高二年级数学选修2-1模块测试试卷1

合集下载

选修2-1模块测试题

选修2-1模块测试题

高中数学选修2-1水平测试题(时间:120分钟 满分:150分)学号:______ 班级:______ 姓名:______ 得分:______一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.若a =(2x,1,3),b =(1,-2y,9),且a ∥b ,则( )A .x =1,y =1B .x =12,y =-12C .x =16,y =-32D .x =-16,y =322.若p 是q 的充分不必要条件,则下列判断正确的是( )A .⌝p 是q 的必要不充分条件B .⌝q 是p 的必要不充分条件C .⌝p 是⌝q 的必要不充分条件D .⌝q 是⌝p 的必要不充分条件3.在正方体ABCD —A 1B 1C 1D 1中,M 是AB 的中点,则sin 〈DB 1→,CM →〉的值等于( )A.12B.21015C.23D.1115 4.若曲线ax 2+by 2=1为焦点在x 轴上的椭圆,则实数a ,b 满足( )A .a 2>b 2 B.1a <1bC .0<a <bD .0<b <a5.已知M (-2,0),N (2,0),|PM |-|PN |=3,则动点P 的轨迹是( )A .双曲线B .双曲线左边一支C .双曲线右边一支D .一条射线6.命题p :存在x 0∈⎣⎡⎦⎤0,π2,使sin x 0+cos x 0>2;命题q :命题“∃x 0∈R ,2x 20+3x 0-5=0”的否定是“∀x ∈R ,2x 2+3x -5≠0”,则四个命题(⌝p )∨(⌝q ),p ∧q ,(⌝p )∧q ,p ∨(⌝q )中,真命题的个数为( )A .1B .2C .3D .47.若抛物线y 2=2px的焦点与椭圆x 26+y 22=1的右焦点重合,则p 的值为( )A .-2B .2C .-4D .4 8.以下有关命题的说法错误的是( )A .命题“若x 2-3x +2=0,则x =1”的逆否命题为“若x ≠1,则x 2-3x +2≠0”B .若MP →=xMA →+yMB →,则P 、M 、A 、B 共面 C .若p ∨q 为假命题,则p ,q 均为假命题 D .方程x 2m -y 2n=1(mn >0)表示焦点在x 轴上的双曲线9.已知AB 是抛物线y 2=2x 的一条焦点弦,|AB |=4,则AB 中点C 的横坐标是( )A .2 B.12 C.32D.5210.已知“x >k ”是“3x +1<1”的充分不必要条件,则k 的取值范围是( )A .[2,+∞)B .[1,+∞)C .(2,+∞)D .(-∞,-1] 11.如图1,已知正三棱柱ABC —A 1B 1C 1的所有棱长都相等,D 是A 1C 1的中点,则直线AD 与平面B 1DC 所成角的正弦值为( )A .35B .52C . 45 D . 5112.若直线y =kx +2与双曲线x 2-y 2=6的右支交于不同的两点,则k 的取值范围是( )A.⎝⎛⎭⎫-153,153 B.⎝⎛⎭⎫0,153 C.⎝⎛⎭⎫-153,0 D.⎝⎛⎭⎫-153,-1二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上.)13.若抛物线x 2=ay 过点A ⎝⎛⎭⎫1,14,则点A 到此抛物线的焦点的距离为________. 14.设命题p :∀a >0,a ≠1,函数f (x )=a x -x -a 有零点,则⌝p :________________________. 15.若一个椭圆长轴的长度、短轴的长度和焦距依次成等差数列,则该椭圆的离心率是________. 16.已知正方体1111ABCD A B C D -的棱长是1,则直线1DA 与AC 间的距离为 . 三、解答题(本大题共6小题,共60分.解答题应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)已知p :x 2+mx +1=0有两个不等的负根,q :4x 2+4(m -2)x +1=0无实根.若p 或q 为真,p 且q 为假,求m 的取值范围.18.