十字交叉法的原理及其在化学计算中的应用

合集下载

高中化学解题方法——十字交叉法

高中化学解题方法——十字交叉法
详细描述
在化学反应速率问题中,十字交叉法可以用来确定反应速率常数与反应物浓度之 间的关系,从而理解反应速率的变化规律。
03
CATALOGUE
十字交叉法的解题步骤
确定问题类型
01
02
03
混合物计算
当题目涉及混合物时,可 以通过十字交叉法计算混 合物的组成和比例。
平均量计算
当需要计算平均量时,如 平均相对分子质量、平均 摩尔质量等,可以使用十 字交叉法。
高中化学解题方法—— 十字交叉法
汇报人:
202X-01-01
CATALOGUE
目 录
• 十字交叉法的原理 • 十字交叉法的应用 • 十字交叉法的解题步骤 • 十字交叉法的注意事项 • 实例解析
01
CATALOGUE
十字交叉法的原理
原理概述
十字交叉法是一种用于解决混合 物计算问题的化学解题方法。
它通过将混合物的两个组分的质 量或体积进行交叉相乘,来找出 两组分在混合物中的质量比或体
积比。
这种方法适用于解决涉及两种组 分混合的问题,如气体混合、溶
液混合等。
原理的数学表达
则A组分在混合物中 的质量分数为:XA = (m1/M)。
两组分的交叉相乘关
系为:m1XA
=
m2XB。
B组分在混合物中的 质量分数为:XB = (m2/M)。
溶液配制与稀释
总结词
适用于溶液配制和稀释的计算,特别是当涉及溶液的平均量和两个不同浓度的 溶液时。
详细描述
在溶液配制和稀释过程中,十字交叉法可以用来计算两个不同浓度的溶液混合 后的平均浓度,或者确定某一浓度的溶液稀释到另一浓度的比例。
化学反应速率
总结词

化学中的十字交叉法

化学中的十字交叉法

化学中的“十字交叉法”十字交叉法是进行二组分混合物平均量与组分量计算的一种简便方法。

在化学计算中所涉及的题目较多,应用广泛。

现将化学中的“十字交叉法”加以系统的说明和应用。

一、 十字交叉法的由来题目:现有10个苹果,其中0.2㎏、0.3㎏的苹果分别为6个、4个。

求平均每个苹果重多少?解:设平均每个苹果重c ㎏,则 c= 0.2×6+0.3×4 6+4= 0.24(㎏) 即c = 0.2×610 + 0.3×410 = 0.2×60% + 0.3×40% = 0.24(㎏) (其中百分数指的是个数百分数) 或0.2×6+0.3×4=0.24×(6+4)现将上述题目变形为:现有一些苹果,其中a ㎏、b ㎏的苹果分别为x 个、y 个。

求平均每个苹果重多少?解:设平均每个苹果重c ㎏,则 c= a ×x +b ×y x +y(㎏) 即ax+by=c (x+y ) (a<c<b) (*)由(*)知,若要计算两种苹果的个数百分数x 、y ,只须知道两种苹果的重量比a 、b 和平均重量c 即可。

在化学计算中,也会经常遇到类似以上题目问题:则可利用二元一次方程(*)求x y 。

由方程 (*) 解得 x y = b-c c-a 。

x 与y 的比值也可用下列形式简单描述出来:x (b-c)—— == —— 即:x y = b-c c-ay (c-a)二、 十字交叉法的适用范围下面列表说明a 、b 、c 、x 、y 、x y 的含义:时,必须符合(*)中列出的二元一次方程,才能使得x/y具有相应的含义。

三、十字交叉法应用(一)用组分的式量与混合气的平均式量做十字交叉,求组分物质的量比(气体体积比)或物质的量分数(或气体的体积分数)。

例1:已知H2和CO 的混合气,其平均式量是20,求混合气中H2和CO 的体积比以及CO 的体积百分数。

十字交叉法及其应用

十字交叉法及其应用

十字交叉法及其应用四川省资中二中刘建国邮编:641200十字交叉法是将较为复杂的化学计算问题进行数学处理后得出的一种简洁计算方式,能达到化学与数学的完美结合。

但在使用中,由于不能很好地理解十字交叉法中“比值”的化学意义,极易造成解题错误。

下面谈一谈十字交叉的原理和应用的类型。

一、十字交叉法的原理组分A的量a1和组分B的量a2混合后的平均量为,若能例出一般的二元一次方程组:a1x1+a2x2= K,(a1>a2;K为x1和x2之和,K= x1+x2),均可用十字交叉法。

即,。

注意:1)a1、a2和三者的单位相同;2)比值的化学含义则由来决定,若可表示为,则比值就表示y 所表示的量的比值(即所属单位的分母之比)。

比如:为摩尔质量(克/摩),则表示物质的量之比;为质量分数(克/克),则表示质量之比;为密度(克/升),则表示体积之比;为物质量浓度(摩/升),则表示物质的量之比等等。

3)K为x1和x2之和,K= x1+x2,若K不为x1和x2之和,则不能用十字交叉法求解。

二、十字交叉法的各种应用例子例1、H2和O2的组成的混合气体,其相对平均摩尔质量为24.5 g/mol,求二者的物质的量之比?解:M(H2):M(O2):答:二者物质的量之比为1:3。

