Oxidative catalytic cracking of n-butane to lower alkenes
生物化学:名词解释大全

【生物化学:名词说明大全】之马矢奏春创作第一章蛋白质1.两性离子(dipolarion)2.必须氨基酸(essential amino acid)3.等电点(isoelectric point,pI)4.罕有氨基酸(rare amino acid)5.非蛋白质氨基酸(nonprotein amino acid) 6.构型(configuration)7.蛋白质的一级机关(protein primary structure)8.构象(conformation)9.蛋白质的二级机关(protein secondary structure)10.机关域(domain)11.蛋白质的三级机关(protein tertiary structure)12.氢键(hydrogen bond)13.蛋白质的四级机关(protein quaternary structure)14.离子键(ionic bond)15.超二级机关(super-secondary structure) 16.疏水键(hydrophobic bond)17.范德华力( van der Waals force) 18.盐析(salting out)19.盐溶(salting in)20.蛋白质的变性(denaturation)21.蛋白质的复性(renaturation)22.蛋白质的沉淀传染感动(precipitation) 23.凝胶电泳(gel electrophoresis)24.层析(chromatography)第二章核酸1.单核苷酸(mononucleotide)2.磷酸二酯键(phosphodiester bonds)3.不合错误称比率(dissymmetry ratio)4.碱基互补规律(complementary base pairing)5.反暗码子(anticodon)6.顺反子(cistron)7.核酸的变性与复性(denaturation、renaturation)8.退火(annealing)9.增色效应(hyper chromic effect)10.减色效应(hypo chromic effect)11.噬菌体(phage)12.发夹机关(hairpin structure)13.DNA 的熔解温度(melting temperature Tm)14.分子杂交(molecular hybridization)15.环化核苷酸(cyclic nucleotide)第三章酶与辅酶1.米氏常数(Km 值)2.底物专一性(substrate specificity)3.辅基(prosthetic group)4.单体酶(monomeric enzyme)5.寡聚酶(oligomeric enzyme)6.多酶系统(multienzyme system)7.激活剂(activator)8.抑制剂(inhibitor inhibiton)9.变构酶(allosteric enzyme)10.同工酶(isozyme)11.引导酶(induced enzyme)12.酶原(zymogen)13.酶的比活力(enzymatic compare energy)14.活性中心(active center)第四章生物氧化与氧化磷酸化1.生物氧化(biological oxidation)2.呼吸链(respiratory chain)3.氧化磷酸化(oxidative phosphorylation)4.磷氧比P/O(P/O)5.底物程度磷酸化(substrate level phosphorylation)6.能荷(energy charg第五章糖代谢1.糖异生(glycogenolysis)2.Q 酶(Q-enzyme)3.乳酸轮回(lactate cycle)4.发酵(fermentation)5.变构调节(allosteric regulation)6.糖酵解途径(glycolytic pathway)7.糖的有氧氧化(aerobic oxidation)8.肝糖原分化(glycogenolysis)9.磷酸戊糖途径(pentose phosphate pathway)10.D-酶(D-enzyme)11.糖核苷酸(sugar-nucleotide)第六章脂类代谢1.必须脂肪酸(essential fatty acid)2.脂肪酸的α-氧化(α- oxidation)3.脂肪酸的β-氧化(β- oxidation)4.脂肪酸的ω-氧化(ω- oxidation)5.乙醛酸轮回(glyoxylate cycle)6.柠檬酸穿梭(citriate shuttle)7.乙酰CoA 羧化酶系(acetyl-CoA carnoxylase)8.脂肪酸合成酶系统(fatty acid synthase system)第八章含氮化合物代谢1.蛋白酶(Proteinase)2.肽酶(Peptidase)3.氮平衡(Nitrogen balance)4.生物固氮(Biological nitrogen fixation)5.硝酸还原传染感动(Nitrate reduction)6.氨的同化(Incorporation of ammonium ions into organic molecules)7.转氨传染感动(Transamination)8.尿素轮回(Urea cycle)9.生糖氨基酸(Glucogenic amino acid)10.生酮氨基酸(Ketogenic amino acid)11.核酸酶(Nuclease)12.限制性核酸内切酶(Restriction endonuclease)13.氨基蝶呤(Aminopterin)14.一碳单位(One carbon unit)第九章核酸的生物合成1.半保存复制(semiconservative replication)2.不合错误称转录(asymmetric trancription)3.逆转录(reverse transcription)4.冈崎片段(Okazaki fragment)5.复制叉(replication fork)6.领头链(leading strand)7.随后链(lagging strand)8.有意义链(sense strand)9.恢复生(photoreactivation)10.重组修复(recombination repair)11.内含子(intron)12.外显子(exon)13.基因载体(genonic vector)14.质粒(plasmid)第十一章代谢调节1.引导酶(Inducible enzyme)2.标兵酶(Pacemaker enzyme)3.把持子(Operon)4.衰减子(Attenuator)5.隔断物(Repressor)6.辅隔断物(Corepressor)7.降解物基因活化蛋白(Catabolic gene activator protein)8.腺苷酸环化酶(Adenylate cyclase)9.共价修饰(Covalent modification)10.级联系统(Cascade system)11.反应抑制(Feedback inhibition)12.交叉调节(Cross regulation)13.前馈激活(Feedforward activation)14.钙调蛋白(Calmodulin)第十二章蛋白质的生物合成1.暗码子(codon)2.反义暗码子(synonymous codon)3.反暗码子(anticodon)4.变偶假说(wobble hypothesis)5.移码突变(frameshift mutant)6.氨基酸同功受体(isoacceptor)7.反义RNA(antisense RNA)8.旗子灯号肽(signal peptide)9.简并暗码(degenerate code)10.核糖体(ribosome)11.多核糖体(poly some)12.氨酰基部位(aminoacyl site)13.肽酰基部位(peptidy site)14.肽基转移酶(peptidyl transferase) 15.氨酰- tRNA 合成酶(amino acy-tRNA synthetase)16.蛋白质折叠(protein folding)17.核蛋白体轮回(polyribosome)18.锌指(zine finger)19.亮氨酸拉链(leucine zipper)20.顺式传染感动元件(cis-acting element) 21.反式传染感动因子(trans-acting factor) 22.螺旋-环-螺旋(helix-loop-helix)第一章蛋白质1.两性离子:指在同一氨基酸分子上含有等量的正负两种电荷,又称兼性离子或偶极离子.2.必须氨基酸:指人体(和其它哺乳动物)自身不克不及合成,机体又必须,需要从饮食中获得的氨基酸.3. 氨基酸的等电点:指氨基酸的正离子浓度和负离子浓度相等时的pH 值,用符号pI暗示. 4.罕有氨基酸:指消掉于蛋白质中的20 种罕有氨基酸以外的其它罕有氨基酸,它们是正常氨基酸的衍生物.5.非蛋白质氨基酸:指不消掉于蛋白质分子中而以游离状态和结合状态消掉于生物体的各类组织和细胞的氨基酸.6.构型:指在立体异构体中不合错误称碳原子上相连的各原子或代替基团的空间排布.构型的修改陪伴着共价键的断裂和从新形成.7.蛋白质的一级机关:指蛋白质多肽链中氨基酸的排列次序,以及二硫键的地位.8.构象:指有机分子中,不修改共价键机关,仅单键周围的原子扭转所产生的原子的空间排布.一种构象修改成另一种构象时,不涉及共价键的断裂和从新形成.构象修改不会修改分子的光学活性.9.蛋白质的二级机关:指在蛋白质分子中的局部区域内,多肽链沿必定标的目的盘绕和折叠的办法.10.机关域:指蛋白质多肽链在二级机关的根本长进一步卷曲折叠成几个相对自力的近似球形的组装体.11.蛋白质的三级机关:指蛋白质在二级机关的根本上借助各类次级键卷曲折叠成特定的球状分子机关的构象.12.氢键:指蛋白质在二级机关的根本上借助各类次级键卷曲折叠成特定的球状分子机关的构象.13.蛋白质的四级机关:指多亚基蛋白质分子中各个具有三级机关的多肽链以适当办法聚合所呈现的三维机关.14.离子键:带相反电荷的基团之间的静电引力,也称为静电键或盐键.15.超二级机关:指蛋白质分子中相邻的二级机关单位组合在一路所形成的有规则的、在空间上能识此外二级机关组合体.16.疏水键:非极性分子之间的一种弱的、非共价的互相传染感动.如蛋白质分子中的疏水侧链避开水相而互相聚集而形成的传染感动力.17.范德华力:中性原子之间经由过程瞬间静电互相传染感动产生的一种弱的分子间的力.当两个原子之间的距离为它们的范德华半径之和时,范德华力最强.18.盐析:在蛋白质溶液中参加必定量的高浓度中性盐(如硫酸氨),使蛋白质消融度降低并沉淀析出的现象称为盐析.19.盐溶:在蛋白质溶液中参加少量中性盐使蛋白质消融度增加的现象.20.蛋白质的变性传染感动:蛋白质分子的自然构象遭到破坏导致其生物活性损掉落的现象.蛋白质在受到光照、热、有机溶剂以及一些变性剂的传染感动时,次级键遭到破坏导致自然构象的破坏,但其一级机关不产生修改.21.蛋白质的复性:指在必定前提下,变性的蛋白质分子恢复其原有的自然构象并恢复生物活性的现象.22.蛋白质的沉淀传染感动:在外界成分影响下,蛋白质分子掉落去水化膜或被中和其所带电荷,导致消融度降低从而使蛋白质变得不稳定而沉淀的现象称为蛋白质的沉淀传染感动. 23.凝胶电泳:以凝胶为介质,在电场传染感动下别离蛋白质或核酸等分子的别离纯化技能. 24.层析:按照在移动相(可所以气体或液体)和固定相(可所以液体或固体)之间的分拨比例将混淆成分分隔的技能.第二章核酸1. 单核苷酸(mononucleotide):核苷与磷酸缩合生成的磷酸酯称为单核苷酸.2. 磷酸二酯键(phosphodiester bonds):单核苷酸中,核苷的戊糖与磷酸的羟基之间形成的磷酸酯键.3. 不合错误称比率(dissymmetry ratio):不合生物的碱基组成由很大的差别,这可用不合错误称比率(A+T)/(G+C)示.4. 碱基互补规律(complementary base pairing):在形成双螺旋机关的过程中,因为各类碱基的大小与机关的不合,使得碱基之间的互补配对只能在GC(或CG)和AT(或TA)之间进行,这种碱基配对的规律就称为碱基配对规律(互补规律).5. 反暗码子(anticodon):在tRNA 链上有三个特定的碱基,组成一个暗码子,由这些反暗码子按碱基配对原则辨认mRNA 链上的暗码子.反暗码子与暗码子的标的目的相反.6. 顺反子(cistron):基因成效的单位;一段染色体,它是一种多肽链的暗码;一种机关基因.7. 核酸的变性、复性(denaturation、renaturation):当呈双螺旋机关的DNA 溶液迟缓加热时,个中的氢键便断开,双链DNA 便脱解为单链,这叫做核酸的“消融”或变性.在适合的温度下,别分开的两条DNA 链可以完整从新结合成和本来一样的双股螺旋.这个DNA 螺旋的重组过程称为“复性”.8. 退火(annealing):当将双股链呈别离状态的DNA 溶液迟缓冷却时,它们可以产生不合程度的从新结合而形成双链螺旋机关,这现象称为“退火”.9. 增色效应(hyper chromic effect):当DNA 从双螺旋机关变成单链的无规则卷曲状态时,它在260nm 处的吸收便增加,这叫“增色效应”.10. 减色效应(hypo chromic effect):DNA 在260nm 处的光密度比在DNA 分子中的各个碱基在260nm 处吸收的光密度的总和小得多(约少35%~40%), 这现象称为“减色效应”.11. 噬菌体(phage):一种病毒,它可破坏细菌,并在个中繁衍.也叫细菌的病毒.12. 发夹机关(hairpin structure):RNA 是单链线形分子,只有局部区域为双链机关.这些机关是因为RNA 单链分子经由过程自身回折使得互补的碱基对相遇,形成氢键结合而成的,称为发夹机关.13. DNA 的熔解温度(Tm 值):引起DNA 产生“熔解”的温度变更范围只不过几度,这个温度变更范围的中点称为熔解温度(Tm).14. 分子杂交(molecular hybridization):不合的DNA 片段之间,DNA 片段与RNA 片段之间,假如彼此间的核苷酸排列次序互补也可以复性,形成新的双螺旋机关.这种按照互补碱基配对而使不完整互补的两条多核苷酸互相结合的过程称为分子杂交.15. 环化核苷酸(cyclic nucleotide):单核苷酸中的磷酸基辨别与戊糖的3’-OH 及5’-OH形成酯键,这种磷酸内酯的机关称为环化核苷酸.第三章酶与辅酶1.米氏常数(Km 值):用Km值暗示,是酶的一个主要参数.Km 值是酶反应速度(V)达到最大反应速度(Vmax)一半时底物的浓度(单位M 或mM).米氏常数是酶的特色常数,只与酶的性质有关,不受底物浓度和酶浓度的影响.2.底物专一性:酶的专一性是指酶对底物及其催化反应的严格选择性.常日酶只能催化一种化学反应或一类相似的反应,不合的酶具有不合程度的专一性,酶的专一性可分为三种类型:绝对专一性、相对专一性、立体专一性.3.辅基:酶的辅因子或结合蛋白质的非蛋白部分,与酶或蛋白质结合得很是慎密,用透析法不克不及除去.4.单体酶:只有一条多肽链的酶称为单体酶,它们不克不及解离为更小的单位.分子量为13,000——35,000.5.寡聚酶:有几个或多个亚基组成的酶称为寡聚酶.寡聚酶中的亚基可所以相同的,也可所以不合的.亚基间以非共价键结合,随意马虎为酸碱,高浓度的盐或其它的变性剂别离.寡聚酶的分子量从35 000 到几百万.6.多酶系统:由几个酶彼此嵌合形成的复合体称为多酶系统.多酶复合体有利于细胞中一系列反应的中断进行,以提高酶的催化效率,同时便于机体对酶的调控.多酶复合体的分子量都在几百万以上.7.激活剂:但凡能提高酶活性的物质,都称激活剂,个中大部分是离子或简单的有机化合物. 