M 在 x 轴下方时同理) ,
作 CD QM 于点 D ,则 MD ND ,
2 / 21
点,记为点 A , B ,设 k
AQ BQ CQ ,则称点 A (或点 B )是⊙ C 的 “k 相关依附点 ”,
2AQ
2BQ
特别地,当点 A 和点 B 重合时,规定 AQ BQ , k
(或
).
CQ
CQ
已知在平面直角坐标系 xOy 中, Q ( 1,0) , C(1,0) ,⊙ C 的半径为 r .
2018北京市各区初三数学一模试题分类——圆

目录类型1:圆基础 (2)类型2:圆综合 (4)类型3:新定义问题 (12)类型1:圆基础1.(18延庆一模14)如图,AB 是⊙O 的弦,OC ⊥AB ,∠AOC =42°,那么∠CDB 的度数为____________.2. (18房山一模5)如图,在⊙O 中,AC 为⊙O 直径,B 为圆上一点,若∠OBC =26°,则∠AOB 的度数为( )A .26°B .52°C .54°D .56°3.(18西城一模13)如图,AB 为⊙O 的直径,C 为AB 上一点,∠BOC =50°,AD ∥OC ,AD 交⊙O 于点D ,连接AC ,CD ,那么∠ACD =__________.4.(18朝阳毕业8)如图,四边形ABCD 内接于⊙O ,E 为CD 延长线上一点,若∠ADE =110°,则∠AOC 的度数是( )A.70°B.110°C.140°D.160°5.(18朝阳一模13)如图,点A ,B ,C 在⊙O 上,四边形OABC 是平行四边形,OD ⊥AB 于点E ,交⊙O 于点D ,则∠BAD = 度.6.(18海淀一模14)如图,四边形ABCD 是平行四边形,⊙O 经过点A ,C ,D ,与BC 交于点E ,连接AE ,若∠D = 72°,则∠BAE= °.7.(18门头沟一模13)如图,PC 是⊙O 的直径,P A 切⊙O 于点P ,AO 交⊙O 于点B ;连接BC ,若∠C=32°,则∠A =______ °.8.(18燕山一模10)在平面直角坐标系xoy 中,点A (4,3) 为⊙O 上一点,B 为⊙O 内一点,请写出一个符合条件要求的点B 的坐标ODCBA9.(18平谷一模14)如图,AB 是⊙O 的直径,AB ⊥弦CD 于点E ,若AB =10,CD =8,则BE = .10.(18石景山一模13)如图,AB 是⊙O 的直径,CD 是弦,CD AB ⊥于点E ,若⊙O 的半径是5,8CD =,则AE = .11.(18大兴一模5)如图,⊙O 的直径AB 垂直于弦CD ,垂足是E ,∠A=22.5°,OC=6,则CD 的长为( ) A .3 B.C .6D. 12.(18丰台一模13)如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E .如果∠A = 15°,弦CD = 4,那么AB 的长是 .13.(18朝阳毕业10)如图,正方形ABCD 的边长为2,以BC 为直径的半圆与对角线AC 相交于点E ,则图中阴影部分的面积为( )A.π4125+B.π4123- C.π2125- D.π4125-14.(18东城一模4)如图,O 是等边△ABC 的外接圆,其半径为3. 图中阴影部分的面积是( ) A .π B .3π2C .2πD .3πA B类型2:圆综合1.(18平谷一模24)如图,以AB为直径作⊙O,过点A作⊙O的切线AC,连结BC,交⊙O于点D,点E是BC边的中点,连结AE.(1)求证:∠AEB=2∠C;(2)若AB=6,3cos5B=,求DE的长.2.(18延庆一模23)如图,AB是⊙O的直径,D是⊙O上一点,点E是AD的中点,过点A作⊙O的切线交BD的延长线于点F.连接AE并延长交BF于点C.(1)求证:AB BC=;(2)如果AB=5,1tan2FAC∠=,求FC的长.AA 3. (18石景山一模23)如图,AB 是⊙O 的直径,BE 是弦,点D 是弦BE 上一点,连接OD 并延长交⊙O 于点C ,连接BC ,过点D 作FD ⊥OC 交⊙O 的切线EF 于点F .(1)求证:12CBEF ∠=∠;(2)若⊙O 的半径是,点D 是OC 中点,15CBE ∠=°,求线段EF 的长.4. (18房山一模22)如图,AB 、BF 分别是⊙O 的直径和弦,弦CD 与AB 、BF 分别相交于点E 、G ,过点F 的切线HF 与DC 的延长线相交于点H ,且HF =HG . (1)求证:AB ⊥CD ;(2)若sin ∠HGF =,BF =3,求⊙O 的半径长.435.(18西城一模24)如图,⊙O 的半径为r ,ABC △内接于⊙O ,15BAC ∠=︒,30ACB ∠=︒,D为CB 延长线上一点,AD 与⊙O 相切,切点为A . (1)求点B 到半径OC 的距离(用含r 的式子表示).(2)作DH OC ⊥于点H ,求ADH ∠的度数及CBCD的值.6.(18怀柔一模23)如图,AC 是⊙O 的直径,点B 是⊙O 内一点,且BA =BC ,连结BO 并延长线交⊙O 于点D ,过点C 作⊙O 的切线CE ,且BC 平分∠DBE . (1)求证:BE =CE ;(2)若⊙O 的直径长8,sin ∠BCE =,求BE 的长.45AB C7.(18海淀一模23)如图,AB 是⊙O 的直径,弦EF AB ⊥于点C ,过点F 作⊙O 的切线交AB的延长线于点D . (1)已知A α∠=,求D ∠的大小(用含α的式子表示);(2)取BE 的中点M ,连接MF ,请补全图形;若30A ∠=︒,MF =,求⊙O 的半径.8.(18朝阳一模23)如图,在⊙O 中,C ,D 分别为半径OB ,弦AB 的中点,连接CD 并延长,交过点A 的切线于点E . (1)求证:AE ⊥CE .(2)若AE = ,sin ∠ADE =31,求⊙O 半径的长.DA9.(18东城一模)如图,AB为⊙O的直径,点C,D在⊙O上,且点C是BD的中点.过点C作AD的垂线EF交直线AD于点E.(1)求证:EF是⊙O的切线;(2)连接BC. 若AB=5,BC=3,求线段AE的长.10.(18丰台一模23)如图,A,B,C三点在⊙O上,直径BD平分∠ABC,过点D作DE∥AB交弦BC于点E,过点D作⊙O的切线交BC的延长线于点F.(1)求证:EF ED;(2)如果半径为5,cos∠ABC =35,求DF的长.A 11.(18门头沟一模23)如图,AB 为⊙O 直径,过⊙O 外的点D 作DE ⊥OA 于点E ,射线DC 切⊙O 于点C 、交AB 的延长线于点P ,连接AC 交DE 于点F ,作CH ⊥AB 于点H . (1)求证:∠D =2∠A ;(2)若HB =2,cosD =35,请求出AC 的长.12.(18大兴一模).已知:如图,在△OAB 中,OA OB =,⊙O 经过AB 的中点C ,与OB 交于点D ,且与BO 的延长线交于点E ,连接EC CD ,. (1)试判断AB 与⊙O 的位置关系,并加以证明;(2)若1tan 2E =,⊙O 的半径为3,求OA 的长.13.(18顺义一模24)如图,等腰△ABC是⊙O的内接三角形,AB=AC,过点A作BC的平行线AD交BO的延长线于点D.(1)求证:AD是⊙O的切线;,求AB的长.(2)若⊙O的半径为15,sin∠D=35 Array14.(18通州一模24)如图,已知AB为⊙O的直径,AC是⊙O的弦,D是弧BC的中点.过点D作⊙O的切线,分别交AC,AB的延长线于点E和点F,连接CD,BD.(1)求证:∠A=2∠BDF;(2)若AC=3,AB=5,求CE的长.15.(18燕山一模25)如图,在△ABC 中,AB=AC ,AE 是BC 边上的高线,BM 平分∠ABC 交AE 于点M ,经过 B ,M 两点的⊙O 交 BC 于点G ,交AB 于点F ,FB 为⊙O 直径. (1)求证:AM 是⊙O 的切线(2)当BE =3,cos C =52时,求⊙O 的半径.16.(18朝阳毕业25)如图,在△ABC 中,AB =BC ,∠A =45°,以AB 为直径的⊙O 交CO 于点D .(1)求证:BC 是⊙O 的切线;(2)连接BD ,若BD =m ,tan ∠CBD =n ,写出求直径AB 的思路.类型3:新定义问题1.(18海淀一模8)如图1,矩形的一条边长为x ,周长的一半为y .定义(,)x y 为这个矩形的坐标. 如图2,在平面直角坐标系中,直线1,3x y ==将第一象限划分成4个区域. 已知矩形1的坐标的对应点A 落在如图所示的双曲线上,矩形2的坐标的对应点落在区域④中.图1 图2则下面叙述中正确的是( )A. 点A 的横坐标有可能大于3B. 矩形1是正方形时,点A 位于区域②C. 