例2、1体积98%的浓硫酸(密度为1.84g/cm3)与4体积水(密度为1g/cm3)混和,求所得硫酸的百分比浓度?解:98%的浓硫酸:水:即:a:(98-a)=(1×1.84)∶(4×1) 解得a=30.9答:所得H2SO4的百分比浓度为30.9%例3、标况下,氮气的密度为1.25g/L,乙烷的密度为1.34g/L,两种气体混合后,其密度为1.30g/L,求混合气中氮气和乙烷的体积比?解:氮气:乙烷:答:氮气和乙烷的体积比为4:5。

例4、将6mol/L的稀硫酸稀释成2mol/L的硫酸,取用的硫酸与蒸馏水的体积比最接近多少?解:稀硫酸:水:答:硫酸与蒸馏水的体积比为1:2。

”十字交叉法“的原理和应用

”十字交叉法“的原理和应用

化学计算中“十字交叉法”的数学原理和应用一. “十字交叉法”简介“十字交叉法”是二元混合物(或组成)计算中的一种特殊方法,若已知两组分量和这两个量的平均值,求这两个量的比例关系等,多可运用“十字交叉法”计算。

十字交叉法在化学计算中是一种常用的方法,在很多习题中采用十字交叉法可以简化计算过程,提高计算效率。

下面先从一道简单的例题来介绍何为十字交叉法。

例1、50克10%的硫酸溶液和150克30%的硫酸溶液混合后,所得硫酸溶液的质量分数是多少?采用十字交叉法计算的格式如下:设混合后溶液的质量分数为x%,则可列出如下十字交叉形式所得的等式:10%的溶液 10 30 — xX =30%的溶液 30 x — 1050g(10%的溶液质量) 150(30%的溶液质量)由此可得出x = 25,即混合后溶液的质量分数为25%。

以上习题的计算过程中有一个十字交叉的形式,因此通常将这种方法叫做“十字交叉法”。

然而怎样的计算习题可以采用这种方法?且在用“十字交叉法”时,会涉及到最后差值的比等于什么的问题,即交叉后所得的差值之比是实际中的质量之比还是物质的量之比?这些问题如果不明确,计算中便会得出错误的结论。

针对以上问题,在以前的教学中,可能往往让学生从具体的习题类型死记差值之比的实际意义。

由于十字交叉法常用于:①核素“丰度”与元素相对原子质量的计算;②混合气体不同组分体积之比和混合气体平均相对分子质量的计算;③不同浓度的同种溶液混合后质量分数与组分溶液质量之比的计算等类型的习题中。