8.抑制剂:能使酶的必须基团或酶活性部位中的基团的化学性质修改而降低酶的催化活性甚至使酶的催化活性完整损掉落的物质.9.变构酶:或称别构酶,是代谢过程中的关头酶,它的催化活性受其三维机关中的构象变更的调节.10.同工酶:是指有机体内能够催化同一种化学反应,但其酶蛋白本身的分子机关组成却有所不合的一组酶.11.引导酶:是指当细胞中参加特定引导物后引导产生的酶,它的含量在引导物存鄙人显著增高,这种引导物往往是该酶底物的相似物或底物本身.12.酶原:酶的无活性前体,常日在有限度的蛋白质水解传染感动后,修改成具有活性的酶. 13.酶的比活力:比活力是指每毫克蛋白质所具有的活力单位数,可以用下式暗示:活力单位数比活力= 蛋白质量(mg)14.活性中心:酶分子中直接与底物结合,并催化底物产生化学反应的部位,称为酶的活性中心.第四章生物氧化与氧化磷酸化1.生物氧化:生物体内有机物质氧化而产生大量能量的过程称为生物氧化.生物氧化在细胞内进行,氧化过程花费氧放出二氧化碳和水,所以有时也称之为“细胞呼吸”或“细胞氧化”.生物氧化包含:有机碳氧化变成CO2;底物氧化脱氢、氢及电子经由过程呼吸链传递、分子氧与传递的氢结成水;在有机物被氧化成CO2 和H2O的同时,释放的能量使ADP 修改成ATP. 2.呼吸链:有机物在生物体内氧化过程中所脱下的氢原子,经由一系列有严格排列次序的传递体组成的传递系统进行传递,最终与氧结合生成水,这样的电子或氢原子的传递系统称为呼吸链或电子传递链.电子在慢慢的传递过程中释放出能量被用于合成ATP,以作为生物体的能量来源.3.氧化磷酸化:在底物脱氢被氧化时,电子或氢原子在呼吸链上的传递过程中陪伴ADP 磷酸化生成ATP 的传染感动,称为氧化磷酸化.氧化磷酸化是生物体内的糖、脂肪、蛋白质氧化分化合成ATP 的主要办法.4、磷氧比:电子经由呼吸链的传递传染感动最终与氧结合生成水,在此过程中所释放的能量用于ADP 磷酸化生成ATP.经此过程花费一个原子的氧所要花费的无机磷酸的分子数(也是生成ATP 的分子数)称为磷氧比值(P/O).如NADH 的磷氧比值是3,FADH2 的磷氧比值是2. 5.底物程度磷酸化:在底物被氧化的过程中,底物分子内部能量从新分布产生高能磷酸键(或高能硫酯键),由此高能键供应能量使ADP(或GDP)磷酸化生成ATP(或GTP)的过程称为底物程度磷酸化.此过程与呼吸链的传染感动无关,以底物程度磷酸化办法只产生少量ATP.如在糖酵解(EMP)的过程中,3-磷酸甘油醛脱氢后产生的1,3-二磷酸甘油酸,在磷酸甘油激酶催化下形成ATP 的反应,以及在2-磷酸甘油酸脱水后产生的磷酸烯醇式丙酮酸,在丙酮酸激酶催化形成ATP 的反应均属底物程度的磷酸化反应.别的,在三羧酸环(TCA)中,也有一步反应属底物程度磷酸化反应,如α-酮戊二酸经氧化脱羧后生成高能化合物琥珀酰~CoA,其高能硫酯键在琥珀酰CoA 合成酶的催化下转移给GDP 生成GTP.然后在核苷二磷酸激酶传染感动下,GTP 又将末尾的高能磷酸根转给ADP 生成ATP.6.能荷:能荷是细胞中高能磷酸状态的一种数量上的衡量,能荷大小可以说明生物体中ATP-ADP-AMP 系统的能量状态.能荷=[ATP]+12 [ADP][ATP]+[ADP]+[AMP]第五章糖代谢1.糖异生:非糖物质(如丙酮酸乳酸甘油生糖氨基酸等)修改成葡萄糖的过程.2.Q 酶:Q 酶是介入支链淀粉合成的酶.成效是在直链淀粉分子上催化合成(α-1,6)糖苷键,形成支链淀粉.3.乳酸轮回乳:酸轮回是指肌肉缺氧时产生大量乳酸,大部分经血液运到肝脏,经由过程糖异生传染感动肝糖原或葡萄糖填补血糖,血糖可再被肌肉运用,这样形成的轮回称乳酸轮回. 4.发酵:厌氧有机体把糖酵解生成NADH 中的氢交给丙酮酸脱羧后的产品乙醛,使之生成乙醇的过程称之为酒精发酵.假如将氢交给病酮酸丙生成乳酸则叫乳酸发酵.5.变构调节:变构调节是指某些调节物能与酶的调节部位结合使酶分子的构象产生修改,从而修改酶的活性,称酶的变构调节.6.糖酵解途径:糖酵解途径指糖原或葡萄糖分子分化至生成丙酮酸的阶段,是体内糖代谢最主要途径.7.糖的有氧氧化:糖的有氧氧化指葡萄糖或糖原在有氧前提下氧化成水和二氧化碳的过程.是糖氧化的主要办法.8.肝糖原分化:肝糖原分化指肝糖原分化为葡萄糖的过程.9.磷酸戊糖途径:磷酸戊糖途径指机体某些组织(如肝、脂肪组织等)以6-磷酸葡萄糖为肇端物在6-磷酸葡萄糖脱氢酶催化下形成6-磷酸葡萄糖酸进而代谢生成磷酸戊糖为中心代谢物的过程,又称为磷酸已糖旁路.10.D-酶:一种糖苷转移酶,传染感动于α-1,4 糖苷键,将一个麦芽多糖的片段转移到葡萄糖、麦芽糖或其它多糖上.11.糖核苷酸:单糖与核苷酸经由过程磷酸酯键结合的化合物,是双糖和多糖合成中单糖的活化形式与供体.第六章脂类代谢1.必须脂肪酸:为人体成长所必须但有不克不及自身合成,必须从事物中摄取的脂肪酸.在脂肪中有三种脂肪酸是人体所必须的,即亚油酸,亚麻酸,花生四烯酸.2.α-氧化:α-氧化传染感动是以具有3-18碳原子的游离脂肪酸作为底物,有分子氧间接介入,经脂肪酸过氧化物酶催化传染感动,由α碳原子开始氧化,氧化产品是D-α-羟脂肪酸或少一个碳原子的脂肪酸.3. 脂肪酸的β-氧化:脂肪酸的β-氧化传染感动是脂肪酸在一系列酶的传染感动下,在α碳原子和β碳原子之间断裂,β碳原子氧化成羧基生成含2个碳原子的乙酰CoA 和比本来少2 个碳原子的脂肪酸.4. 脂肪酸ω-氧化:ω-氧化是C5、C6、C10、C12脂肪酸在远离羧基的烷基末尾碳原子被氧化成羟基,再进一步氧化而成为羧基,生成α,ω-二羧酸的过程.5. 乙醛酸轮回:一种被修改的柠檬酸轮回,在其异柠檬酸和苹果酸之间反应次序有修改,以及乙酸是用作能量和中心物的一个来源.某些植物和微生物体内有此轮回,他需要二分子乙酰辅酶A的介入;并导致一分子琥珀酸的合成.6. 柠檬酸穿梭:就是线粒体内的乙酰CoA 与草酰乙酸缩合成柠檬酸,然后经内膜上的三羧酸载体运至胞液中,在柠檬酸裂解酶催化下,需花费ATP 将柠檬酸裂解回草酰乙酸和,后者就可用于脂肪酸合成,而草酰乙酸经还原后再氧化脱羧成丙酮酸,丙酮酸经内膜载体运回线粒体,在丙酮酸羧化酶传染感动下从新生成草酰乙酸,这样就可又一次介入转运乙酰CoA 的轮回. 7.乙酰CoA 羧化酶系:大肠杆菌乙酰CoA 羧化酶含生物素羧化酶、生物素羧基载体蛋白(BCCP)和转羧基酶三种组份,它们合营传染感动催化乙酰CoA 的羧化反应,生成丙二酸单酰-CoA.8.脂肪酸合酶系统:脂肪酸合酶系统包含酰基载体蛋白(ACP)和6 种酶,它们辨别是:乙酰转酰酶;丙二酸单酰转酰酶;β-酮脂酰ACP 合成酶;β-酮脂酰ACP 还原酶;β-羟;脂酰ACP 脱水酶;烯脂酰ACP 还原酶.第八章含氮化合物代谢1.蛋白酶:以称肽链内切酶(Endopeptidase),传染感动于多肽链内部的肽键,生成较本来含氨基酸数少的肽段,不合来源的蛋白酶水解专一性不合.2.肽酶:只传染感动于多肽链的末尾,按照专一性不合,可在多肽的N-端或C-端水解下氨基酸,如氨肽酶、羧肽酶、二肽酶等.3.氮平衡:正常人摄入的氮与排出氮达到平衡时的状态,反应正常人的蛋白质代谢情况. 4.生物固氮:运用微生物中固氮酶的传染感动,在常温常压前提下将大气中的氮还原为氨的过程(N2 + 3H2→2 NH3).5.硝酸还原传染感动:在硝酸还原酶和亚硝酸还原酶的催化下,将硝态氮修改成氨态氮的过程,植物体内硝酸还原传染感动主要在叶和根进行.6.氨的同化:由生物固氮和硝酸还原传染感动产生的氨,进入生物体后被修改成含氮有机化合物的过程.7.转氨传染感动:在转氨酶的传染感动下,把一种氨基酸上的氨基转移到α-酮酸上,形成另一种氨基酸.8.尿素轮回:尿素轮回也称鸟氨酸轮回,是将含氮化合物分化产生的氨修改成尿素的过程,有解除氨危害的传染感动.9.生糖氨基酸:在分化过程中能修改成丙酮酸、α-酮戊二酸乙、琥珀酰辅酶A、延胡索酸和草酰乙酸的氨基酸称为生糖氨基酸.10.生酮氨基酸:在分化过程中能修改成乙酰辅酶A 和乙酰乙酰辅酶A 的氨基酸称为生酮氨基酸.11.核酸酶:传染感动于核酸分子中的磷酸二酯键的酶,分化产品为寡核苷酸或核苷酸,按照传染感动地位不合可分为核酸外切酶和核酸内切酶.12.限制性核酸内切酶:能传染感动于核酸分子内部,并对某些碱基次序有专一性的核酸内切酶,是基因工程中的主要器械酶.13.氨基蝶呤:对嘌呤核苷酸的生物合成起竞争性抑制作用的化合物,与四氢叶酸机关相似,又称氨基叶酸.14.一碳单位:仅含一个碳原子的基团如甲基(CH3-、亚甲基(CH2=)、次甲基(CH≡)、甲酰基(O=CH-)、亚氨甲基(HN=CH-)等,一碳单位可来源于甘氨酸、苏氨酸、丝氨酸、组氨酸等氨基酸,一碳单位的载体主假如四氢叶酸,成效是介入生物分子的修饰.第九章核酸的生物合成1.半保存复制:双链DNA 的复制办法,个中亲代链别离,每一子代DNA 分子由一条亲代链和一条新合成的链组成.2.不合错误称转录:转录常日只在DNA 的任一条链长进行,这称为不合错误称转录.3.逆转录:Temin 和Baltimore 各自发明在RNA 肿瘤病毒中含有RNA 指导的DNA 聚合酶,才证实产生逆向转录,即以RNA 为模板合成DNA.4.冈崎片段:一组短的DNA 片段,是在DNA 复制的肇端阶段产生的,随后又被连接酶连接形成较长的片段.在大肠杆菌成长时期,将细胞短时间地流露在氚标识表记标帜的胸腺嘧啶中,就可证实冈崎片段的消掉.冈崎片段的创造为DNA 复制的科恩伯格机理供应了按照.5.复制叉:复制DNA 分子的Y 形区域.在此区域产生链的别离及新链的合成.6.领头链:DNA 的双股链是反向平行的,一条链是5/→3/标的目的,另一条是3/→5/标的目的,上述的起点处合成的领头链,沿着亲代DNA 单链的3/→5/标的目的(亦即新合成的DNA沿5/→3/标的目的)不竭延长.所以领头链是中断的.7.随后链:已知的DNA 聚合酶不克不及催化DNA 链朝3/→5/标的目的延长,在两条亲代链起点的3/ 端一侧的DNA 链复制是不中断的,而分为多个片段,每段是朝5/→3/标的目的进行,所以随后链是不中断的.8.有意义链:即华森链,华森 克里格型DNA 中,在体内被转录的那股DNA 链.简写为Wstrand.9.恢复生:将受紫外线照射而引起损伤的细菌用可见光照射,大部分损伤细胞可以恢复,这种可见光引起的修复过程就是恢复生传染感动.10.重组修复:这个过程是前辈行复制,再进行修复,复制时,子代DNA 链损伤的对应部位消掉缺口,这可经由过程分子重组从完整的母链上,将一段响应的多核苷酸片段移至子链的缺口处,然后再合成一段多核昔酸键来填补母链的缺口,这个过程称为重组修复.11.内含子:真核生物的mRNA 前体中,除了贮存遗传序列外,还消掉非编码序列,称为内含子. 12.外显子:真核生物的mRNA 前体中,编码序列称为外显子.13.基因载体:外源DNA 片段(目的基因)要进入受体细胞,必须有一个适当的运载器械将带入细胞内,并载着外源DNA 一路进行复制与表达,这种运载器械称为载体.14.质粒:是一种在细菌染色体以外的遗传单元,一般由环形双链DNA 组成,其大小从1—200Kb.第十一章代谢调节1. 引导酶:因为引导物的消掉,使本来封锁的基因凋零,从而引起某些酶的合成数量显著增加,这样的酶称为引导酶2. 标兵酶:在多酶促系列反应中,受控制的部位常日是系列反应开首的酶,这个酶一般是变构酶,也称标兵酶.3. 把持子:在转录程度上控制基因表达的折衷单位,包含启动子(P)、把持基因(O)和在成效上相关的几个机关基因.4. 衰减子:位于机关基因上游前导区调节基因表达的成效单位,前导区转录的前导RNA经由过程构象变更终止或减弱转录.5. 隔断物:由调节基因产生的一种变构蛋白,当它与把持基因结应时,能够抑制转录的进行.6. 辅隔断物:能够与掉落活的阻碣蛋白结合,并恢复隔断蛋白与把持基因结合才能的物质.辅隔断物一般是酶反应的产品.7. 降解物基因活化蛋白:由调节基因产生的一种cAMP 受体蛋白,当它与cAMP 结应时被激活,并结合到启动子上促进转录进行.是一种正调节传染感动.8. 腺苷酸环化酶:催化ATP 焦磷酸裂解产生环腺苷酸(cAMP)的酶.9. 共价修饰:某种小分子基团可以共价结合到被修饰酶的特定氨基酸残基上,引起酶分子构象变更,从而调节代谢的标的目的和速度.10. 级联系统:在连锁代谢反应中一个酶被激活后,中断地产生其它酶被激活,导致原始调节旗子灯号的逐级缩小,这样的连锁代谢反应系统称为级联系统.11. 反应抑制:在代谢反应中,反应产品对反应过程中起传染感动的酶产生的抑制作用.12. 交叉调节:代谢产品不但对本身的反应过程有反应抑制作用,并且可以控制另一代谢物在不合途径中的合成.13. 前馈激活:在反应序列中,前身物质对后面的酶起激活传染感动,使反应向提高行.14. 钙调蛋白:一种依靠于钙的蛋白激酶,酶蛋白与钙结合引起酶分子构象变更,调解酶的活性.如磷酸化酶激酶是一种依靠于钙的蛋白激酶.第十二章蛋白质的生物合成。
热塑性树脂改性高黏沥青的流变性能评价

收稿日期:2023-03-31 修回日期:2023-04-11
响。 分别采用频率扫描、多应力重复蠕变和弯曲梁流变试验对热塑性树脂改性高黏沥青的黏弹性、高温稳定性
和低温抗裂性进行了评价,分析了改性剂种类、掺量和工艺等因素对其流变性能的影响规律,通过傅里叶红外光
谱试验阐述了改性剂对沥青的增黏机理。 结果表明:热塑性树脂改性高黏沥青的各项路用性能随着改性剂掺量
的增加而不断提升。 采用 70 # 普通沥青和 SBS 改性沥青作为基质沥青,树脂改性剂掺量分别为沥青质量的 13%
ties, high⁃temperature stability, low⁃temperature cracking resistance of high⁃viscosity asphalt modified by
thermoplastic resin were evaluated using frequency sweep test, multiple stress creep recovery test, and bending beam
duced a physical blending and viscosity⁃increasing effect with the base asphalt. The direct addition process could avoid
the problem of thermal oxidative aging caused by asphalt shearing at high temperature. This study provides a valuable
红酒专业术语