(本小题满分12分)设p :实数x 满足x 2-4ax +3a 2<0,其中a <0;q :实数x 满足x 2-x -6≤0,或x 2+2x -8>0,且⌝p 是⌝q 的必要不充分条件,求a 的取值范围.19.(本小题满分12分)如图2,过抛物线px y 22=)0(>p 的焦点F 的直线l 交抛物线于点A 、B ,交其准线于点C ,若||2||BF BC =,且3||=AF ,求此抛物线的方程.20.(本小题满分12分)如图3,在长方体ABCD ­A 1B 1C 1D 1中,AB =AA 1=1,E 为BC 中点. (1)求证:C 1D ⊥D 1E ;(2)在棱AA 1上是否存在一点M ,使得BM ∥平面AD 1E ?若存在,求AM AA 1的值,若不存在,说明理由.21.(本小题满分12分)已知平面内与两定点A(2,0),)0,2(-B 连线的斜率之积等于41-的点P 的轨迹为曲线1C ,椭圆2C 以坐标原点为中心,焦点在y 轴上,离心率为55.(1)求1C 的方程;(2)若曲线1C 与2C 交于M 、N 、P 、Q 四点,当四边形MNPQ 面积最大时,求椭圆2C 的方程及此四边形的最大面积.22.(本小题满分12分)如图4所示,如图所示的长方体1111D C B A ABCD -中,底面ABCD 是边长为2的正方形,O 为AC 与BD 的交点,21=BB ,M 是线段11D B 的中点.(1)求证:BM ∥平面D l AC ; (2)求证:D 1O ⊥平面AB l C ; (3)求二面角C AB B --1的大小.(山东 李玉莲)高中数学选修2-1水平测试题(一)一、选择题1.C 2.C 3.B 4.C 5.C 6.B7.B 8.D 9.C 10.A 11.4512.D提示:1.因为a ∥b ,所以2x 1=1-2y =39,所以x =16,y =-32.2.由p 是q 的充分不必要条件可知p ⇒q ,q /⇒p ,由互为逆否命题的两命题等价可得⌝q ⇒⌝p ,⌝p /⇒⌝q ,所以⌝p 是⌝q 的必要不充分条件,选C.3.以D 为原点,DA ,DC ,DD 1分别为x 轴、y 轴、z 轴建立空间直角坐标系,设正方体棱长为1,易知DB 1→=(1,1,1),CM →=⎝⎛⎭⎫1,-12,0,故cos 〈DB 1→,CM →〉=DB 1→·CM →|DB 1→||CM →|=1515,从而sin 〈DB 1→,CM →〉=21015.4.由ax 2+by 2=1,得x 21a +y 21b=1,因为焦点在x 轴上,所以1a >1b >0,所以0<a <b .5.所以|MN |=4.所以3<|MN |.根据双曲线定义知,点P 的轨迹是以M (-2,0)、N (2,0),为焦点的双曲线的右支.所以选C.6.因为sin x +cos x =2sin ⎝ ⎛⎭⎪⎫x +π4≤2,故命题p 为假命题;特称命题的否定为全称命题,易知命题q 为真命题,故(⌝p )∨(⌝q )真,p ∧q 假,(⌝p )∧q 真,p ∨(⌝q )假.7.因为抛物线的准线方程为x =-2,所以p2=2,所以p =4,所以抛物线的方程是y 2=8x .所以选B.8.选项D 中方程x 2m -y 2n =1(mn >0)只能说表示双曲线,当m ,n >0时表示焦点在x 轴上的,当m ,n <0时表示焦点在y 轴上.故选D.9.设A (x 1,y 1),B (x 2,y 2),则|AB |=x 1+x 2+p =4,又p =1,所以x 1+x 2=3,所以点C 的横坐标是x 1+x 22=32.10.由3x +1<1,可得3x +1-1=-x +2x +1<0,所以x <-1或x >2,因为“x >k ”是“3x +1<1”的充分不必要条件,所以k ≥2.11.不妨设正三棱柱ABC —A 1B 1C 1的棱长为2,建立如图所示的空间直角坐标系,则C (0,0,0),A (3,-1,0),B 1(3,1,2),D ⎝⎛⎭⎫32,-12,2.则CD →=⎝⎛⎭⎫32,-12,2,CB 1→=(3,1,2),设平面B 1DC 的法向量为n =(x ,y,1),由⎩⎪⎨⎪⎧n ·CD →=0,n ·CB 1→=0,解得n =(-3,1,1).