因此可以简单记忆为前两种类型中,差值之比为物质的量之比,第三种类型差值之比为质量之比。

这种记忆方法束缚了学生的思维,同时也限制了“十字交叉法”的使用范围。

实质上“十字交叉法”的运用范围很广,绝不仅仅只能在以上三种类型的习题中才可运用。

然而不同情况下,交叉后所得的差值之比的实际意义是什么?该怎样确定其实际意义?是我们应该探讨和明了的问题。

要解决此问题,就要明了“十字交叉法”的数学原理,然后再从原理的角度去分析,便能确定差值之比在何时为组分的质量之比,何时为组分的物质的量之比。

十字交叉法的原理及其在化学计算中的应用

十字交叉法的原理及其在化学计算中的应用

十字交叉法的原理及其在化学计算中的应用十字交叉法又称对角线法,也叫混合规则.作为一种简化的解题方法,是实际计算方程式图解形式,应用于二元混合体系具有平均值的计算问题,它具有简化思路、简便运算、计算速度快等显著优点.近年来,十字交叉法在中学化学计算中广泛使用,通过十字交叉得到差值的比值的含义如何确定,如果没有真正理解十字交叉法含义在使用该方法时将没有真正达到简化思路、快速准确求解的目的从而限制了该方法的推广和应用“十字交叉法”是通常中学化学计算必需掌握的一种计算方法因为用此法解题实用性强、速度快学生若能掌握此方法解题将会起到事半功倍的效果以下是笔者几年来对“十字交叉法”理解及体会. 1 十字交叉法的原理A×a%+B×b%=(A+B)×c%整理变形得: A/B=(c-b)/(a-c )①如果我们以100 g溶液所含的溶质为基准上式表示溶液混合时它们的质量比与有关质量分数比的关系可得如下十字交叉形式对比①,②两式不难看出:十字交叉关系中(c-b)/(a-c)为组分A和组分B混合时的质量比推广到二组分混合体系中,当以一定质量的混合体系为基准所得十字交叉关系,其比值为质量比(例如,质量分数是以质量为基准);若有c-b比a-c的化学意义由平均值,c决定则比值就表示组分A中c-b和组分B中a-c所表示的量的比值.如c 为质量或质量分数,则(c-b)/(a-c)表示组分A和组分B溶液的质量之比.若c为密度,则(c-b)/(a-c)就表示组分A和组分B的溶液体积之比若c为摩尔质量,则(c-b)/(a-c) 就表示组分A和组分B的物质的量比;此时可用十字交叉法求混合物中各组分的含量.2 .十字交叉法的应用例析:2.1 用于混合物中质量比的计算例1:将铝铁合金18.5克溶于足量的盐酸中产生标准状况下的氢气11.2升,求合金中铝铁的质量之比是多少?解:在标准状况下,求出氢气的质量M=1g以混合物总质量18.5g作为基准物再根据镁铝与盐酸的关系列出十字交叉式如下:求得铝与铁质量的比是9/28例2.镁和铝的混合物10g,与足量的稀硫酸充分反应,生成1.0g氢气,混合物中镁和铝的质量比为多少?解:在标准状况下,以混合物总质量10g作为基准物再根据镁铝与盐酸的关交叉式如下:求得镁与铝的质量比是2/3例3: KHCO3和CaCO3的混合物和等质量的NaHCO3分别与盐酸完全反应时,所消耗的酸的量相等,则混合物中KHCO3与CaCO3的质量比是多少?解析:由化学反应方程式:KHCO3+HCl=KCl+H2O+CO2↑CaCO3+2HCl=CaCl2+H2O+CO2↑以消耗HCl物质的量1mol作为基准物, 求出反应掉KHCO3、CaCO3、NaHCO3的质量的数值分别为100g、50g、84g,依题意KHCO3和CaCO3的混合物84g 与NaHCO384g均消耗1molHCl,即两个分量值分别为100和50,平均值为84, 用十字交叉法图解如下:因为是以物质消耗HCl的物质的量1mol为基准物,所以比值34/16=17/8 为碳酸氢钾与碳酸钙消耗HCl的物质的量之比,故原混合物中碳酸氢钾与碳酸钙的物质的量之比为17/4,即质量比也为17/4(因它们的相对分子质量相等).2.2 用于混合物中物质的量比的计算例4 .在标准状况下,测得空气和HCl混合气体对氢气的相对密度为17,求空气和HCl气体的物质的量之比解:混合气体的平均式量为17×2=34 ,以1 mol混合物为基准物则十字交叉法如下:求出空气与HCl气体的物质的量比是1/2例5、某Na2SO3已部分氧化成Na2SO4,经测定该混合物中硫的质量分数为25%,求混合物中Na2SO3和Na2SO4的物质的量之比 (整数比)?解:由平均质量分数25%,列出十字交叉法如下:Na2SO3中 S % 25.397 % 2.465 %25%Na2SO4中 S % 22.535 % 0.397 %求得Na2SO3与Na2SO4的物质的量比是6/12.3 用于混合物中体积比的计算例6.已知CH4, C2H4及其混合气体在同温同压下分别为 0.71 g / L 、1.25 g / L 、1.16 g / L.求混合气体CH4和C2H4的体积比是多少?解:以1mol 混合气体密度1.16 g / L作为基准物则十字交叉法如下:CH40.71 0.091.16C2H4 1.25 0.45求得CH4与C2H4的体积比是1/3例7.已经2H2(g)+O2(g)=2H2O(g);△H=-571.6KJ/molC3H8 (g)+5 O2(g)=3CO2(g)+4H2O(1); △H=-2220KJ/mol。

十字交叉法在化学中的应用.

十字交叉法在化学中的应用.