第一部分葡萄酒分类Dry red wine干红葡萄酒Semi-dry wine :半干葡萄酒Dry white wine :干白葡萄酒Rose wine:桃红葡萄酒Sweet wine :甜型葡萄酒Semi-sweet wine :半甜葡萄酒Still wine :静止葡萄酒Sparkling wine :起泡葡萄酒Claret :新鲜桃红葡萄酒(波尔多产)Botrytised wine :贵腐葡萄酒Fortified wine :加强葡萄酒Flavored wine :加香葡萄酒Brut wine :天然葡萄酒Carbo nated wine :加气起泡葡萄酒Appetizer wine( Aperitif):开胃葡萄酒Table wine :佐餐葡萄酒Dessert wine:餐后葡萄酒Champag ne:香槟酒Vermouth:味美思Beaujolasis :宝祖利酒Mistelle :密甜尔Wine Cooler:清爽酒Cider:苹果酒Brandy:白兰地Fruit brandy :水果白兰地Pomace Brandy:果渣白兰地Grape brandy:葡萄白兰地Liquor (Liqueur):禾U 口酒Gin :金酒(杜松子酒)Rum :朗姆酒Cocktail:鸡尾酒Vodka:伏特加Whisky :威士忌Spirit :酒精,烈酒Cognac(Franee):科尼亚克白兰地(法)Armagnac(Franee):阿马尼亚克白兰地Sherry(Spain):雪莉酒(西班牙)Port(Portuguese):波特酒(葡萄牙)BDX :波尔多红酒第二部分酿酒微生物Yeast:酵母Wild yeast :野生酵母Yeast hulls :酵母菌皮Dry activity yeast :活性干酵母Bacteria :细菌Malolactic bacteria(MLB):乳酸菌Lacticacid bacteria(LAB):孚L酸菌Acetic acidbacteria :醋酸菌Spoilage yeast :败坏酵母第三部分生理生化过程Transpiration :蒸腾作用Evaporation :蒸发Photosy nthesis :光合作用Maillard Reactio n :麦拉德反应Veraison :转色期Saturation :饱和Alcoholic ferme ntatio n(AF):酒精发酵Stuck (Sluggish) Fermentation :发酵停滞Primary Fermentation :前发酵,主发酵Secondary Fermentation ;二次发酵Heterofermentation :异型发酵Malolactic ferme ntatio n(MLF):苹果酸-乳酸发酵Malo-Alcohol Ferme ntatio n( MAF):苹果酸-酒精发酵Methode Charantaise:夏朗德壶式蒸馏法Maceration Carbonique : CO2 浸渍发酵Whole bunch fermentation : CO2 浸渍发酵Beaujolasis method :宝祖利酿造法Unareobic fermentation :厌氧发酵法Thermovinification :热浸渍酿造法Charmat method :罐式香槟法Enzymaticbrowning :酶促褐变Acetification :酸败Ageing :陈酿Sur lies :带酒脚陈酿Esterify :酯化Saccharify :糖化Liquefy : 溶解、液化Bottle aging :瓶内陈酿Amelioration :原料改良Chaptalization :加糖Distillation :蒸馏Fractional Distillation :分馏Rectification :精馏Clarification :澄清第四部分葡萄酒酿酒辅料Beto nite:膨润土(皂土)Kieselgur ,diatomite :硅藻土Capsule:胶帽Tin Plat、Foil :锡箔Pigme nt :颜料、色素Casei n:酪蛋白Pecti n:果胶酶Silica gel :硅胶Gelatin :明胶Isin glass :鱼胶Egg white :蛋清Albumen :蛋白Blood powder :血粉第五部分理化指标Total acid :总酸Titrable acid :滴定酸Residul sugar :残糖Carbon dioxide :二氧化碳Sugar-free extract :干浸出物Volatile acid :挥发酸Sulfur dioxide :二氧化硫Total sulfur dioxide :总二氧化硫Free sulfur dioxide :游离二氧化硫Copper(Cu):铜Iron (Fe):铁Potassium : W(K)Calcium (Ca):钙Sodium (Na):钠第六部分物质名词Methanol :甲醇High Alcohol :高级醇Polyalcohol :多元醇Ethyl acetate :乙酸乙酯Flavonol :黄酮醇Glycine :甘油Calcium Pectate :果胶酸钙Ochratoxin :棕曲霉毒素Butanol : 丁醇Isobuta nol :正丁醇Gastric Acid :胃酸Propa none :丙酮Acetic Acid :乙酸Formic Acid :甲酸,蚁酸Phospholipids :磷脂Ami no Acid :氨基酸Fatty Acid :脂肪酸Carbonic Acid :碳酸Carbohydrate :碳水化合物Fixed Acid :固定酸Tartaric Acid :酒石酸Malic Acid :苹果酸Citric Acid :柠檬酸Lactic Acid :孚L酸Succinic Acid :琥珀酸Sorbic acid :山梨酸Ascorbic acid :抗坏血酸Benzyl acid :苯甲酸Gallic acid :没食子酸Ferulic Acid :阿魏酸Pcoumaric acid :香豆酸Glucose, Dextrose ,Grape Sugar : 葡萄糖Fructose, Fruit Sugar : 果糖Cane Sugar, Short Sweetening:蔗糖Polysaccharides :水解多糖Starch :淀粉Amylase :淀粉酶Foam :泡沫Protein :蛋白质Mercaptan :硫醇Thiamine :硫胺(VB1)Ammonium Salt :铵盐Melanoidinen :类黑精Glycerol :甘油,丙三醇Copper citrate :柠檬酸铜Copper sulphate :硫酸铜Hydrogen sulphide :硫化氢Oak (barrel):橡木(桶)Catechi ns:儿茶酚Low Flavour Threshold :香味阈值Maillard Reaction :美拉德反应Volatile Phenols :挥发性酚Van ilia n :香子兰VaniIlin :香草醛,香兰素Linalool :里那醇,沉香醇Geroniol :牻牛儿醇,香茅醇Pyranic acid :丙酮酸Fura n Aldehydes:呋喃醛Euge nol: 丁香酚Guaiacol :愈创木酚Carbohydrate Degradation Products :碳水化合物降解物Cellulose :纤维素Hemicellulose :半纤维素Hemicellulase :半纤维素酶Maltol :落叶松皮素Oak Lactone:橡木内酯Hydrolysable Tannins :水解单宁Ellagitannins :鞣花单宁Proanthocyanidin :原花色素Relative Astringency(RA):相对涩性Lagic Acid :鞣花酸Polypetide Nitrogen :多肽氮Oxido-reduction Potential :氧化还原电位Condenced Phenols:聚合多酚Poly-phenols :多酚PVP( P):聚乙烯(聚)吡咯烷酮Anthocyanin :花青素Alcohol, ethanol :乙醇Invert Sugar 转化糖Oxyge n :氧气Ester:酯类物质Nitrogen :氮气Aroma :果香Virus :病毒Bacteriophage :噬菌体Body :酒体Byproduct :副产物Potassium Bitartrate ( KHT):酒石酸氢钾Potassium Sorbate :山梨酸钾Diammonium Phosphate : 磷酸氢二铵Potassium Meta-bisulfite (K2S2O5):偏重亚硫酸钾Tannin :单宁Oak tannins :橡木丹宁Un desired (Excessive ) Tannins :劣质单宁Desired tannins : 优质单宁En zyme :酶Laccase :漆酶Polyphenol Oxidase(PPO):多酚氧化酶^glucosidase :禺葡(萄)糖苷酶3-glucanase : 3■葡聚糖酶Mannoproteins :甘露糖蛋白Lees :酒泥Chateau :酒庄Bulk wine、Raw wine :原酒Hygie ne : 卫生Activated carbon :活性碳Curra nt :茶蔗子属植物、无核小葡萄干Raspberry :木莓、山莓、覆盆子、悬钩子第七部分:设备Filtrate(filtration):过滤Two-way Pump : 双向泵Screw Pump :螺杆泵Centrifuge :离心机Distillation :蒸馏Heat Excha nger :热交换器Crusher :破碎机Destemer :除梗机Presser:压榨机Atmosphere Presser :气囊压榨机Screw Presser:连续压榨机Filter:过滤机Bottling Line :灌装线Plate Filtration (filter):板框过滤(机)Vacuum Filtration (filter ):真空过滤(机)Depth Filtration (filter):深层过滤(机) CrossFiltration (filter):错流过滤(机) MembraneFiltration (filter):膜过滤(机) SterileFiltration (filter):除菌过滤(机)Pocket Filtration (filter ):袋滤(机)Rotary Machine :转瓶机Pomace Draining :出渣Blending :调配Racking :分离(皮渣、酒脚)Decanting :倒灌(瓶)Remuage :吐渣Fining :下胶Deacidification :降酸Pump over :循环Skin Con tact :浸皮(渍)Mix colors :调色Oxidative Ageing Method :氧化陈酿法Reducing Ageing Method :还原陈酿法Stabilization :稳定性Ullage :未盛满酒的罐(桶)Headspace :顶空NTU :浊度Receiving bin :接收槽Corkscrew :开瓶器Distilling Column :蒸馏塔Condenser:冷凝器Heat Exchanger:热交换器Cork :软木塞Cellar :酒窖Wine Showroom :葡萄酒陈列室Optical Density (OD):光密度Metal Crown Lid :皇冠盖Bla nket:隔氧层Pasteurisation :巴斯德杀菌法第八部分:原料、病虫害、农Grape Nursery :葡萄苗圃Graft :嫁接苗Scion :接穗Seedli ng :自根苗Disease:病害Botrytis :灰霉病Downy Mildew :霜霉病Powdery Mildew :白粉病Fan Leaf :扇叶病毒病An thrac nose :炭疽病Mild Powder :灰腐病Black Rotten :黑腐病Noble rot:贵腐病Pearls :皮尔斯病Phylloxera :根瘤蚜Nematode :线虫Bird Damage : 鸟害Pest:昆虫Lime Sulphur :石硫合剂Nursery :营养钵Herbicide :除草剂Pesticide :杀虫剂Fungicide :真菌剂Bordeaux mixture :波尔多液Microclimate :微气候Variety :品种Cluster :果穗Rachis :穗轴Scion :接穗Rootstock :砧木Grafting :嫁接第九部分:学科名词Enology :葡萄酒酿造学Pomology :果树学Vinification :葡萄酒酿造法Wine-making :葡萄酒酿造Ampelography :葡萄品种学Viniculture :葡萄栽培学Wine Chemistry葡萄酒化学Enologist,Winemaker :酿酒师Vin tage :年份Inoculation (inoculum):接种(物)MOG (material other than grapes):杂物Terpe ne :萜烯Terpe nol :萜烯醇第十部分葡萄酒等级法国:A.O.C :法定产区葡萄酒V.D.Q.S :优良产区葡萄酒V.D.P :地区餐酒V.D.T:日常餐酒德国:1. Tafelwein :日常餐酒;2. Landwein :地区餐酒;3. Qualitaetswei n bestimmter Anbaugebiete :简称QbA,优质葡萄酒;4. Qualitaetswein mit Praedikat :简称QmP,特别优质酒。
几丁质脱乙酰酶的研究进展

由于 CDA 的来源不同,其酶学性质也存在差异 性。到目前为止,自然界所发现的 CDA 都是糖蛋白。 CDA 热稳定性良好,大多数 CDA 的最适温度为 50 ℃~ 60 ℃。而最适 pH 差异较大,一般胞外酶的最适 pH 为 7~12,胞内酶最适 pH 为 4.5~6。大部分 CDA 的等电点 (isoelectric point,pI)都在酸性范围内[3-4]。影响 CDA 酶 学性质的因素主要有温度、pH、底物状态及浓度、相对 分子质量和金属离子等。不同金属离子对 CDA 酶学性 质的影响不同,同种金属离子也可能因其浓度不同而
产酶菌属 红球菌[5] 毛霉(Mucor)[6] 卷柄根霉(Rhizopus circinans)[7] 短杆菌(Brevibacterium)[8] 菜豆炭疽菌 (Colletotrichum lindemuthianum)[9] 蓝色犁头霉(Absidia coerulea)[10] 草酸青霉(Penicillium oxalicum)[11]
Research Advance of Chitin Deacetylase YANG Qian1,LIU Jian-hui1,JIANG Tong1,DONG Li-li1,DUAN Hong-yu1,SUN Ji-lu2,* (1. College of Science and Technology,Hebei Agricultural University,Cangzhou 061100,Hebei,China; 2. College of Food Science and Technology,Hebei Agricultural University,Baoding 071001,Hebei,China) Abstract:Chitin deacetylase(CDA)is an enzyme which can catalyze deacetylase reaction in chitin generating chitosan. Chitosan has several excellent properties,such as antibacterial,anticancer,and antiviral,with wide application prospect in the medicine,chemical,and food industries. The research situation of CDA was re- viewed,including enzymatic properties,catalytic mechanism,the method of separation and purification,etc. Furthermore,the screening methods and process of CDA producing strains were briefly introduced,and the fu- ture research direction of CDA was prospected. Key words:chitin deacetylase;chitin;chitosan;deacetylation
八角茴香提取物抗氧化活性分析

