高中数学课件-平行关系的判定

合集下载

高一数学《平行关系的判定》PPT课件

高一数学《平行关系的判定》PPT课件
如果不在一个平面内的一条直线和平面内的 一条直线平行,那么这条直线和这个平面平行.
面面平行的判定定理
线面平行 面面平行
如果一个平面内的两条相交直线与另一个平面平行, 则这两个平面平行.
重点:掌握线面、面面平行的判定定理,并会用它们
证明面面平行,线面平行等问题;
.
19
A' β
D
α
A
C'
B'
α//β
C
B
.
12
平面与平面平行的判定定理
如果一个平面内的两条相交直线与另 一个平面平行,则这两个平面平行.
(线面平行,则面面平行)
P a a,b,abP,
β
b
a//,b//
α
α∥β
注:面面. 平行的画法
13
例2:已知四面体PABC,D,E,F 分别是PA,PB,PC的中点.
的面AA1DD1 、面ABCD的中心
(1)求证:PQ// 平面DD1C1C D1
(2)求线段的PQ长
A1
P
C1 B1
D
C
Q
A
B
.
7
二、平面与平面平行的判定
面面平行的定义:如果两个平面没 有公共点,那么这两个平面互相平行。
β
α
记作:α ∥ β
因此,判定平面与平面平行的关 键在于判定它们有. 没有公共点. 8
平 面 A B 1D 1//平 面 B D C 1 17
B1D1AD1D1
练习:课本P31页1、2、3、4
如图:正方体ABCD-A1B1C1D1中,E、F、
G分别为AA1 、A1B1 、A1D1 的中点 求
证:平面EFG∥平面BDC1.

2.1.2两条直线平行与垂直的判定 课件(共15张PPT)

2.1.2两条直线平行与垂直的判定 课件(共15张PPT)
在同一条直线上,确定常数a的值.
2
复习回顾
复习2:平面上两条直线位置关系
y
o
x
有平行,相交两种
我们设想如何通过直线的斜率
来判定这两种位置关系.
3
学习新知 两条直线平行的判定
思考1:若两条不同直线的倾斜角相等,这两条直线
的位置关系如何?反之成立吗?
y
l1
α1
O
l2
α2
x
4
学习新知

思考2:若两条不同直线的斜率相等,这两
在两种情况求解.
两直线垂直的判定方法
3.两条直线垂直需判定k1k2=-1,使用它的前提条件
是两条直线斜率都存在,若其中一条直线斜率不存
在,另一条直线斜率为零,此时两直线也垂直.
9
例题讲解
例2:已知A(-2,m),B(m,4),M(m+2,3),N(1,1),若
AB∥MN,则m的值为
.
解析:当m=-2时,直线AB的斜率不存在,而直线MN的斜率存
D.若两条直线的斜率不相等,则两直线不平行
3.若经过点M(m,3)和N(2,m)的直线l与斜率为-4的直线互相
垂直,则m的值是________.
14
5 [由题意知,直线 MN 的斜率存在,因为 MN⊥l,
m-3 1
14
所以 kMN=
=4,解得 m= 5 .]
2-m
14
学完一节课或一个内容,
应当及时小结,梳理知识
1
即 1-3k=0,∴k=3.]
7
例题讲解
例1 已知A、B、C、D四点的坐标,试判断直线AB与CD
的位置关系.
(1)A(2,3), B(-4,0), C(-3,l), D(-l,2); 平行

高中数学1.5.1平行关系的判定省公开课一等奖新优质课获奖课件

高中数学1.5.1平行关系的判定省公开课一等奖新优质课获奖课件
13/49
(1)直线与平面平行的判定定理的应用步骤 ①线与线平行; ②一条线在已知平面内; ③一条线在已知平面外. (2)中点的应用 在题目中出现中点时,常见的证线线平行的两种途径: ①中位线→线线平行; ②平行四边形→线线平行.
14/49
1. (1)如图,四棱锥 P-ABCD 中,底面 ABCD 为 平行四边形,AC∩BD=O,E 为 PD 的中点,则 EO 与平面 PBC 的位置关系为________.
19/49
则 MP∥NQ,在△D1AD 中,MADP=DD11MA . 因为 NQ∥AD,AD∥BC,所以 NQ∥BC. 在△DBC 中,NBQC=DDNB, 因为 D1M=DN,D1A=DB,AD=BC, 所以 NQ=MP.
20/49
所以四边形 MNQP 为平行四边形, 则 MN∥PQ. 又 MN 平面 CC1D1D, PQ 平面 CC1D1D,
(4)利用平行平面的传递性:若α∥β,β∥γ,则α∥γ.
25/49
2.(1)已知 m,n 表示两条不同的直线,α,β,
γ表示三个不同的平面,则下列命题中正确的个数是( )
①若 α∩γ=m,β∩γ=n,m∥n,则 α∥β;
②若 m,n 相交且都在平面 α,β外,m∥α,m∥β,n∥α,
n∥β,则 α∥β;
17/49
所以ANNE=NBND⇒NAEE=NBDD. 因为 BD=AD1,且 D1M=DN, 所以EANE=MADD11.
故在△AD1E 中,MN∥D1E,
18/49
又 MN 平面 CC1D1D,D1E 平面 CC1D1D,
所以 MN∥平面 CC1D1D.
法二:过点 M 作 MP∥AD 交 DD1 于 P, 过点 N 作 NQ∥AD 交 CD 于 Q,连接 PQ,