十字交叉法的原理及其在化学计算中的应用十字交叉法又称对角线法,也叫混合规则.作为一种简化的解题方法,是实际计算方程式图解形式,应用于二元混合体系具有平均值的计算问题,它具有简化思路、简便运算、计算速度快等显著优点.近年来,十字交叉法在中学化学计算中广泛使用,通过十字交叉得到差值的比值的含义如何确定,如果没有真正理解十字交叉法含义,在使用该方法时将没有真正达到简化思路、快速准确求解的目的,从而限制了该方法的推广和应用.“十字交叉法”是通常中学化学计算必需掌握的一种计算方法,因为用此法解题实用性强、速度快.学生若能掌握此方法解题,将会起到事半功倍的效果.以下是笔者几年来对“十字交叉法”理解及体会.1 十字交叉法的原理:A×a%+B×b%=(A+B×c% 整理变形得:A/B=(c-b/(a-c ①如果我们以100 g溶液所含的溶质为基准上式表示溶液混合时它们的质量比与有关质量分数比的关系.可得如下十字交叉形式a c-bc ②b a-c对比①,②两式不难看出:十字交叉关系中(c-b/(a-c为组分A和组分B混合时的质量比.推广到二组分混合体系中,当以一定质量的混合体系为基准所得十字交叉关系,其比值为质量比(例如,质量分数是以质量为基准;若有c-b比a-c的化学意义由平均值c决定,则比值就表示组分A中c-b和组分B中a-c所表示的量的比值.如c为质量或质量分数,则(c-b/(a-c表示组分A和组分B溶液的质量之比.若c为密度,则(c-b/(a-c 就表示组分A和组分B的溶液体积之比.若c为摩尔质量,则(c-b/(a-c 就表示组分A 和组分B的物质的量比;此时可用十字交叉法求混合物中各组分的含量.2 十字交叉法的应用例析:2.1 用于混合物中质量比的计算例1 将铝铁合金18.5克溶于足量的盐酸中产生标准状况下的氢气11.2升,求合金中铝铁的质量之比是多少?解:在标准状况下,求出氢气的质量M=1g,以混合物总质量18.5g作为基准物再根据镁铝与盐酸的关系列出十字交叉式如下:Al 37 / 18 19/561Fe 37/56 19/18求得铝与铁质量的比是9/28例2 镁和铝的混合物10g,与足量的稀硫酸充分反应,生成1.0g氢气,混合物中镁和铝的质量比为多少?解:在标准状况下,以混合物总质量10g作为基准物再根据镁铝与盐酸的关交叉式如下:Mg 5/6 1/91Al 10/9 1/6求得镁与铝的质量比是2/3例3 KHCO3和CaCO3的混合物和等质量的NaHCO3分别与盐酸完全反应时,所消耗的酸的量相等,则混合物中KHCO3与CaCO3的质量比是多少?解析:由化学反应方程式:KHCO3+HCl=KCl+H2O+CO2↑CaCO3+2HCl=CaCl2+H2O+CO2↑以消耗HCl物质的量1mol作为基准物, 求出反应掉KHCO3、CaCO3 、NaHCO3的质量的数值分别为100g、50g、84g,依题意KHCO3和CaCO3的混合物84g与NaHCO384g均消耗1molHCl,即两个分量值分别为100和50,平均值为84, 用十字交叉法图解如下:KHCO3 100 3484CaCO3 50 16因为是以物质消耗HCl的物质的量1mol为基准物,所以比值34/16=17/8 为碳酸氢钾与碳酸钙消耗HCl的物质的量之比,故原混合物中碳酸氢钾与碳酸钙的物质的量之比为17/4,即质量比也为17/4(因它们的相对分子质量相等).2.2 用于混合物中物质的量比的计算例4 在标准状况下,测得空气和HCl混合气体对氢气的相对密度为17,求空气和HCl气体的物质的量之比解:混合气体的平均式量为17×2=34 ,以1 mol混合物为基准物则十字交叉法如下:空气 29 2.534HCl 36.5 5求出空气与HCl气体的物质的量比是1/2例5某Na2SO3已部分氧化成Na2SO4,经测定该混合物中硫的质量分数为25%,求混合物中Na2SO3和Na2SO4的物质的量之比 (整数比?解:由平均质量分数25%,列出十字交叉法如下:Na2SO3 中 S % 25.397 % 2.465 %25%Na2SO4 中 S % 22.535 % 0.397 %求得Na2SO3与Na2SO4 的物质的量比是6/12.3 用于混合物中体积比的计算例6已知CH4, C2H4及其混合气体在同温同压下分别为0.71 g / L 、1.25 g / L 、1.16 g / L.求混合气体CH4和C2H4的体积比是多少?解:以1mol 混合气体密度1.16 g / L作为基准物则十字交叉法如下:CH4 0.71 0.091.16C2H4 1.25 0.45求得CH4与C2H4 的体积比是1/3例7 已经 2H2(g+O2(g=2H2O(g;△H=-571.6千焦C3H8 (g+5 O2(g=3CO2(g+4H2O(1; △H=-2220千焦求H2和C3H8的体积比.解析:lmol C3H8完全燃烧放热为:571.6/2=285.8千焦lmol C3H8完全燃烧放热为:2220千焦lmol混合气体完全燃烧放热为:3847/5=769.4千焦列出十字交叉法如下:H2 285.5 1460.6769.4C3H8 2220 483.6求得H2和C3H8 的体积比为3/1例8一种气态烷烃和一种气态烯烃,它们的分子式中所含碳原子数相同,若l体积这种混合烃在O2中充分燃烧,能生成2体积的和2.4体积的水蒸气,则混合中烷烃和烯烃的体积比是多少?解:设混合烃分子式为CxHy、烷烃与烯烃的体积比为CxHy + 3.2 O2 = 2 CO2+ 2.4 H2O1 3.2 2 2.4根据原子守衡定理得混合烃分子式为C2H4.8 即氢的原子数是 4.8.十字交叉法如下:C2H6 6 0.84.8C2H4 4 1.2求得混合物中C2H6和C2H4 的体积比是2/32.4 用于混合物中原子个数比的计算例9已知自然界中铱有两种质量数分别为191和193的同位素,而铱的相对分子质量为192.22,求这两种同位素原子个数比.解:以1 mol铱的相对分子质量为192.22为基准则十字交叉法如下:191Ir 1910.78199.2 191Ir / 193Ir = 0.78 / 1.22193Ir 1931.22求得191Ir 与193Ir 物质的量比39/61 也是它们原子个数比.2.5 用于混合物中质量分数和体积分数的计算例10 把0.200gNaCl和KI混和物溶于水后加入过量AgN03溶液析出0.449 g,求原混和物中NaCl和KI的质量百分数.解:分别计算产生沉淀物的质量,根据化学方程式得:0.200 g NaCl生成0.490 g AgCl0.200 g NaI生成0.283 g AgI则十字交叉法如下:NaCl 0.490 / 0.200 0.1660.449/0.200 m( NaCl / m(KI =0.166/ 0.041KI 0.283 / 0.200 0.041求得NaCl 和 KI 的质量比是4/1,即他们的质量分数分别为80% ,20%例11在标准状况下氢气和一氧化碳的混合气体7L,质量为2.25g,求H2和CO的体积分数?解:设混合气体的摩尔质量为M2.25 / M = 7 / 22.4 L / mol M=7.29列出十字交叉法如下:CO 28 5.27.2 V( CO / V( H2 =5.2 / 20.8H22 20.8求得CO与H2体积比是1/4即它们体积分数分别是25% ,75%例12 已知Fe2O3在高炉中发生反应Fe2O3+CO = 2FeO+CO2,反应形成的固体混合物Fe2O3、FeO中,元素铁和氧的质量之比用m(Fe∶m(O表示.若m(Fe∶m(O=21∶8,计算Fe2O3被CO还原的质量分数.解析:此题用方程式法甚为烦琐,用十字交叉法则非常简单.即:若Fe2O3全部被还原,则m(Fe∶m(O=21∶6;若Fe2O3未被还原,则m(Fe∶m(O=21∶9.列出十字交叉法如下:未被还原Fe2O39 / 21 2 / 218/21被还原Fe2O3 6 / 21 1 / 21则未被还原的氧化铁与被还原的氧化铁的物质的量之比为2∶1,所以被还原的氧化铁的质量分数为13×100%=33.3%.例13将20%NaCl溶液与60%NaCl溶液按质量比1:3混合,计算NaCl溶液的质量分数.解:设20%NaCl溶液为mg,则60%NaCl溶液质量就为3mg,所得NaCl溶液的质量为x%列出十字交叉法如下:m 20% x%-60%x%3m 60 % 20%-x%则 m / 3m = ( x % - 60% / ( 20% - x % 求出x=50既NaCl质量分数50%通过上面的论述,我们可以看出,十字交叉法确实简单、方便、容易操作,但值得一提的是,在应用十字交叉法进行运算时,必须满足它的运算基础.十字交叉法应用于处理两组分(或相当于两组分的混合物的组成计算十分方便.不断积累、总结、发掘新的解题方法,可促进知识的有效迁移、同化和深化对问题的理解,提高解题的效率与正确率.。