八角茴香提取物抗氧化活性分析谢冬惠【摘要】Star anise ( lllicium verum Hook. f. ), an important source of natural anti-oxidants, was extracted with solvents of water, ethanol, actone and n- butanol, respectively. The extracts were determined in free radical scavenging activity by using 2,2-diphenyl-l-picrylhydrazyl (DPPH) assay. The volatile oil and the ethyl acetate extract from these extracts were used as antioxidants and added into the lard quantitatively, and the peroxide val- ue (POV) of the lard stored for a given time was measured to compare the influence of different rates of the vola- tile oil and the ethyl acetate extract on oxidation resistance of the lard. The results showed that the extracts varied in free radical scavenging activity which was the highest in the ethanol extract with the order of ethanol 〉 n- buta- nol 〉 actone 〉water under the same concentration. The volatile oil was low in anti-oxidative activity while the ethyl acetate extract had very high anti-oxidative activity. The ethyl acetate extract was higher in oxidation resist- ance when added into the lard at a rate of 0.10% (w) than the butylated hydroxytoluene (BHT) at a rate of 0. 02% (w), and had higher anti-oxidative activity when added at a higher rate.%摘要:以蒸馏水、乙醇、丙酮、正丁醇为溶剂对八角茴香进行提取,采用DPPH法对各提取物进行自由基清除实验,同时,以挥发性油和乙酸乙酯提取物作为抗氧化剂,定量加入油脂中,通过对强化保存期间过氧化值(POV)的测定,比较它们不同的添加量对猪油抗氧化性能的影响。
氧化应激在青光眼发病中的作用及天然药物治疗新进展

DOI:10.13444/ki.zgzyykzz.2020.11.014基金项目:1国家重大科学仪器设备开发专项资助项目(2013YQ490859)2温州市科技计划项目(Y20160147)作者单位:1成都中医药大学,成都6100752温州医科大学附属眼视光医院,温州325027通讯作者:段俊国,E-mail :duanjg@青光眼是一组由病理性眼内压升高或者视神经血流灌注压降低等多种因素引起的视神经退行性疾病,是导致不可逆性致盲性眼病的第二大病因[1]。
目前全球有超过6000万的青光眼视神经损害患者,其中有840万人因此失明。
预计到2020年,全球的青光眼患者会增加至7600万人,并导致1120万人失明[2]。
越来越多的研究[3]表明,氧化应激损伤与青光眼密切相关,氧化应激反应增强、活性氧(reactive oxygenspecies ,ROS )产生增多在青光眼的发生发展中发挥了重要的作用。
ROS 可以通过损伤小梁网、视乳头及视网膜而导致眼压升高、引起组织氧化应激反应,最终导致视网膜神经节细胞(retinal ganglial cells ,RGCs )凋亡[4]。
同时,大量实验研究[5]已经证实,抗氧化应激天然药物对于青光眼视神经损伤具有较好的保护作用。
现就氧化应激在青光眼发病中的作用及抗氧化损伤天然药物防治青光眼的研究进展综述如下。
1氧化应激及其标记物氧化应激是指机体内氧自由基的产生与清除失衡,导致氧自由基在细胞内蓄积引发蛋白质、脂质、DNA 等大分子被氧化损伤,从而造成细胞、组织损伤的状态[3]。
ROS 是造成氧化应激的主要原因,生理状态下,ROS 的浓度很低,是参与细胞信号转导的重要物质,可调节机体免疫炎症因子的产生[4,6];而抗氧化物则发挥保护作用,维持促氧化系统与抗氧化系统处于相互协调的平衡状态。
当促氧化物大量产生或抗氧化物不足时,则会导致氧化应激反应出现。
过量的ROS 一方面可以攻击蛋白质、脂质、DNA 等生物大分子,造成细胞死亡或组织结构改变;另一方面可攻击线粒体,造成线粒体功能紊乱而损伤细胞[6]。
奶牛氧化应激及天然植物抗氧化提取物研究进展
DOI :10.3785/j.issn.1008-9209.2018.03.019浙江大学学报(农业与生命科学版)44(5):549~554,2018Journal of Zhejiang University (Agric.&Life Sci.)/agr E -mail:zdxbnsb @奶牛氧化应激及天然植物抗氧化提取物研究进展李泳欣,邹艺轩,刘建新,刘红云*(浙江大学动物科学学院,杭州310058)摘要氧化应激降低奶牛生产性能和繁殖性能,并影响其抗病能力,对高产奶牛危害极大。
氧化应激的发生与奶牛的生理阶段、营养状况及所处的环境温度密切相关。
目前生产中主要通过在奶牛日粮中添加维生素、微量元素和植物提取物来预防或缓解氧化应激。
本文综述了奶牛氧化应激的产生原因、危害,外源抗氧化剂及其抗氧化机制等方面的研究现状,旨在为抗氧化调控机制研究和新型抗氧化剂开发提供理论依据。
关键词奶牛;氧化应激;活性氧自由基;抗氧化剂中图分类号S 858.23文献标志码AProgress on oxidative stress and natural phytogenic antioxidants in dairy cows.Journal of ZhejiangUniversity (Agric.&Life Sci.),2018,44(5):549-554LI Yongxin,ZOU Yixuan,LIU Jianxin,LIU Hongyun *(College of Animal Sciences,Zhejiang University,Hangzhou 310058,China )Abstract Oxidative stress has a negative impact on production performance,reproductive performance anddisease resistance of dairy cows.It is particularly serious for high-producing dairy cows.The occurence of oxidative stress is closely related to the physiological stage,nutritional status and environmental temperature of dairy cows.At present,the common practice to prevent and relieve oxidative stress is to add vitamins,trace elements and plant extracts to the diets for cows.This review summarized the causes and harm effects of oxidative stress on dairy cows,as well as the antioxidant measures and their mechanisms,aiming to provide theoretical basis for antioxidant mechanism research and novel antioxidant exploitation in dariy cows.Key wordsdairy cows;oxidative stress;reactive oxygen species;antioxidant基金项目:国家自然科学基金(31672447);国家重点研发计划(2016YFD0500503)。
氧化应激与黑素细胞骨架
氧化应激与黑素细胞骨架英文回答:Oxidative stress is a condition that occurs when thereis an imbalance between the production of reactive oxygen species (ROS) and the body's ability to neutralize them. ROS are highly reactive molecules that can cause damage to cells and tissues. One of the consequences of oxidative stress is the disruption of the cytoskeleton, which is the network of proteins that gives structure and shape to cells.The cytoskeleton is made up of three main components: microfilaments, intermediate filaments, and microtubules. These components work together to maintain the integrity of the cell and allow for various cellular processes such as cell division and movement. However, oxidative stress can lead to the oxidation and cross-linking of cytoskeletal proteins, resulting in their dysfunction.One specific type of cell that is particularly affectedby oxidative stress is the melanocyte, which is responsible for producing the pigment melanin. Melanocytes have a highly developed cytoskeleton that is essential for their function. Oxidative stress can disrupt the cytoskeleton of melanocytes, leading to a decrease in melanin production and potentially contributing to the development of conditions such as vitiligo, a skin disorder characterized by the loss of pigmentation.In addition to directly affecting the cytoskeleton, oxidative stress can also activate signaling pathways that further contribute to cytoskeletal disruption. For example, the activation of the mitogen-activated protein kinase (MAPK) pathway by oxidative stress can lead to the phosphorylation of cytoskeletal proteins, altering their function and structure.Furthermore, oxidative stress can also induce the production of pro-inflammatory cytokines, such as interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α), which can further disrupt the cytoskeleton. These cytokines can activate signaling pathways that promote thebreakdown of cytoskeletal proteins and inhibit their synthesis.Overall, oxidative stress can have detrimental effects on the cytoskeleton, particularly in cells such as melanocytes. This can lead to a variety of cellular dysfunctions and contribute to the development of various diseases. Understanding the mechanisms by which oxidative stress affects the cytoskeleton is important for developing strategies to mitigate its negative effects.中文回答:氧化应激是指产生活性氧(ROS)与机体清除活性氧之间失衡的一种状况。
发芽咖啡豆α-半乳糖苷酶的化学修饰
Ke rs:emia n o e e n ; - aa ts a e c e c l d c t n y wo d g r n t g c f eb a s a g lcoi s ; h mia i d mo i a o f i
一
半 乳糖 苷酶 ( - a c s ae dG lE . . 仅G l t i s , - a;C3 2 aod
242 ) 1 12
摘
要 : 发 芽咖 啡 豆 中提 取 O半 乳 糖 苷 酶 , 一 定 浓 度 条 件 下 , 学修 饰 剂对 发 芽咖 啡 豆 从 t 一 在 化
0 半乳糖苷酶的化 学修饰结果显示: 【 一 色氨酸是 O半乳糖苷酶活性 中心的必需氨基酸 , S 、 t 一 一H 一 CO O H和组氨酸对 仅半乳糖苷酶的活性有影响, . 精氨酸、 赖氨酸和 一 — 不是 仅半乳糖苷 s S一 一
,=△ 2 ×13 Mr / × 5 o . l A柏 .1× ×v ( 5 o ) 式 中, 为每摩尔酶中被 N S氧化的色氨酸残基摩 B 尔数 , A △ 瑚 为 对 照酶液 在 20 m 处 的吸 光度 与 8 n
结 果 为 三 次 试 验 的 平 均 值 , 对 标 准 偏 差 ( S 在 相 R D)