直线与平面平行的判定定理(公开课)ppt课件全

直线与平面平行的判定定理(公开课)ppt课件全

平行于经过另外两边所在的平面.
已知空间四边形ABCD中,E,F分别为AB,AD的中点,
证明:直线EF与平面BCD平行
A
证明:如右图,连接BD,
在△ABD中,E,F分别为AB,
AD的中点,即EF为中位线 ∴EF ∥BD,
又EF 平面BCD,
F E
C D B
BD 平面BCD,
∴EF ∥平面BCD . 大图
将线面平行转化为线线平行
4.数学思想方法:
转化化归的思想方法: .将空间问题转化为平面问题
归纳小结,理清知识体系
1.判定直线与平面平行的方法:
(1)定义法:直线与平面没有公共点则线面平行;
(2)判定定理:(线线平行 线面平行);
a
b
a
//
a // b
2.用定理证明线面平行时,在寻找平行直线可
以通过三角形的中位线、梯形的中位线、平 行四边形对边平行等来完成。
.
作业: 1.课本P62 第3题
2.三维设计26-28页及课时跟踪练习 3.一线精练19-20页
.
• 直线与平面平行的判定
.
一、知识回顾:
在空间中直线与平面有几 种位置关系?
文字语言
图形语言
1、直线在平面内
a
α
a
2、直线与平面相交 α .P
a
3、直线与平面平行 α.
符号语言
a
a P
a//
直观感知
怎样判定直线与平面平行呢?
.
操作确认
门扇转动的一边与门框所在的平面之间的 位置关系.
A1
A
B1
B
.
例2在四棱锥P—ABCD中,底面ABCD为平行四边形,

高中数学课件:直线、平面平行的判定与性质

高中数学课件:直线、平面平行的判定与性质

(2)连接FH,OH, ∵F,H分别是PC,CD的中点,∴FH∥PD. ∵PD⊂平面PAD,FH⊄平面PAD,∴FH∥平面PAD. 又∵O是AC的中点,H是CD的中点,∴OH∥AD, 又∵AD⊂平面PAD,OH⊄平面PAD, ∴OH∥平面PAD. 又FH∩OH=H,∴平面OHF∥平面PAD. 又∵GH⊂平面OHF,∴GH∥平面PAD.
的角为 60°,转化为三角形的一个角有关的问题 还缺少所需要用的三角形,可连接 AD,取 AD 的中 差什么 点 M,连接 ME,MF,得三角形 MEF,利用平行 找什么 关系可找到 ME 与 MF 所成的角,然后利用余弦定 理求解即可
[解题方略] 证明面面平行的常用方法
(1)面面平行的定义,即证两个平面没有公共点(不常用); (2)面面平行的判定定理:如果一个平面内有两条相交直线 都平行于另一个平面,那么这两个平面平行(主要方法); (3)利用垂直于同一条直线的两个平面平行(客观题常用); (4)如果两个平面同时平行于第三个平面,那么这两个平面 平行(客观题常用); (5)利用“线线平行”“线面平行”“面面平行”的相互转 化进行证明.
所以四边形BDC1D1为平行四边形, 所以BD1∥C1D. BD1⊄平面AC1D,C1D⊂平面AC1D, 所以BD1∥平面AC1D, 又因为A1B∩BD1=B, 所以平面A1BD1∥平面AC1D.
2.如图,四棱锥P-ABCD中,AD∥BC,AB=BC

1 2
AD,E,F,H分别为线段AD,PC,CD的
考法(二) 直线与平面平行性质定理的应用 [例2] 如图所示,四边形ABCD是平行四 边形,点P是平面ABCD外一点,M是PC的中 点,在DM上取一点G,过G和AP作平面交平面 BDM于GH. 求证:AP∥GH.