当点A 沿双曲线向上移动时,矩形1的面积减小D. 当点A 位于区域①时,矩形1可能和矩形2全等2.(18海淀一模15)定义:圆中有公共端点的两条弦组成的折线称为圆的一条折弦.阿基米德折弦定理:如图1,AB 和BC 组成圆的折弦,AB BC >,M 是弧ABC 的中点,MF AB ⊥于F ,则AF FB BC =+.如图2,△ABC 中,60ABC ∠=︒,8AB =,6BC =,D 是AB 上一点,1BD =,作DE AB ⊥交△ABC 的外接圆于E ,连接EA ,则EAC ∠=________°.x图2图1E A3.(18平谷一模28)在平面直角坐标系xOy 中,点M 的坐标为()11,x y ,点N 的坐标为()22,x y ,且12x x ≠,12y y ≠,以MN 为边构造菱形,若该菱形的两条对角线分别平行于x 轴,y 轴,则称该菱形为边的“坐标菱形”.(1)已知点A (2,0),B (0,2,则以AB 为边的“坐标菱形”的最小内角为_______; (2)若点C (1,2),点D 在直线y =5上,以CD 为边的“坐标菱形”为正方形,求直线CD 表达式;(3)⊙O P 的坐标为(3,m ) .若在⊙O 上存在一点Q ,使得以QP 为边的“坐标菱形”为正方形,求m 的取值范围.2. (18延庆一模28)平面直角坐标系xOy 中,点1(A x ,1)y 与2(B x ,2)y ,如果满足120x x +=,120y y -=,其中12x x ≠,则称点A 与点B 互为反等点.已知:点C (3,4)(1)下列各点中, 与点C 互为反等点;D (-3,-4),E (3,4),F (-3,4) (2)已知点G (-5,4),连接线段CG ,若在线段CG 上存在两点P ,Q 互为反等点,求点P 的横坐标p x 的取值范围; (3)已知⊙O 的半径为r ,若⊙O 与(2)中线段CG 的两个交点互为反等点,求r 的取值范围.3.(18石景山一模28)对于平面上两点A,B,给出如下定义:以点A或B为圆心,AB长为半径的圆称为点A,B的“确定圆”.如图为点A,B 的“确定圆”的示意图....(1)已知点A的坐标为(1,0)-,点B的坐标为(3,3),则点A,B的“确定圆”的面积为_________;(2)已知点A的坐标为(0,0),若直线y x b=+上只存在一个点B,使得点A,B的“确定圆”的面积为9π,求点B的坐标;(3)已知点A在以(0)P m,为圆心,以1为半径的圆上,点B在直线3y x=+要使所有点A,B的“确定圆”的面积都不小于9π,直接写出m的取值范围.4.(18房山一模28)在平面直角坐标系xOy 中,当图形W 上的点P 的横坐标和纵坐标相等时,则称点P 为图形W 的“梦之点”. (1)已知⊙O 的半径为1.①在点E (1,1),F (-22 ,-22 ),M (-2,-2)中,⊙O 的“梦之点”为 ;②若点P 位于⊙O 内部,且为双曲线ky x =(k ≠0)的“梦之点”,求k 的取值范围.(2)已知点C 的坐标为(1,t ),⊙C 的半径为 2 ,若在⊙C 上存在“梦之点”P ,直接写出t 的取值范围.(3)若二次函数21y ax ax =-+的图象上存在两个“梦之点”()11A x ,y ,()22B x ,y ,且122x x -=,求二次函数图象的顶点坐标.5.(18西城一模28)对于平面内的⊙C 和⊙C 外一点Q ,给出如下定义:若过点Q 的直线与⊙C存在公共点,记为点A ,B ,设AQ BQk CQ+=,则称点A (或点B )是⊙C 的“k 相关依附点”,特别地,当点A 和点B 重合时,规定AQ BQ =,2AQ k CQ=(或2BQCQ ). 已知在平面直角坐标系xOy 中,(1,0)Q -,(1,0)C ,⊙C 的半径为r .(1)如图1,当r =①若1(0,1)A 是⊙C 的“k 相关依附点”,则k 的值为__________.②2(1A 是否为⊙C 的“2相关依附点”.答:__________(填“是”或“否”). (2)若⊙C 上存在“k 相关依附点”点M ,①当1r =,直线QM 与⊙C 相切时,求k 的值.②当k =r 的取值范围.(3)若存在r的值使得直线y b =+与⊙C 有公共点,且公共点是⊙C 的点”,直接写出b 的取值范围.x6.(18怀柔一模28)P 是⊙C 外一点,若射线..PC 交⊙C 于点A ,B 两点,则给出如下定义:若0<P A PB ≤3,则点P 为⊙C 的“特征点”.(1)当⊙O 的半径为1时.①在点P 1(,0)、P 2(0,2)、P 3(4,0)中,⊙O 的“特征点”是 ; ②点P 在直线y =x +b 上,若点P 为⊙O 的“特征点”.求b 的取值范围;(2)⊙C 的圆心在x 轴上,半径为1,直线y =x +1与x 轴,y 轴分别交于点M ,N ,若线段MN 上的所有点都不是...⊙C 的“特征点”,直接写出点C 的横坐标的取值范围.27.(18海淀一模28)在平面直角坐标系xOy 中,对于点P 和⊙C ,给出如下定义:若⊙C 上存在一点T 不与O 重合,使点P 关于直线OT 的对称点'P 在⊙C 上,则称P 为⊙C 的反射点.下图为⊙C 的反射点P 的示意图.(1)已知点A 的坐标为(1,0),⊙A 的半径为2,①在点(0,0)O ,(1,2)M ,(0,3)N -中,⊙A 的反射点是____________; ②点P 在直线y x =-上,若P 为⊙A 的反射点,求点P 的横坐标的取值范围; (2)⊙C 的圆心在x 轴上,半径为2,y 轴上存在点P 是⊙C 的反射点,直接写出圆心C 的横坐标x 的取值范围.8.(18朝阳一模28)对于平面直角坐标系xOy中点P和线段AB,其中A(t,0)、B(t+2,0)两点,给出如下定义:若在线段AB上存在一点Q,使得P,Q两点间的距离小于或等于1,则称P为线段AB的伴随点.(1)当t=-3时,①在点P1(1,1),P2(0,0),P3(-2,-1)中,线段AB的伴随点是;②在直线y=2x+b上存在线段AB的伴随点M、N,且MN=b的取值范围;(2)线段AB的中点关于点(2,0)的对称点是C,将射线CO以点C为中心,顺时针旋转30°得到射线l,若射线l上存在线段AB的伴随点,直接写出t的取值范围.9.(18东城一模28)给出如下定义:对于⊙O 的弦MN 和⊙O 外一点P (M ,O ,N 三点不共线,且P ,O 在直线MN 的异侧),当∠MPN +∠MON=180°时,则称点 P 是线段MN 关于点O 的关联点.图1是点P 为线段MN 关于点O 的关联点的示意图.在平面直角坐标系xOy 中,⊙O 的半径为1.(1)如图2, 22M ⎛ ⎝⎭,22N ⎛- ⎝⎭.在A (1,0),B (1,1),)C 三点中,是线段MN 关于点O 的关联点的是 ;(2)如图3, M (0,1),N 122⎛⎫- ⎪ ⎪⎝⎭,点D 是线段 MN 关于点O 的关联点.①∠MDN 的大小为 °; ②在第一象限内有一点E),m ,点E 是线段MN 关于点O 的关联点,判断△MNE 的形状,并直接写出点E 的坐标;③点F 在直线2y x =+上,当∠MFN ≥∠MDN 时,求点F 横坐标x F 的取值范围.10.(18丰台一模28)对于平面直角坐标系xOy 中的点M 和图形1W ,2W 给出如下定义:点P为图形1W 上一点,点Q 为图形2W 上一点,当点M 是线段PQ 的中点时,称点M 是图形1W ,2W 的“中立点”.如果点P (x 1,y 1),Q (x 2,y 2),那么“中立点”M 的坐标为⎪⎭⎫⎝⎛++2,22121y y x x .已知,点A (-3,0),B (0,4),C (4,0).(1)连接BC ,在点D (12,0),E (0,1),F (0,12)中,可以成为点A 和线段BC 的“中立点”的是____________;(2)已知点G (3,0),⊙G 的半径为2.如果直线y = - x + 1上存在点K 可以成为点A 和⊙G 的“中立点”,求点K 的坐标;(3)以点C 为圆心,半径为2作圆.点N 为直线y = 2x + 4上的一点,如果存在点N ,使得y 轴上的一点可以成为点N 与⊙C 的“中立点”,直接写出点N 的横坐标的取值范围.11.(18门头沟一模28)在平面直角坐标系xOy 中,点M 的坐标为11(,)x y ,点N 的坐标为22(,)x y ,且12x x ≠,12y y =,我们规定:如果存在点P ,使MNP ∆是以线段MN 为直角边的等腰直角三角形,那么称点P 为点M 、N 的 “和谐点”.