十字交叉法在化学中的应用及总结

十字交叉法在化学中的应用及总结

十字交叉法的原理及其在化学计算中的应用十字交叉法又称对角线法,也叫混合规则.作为一种简化的解题方法,是实际计算方程式图解形式,应用于二元混合体系具有平均值的计算问题,它具有简化思路、简便运算、计算速度快等显著优点.近年来,十字交叉法在中学化学计算中广泛使用,通过十字交叉得到差值的比值的含义如何确定,如果没有真正理解十字交叉法含义,在使用该方法时将没有真正达到简化思路、快速准确求解的目的,从而限制了该方法的推广和应用.“十字交叉法”是通常中学化学计算必需掌握的一种计算方法,因为用此法解题实用性强、速度快.学生若能掌握此方法解题,将会起到事半功倍的效果.以下是笔者几年来对“十字交叉法”理解及体会.1 十字交叉法的原理:A×a%+B×b%=(A+B)×c%整理变形得:A/B=(c-b)/(a-c )①如果我们以100 g溶液所含的溶质为基准上式表示溶液混合时它们的质量比与有关质量分数比的关系.可得如下十字交叉形式a c-bc ②b a-c对比①,②两式不难看出:十字交叉关系中(c-b)/(a-c)为组分A和组分B混合时的质量比.推广到二组分混合体系中,当以一定质量的混合体系为基准所得十字交叉关系,其比值为质量比(例如,质量分数是以质量为基准);若有c-b比a-c的化学意义由平均值c决定,则比值就表示组分A中c-b和组分B中a-c所表示的量的比值.如c为质量或质量分数,则(c-b)/(a-c)表示组分A和组分B溶液的质量之比.若c为密度,则(c-b)/(a-c)就表示组分A和组分B的溶液体积之比.若c为摩尔质量,则(c-b)/(a-c)就表示组分A和组分B的物质的量比;此时可用十字交叉法求混合物中各组分的含量.2 十字交叉法的应用例析:2.1 用于混合物中质量比的计算例1将铝铁合金18.5克溶于足量的盐酸中产生标准状况下的氢气11.2升,求合金中铝铁的质量之比是多少?解:在标准状况下,求出氢气的质量M=1g,以混合物总质量18.5g作为基准物再根据镁铝与盐酸的关系列出十字交叉式如下:Al 37 / 18 19/561Fe 37/56 19/18求得铝与铁质量的比是9/28例2镁和铝的混合物10g,与足量的稀硫酸充分反应,生成1.0g氢气,混合物中镁和铝的质量比为多少?解:在标准状况下,以混合物总质量10g作为基准物再根据镁铝与盐酸的关交叉式如下:Mg 5/6 1/91Al 10/9 1/6求得镁与铝的质量比是2/3例3KHCO3和CaCO3的混合物和等质量的NaHCO3分别与盐酸完全反应时,所消耗的酸的量相等,则混合物中KHCO3与CaCO3的质量比是多少?解析:由化学反应方程式:KHCO3+HCl=KCl+H2O+CO2↑CaCO3+2HCl=CaCl2+H2O+CO2↑以消耗HCl物质的量1mol作为基准物, 求出反应掉KHCO3、CaCO3、NaHCO3的质量的数值分别为100g、50g、84g,依题意KHCO3和CaCO3的混合物84g与NaHCO384g均消耗1molHCl,即两个分量值分别为100和50,平均值为84, 用十字交叉法图解如下: KHCO3100 3484CaCO3 50 16因为是以物质消耗HCl的物质的量1mol为基准物,所以比值34/16=17/8为碳酸氢钾与碳酸钙消耗HCl的物质的量之比,故原混合物中碳酸氢钾与碳酸钙的物质的量之比为17/4,即质量比也为17/4(因它们的相对分子质量相等).2.2 用于混合物中物质的量比的计算例4在标准状况下,测得空气和HCl混合气体对氢气的相对密度为17,求空气和HCl气体的物质的量之比解:混合气体的平均式量为17×2=34 ,以1 mol混合物为基准物则十字交叉法如下:空气29 2.534HCl 36.5 5求出空气与HCl气体的物质的量比是1/2例5某Na2SO3已部分氧化成Na2SO4,经测定该混合物中硫的质量分数为25%,求混合物中Na2SO3和Na2SO4的物质的量之比 (整数比)?解:由平均质量分数25%,列出十字交叉法如下:Na2SO3中S % 25.397 % 2.465 %25%Na2SO4 中S % 22.535 % 0.397 %求得Na2SO3与Na2SO4的物质的量比是6/12.3 用于混合物中体积比的计算例6已知CH4, C2H4及其混合气体在同温同压下分别为0.71 g / L 、1.25 g / L 、1.16 g / L.求混合气体CH4和C2H4的体积比是多少?