( .C l g f odS i c n nier g 1 o eeo o ce ea dE gnei ,Wu a o tc n nvr t,Wu a 3 0 3 C ia l F n n h nP l e h i U i sy y c ei h n 0 2 , hn ; 4
2 Sho f odSi c n ehooy J nnnU iesy Wu【 242 C n) .col o ce eadT cnl , i ga n ri , 】i 112, h a oF n g a v t i i
灰树花多肽-锌螯合物对孕期缺锌鼠后代的改善作用
灰树花多肽-锌螯合物对孕期缺锌鼠后代的改善作用张凤丽,李静茹,彭培植,黄文琪,赵立娜*(福建农林大学国家菌草工程技术研究中心,福建农林大学生命科学学院,福建福州 350002)摘要:灰树花多肽-锌螯合物(Grifola frondosa Polypeptide Zinc Chelate,GPs-Zn)是灰树花多肽(Grifola frondosa Polypeptide,GPs)和锌离子的螯合产物,利用电镜扫描、X-射线粉末衍射技术、红外光谱和紫外光谱等技术对GPs-Zn进行结构分析;通过构建ICR母鼠缺锌模型,进一步探究GPs-Zn对孕期缺锌鼠后代的影响。
表征结果表明,GPs和锌离子螯合成一种新的物质;红外光谱对比图发现肽链上的氨基和羧基都参与了锌离子的配位反应;紫外光谱图发现,GPs-Zn中多肽的羰基原子和锌离子结合,诱导紫外光谱的红移,表明GPs与锌离子结合形成GPs-Zn。
动物实验表明:GPs-Zn可将缺锌仔鼠胸腺指数提高78.69%(雌鼠)和87.55%(雄鼠);脾脏指数提高40.28%(雌鼠)和43.22%(雄鼠);体质量提高89.98%(雌鼠)和88.30%(雄鼠);且血清的超氧化物歧化酶(SOD)活力提高了108.07%(雌鼠)和26.16%(雄鼠);锌浓度提高14.74%(雌鼠)和29.33%(雄鼠);碱性磷酸酶(AKP)水平降低52.28%(雌鼠)和62.48%(雄鼠)。
综上可知,GPs-Zn对孕期缺锌鼠后代仔鼠的胸腺指数、脾脏指数、超氧化物歧化酶活力、锌浓度和碱性磷酸酶水平有一定改善作用。
关键词:灰树花多肽-锌螯合物(GPs-Zn);结构表征;小鼠文章编号:1673-9078(2024)04-18-26 DOI: 10.13982/j.mfst.1673-9078.2024.4.0394Improvement Effects of Grifola frondosa Polypeptide-Zinc Chelate on the Offspring of Zinc-deficient Pregnant MiceZHANG Fengli, LI Jingru, PENG Peizhi, HUANG Wenqi, ZHAO Lina*(National Engineering Research Center of JUNCAO Technology, College of Life Sciences, Fujian Agriculture andForestry University, Fuzhou 350002, China)Abstract: Grifola frondosa polypeptide-zinc chelate (GPs-Zn) is the chelation product of Grifola frondosa polypeptides (GPs) and zinc ions. GPs-Zn was subjected to structural characterization using scanning electron microscopy, X-ray powder diffraction, infrared spectroscopy, and ultraviolet spectroscopy. The effects of GPs-Zn on the offspring of zinc-deficient pregnant mice were explored by constructing an adult female ICR mouse model of zinc deficiency. Characterization results showed that GPs and zinc ions formed a novel substance through chelation; IR spectral comparison revealed that both amino 引文格式:张凤丽,李静茹,彭培植,等.灰树花多肽-锌螯合物对孕期缺锌鼠后代的改善作用[J].现代食品科技,2024,40(4):18-26.ZHANG Fengli, LI Jingru, PENG Peizhi, et al. Improvement effects of Grifola frondosa polypeptide-zinc chelate on the offspring of zinc-deficient pregnant mice [J]. Modern Food Science and Technology, 2024, 40(4): 18-26.收稿日期:2023-04-03基金项目:福建省重大专项项目(2021NZ029009);福建省科学技术厅对外合作项目(2021I0008);福建农林大学学科交叉融合推动菌草科学及产业高质量发展项目(XKJC-712021030);福建农林大学科技创新专项基金项目(KFb22115XA)作者简介:张凤丽(1994-),女,硕士研究生,研究方向:食品生物技术,E-mail:通讯作者:赵立娜(1984-),女,博士,副教授,研究方向:食品生物技术,E-mail:18灰树花(Grifola frondosa)是一种具有食用和药用价值的真菌[1,2] ,主要含碳水化合物、维生素、蛋白质和有多种生物活性的甾醇等[3] 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Applied Catalysis A:General206(2001)237–244Oxidative catalytic cracking of n-butane to lower alkenesover layered BiOCl catalystNorihito Kijima a,∗,Koichi Matano b,Masao Saito b,Tomo Oikawa b,Tomohiro Konishi b,Hiroyuki Yasuda a,Toshio Sato a,Yuji Yoshimura aa National Institute of Materials and Chemical Research,1-1Higashi,Tsukuba,Ibaraki305-8565,Japanb Japan Chemical Industry Association,3-2-4Kasumigaseki,Chiyoda-ku,Tokyo100-0013,JapanReceived16February2000;received in revised form27April2000;accepted1May2000AbstractCatalytic performance of BiOCl catalyst has been investigated for the oxidative cracking of n-butane to lower alkenes. Results are compared with those of isostructural LaOCl and SmOCl catalysts.On the BiOCl catalyst,oxidative dehydrogena-tion and combustion were major reactions at∼500◦C;above∼600◦C oxidative cracking reaction to produce ethylene and propylene began to be significant.At the temperature as low as625◦C,52%yield of overall C2–C4alkenes was achieved,and then decreased above this temperature.The conversions of n-butane and oxygen were maintained constants within6h periods at the reaction temperatures of550and600◦C.However,both conversions decreased slightly with time-on-stream at650◦C. BiOCl catalyst shows rather high alkenes’selectivity and suppresses deep oxidation reactions for the oxidative cracking of n-butane,as compared to the LaOCl and SmOCl catalysts.The overall yield of C2–C4alkenes for the BiOCl catalyst is higher than the values for the LaOCl and SmOCl catalysts over the temperature range of500–600◦C.©2001Elsevier Science B.V. All rights reserved.Keywords:Oxidative cracking;n-Butane;Alkenes;BiOCl catalyst;LaOCl catalyst;SmOCl catalyst1.IntroductionPresently,light alkenes are produced by the ther-mal cracking of naphtha as well as ethane and ethane–propane mixtures.This process is strongly endothermic and hence energy-intensive,for it has to be carried out at high reaction temperatures around 800–900◦C.Furthermore,other unwanted reactions leading to large quantities of coke also occur at such high reaction temperatures.From the viewpoint of the exhaustion of fossil fuels and the destruction of global environment,we must establish simple and ∗Corresponding author.Fax:+81-298-61-4532.E-mail address:nkijima@nimc.go.jp(N.Kijima).energy-saving processes of converting naphtha to use-ful basic chemicals,such as ethylene and propylene. Oxidative catalytic cracking of higher alkanes to lower alkenes would be an informative reaction to investigate the feasibility of catalytic converting of naphtha to lower alkenes with co-feeding oxygen as oxidants.Previously,we have reported oxidative cracking of n-butane over rare earth oxides[1].La2O3, Nd2O3,Sm2O3,Eu2O3,and Gd2O3catalysts showed a rather high yield of C2and C3alkenes(20–28%) even though the reaction temperature was as low as 600◦C.On the contrary,CeO2,Pr6O11,and Tb4O7 catalysts exhibited poor alkene selectivity,where the major product was carbon dioxide.The catalytic per-formances of these rare earth oxides in the oxidative0926-860X/01/$–see front matter©2001Elsevier Science B.V.All rights reserved. PII:S0926-860X(00)00598-6238N.Kijima et al./Applied Catalysis A:General206(2001)237–244Fig.1.Schematic drawing of the crystal structure of A OCl(A=Bi, La,Sm)of a tetragonal PbFCl-type structure with space group of P4/nmm.cracking of n-butane were similar to those observed in oxidative coupling of methane(OCM)reaction[2–4]. These detailed experimental results will be published elsewhere[5].It has been known that oxychlorides show good catalytic activities and selectivities in the OCM re-action[6–10].The isostructural BiOCl,LaOCl,and SmOCl have a tetragonal PbFCl-type structure with space group of P4/nmm(No.129).This structure is known to have a layered structure which is con-structed by the combination of the chloride ion layer and the metal oxygen layer as shown in Fig.1[11]. In an earlier report[6],Williams and coworkers have compared the catalytic performances of A OCl(A=Bi, La,Sm)catalysts in the OCM reaction and reported that the BiOCl catalyst shows high catalytic activity, high selectivity to C2-hydrocarbons,and exception-ally large C2H4/C2H6ratio.Khan and Ruckenstein [9]have reported the catalytic performance of im-proved BiOCl/Li2CO3/MgO catalyst.The Li2CO3is believed to have a stabilizing effect on the catalyst. They have indicated that not only Cl but also Bi en-hances C2selectivities on the basis of compositional analyses by X-ray photoelectron spectroscopy(XPS). Recently,Ueda and coworkers[7,8,12–15]have re-ported the catalytic performances of several layered bismuth oxychloride catalysts in the OCM reac-tion and oxidative dehydrogenation of ethane(ODE)reaction.They have proposed that the surface chlorine on the bismuth oxychlorides is a key element in the C–H activation of alkanes,since the activity strongly depends on the type of layered structures and the content of chlorine sheets[8].We expect that the BiOCl catalyst has an oxidative cracking activity as well as a high oxidative dehy-drogenation activity in the oxidation of n-butane.In this paper,we report the catalytic performance of the BiOCl catalyst in the oxidative cracking of n-butane to lower alkenes.We also compare the catalytic per-formances of the BiOCl,LaOCl,and SmOCl cata-lysts in this reaction.A brief report has been given for the catalytic performance of the BiOCl catalyst in the oxidative cracking of n-butane[16].2.Experimental2.1.Catalyst preparation and characterization BiOCl catalyst was a commercial product(Wako Pure Chemical Ind.Ltd.).LaOCl catalyst was pre-pared from La2O3(99.9%)and LaCl3·7H2O(99.9%).The La2O3was highly unstable in air due to the for-mation of a surface coating of La(OH)3.Hence,the weight of the La2O3was measured as soon as pos-sible after calcination at1000◦C for3h.The dried La2O3was mixed with LaCl3·7H2O in an agate mor-tar.After mixing,the powder was calcined in air at 800◦C for6h.SmOCl catalyst was prepared by heat treatment of SmCl3·6H2O(99.5%)in static air at 600◦C for6h.Powder X-ray diffraction patterns of each fresh catalyst confirmed the single-phase spec-imens.All the diffraction peaks of these fresh cata-lysts were indexed in terms of tetragonal symmetry with space group of P4/nmm.The lattice constants were a=3.89and c=7.38Åfor BiOCl,a=4.12and c=6.86Åfor LaOCl,and a=3.97and c=6.70Åfor SmOCl,respectively.The BET surface areas of each fresh catalyst were6.3m2/g for BiOCl,2.5m2/g for LaOCl,and6.8m2/g for SmOCl,respectively.The powder X-ray diffraction patterns of the cat-alysts were measured by a conventional diffracto-meter using diffracted beam monochromatized Cu K␣radiation.The BET surface areas of the catalysts were deter-mined by the single point BET method by measuringN.Kijima et al./Applied Catalysis A:General206(2001)237–244239the adsorption of nitrogen(30mol%balance He)at liquid nitrogen temperature.2.2.Catalytic testThe catalytic tests were carried out at atmospheric pressure in a conventionalfixed-bed continuous-flow reactor.The reactor was a quartz tube(10mm i.d.) whose temperature was controlled by an electric fur-nace.The reaction temperature was measured by a chromel-alumel thermocouple located in the cata-lyst bed.The high-purity gas feed,which contained n-C4H10(99.9%),O2(99.9%),and N2(99.9%),was used in the experiments.Theflow rate of these gases was controlled by a thermal massflow controller. The products of the reaction were separated with the columns of PEG-1500,MS-5A,SP-1700,Shimalite Q,Porapak Q,Porapak N,and Porapak QS,and an-alyzed by an on-line gas chromatograph(Shimadzu GC-8A)equipped with a thermal conductivity detec-tor(TCD)for inorganic gases and aflame ionization detector(FID)for hydrocarbons.N2in the feed was used as an internal standard for calculations of con-version and selectivity.The conversion and selectivity were calculated based on the reacted n-butane.The carbon balances were nearly100%.Powder catalysts were pressed binder-free,crushed, and sieved to the particle size of75–150m.The catalysts were diluted with inert quartz particles (150–710m particle size)and mounted in the mid-dle of the reactor.To minimize the extent gas phase reactions,the volume in the reactor except for catalyst was packed with the quartz particles.The catalytic zone was heated up to500◦C in aflow of O2and kept at500◦C for1h before catalytic test.Then,the reactant mixture(n-C4H10/O2/N2)was introduced into the reactor.A blank test,using only the quartz particles,was run at the same reaction condition. 3.Results and discussion3.1.Oxidative cracking of n-butane over BiOCl catalyst3.1.1.Effect of reaction temperatureFig.2shows the effects of the reaction temperature on the conversions and selectivities to products forthe Fig.2.Effects of reaction temperature on(a)the conversions of n-C4H10(240N.Kijima et al./Applied Catalysis A:General206(2001)237–244 always the major products and a small amount ofmethane was observed.Any oxygen and chlorine in-serted products were not detected within our resolutionbelow625◦C and extremely small amounts of uniden-tified products were observed at650◦C.Oxidative dehydrogenation and combustion weremajor reactions at∼500◦C;above∼600◦C oxida-tive cracking reaction began to be significant.Asthe temperature increased,the selectivity to ethyl-ene increased and the selectivities to propylene andbutenes decreased.Selectivity to both carbon monox-ide and carbon dioxide increased with increase inthe temperature.The CO/CO2ratio increased slightlyat high temperatures,suggesting that n-butane con-verts into carbon monoxide in a gas-phase reactionat the high temperatures in the presence of molec-ular oxygen.The yield of overall C2–C4alkenes(ethylene+propylene+butenes+butadiene)reached amaximum for a value of52%at the temperature aslow as625◦C,and then decreased above this tem-perature.At the temperature of650◦C,34%yield ofethylene plus propylene was achieved.3.1.2.Durability of the catalytic performanceFig.3shows the time-course of conversions ofn-butane and oxygen at550,600and650◦C overtheFig.3.Time course of conversions of n-butane(᭹)and oxygen (᭺)at650◦C;n-butane()and oxygen(ᮀ)at600◦C;and n-butane(᭜)and oxygen(᭛)at550◦C in the oxidative cracking of n-butane over the BiOCl catalyst(3.0g).Feed composition is n-C4H10/O2/N2=2/8/40and totalflow rate is50cm3/min.Fig.4.Powder X-ray diffraction patterns of BiOCl catalyst.The diffraction patterns are measured(a)before the reaction and after the reactions at(b)550◦C for6h,(c)600◦C for6h,and(d) 650◦C for6h,respectively.Peaks with solid circles are those of Bi24Cl10O31.BiOCl catalyst.As shown in Fig.3,when the reaction temperatures were550and600◦C,the conversions of n-butane and oxygen were maintained constants within6h periods.The alkenes’selectivities did not change under the above conditions.On the other hand,both the conversions as well as the selectivities to alkenes decreased slightly with time-on-stream at the reaction temperature of650◦C.Fig.4presents the powder X-ray diffraction