(1)已知点A 的坐标为)3,1(,①若点B 的坐标为)3,3(,在直线AB 的上方,存在点A ,B 的“和谐点”C ,直接写出点C 的坐标;②点C 在直线x =5上,且点C 为点A ,B 的“和谐点”,求直线AC 的表达式.(2)⊙O 的半径为r ,点D (1,4)为点E (1,2)、F ),(n m 的“和谐点”,若使得△DEF 与⊙O 有交点,画出示意图直接.....写出半径r 的取值范围.备用图1 备用图212.(18大兴一模28)在平面直角坐标系xOy中,过y轴上一点A作平行于x轴的直线交某函数图象于点D,点P是x轴上一动点,连接D P,过点P作DP的垂线交y轴于点E(E 在线段OA上,E不与点O重合),则称 DPE为点D,P,E的“平横纵直角”.图1为点D,P,E的“平横纵直角”的示意图.图113.如图2,在平面直角坐标系xOy 中,已知二次函数图象与y 轴交于点(0,)F m ,与x 轴分别交于点B (3-,0),C (12,0). 若过点F 作平行于x 轴的直线交抛物线于点N . (1)点N 的横坐标为 ; (2)已知一直角为点,,N M K 的“平横纵直角”,若在线段OC 上存在不同的两点1M 、2M ,使相应的点1K 、2K 都与点F 重合,试求m 的取值范围; (3)设抛物线的顶点为点Q ,连接BQ 与FN 交于点H ,当4560QHN ︒≤≤︒∠时,求m 的取值范围.图213.(18顺义一模28)如图1,对于平面内的点P 和两条曲线1L 、2L 给出如下定义:若从点P 任意引出一条射线分别与1L 、2L 交于1Q 、2Q ,总有12PQ PQ 是定值,我们称曲线1L 与2L “曲似”,定值12PQ PQ 为“曲似比”,点P 为“曲心”.例如:如图2,以点O'为圆心,半径分别为1r 、2r (都是常数)的两个同心圆1C 、2C ,从点O'任意引出一条射线分别与两圆交于点M 、N ,因为总有12''r O M O N r =是定值,所以同心圆1C 与2C 曲似,曲似比为12r r ,“曲心”为O'.(1)在平面直角坐标系xOy 中,直线y kx =与抛物线2y x =、212y x =分别交于点A 、B ,如图3所示,试判断两抛物线是否曲似,并说明理由; (2)在(1)的条件下,以O 为圆心,OA 为半径作圆,过点B 作x 轴的垂线,垂足为C ,是否存在k 值,使⊙O 与直线BC 相切?若存在,求出k 的值;若不存在,说明理由;(3)在(1)、(2)的条件下,若将“212y x =”改为“21y x m=”,其他条件不变,当存在⊙O与直线BC 相切时,直接写出m 的取值范围及k 与m 之间的关系式.图12L 1图214.(18通州一模).在平面直角坐标系xOy 中有不重合的两个点()11,y x Q 与()22y x P ,.若Q ,P 为某个直角三角形的两个锐角顶点,且该直角三角形的直角边均与x 或y 轴平行(或重合),则我们将该直角三角形的两条直角边的边长之和定义为点Q 与点P 之间的“直距PQ D ”.例如在下图中,点()1,1P ,()3,2Q ,则该直角三角形的两条直角边长为1和2,此时点Q 与点P 之间的“直距”=3PQ D .特别地,当PQ 与某条坐标轴平行(或重合)时,线段PQ 的长即为点Q 与点P 之间的“直距”. (1)①已知O 为坐标原点,点()2,1A -,()2,0B -,则_______=AO D ,_______=BO D ;② 点C 在直线3y x =-+上,请你求出CO D 的最小值;(2)点E 是以原点O 为圆心,1为半径的圆上的一个动点;点F 是直线24y x =+上一动点.请你直接写出点E 与点F 之间“直距EF D ”的最小值.15.(18燕山一模27)如图,抛物线)0(2>++=a c bx ax y 的顶点为M ,直线y=m 与抛物线交于点A ,B ,若△AMB 为等腰直角三角形,我们把抛物线上A ,B 两点之间的部分与线段AB 围成的图形称为该抛物线对应的准蝶形,线段AB 称为碟宽,顶点M 称为碟顶.(1)由定义知,取AB 中点N ,连结MN ,MN 与AB 的关系是(2)抛物线221x y =对应的准蝶形必经过B (m ,m ),则m = ,对应的碟宽AB 是(3)抛物线)0(3542>--=a a ax y 对应的碟宽在x 轴上,且AB =6.①求抛物线的解析式;②在此抛物线的对称轴上是否有这样的点P (p x ,p y ),使得∠APB 为锐角,若有,请求出p y 的取值范围.若没有,请说明理由. ,备用图准蝶形AMBABM。
【中考汇编】北京市各区2018届中考一模数学试卷精选汇编88页含答案

北京市各区2018届中考一模数学试卷精选汇编目录北京市各区2018届中考一模数学试卷精选汇编:解不等式组(含答案)北京市各区2018届中考一模数学试卷精选汇编:计算题(含答案)北京市各区2018届中考一模数学试卷精选汇编:解四边形(含答案)北京市各区2018届中考一模数学试卷精选汇编:几何证明(含答案)北京市各区2018届中考一模数学试卷精选汇编:几何综合(含答案)北京市各区2018届中考一模数学试卷精选汇编:函数计算及运用(含答案)北京市各区2018届中考一模数学试卷精选汇编:二次函数综合(含答案)北京市各区2018届中考一模数学试卷精选汇编:统计(含答案)解不等式组专题东城区18. 解不等式组4+6,23x x x x ⎧⎪+⎨⎪⎩>≥, 并写出它的所有整数解. 18. 解:4+6,23x x x x ⎧⎪⎨+⎪⎩①②>≥, 由①得,-x >2,------------------1分由②得,1x ≤, ------------------2分∴不等式组的解集为-1x 2<≤.所有整数解为-1, 0, 1. ---------------------5分西城区18.解不等式组3(2)4112x x x ++⎧⎪⎨-<⎪⎩≥,并求该不等式组的非负整数解.【解析】解①得,364x x ++≥,22x -≥,1x -≥,解②得,12x -<,3x <,∴原不等式解集为13x -<≤,∴原不等式的非负整数解为0,,2.海淀区18.解不等式组:()5331,263.2x x x x +>-⎧⎪⎨-<-⎪⎩ 18.解:() 5331, 263. 2x x x x +>-⎧⎪⎨-<-⎪⎩①② 解不等式①,得3x >-. …2分解不等式②,得2x <. ………4分所以 原不等式组的解集为32x -<<. ………5分18.解不等式组:341,51 2.2x x x x ≥-⎧⎪⎨->-⎪⎩ 18.解:解不等式①,得1x ≤, ……………………2分解不等式②,得1x >-. ……………………4分∴原不等式组的解集是11x -<≤.………5分石景山区18.解不等式组:3(1)45622x x x x +>++<⎧⎪⎨⎪⎩,. 18.解:原不等式组为3(1)45,62.2x x x x +>++<⎧⎪⎨⎪⎩ 解不等式①,得2x <-. ………………2分 解不等式②,得2x <. ………………4分 ∴原不等式组的解集为<2x -. ………………5分 朝阳区18. 解不等式组 :⎪⎩⎪⎨⎧>-->-.2216),3(21x x x x18. 解:原不等式组为⎪⎩⎪⎨⎧>-->-.2216),3(21x x x x解不等式①,得 5<x . ………………………………………2分解不等式②,得 21>x .………………………………………………4分 ∴ 原不等式组的解集为521<<x . …………………………………5分① ②18.解不等式组:⎩⎪⎨⎪⎧x -32<1,2(x +1)≥x -1.18.解:由(1)得,x-3<2X<5 ……………………….2′(2) 得 2x+2≥x-1x ≥-3 ……………………….4′所以不等式组的解是-3≤x <5……………………….5′ 门头沟区18. 解不等式组:1031+1.x x x ⎧-<⎪⎨⎪-⎩,≤3()18.(本小题满分5分)解不等式①得,x <3, …………………………………………2分解不等式②得,x ≥﹣2, ………………………………4分所以,不等式组的解集是﹣2≤x <3. ………………5分大兴区17.解不等式组:⎪⎩⎪⎨⎧>++≤+x x x x 2274)3(2 并写出它的所有整数解. 17. 解:⎪⎩⎪⎨⎧>++≤+x x x x 2274)3(2 由①,得21-≥x . ………………………………………………………1分 由②,得2<x . …………………………………………………………2分 ∴原不等式组的解集为221<≤-x . ………………………………………4分 它的所有整数解为0,1. …………………………………………………5分① ②18.解不等式组3(1)45,513x x x x -≥-⎧⎪-⎨->⎪⎩,并写出它的所有整数解.... 