高中数学课件两个平面平行的判定与性质ppt课件.优秀文档PPT

高中数学课件两个平面平行的判定与性质ppt课件.优秀文档PPT
(2)重学生学习体验。 (1)判定两个平面平行的主要途径有那些.
定义
如果两个平面有公共点,它们就相交于一条过该公共点的直线,就称这两个平面相交.
提问:能否加上某些条件,从而由“线线平行”推出“面面平行”。
形式:讲述、提问、讨论
返回
过程分析 ——设计思路
问题: (1)若两条直线平行,则分别经过这两条直线的
(2)平面 BC CB内的直 BC 和 线 BC有什么关系?为
(3)若AA12,直A线 A和平A面 B所 C 成 NhomakorabeaC
3
的角6是 0,则两个平A行 B和 C平面A 2
B
ABC的距离是多少?
4C
1
A
B
课时小结
a
1.两个平面平行的性质
(1)一个结论 / /,a a/ /
面面平行
线面平行
(2)性质定理a/,/ba//b
②一条直线和两个平行平面相交,则此直线和两个平
面成等角;
③一条直线和两个平面成等角,则此两个平面平行;
④夹在两个平行平面间的两条线段长相等,那么这两
条线段平行.
A1 B2 C3 D4
巩固与拓展
3且.一不个为平零面,则上这不两同个的平三面点到另一个平面的距离( B相等)
A. 平行
B. 相交
C. 平行或重合
9.5.2两个平面平行的判定和性质
珲春一中 崔星
复习与引入
1.两个平面的位置关系
两个平面的位置关系只有两种 (1)两个平面平行——没有公共点 (2)两个平面相交——有一条公共直线.
l
符号表示 //
l
2.两个平面平行的判定
(1)判定定理:如果一
个平面内有两条相交直线

线面平行的判定定理ppt课件

线面平行的判定定理ppt课件

三个条件缺一不可,缺少其中任何一条,则 结论就不一定成立了.
2、简记:线线平行,则线面平行。
3、定理告诉我们:
直线间平行关系
直线与平面平行关系
空间问题
平面问题
理论迁移
例1.空间四边形ABCD中,E,F分别为AB,AD的
中点,试判断EF与平面BCD的位置关系,并予
以证明.P29例1.
A
解:EF∥平面BCD。
求证:AB1//平面DBC1
A1
C1
B1
P
D
A
C
B
2、如图,在正方体 ABCD——A1B1C1D1中, O是底面ABCD对角线的交点. 求证:C1O//平面AD1B1.
A1 C1
B1
E
A D C
B
4、如图 ,正方体AC1中,点N是BD中点,点M是B1C中 点.
求证: MN // 平面AA1B1B .
件是要满足六个字,
b
“面外、面内、平行”. b//a
a //
反思3:运用定理的关键是找平行线,找平行线又经常会 用到三角形中位线定理.
理论迁移
例2. 如图,四面体ABCD中,E,F,G,H分别 是AB,BC,CD,AD的中点.
(1)E、F、G、H四点是否共面?
(2)试判断AC与平面EFGH的位置关系;A
根据定义,判定直线与平面是否平行,只需 判定直线与平面有没有公共点.但是,直线无限 延长,平面无限延展,用定义这种方法来判定直 线与平面是否平行是很困难的.
那么,是否有简单的方法来判定直线与平面 平行呢?
知识探究(三):直线与平面平行的判断定理 1、直观感知
三.线面平行判定定理的探究
动手操作—确认定理