解:以1mol混合气体密度1.16 g / L作为基准物则十字交叉法如下:CH40.71 0.091.16C2H4 1.25 0.45求得CH4与C2H4的体积比是1/3例7已经2H2(g)+O2(g)=2H2O(g);△H=-571.6千焦C3H8 (g)+5 O2(g)=3CO2(g)+4H2O(1); △H=-2220千焦求H2和C3H8的体积比.解析:lmol C3H8完全燃烧放热为:571.6/2=285.8千焦lmol C3H8完全燃烧放热为:2220千焦lmol混合气体完全燃烧放热为:3847/5=769.4千焦列出十字交叉法如下:H2 285.5 1460.6769.4C3H8 2220 483.6求得H2和C3H8的体积比为3/1例8一种气态烷烃和一种气态烯烃,它们的分子式中所含碳原子数相同,若l体积这种混合烃在O2中充分燃烧,能生成2体积的和2.4体积的水蒸气,则混合中烷烃和烯烃的体积比是多少?解:设混合烃分子式为CxHy、烷烃与烯烃的体积比为CxHy + 3.2 O2= 2 CO2+ 2.4 H2O1 3.2 2 2.4根据原子守衡定理得混合烃分子式为C2H4.8即氢的原子数是4.8.十字交叉法如下:C2H6 6 0.84.8C2H4 4 1.2求得混合物中C2H6和C2H4的体积比是2/32.4 用于混合物中原子个数比的计算例9已知自然界中铱有两种质量数分别为191和193的同位素,而铱的相对分子质量为192.22,求这两种同位素原子个数比.解:以1 mol铱的相对分子质量为192.22为基准则十字交叉法如下:191Ir 1910.78199.2 191Ir / 193Ir = 0.78 / 1.22193Ir 193 1.22求得191Ir 与193Ir 物质的量比39/61 也是它们原子个数比.2.5 用于混合物中质量分数和体积分数的计算例10 把0.200gNaCl和KI混和物溶于水后加入过量AgN03溶液析出0.449 g,求原混和物中NaCl和KI的质量百分数.解:分别计算产生沉淀物的质量,根据化学方程式得:0.200 g NaCl生成0.490 g AgCl0.200 g NaI生成0.283 g AgI则十字交叉法如下:NaCl 0.490 / 0.200 0.1660.449/0.200 m( NaCl ) / m(KI) =0.166/ 0.041KI 0.283 / 0.200 0.041求得NaCl 和 KI 的质量比是4/1,即他们的质量分数分别为80% ,20%例11在标准状况下氢气和一氧化碳的混合气体7L,质量为2.25g,求H2和CO的体积分数?解:设混合气体的摩尔质量为M2.25 / M = 7 / 22.4 L / mol M=7.29列出十字交叉法如下:CO 28 5.27.2 V( CO ) / V( H2 )=5.2 / 20.8H2 2 20.8求得CO与H2体积比是1/4即它们体积分数分别是25% ,75%例12 已知Fe2O3在高炉中发生反应Fe2O3+CO = 2FeO+CO2,反应形成的固体混合物Fe2O3、FeO 中,元素铁和氧的质量之比用m(Fe)∶m(O)表示.若m(Fe)∶m(O)=21∶8,计算Fe2O3被CO还原的质量分数.解析:此题用方程式法甚为烦琐,用十字交叉法则非常简单.即:若Fe2O3全部被还原,则m(Fe)∶m(O)=21∶6;若Fe2O3未被还原,则m(Fe)∶m(O)=21∶9.列出十字交叉法如下:未被还原Fe2O39 / 21 2 / 218/21被还原Fe2O3 6 / 21 1 / 21则未被还原的氧化铁与被还原的氧化铁的物质的量之比为2∶1,所以被还原的氧化铁的质量分数为13×100%=33.3%.例13将20%NaCl溶液与60%NaCl溶液按质量比1:3混合,计算NaCl溶液的质量分数. 解:设20%NaCl溶液为mg,则60%NaCl溶液质量就为3mg,所得NaCl溶液的质量为x%列出十字交叉法如下:m 20% x%-60%x%3m 60 % 20%-x%则m / 3m = ( x % - 60% ) / ( 20% - x % )求出x=50既NaCl质量分数50% 通过上面的论述,我们可以看出,十字交叉法确实简单、方便、容易操作,但值得一提的是,在应用十字交叉法进行运算时,必须满足它的运算基础.十字交叉法应用于处理两组分(或相当于两组分)的混合物的组成计算十分方便.不断积累、总结、发掘新的解题方法,可促进知识的有效迁移、同化和深化对问题的理解,提高解题的效率与正确率.。