18.解:3(1)455 3 1x x x x -≥-⎧⎪⎨-->⎪⎩①② 解不等式①,得 x ≤2. ·········································································1 解不等式②,得 x >-1. ·······································································3 ∴原不等式组的解集为12x -<≤. ························································4 ∴适合原不等式组的整数解为0,1,2. ·······················································5 怀柔区18.解不等式组:()⎪⎩⎪⎨⎧<+-<-.1213,213x x x x 18.解:由①得:3x < . ………………………………………………………………………2分由②得:9x >- …………………………………………………………………………4分 原不等式组的解集为93x -<< ………………………………………………………5分 延庆区18.解不等式组:523(2)53.2x x x x -<+⎧⎪⎨+≤⎪⎩, 并写出它的所有整数解. 18.解:由①得,x <4. ……1分由②得,x ≥1 . ……3分∴ 原不等式组的解集为1≤x <4. ……4分∴ 原不等式组的所有整数解为1,2,3. ……5分18.解不等式组:()7+1,2315 1.x x x x +⎧≥-⎪⎨⎪+<-⎩18.解不等式组:()7+12315x x x x +⎧≥-⎪⎨⎪+<-⎩解:解不等式①得 x ≥3- ……………………………………………………………2分 解不等式②得 2x > ………………………………………………………………4分 不等式组的解集是 2x > …………………………………………………………5分计算题专题东城区17.计算:()2012sin 60-π-2++1-3-⎛⎫︒ ⎪⎝⎭. =217.解:原式分分西城区17114sin 3015-⎛⎫+︒- ⎪⎝⎭.【解析】原式1541)52122=+⨯-=+=. 海淀区17.计算:11()3tan 302|3-︒+. 17.解:原式=3323-⨯+- ………………4分=5- ………………5分丰台区1702cos 45(3π)|1-︒+-+-.1702cos 45(3π)|1︒+-+.=211++ ……………………4分= ……………………5分石景山区17.计算:012sin 455(3--++° 17.解:原式=2512⨯-+- ………………4分4=-- ………………5分朝阳区17. 计算:2sin30°+ .8)4()31(01+-+-π17. 解:原式 2213212+++⨯= …………………………………………………4分 225+=. ……………………………………………………………5分燕山区17.计算:4cos30°-12 + 20180 + ||1-317.4cos30°-12 + 20180 + ||1-3 =13132234-++-⨯=3 门头沟区17.计算:()201254sin 603π-⎛⎫--++-︒ ⎪⎝⎭.平谷区17.计算:(1013132sin 603-⎛⎫-+-︒ ⎪⎝⎭π.17.解:(1013132sin 603-⎛⎫-+--︒ ⎪⎝⎭π=331312-- ···········································································4 =1 ····································································································5 怀柔区17.计算:102130tan 3)3(31-︒⎪⎭⎫ ⎝⎛-+---π. 17.解:原式331132=--+ …………………………………………………4分.…………………………………………………………………5分延庆区17.计算:0113tan 301(2)()3π-︒+---.17.原式=3⨯33+3-1+1-3 ……4分=23-3 ……5分顺义区17.计算:()01312sin 452π--︒+-.17.解:()01312sin 452π--︒+-112132=-⨯+ (4)分13= ……………………………………………………………………………… 5分4=-解四边形专题东城区21.如图,已知四边形ABCD 是平行四边形,延长BA 至点E ,使AE = AB ,连接DE ,AC .(1)求证:四边形ACDE 为平行四边形;(2)连接CE 交AD 于点O . 若AC=AB =3,1cos 3B =,求线段CE 的长.21.(1) 证明:∵平行四边形ABCD ,∴=AB DC ,AB DC ∥.∵AB =AE ,∴=AE DC ,AE DC ∥.∴四边形ACDE 为平行四边形. -------------------2分(2) ∵=AB AC ,∴=AE AC .∴平行四边形ACDE 为菱形.∴AD ⊥CE .∵AD BC ∥,∴BC ⊥CE.在Rt △EBC 中,BE =6, 1cos 3BC B BE ==, ∴=2BC . 根据勾股定理,求得=42BC 分 西城区21.如图,在ABD △中,ABD ADB ∠=∠,分别以点B ,D 为圆心,AB 长为半径在BD 的右侧作弧,两弧交于点C ,分别连接BC ,DC ,AC ,记AC 与BD 的交点为O . (1)补全图形,求AOB ∠的度数并说明理由;(2)若5AB =,3cos 5ABD ∠=,求BD 的长.BDA【解析】(1)补全的图形如图所示.90AOB ∠=︒. 证明:由题意可知BC AB =,DC AB =, ∵在ABD △中,ABD ADB ∠=∠, ∴AB AD =,∴BC DC AD AB ===, ∴四边形ABCD 为菱形, ∴AC BD ⊥, ∴90AOB ∠=︒.(2)∵四边形ABCD 为菱形, ∴OB OD =.在Rt ABO △中,90AOB ∠=︒,5AB =,3cos 5ABD ∠=,∴cos 3OB AB ABD =⋅∠=, ∴26BD OB ==.ABCDO海淀区21.如图,□ABCD 的对角线,AC BD 相交于点O ,且AE ∥BD ,BE ∥AC ,OE = CD . (1)求证:四边形ABCD 是菱形;(2)若AD = 2,则当四边形ABCD 的形状是__________时,四边形AOBE 的面积取得最大值是_______.C B EOAD21.(1)证明:∵AE BD ∥,BE AC ∥,∴四边形AEBO 是平行四边形. ………………1分 ∵四边形ABCD 是平行四边形,∴DC AB =. ∵OE CD =, ∴OE AB =.∴平行四边形AEBO 是矩形. ………………2分 ∴90BOA ∠=︒. ∴AC BD ⊥.∴平行四边形ABCD 是菱形. ………………3分 (2) 正方形; ………………4分2. ………………5分丰台区21.已知:如图,菱形ABCD ,分别延长AB ,CB 到点F ,E ,使得BF = BA ,BE = BC ,连接AE ,EF ,FC ,CA .(1)求证:四边形AEFC 为矩形;(2)连接DE 交AB 于点O ,如果DE ⊥AB ,AB = 4,求DE 的长.ABCEDF21.(1)证明:∵BF =BA ,BE =BC ,∴四边形AEFC 为平行四边形. ………………………1分 ∵四边形ABCD 为菱形, ∴BA =BC .∴BE =BF .∴BA + BF = BC + BE ,即AF =EC .∴四边形AEFC 为矩形. ………………………2分(2)解:连接DB .由(1)知,AD ∥EB ,且AD =EB . ∴四边形AEBD 为平行四边形 ∵DE ⊥AB ,∴四边形AEBD 为菱形.∴AE =EB ,AB =2AG ,ED =2EG . ………………………4分 ∵矩形ABCD 中,EB =AB ,AB=4, ∴AG =2,AE =4.∴Rt △AEG 中,EG=23.∴ED=43. ………………………5分 (其他证法相应给分)石景山区21.如图,在四边形ABCD 中,90A BCD ∠=∠=°,210BC CD ==,CE AD ⊥于点E . (1)求证:AE CE =;(2)若tan 3D =,求AB 的长.BA CE D21.