又因为DA →=⎝⎛⎭⎫32,-12,-2,所以sin θ=|cos 〈DA →,n 〉|=45.12.由⎩⎪⎨⎪⎧y =kx +2,x 2-y 2=6,得(1-k 2)x 2-4kx -10=0.设直线与双曲线右支交于不同的两点A (x 1,y 1),B (x 2,y 2),则⎩⎪⎨⎪⎧1-k 2≠0,Δ=16k 2-4(1-k 2)×(-10)>0,x 1+x 2=4k1-k2>0,x 1x 2=-101-k2>0,解得-153<k <-1.二、填空题13.54 14.∃a 0>0,a 0≠1,函数f (x )=a x 0-x -a 0没有零点 15.35 16.33 提示:13.由题意可知,点A 在抛物线x 2=ay 上,所以1=14a ,解得a =4,得x 2=4y .由抛物线的定义可知点A 到焦点的距离等于点A 到准线的距离,所以点A 到抛物线的焦点的距离为y A +1=14+1=54. 14.全称命题的否定为特称命题,⌝p :∃a 0>0,a 0≠1,函数f (x )=a x 0-x -a 0没有零点. 15.由题意可知2b =a +c .即2a 2-c 2=a +c ,整理得5c 2+2ac -3a 2=0.即5e 2+2e -3=0.解得e=35或e =-1(舍去). 16.11(0,0,0),(1,1,0),(0,1,0),(0,0,1),(1,1,0),(0,1,1)A C D A AC DA ==- 设1(,,),,,0,0,MN x y z MN AC MN DA x y y z y t =⊥⊥+=-+==令 则(,,)MN t t t =-,而另可设(,,0),(0,,),(,,)M m m N a b MN m a m b =--1,(0,2,),21,3m ta m t N t t t t tb t-=-⎧⎪-=+==⎨⎪=⎩,1111113(,,),3339993MN MN =-=++= 三、解答题17.解:p :x 2+mx +1=0有两个不等的负根⇔⎩⎪⎨⎪⎧Δ1=m 2-4>0-m <0⇔m >2.q :4x 2+4(m -2)x +1=0无实根.⇔Δ2=16(m -2)2-16<0⇔1<m <3, 因为p 或q 为真,p 且q 为假,所以p 与q 的真值相反.①当p 真且q 假时,有⎩⎨⎧m >2m ≤1或m ≥3解得m ≥3;②当p 假且q 真时,有⎩⎪⎨⎪⎧m ≤21<m <3解得1<m ≤2.18.解:设A ={x |p }={x |x 2-4ax +3a 2<0,a <0}={x |3a <x <a ,a <0},(2分) B ={x |q }={x |x 2-x -6≤0或x 2+2x -8>0}={x |x 2-x -6≤0}∪{x |x 2+2x -8>0}={x |-2≤x ≤3}∪{x |x <-4或x >2}={x |x <-4或x ≥-2}.(4分)因为⌝p 是⌝q 的必要不充分条件,所以⌝q ⇒⌝p ,且⌝p ⌝q .则{x |⌝q }{x |⌝p },(6分)而{x |⌝q }=∁R B ={x |-4≤x <-2},{x |⌝p }=∁R A ={x |x ≤3a 或x ≥a ,a <0}, 所以{x |-4≤x <-2}{x |x ≤3a 或x ≥a ,a <0},(10分)则⎩⎨⎧ 3a ≥-2,a <0或⎩⎨⎧a ≤-4,a <0.(11分) 综上,可得-23≤a <0或x ≤-4.(12分)19.解:过点A,B 分别作AD,BE 垂直于抛物线的准线于点D,E ,所以||||AD AF =,||||BE BF =.因为||2||BF BC =,所以||2||BE BC =, 所以︒=∠60EBC ,所以︒=∠60DAC , 因为3||=AF ,所以3||=AD ,所以6||=AC , 又||2||BF BC =,所以1||=BF ,所以4||=AB . 因为直线l 过A,B,F ,易得l 的方程为=y )2(3p x -, 代入抛物线方程px y 22=得0435322=+-p px x , 设),(A A y x A ,),(B B y x B ,则p x x B A 35=+,因为435||=+=++=p p p x x AB B A ,所以23=p ,所以抛物线方程为x y 32=.20.