直线和平面平行的判定定理ppt课件

直线和平面平行的判定定理ppt课件

判定定理二:向量
03
共线法
向量共线法原理
定义
若两向量方向相同或相反,则称这两 向量共线。
性质
应用
在直线与平面平行判定中,通过判断 直线的方向向量与平面上两不共线向 量的关系,确定直线与平面的位置关 系。
共线的向量可以表示为同一基向量的 倍数。
向量运算规则
加法运算
向量加法满足平行四边形 法则或三角形法则。
$l parallel alpha$。
实例二
若直线$l$的方向向量$vec{a}$ 与平面$alpha$的法向量
$vec{n}$满足$vec{a} cdot vec{n} = 0$,则$l parallel
alpha$。
讨论
通过实例分析,我们可以发现向 量共线法在直线与平面平行判定 中的重要作用。同时,需要注意 判定条件的充分性和必要性,以
及特殊情况的处理。
判定定理三:距离
04
相等法
距离相等法原理
直线与平面平行时,直线上任意一点 到平面的距离都相等。
利用这一性质,可以通过比较直线上 不同点到平面的距离是否相等来判断 直线与平面是否平行。
点到直线距离公式
点$P(x_0, y_0, z_0)$到平面 $Ax + By + Cz + D = 0$的距 离公式为
直线与平面的距离为零
当直线上的任意一点到平面的距离都为零时,直线与平面平行。可 以通过计算点到平面的距离公式来判断。
复杂问题简化策略
转化为基本问题
将复杂问题转化为判断直线与平面是否平行的基本问题,以便运 用上述方法进行求解。
利用已知条件
充分利用题目中给出$d = frac{|Ax_0 + By_0 + Cz_0 + D|}{sqrt{A^2 + B^2 + C^2}}$
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【练习 3】如图,两个完全相等的正方形 ABCD 和 ABEF 不在
同一平面内,点 M、N 分别在它们的对角线 AC、BF 上,且
CM=BN.求证:MN∥平面 BCE.
【证明】连结 AN 并延长交 BE 于 G 点.
∵AF∥BE,∴ BN GN . NF NA
∵正方形 ABCD 与正方形 ABEF 全等,
关键词有哪 些?
定理5.1 若平面外一条直线与此平面 内的一条直线平行,则该直线与此平 面平行.
如果直线a与平面α内的一条直线b平行, 则直线a与平面α平行?
a
b
下列说法是否正确?说明理由: 1、如果一条直线不在平面内,则这条直线就与 平面平行 2、过直线外一点可以作无数个平面与这条直线 平行
直线与平面有几种位置关系? 有三种位置关系:在平面内,相交、平行.
其中平行是一种非常重要的关系,不仅应用较多,而且是 学习平面和平面平行的基础.
怎样判定直线与平面平行呢?
根据定义,判定直线与平面是否平行,只 需判定直线与平面有没有公共点。
但是,直线无限延长,平面无限延展,如 何保证直线与平面没有公共点呢?
定理5.1 若平面外一条直线与此平面内的一条直线平行, 则该直线与此平面平行.
a
a
b
a
//
b
a // b
线(平面内)线(平面外)平行
线面平行
转化
直线与平面平行(空间)
直线与直线平行(平面)
1)与AB平行的平面是: 2)与AA1平行的平面是:
D1 A1
C1 B1
典例展示
例1.空间四边形ABCD 中,E,F分别为AB,AD 的中点,
线面平行 线与面交于一点
线面平行
3、数学思想找平行直线可以 通过三角形的中位线、平行四边形、平行线段成比 例定理等来完成。
证明:连接BD交AC于点O,
连接OE,
D1
A1 E
C1 B1
在 DBD中,E,O分别是 DD, BD 的中点.
D
C
O
EO// BD
A
B
EO
平面ACE
BD
//
平面AEC
BD 平面ACE
运用定理的关键是找平行线; 找平行线又经常会用到三角形中位线定理。
典例展示
例2:如图,在四棱锥P-ABCD中,底面ABCD为梯形, AB / /CD, AB 2CDM, 是PB的中点. 求证:CM∥平面PAD
练习2.在直三棱柱 ABC A1B1C中1 , 点 D、E分别为棱, CC1 、 AB的中点.
求证:DE∥平面 AB1C1
运用定理的关键是找平行线;
找平行线又经常会用到平行四边形对边相互 平行。
典例展示
例3.已知空间四边形ABCD 中,P、Q分别是三角形 ABC和三角形ACD的重心。 求证:PQ∥平面BCD
∴AC=BF.
∵CM=BN,∴MA=NF.
∵ CM GN ,∴MN∥CG. MA NA
∵ CG 平面 BCE,MN 平面 BCE,∴MN∥平面 BCE.
运用定理的关键是找平行线;
找平行线又经常会用到对应线段成比例,两 直线平行。
直线在平面内 1、线面的位置关系 直线在平面外 2、线面平行的判定定理 线线平行
求证:直线EF与平面BCD平行.
A
证明:如右图,连接BD,
在△ABD中,E,F分别为AB,AD的中点, F
即EF为中位线.
E
∴EF∥BD,
DC
又EF 平面BCD,
B
BD 平面BCD,
∴EF∥平面BCD.
练习1.如图,正方体 ABCD ABCD 中,E为 DD的中
点,试判断 BD与平面AEC的位置关系,并说明理由.
在日常生活中,哪些实例给我们以直线与平 面平行的印象呢?
根据以上实例总结在什么条件下一条直线和 一个平面平行?
如果平面外一条直线和这个平面内的一条直线平 行,那么这条直线和这个平面平行
定理5.1 若平面外一条直线与此平面 内的一条直线平行,则该直线与此平 面平行.
1、能够举出生活中直线与平面平行的例子 2、掌握直线与平面平行的判定定理 3、会用三种语言对判定定理进行描述 4、能用判定定理证明直线与平面平行
相关文档
最新文档