(1)证明:(法一)过点B 作BH ⊥CE 于H ,如图1. ∵CE ⊥AD ,∴∠BHC =∠CED =90°,190D ∠+∠=︒. ∵∠BCD =90°, ∴1290∠+∠=︒, ∴2D ∠=∠. 又BC =CD∴BHC △≌CED △. ∴BH CE =.∵BH ⊥CE ,CE ⊥AD ,∠A =90°, ∴四边形ABHE 是矩形, ∴AE BH =.∴AE CE =. ………………3分 (法二)过点C 作CH ⊥AB 交AB 的延长线于H .图略,证明略. (2)解: ∵四边形ABHE 是矩形, ∴AB HE =.∵在Rt CED △中,tan 3CE D DE==,设,3DE x CE x ==,∴10210CD x ==. ∴2x =.∴2DE =,6CE =. ………………4分 ∵2CH DE ==.∴624AB HE ==-=. ………………5分朝阳区21. 如图,在△ABC 中,D 是AB 边上任意一点,E 是BC 边中点,过点C作AB 的平行线,交DE 的延长线于点F ,连接BF ,CD . (1)求证:四边形CDBF 是平行四边形; (2)若∠FDB =30°,∠ABC =45°,BC =,求DF 的长.21.(1)证明:∵CF ∥AB ,∴∠ECF =∠EBD . ∵E 是BC 中点, ∴CE =BE .∵∠CEF =∠BED , ∴△CEF ≌△BED . ∴CF =BD .∴四边形CDBF 是平行四边形. ………………………2分(2)解:如图,作EM ⊥DB 于点M ,∵四边形CDBF 是平行四边形,BC =24,∴2221==BC BE ,DE DF 2=. 在Rt △EMB 中,2sin =∠⋅=ABC BE EM . ……………………3分在Rt △EMD 中,42==EM DE . …………………4分∴DF =8. ………………………………………………………5分燕山区23. 如图,在△ABC 错误!未找到引用源。
2018-2019丰台区一模数学理科试题及答案(K12教育文档)

2018-2019丰台区一模数学理科试题及答案(word版可编辑修改)2018-2019丰台区一模数学理科试题及答案(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018-2019丰台区一模数学理科试题及答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018-2019丰台区一模数学理科试题及答案(word版可编辑修改)的全部内容。
高三数学(理科)第1页(共6页)高三数学(理科)第2页(共6页)丰台区2019年高三年级第二学期综合练习(一)数学(理科)2019。
03(本试卷满分共150分,考试时间120分钟)注意事项:1。
答题前,考生务必先将答题卡上的学校、年级、班级、姓名、准考证号用黑色字迹签字笔填写清楚,并认真核对条形码上的准考证号、姓名,在答题卡的“条形码粘贴区”贴好条形码。
2. 本次考试所有答题均在答题卡上完成。
选择题必须使用2B 铅笔以正确填涂方式将各小题对应选项涂黑,如需改动,用橡皮擦除干净后再选涂其它选项。
非选择题必须使用标准黑色字迹签字笔书写,要求字体工整、字迹清楚。
3。
请严格按照答题卡上题号在相应答题区内作答,超出答题区域书写的答案无效,在试卷、草稿纸上答题无效。
4。
请保持答题卡卡面清洁,不要装订、不要折叠、不要破损。
第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项.1.复数11iz=+的共轭复数是(A)11i22+(B)11i22-(C)1i+(D)1i-2.已知集合{2,3,1}A=-,集合2{3,}B m=.若B A⊆,则实数m的取值集合为(A){1}(B)(C){1,1}-(D)3.设命题p:(0,),ln1x x x∀∈+∞-≤,则p⌝为(A)(0,),ln1x x x∀∈+∞>-(B)000(0,),ln1x x x∃∈+∞-≤(C)(0,),ln1x x x∀∉+∞>-(D)000(0,),ln1x x x∃∈+∞>-4.执行如图所示的程序框图,如果输入的1a=,输出的15S=,那么判断框内的条件可以为(A)6k<(B)6k≤(C)6k>(D)7k>5.下列函数中,同时满足:①图象关于y轴对称;高三数学(理科)第3页(共6页)高三数学(理科)第4页(共6页)高三数学(理科)第5页(共6页) 高三数学(理科)第6页(共6页)②1212,(0,)()x x x x ∀∈+∞≠,2121()()0f x f x x x ->-的是 (A )1()f x x-=(B)2()log ||f x x =(C )()cos f x x=(D )1()2x f x +=6.已知α和β是两个不同平面,l αβ=,12l l ,是与l 不同的两条直线,且1l α⊂,2l β⊂,12l l ∥,那么下列命题正确的是 (A )l 与12,l l 都不相交(B)l 与12,l l 都相交 (C )l 恰与12,l l 中的一条相交(D )l 至少与12,l l 中的一条相交7.已知12,F F 为椭圆22212xy M m+=:和双曲线2221xN y n-=:的公共焦点,P 为它们的一个公共点,且112PF F F ⊥,那么椭圆M 和双曲线N 的离心率之积为 (A )(B )1(C)2(D )128.在平面直角坐标系中,如果一个多边形的顶点全是格点(横纵坐标都是整数),那么称该多边形为格点多边形.若ABC △是格点三角形,其中(0,0)A ,(4,0)B ,且面积为8,则该三角形边界上的格点个数不可能为(A )6(B )8 (C )10 (D)12第二部分 (非选择题 共110分)二、填空题共6小题,每小题5分,共30分。
丰台区2018初三一模数学试卷含参考答 案

2018北京丰台初三(下)毕业及统一练习数 学 2018.5一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个 1.如图所示,△ABC 中AB 边上的高线是A.线段AGB. 线段BDC. 线段BED. 线段CF 2.如果代数式 有意义,那么实数x 的取值范围是 A.X ≥0 B.x ≠4 C. X ≥4 D.x>4 3.右图是某个几何体的三视图,该几何体是A.正三棱柱B.正三棱锥C.圆柱D.圆锥4.实数a,b 在数轴上的对应点的位置如图所示,如果ab=c ,那么实数c 在数轴上的对应点的位置可能是5.如图,直线a ∥b,直线c 与直线a,b 分别交于点A ,点B ,AC ⊥AB 于点A ,交直线b 于点C ,如果∠1=34°,那么∠2的度数为A.34°B.56° C.66° D.146°6.如图,在平面直角坐标系xOy 中,点A 的坐标为(2,1),如果将线段OA 绕点O 逆时针方向旋转90°,那么点A 的对应点的坐标为A.(-1,2)B.(-2,1)C.(1,-2)D.(2,-1)7.太阳能是来自太阳的辐射能量,对于地球上的人类来说,太阳能是对环境无任何污染的课再生能源,因此许多国家都在大力发展太阳能,下图是2013-2017年我国伏发电装机容量统计图,根据统计图提供的信息,判断下列说法不合理的是A.截至2017年底,我国光伏发电累计装机容量为13078万千瓦B.2013-2017年,我国光伏发电累计装机容量逐年增加C. 2013-2017年,我国光伏发电累计装机容量的平均值约为2500万千瓦D.2017年我国光伏发电累计装机容量大约占当年累计装机容量的40%8.如图1,荧光屏上的甲、乙两个斑(可看作点)分别从相距8cm的A,B两点同时开始沿线段AB运动,运动过程中甲光斑与点A的距离S1(cm)与时间t(s)的函数关系图像如图2,乙光斑与点B的距离S2(cm) 与时间t(s)的函数关系图像如图3,已知甲光斑全程的平均速度为1.5cm/s,且两图像中△P1O1Q1≌P2Q2O2,下列叙述正确的是A.甲光斑从点A到点B的运动速度是从点B到点A的运动速度的4倍B.乙光斑从点A到点B的运动速度小于1.5cm/sC.甲乙两光斑全程的平均速度一样D.甲乙两光斑在运动过程中共相遇3次二、填空题(本题共16分,每小题2分)9.在某一时刻,测得身高为1.8m的小明的影长为3m,同时测得一建筑物的影长为10m ,那么这个建筑物的高度为m。
北京市各区2018届九年级中考一模数学试卷分类汇编:二次函数综合专题含答案

3 个单
4
北京市各区 2018 届九年级中考一模数学试卷精选汇编
( 1)直接写出点 A 的坐标; ( 2)过点(0, 3)且平行于 x 轴的直线 l 与抛物线 G2 交于 B , C 两点.