(1)证明:以D 为坐标原点,建立如图所示的空间直角坐标系D ­xyz ,设AD =a ,则D (0,0,0),A (a ,0,0),B (a ,1,0),B 1(a ,1,1),C 1(0,1,1),D 1(0,0,1),E ⎝⎛⎭⎫a 2,1,0,所以平面AD 1E 的一个法向量为n =(2,a ,2a ), 因为BM ∥平面AD 1E ,所以h =12.即在AA 1上存在点M ,使得BM ∥平面AD 1E ,此时AM AA 1=12.21.(1)设),(y x P ,则41-=•PB PA k k , 即4122-=+•-x y x y , 所以1C 的方程为)2(1422±=/=+x y x . (2)如图,设椭圆2C 的方程为)0(12222>>=+n m nx m y ,设),(11y x N ,由对称性得四边形MNPQ 的面积114y x S =,因为142121=+y x ,所以11224y x S ⨯⨯⨯=42482121=+⨯≤y x .当且仅当⎪⎪⎩⎪⎪⎨⎧=+=14,2212111y x y x 时等号成立,解得⎪⎩⎪⎨⎧==,22,211y x 所以⎪⎪⎩⎪⎪⎨⎧=-==+,551,12212222m n e n m 解得⎪⎩⎪⎨⎧==,512,322n m 所以椭圆2C 的方程为1512322=+x y ,四边形MNPQ 的最大面积为4. 22.(1)建立如图所示的空间直角坐标系.则点)0,1,1(O ,)2,0,0(1D ,)0,2,2(B ,)2,1,1(M ,所以)2,1,1(1--=OD ,BM )2,1,1(--=,所以=1OD BM .又OD l 与BM 不共线,所以BM OD //1.又⊂O D 1平面AC D 1,⊂/BM 平面D l AC ,所以BM//平面D l AC . (2)连接1OB ,因为)2,2,2(1B ,)0,0,2(A ,)0,2,0(C , 所以=1OD )2,1,1(--,)2,1,1(1=OB , 所以0)2,1,1()2,1,1(11=•--=•OB OD ,=•AC OD 10)0,2,2()2,1,1(=-•--,所以11OB OD ⊥,AC OD ⊥1,即11OB OD ⊥,AC OD ⊥1, 又O AC OB = 1,所以⊥O D 1平面AB 1C .(3)易知CB ⊥平面ABB l ,所以)0,0,2(-=BC 为平面ABB l 的一个法向量.因为11OB OD ⊥,AC OD ⊥1,所以)2,1,1(1--=OD 为平面C AB 1的一个法向量, 所以21,cos 1>=<OD BC ,所以二面角C AB B --1的大小为︒60.。

高二数学选修2-1测试题(附有答题卡)

高二数学选修2-1测试题(附有答题卡)

高二数学选修2-1测试题一、选择题(共20小题,每小题3分,共60分): 1、设R x ∈,则1>x 是13>x 的( ).A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2、下列有关命题的说法正确的是( ).A .命题“若,42=x 则2=x ”的否命题为“若,42=x 则2≠x ”B .命题“012,2<-+∈∃x x R x ”的否定是“012,2>-+∈∀x x R x ”C .命题“若y x =,则y x sin sin =”的逆否命题为假命题D .若“p 或q ”为真命题,则q p ,至少有一个为真命题3、已知椭圆159:22=+y x C ,点A (1,1),则点A 与椭圆C 的位置关系是( ).A .点A 在椭圆C 上B .点A 在椭圆C 内C .点A 在椭圆C 外D .无法判断4、椭圆14922=+y x 的离心率是( ). A .313 B .35C .32D .955、若椭圆)4(1422>=+m my x 的焦距为2,则m=( ). A .3 B .5 C .3或5 D .3-6、已知双曲线191622=-y x ,则双曲线的焦点坐标为( ). A .)0,7(),0,7(- B .)0,5(),0,5(- C .)5,0(),5,0(- D .)7,0(),7,0(-第1页(试卷共4页)7、与椭圆1162522=+y x 有公共焦点的椭圆( ). A .1251622=+y x B .1203022=+y x C .1213022=+y x D .1302122=+y x8、直线1+=x y 与椭圆14522=+y x 的位置关系是( ). A .