化学十字交叉法的原理和应用

化学十字交叉法的原理和应用

化学十字交叉法的原理和应用孟州一中 王俊强化学计算是中学化学中的重要组成部分,运用恰当的数学方法和模型解决化学问题,可以培养学生的科学思维能力,提高学生分析问题、解决问题的能力,同时也可以加深学生对化学基本概念和基本原理的理解。

“十字交叉法”的应用就是其中的典型。

一、十字交叉法的原理对于一个具有平均意义的由组分A 、B 形成的二元混合体系,设a 、b (a >b )为组分A 、B 单位物理量的分属性,c 为混合物的混合属性即平均值,a,b,c 表示的物理量是一致的(如摩尔质量、相对原子质量、质量分数、焓变、分子式等),X 、Y 两组分单位物理量的数量因子。

此时通常可以建立一个二元一次方程组:aX+bY=c X+Y=1对上边的二元一次方程组进行变式得:X c-bY a-c为了方便同学们的记忆,将其变为固定模式:单位物理量的组分A a c-bc单位物理量的组分B b a-c二、十字交叉法的应用十字交叉法作为一种简单算法,它特别适合于两总量、两关系的混合物的有关计算。

具体适用题型如下:(1)有关质量分数的计算(用两种不同浓度溶液的质量分数与混合溶液的质量分数作十字交叉,求两种溶液的质量比)例1 将50%的盐酸溶液与10%盐酸溶液混合成40%的盐酸溶液,求所取两种溶液的质量比。

解析:(2)有关物质的量浓度的计算(用混合钱的物质量的浓度与混合后的物质量的浓度做十字交叉,求体积比)13)%10()%50( HCl m HCl m 100g50% 盐酸 50 30 40 100g10% 盐酸 10 10例2 现有浓度为 4mol ·L -1 和6mol ·L -1 的两种硫酸溶液,欲配制5 mol/L 的硫酸溶液(混合时体积变化忽略不计)则取两种硫酸溶液的体积比是多少?解析:1L4mol/L硫酸 4 151L6mol/L硫酸 6 1得两种硫酸的体积之比为1:1(3)有关平均分子量的计算(通过纯物质的质量分数与混合后的平均分子量做十字交叉,求百分数)例3 实验测得乙烯与氧气混合气体的密度是氢气的14.5倍,可知其中乙烯的质量百分比为:A.25.0%B.27.6%C.72.4%D.75.0%解析:1molC2H4 28 3291mol O232 1得乙烯和氧气的物质的量之比为3 : 1,3×28乙烯的质量百分含量= ×100% = 72.4 % 答案为C3×28+1×32(4)有关平均原子量的计算(用同位素的原子量或质量数与元素原子量作交叉,求原子个数比或同位素百分数)例4 铜有两种天然同位素63Cu和65Cu , 参考铜的原子量为63.5 , 估算63Cu的平均原子百分含量约是A. 20%B.25%C.66.7%D.75%解析63Cu 63 1.563.565Cu650.5得63Cu和65Cu的原子个数比为.3:13故63Cu的原子百分含量= ×100% =75%3 + 1(5)有关反应热的计算(有单个反应的热效应与混合物的反应热做十字交叉,求百分数)例5 已知:2H2(g)+ O2(g)=2H2O(l) ΔH= -571.6KJ· mol-1CH4(g)+ 2O2(g)=CO2(g)+2H2O(l) ΔH= -890KJ· mol-1现有H2与CH4的混合气体112L(标准状况),使其完全燃烧生成CO2和H2O(l),若实验测得反应放热3695KJ,则原混合气体中H2与CH4的物质的量之比是A.1∶1 B.1∶3 C.1∶4 D.2∶3解析:1mol H2571.6/2 1513695/51molCH4890 453.2得氢气和甲烷的物质的量之比为1:3,故答案为B(6)有关混合物反应的计算(利用单个反应消耗某种反应物的量与混合后做十字交叉,求分数)例题6 用1L浓度为1.0mol/L的NaOH溶液吸收了0.80mol CO2气体,所得溶液中CO32—和HCO3—的物质的量之比为:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