①当 BAC =90 °时,求抛物线 G2 的表达式; ②若 60° BAC 120°,直接写出 m 的取值范围.
. ………………………………… 7 分
平谷区
26.在平面直角坐标系 xOy 中,抛物线 y x2 2bx 3 的对称轴为直线 x =2.
( 1)求 b 的值; ( 2)在 y 轴上有一动点 P( 0,m),过点 P 作垂直 y 轴的直线交抛物线于点 A( x1,y1),
B( x2 , y2),其中 x1 x2 . ①当 x2 x1 3时,结合函数图象,求出 m 的值; ②把直线 PB 下方的函数图象,沿直线 PB 向上翻折,图象的其余部分保持不变, 得到一
: (3, 2)
设二次函数表达式为: y a( x 3)2 2 …………… 1 分
∵该图象过 A (1 , 0)
∴ 0 a(1 3)2 2 ,解得 a 1
…………… 2 分
y
2
∴表达式为 y
1 (x
3)2
2
2
O
( 2)图象正确………………………………………………………
3分
由已知条件可知直线与图形“ G”要有三个交点 ① 当直线与 x 轴重合时,有 2 个交点 ,由二次函数的轴对称性可求
y
n
( n≠ 0)的图象经过点 M ,求反比例函数的解析式;
x
(3) 当 t<4 时,若直线 y=t 与直线 l 和( 2)反比例函数的图象分别交于点
距离大于等于 2 时,求 t 的取值范围 .
2018北京各区初三数学一模试题分类——列方程(组)解应用问题

列方程(组)解应用问题1.(18东城一模6)甲、乙两位同学做中国结,已知甲每小时比乙少做6个,甲做30个所用的时间与乙做45个所用的时间相同,求甲每小时做中国结的个数. 如果设甲每小时做x个,那么可列方程为A.30456x x=+B.30456x x=-C.30456x x=-D.30456x x=+2.(18石景山一模12)12.我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知3匹小马能拉1片瓦,1匹大马能拉3片瓦,求小马、大马各有多少匹.若设小马有x 匹,大马有y匹,依题意,可列方程组为____________.3.(18房山一模11)中国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初日健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是:有人要去某关口,路程为378里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地.若求此人第六天走的路程为多少里.设此人第六天走的路程为x里, 依题意,可列方程为__________.4.(18西城一模12)从杭州东站到北京南站,原来最快的一趟高铁G20次约用5h到达.从2018年4月10日起,全国铁路开始实施新的列车运行图,并启用了“杭京高铁复兴号”,它的运行速度比原来的G20次的运行速度快35km/h,约用4.5h到达。
如果在相同的路线上,杭州东站到北京南站的距离不变,设“杭京高铁复兴号”的运行速度.设“杭京高铁复兴号”的运行速度为km/hx,依题意,可列方程为__________.5.(18朝阳一模11)足球、篮球、排球已经成为北京体育的三张名片,越来越受到广大市民的关注. 下表是北京两支篮球队在2017-2018赛季CBA常规赛的比赛成绩:设胜一场积x分,依题意,可列二元一次方程组为.6.(18大兴一模13)在读书活动中,某同学对甲、乙两个班学生的读书情况进行了统计:甲班学生人数比乙班学生人数多3人,甲班学生读书480本,乙班学生读书360本,乙班平均每人读书的本数是甲班平均每人读书的本数的45.求甲、乙两班各有多少人?设乙班有x人,则甲班有(3)x+人,依题意,可列方程为.7. (18丰台一模14)营养学家在初中学生中做了一项实验研究:甲组同学每天正常进餐,乙组同学每天除正常进餐外,每人还增加600ml牛奶.一年后营养学家统计发现:乙组同学平均身高的增长值比甲组同学平均身高的增长值多2.01cm,甲组同学平均身高的增长值比乙组同学平均身高的增长值的75%少0.34cm.设甲、乙两组同学平均身高的增长值分别为x cm、y cm,依题意,可列方程组为.8.(18海淀一模13)京张高铁是2022年北京冬奥会的重要交通基础设施,考虑到不同路段的特殊情况,将根据不同的运行区间设置不同的时速.其中,北京北站到清河段全长11千米,分为地下清华园隧道和地上区间两部分,运行速度分别设计为80千米/小时和120千米/小时.按此运行速度,地下隧道运行时间比地上大约多2分钟..(130小时),求清华园隧道全长为多少千米.设清华园隧道全长为x千米,依题意,可列方程为__________.9. (18怀柔一模15)被历代数学家尊为“算经之首”的《九章算术》是中国古代算法的扛鼎之作.《九章算术》中记载:“今有五雀、六燕,集称之衡,雀俱重,燕俱轻.一雀一燕交而处,衡适平.并燕、雀重一斤.问燕、雀一枚各重几何?”译文:“今有5只雀、6只燕,分别聚集而且用衡器称之,聚在一起的雀重,燕轻.将一只雀、一只燕交换位置而放,重量相等.5只雀、6只燕重量为1斤.问雀、燕毎只各重多少斤?”设每只雀重x斤,每只燕重y斤,可列方程组为_____________.10.(18门头沟一模14)某小区购买了银杏树和玉兰树共150棵用来美化小区环境,购买银杏树用了12000元,购买玉兰树用了9000元.已知玉兰树的单价是银杏树单价的1.5倍,求银杏树和玉兰树的单价.设银杏树的单价为x元,可列方程为_________ .11.(18顺义一模13)《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.曾记载:今有五雀、六燕,集称之衡,雀惧重,燕惧轻.一雀一燕交而处,衡适平.并燕、雀一斤.问燕、雀一枚各重几何?译文:今有5只雀和6只燕,分别聚集而用衡器称之,聚在一起的雀重,燕轻.将1只雀、1只燕交换位置而放,重量相等.5只雀、6只燕总重量为16两(1斤=16两).问雀、燕每只各重多少两?(每只雀的重量相同、每只燕的重量相同)设每只雀重x两,每只燕重y两,可列方程组为.形卡片的长和宽分别为x 和y,则依题意,列方程组为13.(18通州一模12)《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架,其中方程术是重要的数学成就.书中有一个方程问题:今有醇酒一斗,直钱五十;行酒一斗,直钱一十。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1c 0211c0211c 0211c 021丰台区2018年初三毕业及统一练习数 学 试 卷2018. 05考生须知 1. 本试卷共8页,共三道大题,28道小题,满分100分。
考试时间120分钟。
2. 在试卷和答题卡上认真填写学校名称、姓名和考号。
3. 试题答案一律填涂或书写在答题卡上,在试卷上作答无效。
4. 在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答。
5. 考试结束,将本试卷、答题卡一并交回。