相交B .相切C .相离D .无法判断9、已知椭圆)0(1:2222>>=+b a b y a x C 的左、右焦点分别为21F F 、,离心率为33,过2F 的直线l 交C 于A 、B 两点,若B AF 1∆的周长为34,则椭圆C 的方程为( ).A .12322=+y x B .1322=+y x C .181222=+y x D .141222=+y x10、已知点)0,2(),0,2(B A -,则以AB 为斜边的直角三角形的直角顶点C 的轨迹方程是( ).A .222=+y xB .422=+y xC .)2(222±≠=+x y xD .)2(422±≠=+x y x11、已知=--=+-=b b a a 则),1,2,1(),1,2,1(( ). A .)2,4,2(-B .)2,4,2(--C .)2,0,2(--D .)3,1,2(-12、若向量)1,0,2(),0,2,1(-==b a ,则( ). A .21,cos >=<b a B .b a ⊥ C .b a // D .b a =13、若方程13122=-+-k y k x 表示双曲线,则实数k 的取值范围是( ). A .1<k B .31<<k C .3>k D .31><k k 或14、已知双曲线的实轴和虚轴等长,且过点(5,3),则双曲线的方程为( ).A .1252522=-y x B .19922=-y x C .1161622=-x y D .1161622=-y x 第2页(试卷共4页)15、以椭圆14322=+y x 的焦点为顶点,以这个椭圆的长轴的端点为焦点的双曲线的方程是( ).A .1322=-y xB .1322=-x y C .14322=-y x D .14322=-x y16、抛物线y x 42=上一点A 的纵坐标为4,则点A 与抛物线焦点的距离为( ). A .2B .3C .4D .517、若直线l 的方向向量为a ,平面α的法向量为n ,则可能使α//l 的是( ). A .)0,0,2(),0,0,1(-==n a B .)1,0,1(),5,3,1(==n a C .)1,0,1(),1,2,0(--==n a D .)1,3,0(),3,1,1(=-=n a18、已知正四棱柱1111D C B A A B C D -中,底面四边形A B C D 是正方形,AB AA 21=,E 是1AA 的中点,则异面直线C D 1与BE 所成角的余弦值为( ).A .51B .10103 C .1010D .5319、在正方体1111D C B A ABCD -中,E 是C C 1的中点,则直线BE 与平面11BDD B 所成角的正弦值为( ). A .510 B .510-C .515 D .515-20、已知F 是双曲线13:22=-y x C 的右焦点,P 是C 上一点,且PF 与x 轴垂直,点A 的坐标是(1,3),则APF ∆的面积为( )A .31B .21C .32D .23二、填空题(共6小题,每小题2分,共12分):21.若命题01,:2<++∈∃x x R x p ,则p ⌝为 命题(填“真”或“假”).第3页(试卷共4页)22.双曲线191622=-y x 的渐近线的方程为 . 23.抛物线24x y =的准线方程是 .24.已知b a b a 与,3,21==的夹角是=⋅b a 则,6π.25.过抛物线x y 42=的焦点作直线交抛物线于),(),,(2211y x B y x A ,如果621=+x x ,那么=AB .26.已知椭圆1162522=+y x ,过椭圆的右焦点F 且垂直于x 轴的直线与椭圆交于A,B 两点,则AB = .第4页(试卷共4页)高二数学选修2-1测试题答题卡班级: 姓名: 得分:一、选择题(本大题共20小题,每小题3分,共60分)二、填空题(本大题共6小题,每小题2分,共12分)21、 22、 23、 24、 25、 26、 三、解答题(本大题共4小题,共28分):27、(6分)已知动点P 到两定点)0,3()0,3(B A 和 的距离的比等于2,求动点P 的轨迹方程。