十字交叉法的原理及其在化学计算中的应用
十字交叉法又称对角线法,也叫混合规则.作为一种简化的解题方法,是实际计算方程式图解形式,应用于二元混合体系具有平均值的计算问题,它具有简化思路、简便运算、计算速度快等显著优点.近年来,十字交叉法在中学化学计算中广泛使用,通过十字交叉得到差值的比值的含义如何确定,如果没有真正理解十字交叉法含义在使用该方法时将没有真正达到简化思路、快速准确求解的目的从而限制了该方法的推广和应用“十字交叉法”是通常中学化学计算必需掌握的一种计算方法因为用此法解题实用性强、速度快学生若能掌握此方法解题将会起到事半功倍的效果以下是笔者几年来对“十字交叉法”理解及体会
. 1 十字交叉法的原理
A×a%+B×b%=(A+B)×c%
整理变形得: A/B=(c-b)/(a-c )①
如果我们以100 g溶液所含的溶质为基准上式表示溶液混合时它们的质量比与有关质量分数比的关系可得如下十字交叉形式
对比①,②两式不难看出:
十字交叉关系中(c-b)/(a-c)为组分A和组分B混合时的质量比
推广到二组分混合体系中,当以一定质量的混合体系为基准所得十字交叉关系
,其比值为质量比(例如,质量分数是以质量为基准);若有c-b比a-c的化学意义由平均值,c决定则比值就表示组分A中c-b和组分B中a-c所表示的量的比值.如c 为质量或质量分数,则(c-b)/(a-c)表示组分A和组分B溶液的质量之比.若c为密度,则(c-b)/(a-c)就表示组分A和组分B的溶液体积之比若c为摩尔质量,则
(c-b)/(a-c) 就表示组分A和组分B的物质的量比;此时可用十字交叉法求混合物中各组分的含量.
2 .十字交叉法的应用例析:
2.1 用于混合物中质量比的计算
例1:将铝铁合金18.5克溶于足量的盐酸中产生标准状况下的氢气11.2升,求合金中铝铁的质量之比是多少?
解:在标准状况下,求出氢气的质量M=1g以混合物总质量18.5g作为基准物再根据镁铝与盐酸的关系列出十字交叉式如下:
求得铝与铁质量的比是9/28
例2.镁和铝的混合物10g,与足量的稀硫酸充分反应,生成1.0g氢气,混合物中镁和铝的质量比为多少?
解:在标准状况下,以混合物总质量10g作为基准物再根据镁铝与盐酸的关交叉式如下:
求得镁与铝的质量比是2/3
例3: KHCO3和CaCO3的混合物和等质量的NaHCO3分别与盐酸完全反应时,所消耗的酸的量相等,则混合物中KHCO3与CaCO3的质量比是多少?
解析:由化学反应方程式:KHCO3+HCl=KCl+H2O+CO2↑
CaCO3+2HCl=CaCl2+H2O+CO2↑
以消耗HCl物质的量1mol作为基准物, 求出反应掉KHCO3、CaCO3、NaHCO3的质量的数值分别为100g、50g、84g,依题意KHCO3和CaCO3的混合物84g 与NaHCO384g均消耗1molHCl,即两个分量值分别为100和50,平均值为84, 用十字交叉法图解如下:
因为是以物质消耗HCl的物质的量1mol为基准物,所以比值34/16=17/8 为碳酸氢钾与碳酸钙消耗HCl的物质的量之比,故原混合物中碳酸氢钾与碳酸钙的物质的量之比为17/4,即质量比也为17/4(因它们的相对分子质量相等).
2.2 用于混合物中物质的量比的计算
例4 .在标准状况下,测得空气和HCl混合气体对氢气的相对密度为17,求空气和HCl气体的物质的量之比
解:混合气体的平均式量为17×2=34 ,以1 mol混合物为基准物
则十字交叉法如下:
求出空气与HCl气体的物质的量比是1/2
例5、某Na2SO3已部分氧化成Na2SO4,经测定该混合物中硫的质量分数为25%,求混合物中Na2SO3和Na2SO4的物质的量之比 (整数比)?
解:由平均质量分数25%,列出十字交叉法如下:
Na2SO3中 S % 25.397 % 2.465 %
25%
Na2SO4中 S % 22.535 % 0.397 %
求得Na2SO3与Na2SO4的物质的量比是6/1
2.3 用于混合物中体积比的计算
例6.已知CH4, C2H4及其混合气体在同温同压下分别为 0.71 g / L 、
1.25 g / L 、1.16 g / L.求混合气体CH4和C2H4的体积比是多少?
解:以1mol 混合气体密度1.16 g / L作为基准物
则十字交叉法如下:
CH40.71 0.09
1.16
C2H4 1.25 0.45
求得CH4与C2H4的体积比是1/3
例7.已经2H2(g)+O2(g)=2H2O(g);△H=-571.6KJ/mol
C3H8 (g)+5 O2(g)=3CO2(g)+4H2O(1); △H=-2220KJ/mol。

现有H2和C3H8的混合气体,在标准状况下体积为1120L。

完全燃烧放出3847KJ 热量。

求H2和C3H8的体积比
解析:lmol C3H8完全燃烧放热为:571.6/2=285.8千焦lmol C3H8完全燃烧放热为:2220千焦/lmol混合气体完全燃烧放热为:3847/5=769.4千焦
列出十字交叉法如下:
H2 285.5 1460.6
769.4
C3H82220 483.6
求得H2和C3H8的体积比为3/1
例8、一种气态烷烃和一种气态烯烃,它们的分子式中所含碳原子数相同,若l体积这种混合烃在O2中充分燃烧,能生成2体积的和2.4体积的水蒸气,则混合中烷烃和烯烃的体积比是多少?
解:设混合烃分子式为CxHy、烷烃与烯烃的体积比为:
CxHy + 3.2 O2 = 2 CO2+ 2.4 H2O
1 3.
2 2 2.4
根据原子守衡定理得混合烃分子式为C2H4.8即氢的原子数是4.8
十字交叉法如下:
(注:可编辑下载,若有不当之处,请指正,谢谢!)。

相关文档
最新文档