一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有..一个. 1.如图所示,△ABC 中AB 边上的高线是 (A )线段AG (B )线段BD (C )线段BE (D )线段CF 2.如果代数式4x 有意义,那么实数x 的取值范围是(A )x ≥0 (B )x ≠4 (C )x ≥4 (D )x >4 3.右图是某个几何体的三视图,该几何体是 (A )正三棱柱 (B )正三棱锥 (C )圆柱 (D )圆锥4.实数a ,b 在数轴上的对应点的位置如图所示,如果ab = c ,那么实数c 在数轴上的对应点的位置可能是(A ) (B )(C ) (D )5.如图,直线a ∥b ,直线c 与直线a ,b 分别交于点A ,点B ,AC ⊥AB 于点A ,交直线b 于点C .如果∠1 = 34°, 那么∠2的度数为 (A )34° (B )56° (C )66° (D )146°6.如图,在平面直角坐标系xOy 中,点A 的坐标为(2,1),如果将线段OA 绕点O 逆时针方向旋转90°,那么点A 的对应点的坐标为(A )(-1,2) (B )(-2,1)(C )(1,-2) (D )(2,-1)7.太阳能是来自太阳的辐射能量.对于地球上的人类来说,太阳能是对环境无任何污染的可再生能源,因此许多国家都在大力发展太阳能.下图是2013-2017年我国光伏发电装机容量统计图.根据统计图提供的信息,判断下列说法不合理...的是 (A )截至2017年底,我国光伏发电累计装机容量为13 078万千瓦 (B )2013-2017年,我国光伏发电新增装机容量逐年增加(C )2013-2017年,我国光伏发电新增装机容量的平均值约为2 500万千瓦 (D )2017年我国光伏发电新增装机容量大约占当年累计装机容量的40%8.如图1,荧光屏上的甲、乙两个光斑(可看作点)分别从相距8cm 的A ,B 两点同时开始沿线段AB 运动,运动过程中甲光斑与点A 的距离S 1(cm)与时间t (s)的函数关系图象如图2,乙光斑与点B 的距离S 2(cm)与时间t (s)的函数关系图象如图3,已知甲光斑全程的平均速度为1.5cm/s ,且两图象中△P 1O 1Q 1≌△P 2Q 2O 2.下列叙述正确的是(A )甲光斑从点A 到点B 的运动速度是从点B 到点A 的运动速度的4倍(B )乙光斑从点A 到B 的运动速度小于1.5cm/s (C )甲乙两光斑全程的平均速度一样(D )甲乙两光斑在运动过程中共相遇3次二、填空题(本题共16分,每小题2分)9.在某一时刻,测得身高为1.8m 的小明的影长为3m ,同时测得一建筑物的影长为10m ,那么这个建筑物的高度为 m .图2图3 ABCDE FG 图1B A 乙 甲 8cm t (s)8Q 1P 14t 0t 0O 1S 1(cm)S 2(cm)O 2P 2Q 28t (s)b1a 021A2323yO x12121110.写出一个函数的表达式,使它满足:①图象经过点(1,1);②在第一象限内函数y 随自变量x 的增大而减少,则这个函数的表达式为.11.在数学家吴文俊主编的《“九章算术”与刘徽》一书中,小宇同学看到一道有趣的数学问题:古代数学家刘徽使用“出入相补”原理,即割补法,把筝形转化为与之面积相等的矩形,从而得到“筝形的面积等于其对角线乘积之半”. (说明:一条对角线垂直平分另一条对角线的四边形是筝形)请根据右图完成这个数学问题的证明过程. 证明:S 筝形ABCD = S △AOB + S △AOD + S △COB + S △COD .易知,S △AOD = S △BEA ,S △COD = S △BFC . 由等量代换可得:S 筝形ABCD = S △AOB + + S △COB += S 矩形EFCA = A E ·AC = 12· . 12.如果代数式221m m +=,那么22442m m m m m+++÷的值为 .13.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E .如果∠A = 15°,弦CD = 4,那么AB 的长是 .14.营养学家在初中学生中做了一项实验研究:甲组同学每天正常进餐,乙组同学每天除正常进餐外,每人还增加600ml 牛奶.一年后营养学家统计发现:乙组同学平均身高的增长值比甲组同学平均身高的增长值多 2.01cm ,甲组同学平均身高的增长值比乙组同学平均身高的增长值的75%少0.34cm .设甲、乙两组同学平均身高的增长值分别为x cm 、y cm ,依题意,可列方程组为 . 15.“明天的降水概率为80%”的含义有以下四种不同的解释:① 明天80%的地区会下雨; ② 80%的人认为明天会下雨; ③ 明天下雨的可能性比较大;④ 在100次类似于明天的天气条件下,历史纪录告诉我们,大约有80天会下雨.你认为其中合理的解释是 .(写出序号即可)请回答:该尺规作图的依据是 .三、解答题(本题共68分,第17-24题,每小题5分,第25题6分,第26,27题,每小题7分,第28题8分)1702cos 45(3π)|1︒+-+-.18.解不等式组:341,51 2.2x x x x ≥-⎧⎪⎨->-⎪⎩19.如图,在△ABC 中,AB = AC ,D 是BC 边上的中点,DE ⊥AB 于点E ,DF ⊥AC 于点F .求证:DE = DF .20.已知:关于x 的一元二次方程x 2 - 4x + 2m = 0有两个不相等的实数根.(1)求m 的取值范围; (2)如果m 为非负整数....,且该方程的根都是整数..,求m 的值. 21.已知:如图,菱形ABCD ,分别延长AB ,CB 到点F ,E ,使得BF = BA ,BE = BC ,连接AE ,EF ,FC ,CA .(1)求证:四边形AEFC 为矩形;(2)连接DE 交AB 于点O ,如果DE ⊥AB , AB = 4,求DE 的长.F DE CBADOEABCF A BA BCEDF22.在平面直角坐标系xOy 中,反比例函数2y x=的图象与一次函数y kx b =+的图象的交点分别为P (m ,2),Q (-2,n ). (1)求一次函数的表达式;(2)过点Q 作平行于y 轴的直线,点M 为此直线上的一点,当MQ = PQ 时,直接写出点M 的坐标.23.如图,A ,B ,C 三点在⊙O 上,直径BD 平分∠ABC ,过点D 作DE ∥AB 交弦BC 于点E ,过点D 作⊙O 的切线交BC 的延长线于点F . (1)求证:EF =ED ;(2)如果半径为5,cos ∠ABC =35,求DF 的长.24.第二十四届冬季奥林匹克运动会将于2022年2月4日至2月20日在北京举行,北京将成为历史上第一座既举办过夏奥会又举办过冬奥会的城市.某区举办了一次冬奥知识网上答题竞赛,甲、乙两校各有400名学生参加活动,为了解这两所学校的成绩情况,进行了抽样调查,过程如下,请补充完整. 【收集数据】从甲、乙两校各随机抽取20名学生,在这次竞赛中他们的成绩如下:甲 30 60 60 70 60 80 30 90 100 6060 100 80 60 70 60 60 90 60 60乙 80 90 40 60 80 80 90 40 80 5080 70 70 70 70 60 80 50 80 80【整理、描述数据】按如下分数段整理、描述这两组样本数据:(说明:优秀成绩为80<x ≤100,良好成绩为50<x ≤80,合格成绩为30≤x ≤50.) 【分析数据】两组样本数据的平均分、中位数、众数如下表所示:其中a 【得出结论】(1)小明同学说:“这次竞赛我得了70分,在我们学校排名属中游略偏上!”由表中数据可知小明是________校的学生;(填“甲”或“乙”)(2)张老师从乙校随机抽取一名学生的竞赛成绩,试估计这名学生的竞赛成绩为优秀的概率为________;(3)根据以上数据推断一所你认为竞赛成绩较好的学校,并说明理由.(至少从两个不同的角度说明推断的合理性)25.如图,Rt △ABC 中,∠ACB = 90°,点D 为AB 边上的动点(点D 不与点A ,点B重合),过点D 作ED ⊥CD 交直线AC 于点E .已知∠A = 30°,AB = 4cm ,在点D 由点A 到点B 运动的过程中,设AD = x cm ,AE = y cm.小东根据学习函数的经验,对函数y 随自变量x的变化而变化的规律进行了探究.下面是小东的探究过程,请补充完整:(1)通过取点、画图、测量,得到了x 与y 的几组值,如下表:(2)在下面的平面直角坐标系xOy 中,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(3)结合画出的函数图象,解决问题:当AE =12AD 时,AD 的长度约为 cm .A B C ED26.在平面直角坐标系xOy 中,抛物线243y ax ax a =-+的最高点的纵坐标是2. (1)求抛物线的对称轴及抛物线的表达式;(2)将抛物线在1≤x ≤4之间的部分记为图象G 1,将图象G 1沿直线x = 1翻折,翻折后的图象记为G 2,图象G 1和G 2组成图象G .