pat-terns of the BiOCl catalyst before the reaction and after the reactions at550◦C for6h,600◦C for6h, and650◦C for6h,respectively.As seen in Fig.4(b), BiOCl catalyst is stable for long periods under the reaction at550◦C.On the other hand,small amounts of new Bi24O10Cl31phases appeared after the reac-tions at600and650◦C,although the main structures were still present.The lattice constants a and c of the BiOCl catalysts did not change after the reactions. BiOCl catalyst shows fairly poor stability in our reac-tion above600◦C,which is consistent with the results of the OCM reaction around700◦C[6–8].The Bi24O10Cl31is known to have a layered struc-ture and to show less activity and less selectivity toN.Kijima et al./Applied Catalysis A:General 206(2001)237–244241C 2hydrocarbons than the BiOCl catalyst in the OCM reaction [7,8].According to the literature [8],the cat-alytic performance of BiOCl catalyst decreases with formation of Bi 24O 10Cl 31phase in the OCM reaction at 720◦C.The catalytic activity and selectivity in the oxidation of n -butane can be affected by the formation of Bi 24O 10Cl 31phase.At the reaction temperature of 650◦C,the catalytic activity decreases slightly with time-on-stream and the Bi 24O 10Cl 31formation was observed after the reaction.On the other hand,BiOCl catalyst exhibited a stable activity at 550◦C and any extra phases were not detected by XRD measurement.Although the Bi 24O 10Cl 31phase was formed during the reaction at 600◦C,BiOCl catalyst also showed a stable activity.This used catalyst provided similar cat-alytic performances to the fresh one at 550◦C.A vari-ation of catalytic performance would not be observed in our experiment since the amount of the Bi 24O 10Cl 31formation was extremely small.3.1.3.Oxygen partial pressure dependencyFig.5shows the partial pressure effect of oxygen on the converted rate of n -butane and the yield of overall C 2–C 4alkenes in the oxidative crackingofFig.5.Partial pressure effects of oxygen on the converted rate of n -butane (᭹)and the yield of overall C 2–C 4alkenes (᭺)in the oxidative cracking of n -butane at 600◦C over the BiOCl catalyst (3.0g).Total flow rate is 50cm 3/min and partial pressure of n -butane is 4.1kPa (const.).All data are collected within 1h reaction.The solid curvature shows a fitted Langmuir’s curve.n -butane at 600◦C over the BiOCl catalyst.We con-cluded that the catalytic effect would only be observed with co-feeding oxygen since the n -butane conversion at P O 2=0kPa was less than 5%,which was compa-rable with the value of the thermal pyrolysis without catalyst.As seen in Fig.5,the oxygen partial pressure has a positive effect for the converted rate of n -butane,which indicates that the presence of gas phase oxygen plays an important role in the reaction.The converted rate of n -butane increased abruptly with increasing the partial pressure of oxygen and then gradually reached to a constant value at higher oxygen partial pressures.When the n -butane conversion increased,the selectiv-ity to alkenes decreased and the selectivity to CO x in-creased (not given in the figure).The yield of overall C 2–C 4alkenes increased with increasing the partial pressure of oxygen and above P O 2=15kPa,reached about 38%,as shown in Fig.5.An attempt has been made to fit the P O 2ver-sus P O 2/V C 4dependence to the Langmuir’s formula without dissociative adsorption:V C 4=abP O 2(1+aP O 2)(1)where V C 4is the converted rate of n -butane,P O 2is the partial pressure of oxygen,and a and b are constants.The experimental result can be reproduced well by Langmuir’s formula without dissociative adsorption.The solid curvature in Fig.5shows a fit with the Lang-muir curvature.Wealso attempted to make the fit of the P O 2versus P O 2/V C 4depended on Langmuir’s formula with dissociative adsorption.However,the result could not be reproduced by the formula with dissociative adsorption.This result suggests that the rate-determining step is the reaction of n -butane with O 2molecular species adsorbed on the BiOCl cata-lyst.Similar partial pressure dependencies have been observed in oxidative cracking of n -butane over rare earth oxides [17].3.1.4.Reaction pathsFig.6presents the variation of the selectivities with the conversion of n -butane at 600◦C over the BiOCl catalyst.As shown in Fig.6,the selectivity to butenes (1-,2-cis -,and 2-trans -butene)decreases when the n -butane conversion increases,suggesting that consecutive reactions take place.The selectiv-ity to butadiene increases with the increase in the242N.Kijima et al./Applied Catalysis A:General206(2001)237–244Fig.6.Variation of the selectivities to C2H4(᭹);C3H6(᭡);C4H8 (᭢);C4H6();CH4(᭜);CO(ᮀ);CO2(᭺)with the conversion of n-butane at600◦C over the BiOCl catalyst.Feed composition is n-C4H10/O2/N2=2/8/40and totalflow rate is50cm3/min.All data are collected within1h reaction.n-butane conversion,reaching a maximum for a value of about15%and then decreases slightly at the high conversions.Thus,on the BiOCl catalyst,butadiene can be considered a secondary and unstable product. The selectivities to ethylene and propylene are nearly conversion-independent,whereas they change slightly at the high conversions.Ethylene and propylene as well as butenes would mainly be considered primary products in this reaction,since these selectivities do not approach zero at the lower conversions.The se-lectivities to methane are extremely small and the CH4/C3H6formation ratios do not have1,as seen in Fig.6.Therefore,the rate of methane formation would not be related that of propylene formation.The selectivities to carbon monoxide and carbon dioxide increased with the increase in n-butane conversion, suggesting that consecutive reactions occur.These tendencies of the variation of the selectivity were also observed even though the reaction temperature was as low as550◦C.The(C2H4+C3H6)/(C4H8+C4H6) ratio increased with increase in the temperature. The catalytic performances of the oxychloride cata-lysts as well as rare earth oxide catalysts in the oxida-tive cracking of n-butane are similar to those observed in the OCM and ODE reactions.Therefore,it can be considered that the oxidative cracking of n-butane would be initiated by hydrogen abstraction and butylradical formation.In particular at high reaction tem-peratures,the butyl radical would decompose to giveethylene and ethyl radical or propylene and methylradical due to-scission.At lower temperatures,thebutyl radical can be mainly dehydrogenated to pro-duce butene.The hydrogens abstracted from n-butaneare oxidized by molecular oxygen to give water.parison of catalytic performances of AOCl(A=Bi,La,Sm)catalystsThe results of the catalytic performance of the A OCl(A=Bi,La,Sm)catalysts are summarized in Table1.The catalytic performances of these catalysts at600◦Cdid not change within6h OCl and SmOClcatalysts showed high structural stabilities in this re-action on the basis of the X-ray analyses.As shownin Table1,BiOCl catalyst shows rather high alkenes’selectivity and suppresses deep oxidation reactionsfor the n-butane oxidation,as compared to the LaOCland SmOCl catalysts.This tendency is consistentwith the results of the OCM reaction over the A OCl(A=Bi,La,Sm)catalysts[6,7].The overall yield ofC2–C4alkenes for the BiOCl catalyst is higher thanthe values for the LaOCl and SmOCl catalysts overthe temperature range of500–600◦C under a chosenreaction condition(n-C4H10/O2/N2=2/8/40cm3/min) since the LaOCl and SmOCl catalysts show pooralkenes’selectivity and high CO x selectivity,whereasthey show rather high activity.While LaOCl and SmOCl catalysts show highstructural stabilities,BiOCl catalyst shows fairly poorstability,thus a desorption of a small amount of chlo-rine from the catalyst would occur at high reactiontemperatures.Khan and Ruckenstein[9]have re-ported that the desorption of chlorine from the BiOClcatalyst takes place at600–620◦C.The chlorine atomin gas phase is known to serve as a chain carrier in ahomogeneous reaction.Ahmed and Moffat[18]havesuggested that the chlorine in gas-phase may playsuch a role in the ODE reaction.On the other hand,it is reported that there is no correlation between therate of chlorine loss from the catalyst and its activityin the ODE reactions over a Li+–MgO–Cl−catalyst[19]and a SrBi3O4Cl3catalyst[14],respectively.Inour experimental results of TPD analyses,the de-sorptions of the chlorine from the A OCl(A=Bi,La,N.Kijima et al./Applied Catalysis A:General206(2001)237–244243 Table1Catalytic performance of A OCl(A=Bi,La,Sm)catalysts in the oxidative cracking of n-butane aCatalyst Surfacearea(m2/g)Weight(g)Temperature(◦C)Conversion(%)Selectivity(%)n-C4H10O2C2H4C3H6C4H8C4H6CH4CO CO2BiOCl 6.3 3.0500 3.6 1.9 6.29.532.720.90.0 6.523.93.055015.5 6.616.811.333.315.80.4 5.516.93.060050.719.028.310.119.915.10.97.118.5 LaOCl 2.50.1500 6.4 5.9 2.94.010.30.00.031.950.60.155017.414.2 6.9 5.99.40.60.132.844.60.160038.323.813.78.3 6.50.70.530.439.8 SmOCl 6.80.01500 5.0 4.9 4.911.320.20.00.013.350.90.0155014.011.010.011.316.30.60.214.846.80.0160027.417.019.213.612.9 1.10.715.836.7 Blank b5000.4 4.80.07.473.00.00.00.09.6550 1.3 4.111.212.159.1 2.20.00.012.3600 3.9 3.915.012.941.3 4.3 1.19.215.0a Reaction conditions:totalflow rate=50cm3/min;feed composition:n-C4H10/O2/N2=2/8/40.Data collected within1h reaction.b Reactor packed only with the quartz particles was used.Sm)catalysts did not take place below550◦C at least. The powder X-ray diffraction patterns of these spent catalysts also indicated that these catalysts were sta-ble for long periods under the reaction at550◦C.As seen in Table1,it is clear that the BiOCl catalyst shows higher alkenes’selectivity than the LaOCl and SmOCl catalysts at the reaction temperature of550◦C, which seems to be intrinsic feature of the BiOCl cat-alyst.Therefore,it is probable that the difference of catalytic performances among A OCl(A=Bi,La,Sm) catalysts is ascribed to active centers on the surface of the catalysts rather than a homogeneous reaction due to gas-phase chlorine,although the contribution of the gas-phase reaction can not be ignored,in particular at high reaction temperatures.The BiOCl alone shows rather high alkenes’selec-tivity,although every A OCl(A=Bi,La,Sm)catalyst has surface chorine.More recently,the substitution ef-fects of Bi3−x La x ClO4system in the OCM reaction [8]and Bi3−x La x SrCl3O4system in the ODE reaction [13,15]have been reported.On both catalyst systems, the activities of alkanes and CO x formations increase with increase in La content.Thus,it can be considered that the lanthanum and samarium ions in the oxychlo-ride catalysts can form activated oxygen species for the deep oxidation of n-butane.However,the nature of active centers on the oxychloride catalysts is not well understood yet at the molecular level.Further in-vestigations are required to verify and clarify the na-ture of active centers as well as reaction mechanism in oxidation of alkanes on the oxychloride catalysts. 4.SummaryIn summary,the following aspects should be noted: 1.BiOCl catalyst has oxidative cracking activity toproduce ethylene and propylene as well as oxida-tive dehydrogenation activity,in particular at high reaction temperatures.2.The yield of overall C2–C4alkenes(ethylene+propylene+butenes+butadiene)reached a maxi-mum for a value of52%at625◦C,and then de-creased above this temperature.At the reaction temperature of650◦C,34%yield of ethylene plus propylene was achieved.3.The conversions of n-butane and oxygen weremaintained constants within6h periods at the reaction temperatures of550and600◦C.How-ever,both conversions decreased slightly with time-on-stream when the reaction temperature was 650◦C.4.BiOCl catalyst shows rather high alkenes’selectiv-ity and suppresses deep oxidation reactions for the oxidative cracking of n-butane,as compared to the LaOCl and SmOCl catalysts.244N.Kijima et al./Applied Catalysis A:General206(2001)237–244AcknowledgementsWe would like to thank Dr.T.Hayakawa,Dr.K. Murata,Dr.K.Suzuki,Dr.T.Matsuzaki,and Dr.F.Mizukami in National Institute of Materials and Chemical Research(NIMC)for their valuable discus-sions.The present research was supportedfinancially by New Sunshine program which was promoted by Agency of Industrial Science and Technology(AIST) of Japan.References[1]G.Sawada,K.Shiozawa,K.Matano,K.Wakui,K.Satoh,Y.Yoshimura,T.Hayakawa,K.Suzuki,K.Murata, F.Mizukami,Book of Abstracts,in:Proceedings of the Ninth International Symposium on Relations between Homogeneous and Heterogeneous Catalysis,Southampton,UK,1998, p.80.[2]K.Otsuka,K.Jinno,A.Morikawa,J.Catal.100(1986)353.[3]K.D.Campbell,H.Zhang,J.H.Lunsford,J.Phys.Chem.92(1988)750.[4]Y.Tong,M.P.Rosynek,J.H.Lunsford,J.Phys.Chem.93(1989)2896.[5]K.Matano et al.,in preparation.[6]J.Williams,R.H.Jones,J.M.Thomas,J.Kent,Catal.Lett.3(1989)247.[7]W.Ueda,F.Sakyu,T.Isozaki,Y.Morikawa,J.M.Thomas,Catal.Lett.10(1991)83.[8]W.Ueda,T.Isozaki,F.Sakyu,S.Nishiyama,Y.Morikawa,Bull.Chem.Soc.Jpn.69(1996)485.[9]A.Z.Khan,E.Ruckenstein,Catal.Lett.13(1992)95.[10]C.T.Au,H.He,i,C.F.Ng,Appl.Catal.A159(1997)133.[11]A.F.Wells,Structural Inorganic Chemistry,5th Edition,Oxford University Press,London,1984,p.486.[12]W.Ueda,S.W.Lin,I.Tohmoto,Catal.Lett.44(1997)241.[13]S.W.Lin,W.Ueda,Chem.Lett.1997(1997)901.[14]S.W.Lin,Y.C.Kim,W.Ueda,Bull.Chem.Soc.Jpn.71(1998)1089.[15]S.W.Lin,W.Ueda,Bull.Chem.Soc.Jpn.72(1999)997.[16]N.Kijima,K.Matano,M.Saito,T.Oikawa,T.Konishi,H.Yasuda,T.Sato,Y.Yoshimura,Sekiyu Gakkaishi43(2000)89.[17]K.Otsuka et al.,private communication.[18]S.Ahmed,J.B.Moffat,Appl.Catal.58(1990)83.[19]S.J.Conway,J.H.Lunsford,J.Catal.131(1991)513.。