过(0,b )作与y 轴垂直的直线l ,当直线l 和图象G 只有两个公共点时,将这两个公共点分别记为P 1(x 1,y 1),P 2(x 2,y 2),求b 的取值范围和x 1 + x 2的值.27.如图,Rt △ABC 中,∠ACB且∠BCE = α,点B 关于BD 分别交射线CE 于点M ,N . (1)依题意补全图形;(2)当α= 30°时,直接写出∠CMA 的度数; (3)当0°<α< 45°时,用等式表示线段AM ,CN 之间的数量关系,并证明.28.对于平面直角坐标系xOy 中的点M 和图形1W ,2W 给出如下定义:点P 为图形1W 上一点,点Q 为图形2W 上一点,当点M 是线段PQ 的中点时,称点M 是图形1W ,2W 的“中立点”.如果点P (x 1,y 1),Q (x 2,y 2),那么“中立点”M 的坐标为⎪⎭⎫⎝⎛++2,22121y y x x .已知,点A (-3,0),B (0,4),C (4,0). (1)连接BC ,在点D (12,0),E (0,1),F (0,12)中,可以成为点A 和线段BC 的“中立点”的是____________;(2)已知点G (3,0),⊙G 的半径为2.如果直线y = - x + 1上存在点K 可以成为点A 和⊙G 的“中立点”,求点K 的坐标;(3)以点C 为圆心,半径为2作圆.点N 为直线y = 2x + 4上的一点,如果存在点N ,使得y 轴上的一点可以成为点N 与⊙C 的“中立点”,直接写出点N 的横坐标的取值范围.A B C E丰台区2018年初三毕业及统一练习初三数学参考答案一、选择题(本题共16分,每小题2分)二、填空题(本题共16分,每小题2分)9.6;10.1yx=等,答案不唯一;11.S△BEA,S△BFC,AC•BD;12.1;13.8;14.2.01,75%0.34;yxx y=+⎧⎨=-⎩15.③,④;16.在同圆或等圆中,如果两个圆心角、两条弧、两条弦中的一组量相等,那么它们所对应的其余各组量都分别相等.或:同圆半径相等,三条边对应相等的两个三角形全等,全等三角形的对应角相等.三、解答题(本题共68分,第17--24题,每小题5分,第25题6分,第26,27题,每小题7分,第28题8分)1702cos45(3π)|1-︒+-+-.=211++……………………4分=……………………5分18.解:解不等式①,得1x≤,……………………2分解不等式②,得1x>-. ……………………4分∴原不等式组的解集是11x-<≤.………5分19.证明:连接AD.∵AB=BC,D是BC边上的中点,∴∠BAD=∠CAD. ………………………3分∵DE⊥AB于点E,DF⊥AC于点F,∴DE=DF.………………………5分(其他证法相应给分)20.解:(1)∵方程有两个不相等的实数根,∴Δ>0.∴Δ=24421680m m--⋅=->().∴2m<. ………………………2分(2)∵2m<,且m为非负整数,∴=0m或1. ………………………3分当m=0时,方程为240x x-=,解得方程的根为01=x,24x=,符合题意;当m=1时,方程为2420x x-+=,它的根不是整数,不合题意,舍去.综上所述,m=0. ………………………5分21.(1)证明:∵BF=BA,BE=BC,∴四边形AEFC为平行四边形. ………………………1分∵四边形ABCD为菱形,∴BA=BC.∴BE=BF.∴BA + BF = BC + BE,即AF=EC.∴四边形AEFC为矩形.………………………2分(2)解:连接DB.由(1)知,AD∥EB,且AD=EB.∴四边形AEBD为平行四边形∵DE⊥AB,∴四边形AEBD为菱形.∴AE=EB,AB=2AG,ED=2EG. ………………………4分∵矩形ABCD中,EB=AB,AB=4,∴AG=2,AE=4.∴Rt△AEG中,EG=∴ED=………………………5分(其他证法相应给分)22.(1)解:∵反比例函数2yx=的图象经过点(,2)P m,Q(-2,n),∴1m=,1n=-.∴点P,Q的坐标分别为(1,2),(-2,-1). …….…….…….……2分∵一次函数y kx b=+的图象经过点P(1,2),Q(-2,-1),∴2,2 1.k bk b+=⎧⎨-+=-⎩解得1,1.kb=⎧⎨=⎩∴一次函数的表达式为1y x=+..…….…….…….……3分AB CEDF312FDE C BAO 87654321GNMDA CEB(2)点M 的坐标为(-2,-1+32)或(-2,-1-32)……………5分23.(1)证明:∵BD 平分∠ABC ,∴∠1=∠2.∵DE ∥AB ,∴∠2=∠3.∴∠1=∠3. ∵BC 是⊙O 的切线,∴∠BDF =90°. ∴∠1+∠F =90°,∠3+∠EDF =90°.∴∠F =∠EDF .∴EF =DE . …….…….……………2分(2)解:连接CD .∵BD 为⊙O 的直径,∴∠BCD =90°. ∵DE ∥AB ,∴∠DEF =∠ABC .∵cos ∠ABC =35,∴在Rt △ECD 中,cos ∠DEC =CE DE =35. 设CE =3x ,则DE =5x .由(1)可知,BE = EF =5x .∴BF =10x ,CF =2x . 在Rt △CFD 中,由勾股定理得DF =25x . ∵半径为5,∴BD =10. ∵BF ×DC = FD ×BD ,∴1041025x x x =g g ,解得5x =.∴DF =25x =5. …….…….……………5分(其他证法或解法相应给分.)24.解:a =80; ………………………1分 (1)甲; ………………………2分 (2)110; ………………………3分 (3)答案不唯一,理由需支持推断结论.如:乙校竞赛成绩较好,因为乙校的平均分高于甲校的平均分说明平均水平高,乙校的中位数75高于甲校的中位数65,说明乙校分数不低于70分的学生比甲校多. ………………………5分25.解:(1)1.2; ………………………2分 (2)如右图; ………………………4分 (3)2.4或3.3 ………………………6分26.解:(1)∵抛物线()22432y ax ax a a x a =-+=--,∴对称轴为x = 2.………………………………………1分 ∵抛物线最高点的纵坐标是2,∴a = -2. ………………………………………2分 ∴抛物线的表达式为2286y x x =-+-. ……………3分(2)由图象可知,2b = 或-6≤b <0. ………………6分由图象的对称性可得:x 1+x 2=2. ……………… 7分27.解:(1)如图; …………………1分(2)45°; …………………2分(3)结论:AM =2CN . …………………3分 证明:作AG ⊥EC 的延长线于点G .∵点B 与点D 关于CE 对称,∴CE 是BD 的垂直平分线.∴CB =CD .∴∠1=∠2=α.∵CA =CB ,∴CA =CD .∴∠3=∠CAD . ∵∠4=90°,∴∠3=(180°∠ACD )=(180°90°αα)=45°.∴∠5=∠2+∠3=α+45°-=45°.…………………5分 ∵∠4=90°,CE 是BD 的垂直平分线, ∴∠1+∠7=90°,∠1+∠6=90°. ∴∠6=∠7. ∵AG ⊥EC ,∴∠G =90°=∠8. ∴在△BCN 和△CAG 中, ∠8=∠G , ∠7=∠6, BC =CA ,∴△BCN ≌△CAG .∴CN =AG .∵Rt △AMG 中,∠G =90°,∠5=45°,12-12----ααxyxy=x12Oy∴AM =2AG .∴AM =2CN . …………………7分 (其他证法相应给分.)28.解:(1)点A 和线段BC 的“中立点”的是点D ,点F ; ………2分(2)点A 和⊙G 的“中立点”在以点O 为圆心、半径为1的圆上运动.因为点K 在直线y =- x +1上, 设点K 的坐标为(x ,- x +1),则x 2+(- x +1)2=12,解得x 1=0,x 2=1.所以点K 的坐标为(0,1)或(1,0). ………5分(3)(说明:点N 与⊙C 的“中立点”在以线段NC 的中点P 为圆心、半径为1的圆上运动.圆P 与y 轴相切时,符合题意.) 所以点N 的横坐标的取值范围为-6≤x N ≤-2. ………8分xyxy。