高中数学人教a版高二选修2-1-章末综合测评1有答案

高中数学人教a版高二选修2-1-章末综合测评1有答案

高中数学人教a版高二选修2-1-章末综合测评1有答案(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.命题“若某2<1,则-1<某<1”的逆否命题是()A.若某2≥1,则某≥1,或某≤-1B.若-1<某<1,则某2<1C.若某>1,或某<-1,则某2>1D.若某≥1或某≤-1,则某2≥1【解析】命题“若p,则q”的逆否命题为“若綈q,则綈p”.【答案】D2.命题“所有能被2整除的整数都是偶数”的否定是()A.所有不能被2整除的整数都是偶数B.所有能被2整除的整数都不是偶数C.存在一个不能被2整除的整数是偶数D.存在一个能被2整除的整数不是偶数【解析】把全称量词改为存在量词并把结论否定.【答案】D3.命题p:某+y≠3,命题q:某≠1或y≠2,则命题p是q的()A.充分不必要条件C.充要条件B.必要不充分条件D.既不充分也不必要条件【解析】命题“若p,则q”的逆否命题为:“若某=1且y=2,则某+y=3”,是真命题,故原命题为真,反之不成立.【答案】A4.设点P(某,y),则“某=2且y=-1”是“点P在直线l:某+y-1=0上”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件第-1-页共8页【解析】当某=2且y=-1时,满足方程某+y-1=0,即点P(2,-1)在直线l上.点P′(0,1)在直线l上,但不满足某=2且y=-1,∴“某=2且y=-1”是“点P(某,y)在直线l上”的充分而不必要条件.【答案】A5.“关于某的不等式f(某)>0有解”等价于()A.某0∈R,使得f(某0)>0成立B.某0∈R,使得f(某0)≤0成立C.某∈R,使得f(某)>0成立D.某∈R,f(某)≤0成立【解析】“关于某的不等式f(某)>0有解”等价于“存在实数某0,使得f(某0)>0成立”.故选A.【答案】A6.设四边形ABCD的两条对角线为AC,BD,则“四边形ABCD为菱形”是“AC⊥BD”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【解析】若四边形ABCD为菱形,则AC⊥BD,反之,若AC⊥BD,则四边形ABCD不一定是菱形,故选A.【答案】A7.命题p:函数y=lg(某2+2某-c)的定义域为R;命题q:函数y=lg(某2+2某-c)的值域为R.记命题p为真命题时c的取值集合为A,命题q为真命题时c的取值集合为B,则A∩B=()A.C.{c|c≥-1}B.{c|c【解析】命题p为真命题,即某2+2某-c>0恒成立,则有Δ=4+4c<0,解得c第-2-页共8页【答案】A8.对某∈R,k某2-k某-1<0是真命题,则k的取值范围是()A.-4≤k≤0C.-4<k≤0B.-4≤k<0D.-4<k<0【解析】由题意知k某2-k某-1<0对任意某∈R恒成立,当k=0时,-1<0恒k<0,成立;当k≠0时,有即-4<k<0,所以-4<k≤0.2Δ=k+4k<0,【答案】C9.已知命题p:若(某-1)(某-2)≠0,则某≠1且某≠2;命题q:存在实数某0,使2某0<0.下列选项中为真命题的是()A.綈pC.綈q∧pB.綈p∨qD.q【解析】很明显命题p为真命题,所以綈p为假命题;由于函数y=2某,某∈R的值域是(0,+∞),所以q是假命题,所以綈q是真命题.所以綈p∨q为假命题,綈q∧p为真命题,故选C.【答案】C10.设{an}是公比为q的等比数列,则“q>1”是“{an}为递增数列”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件a1>0,a1<0,【解析】等比数列{an}为递增数列的充要条件为或故“q>1”是q>10“”“{an}为递增数列”的既不充分也不必要条件.【答案】D11.已知命题p:某>0,总有(某+1)e某>1,则綈p为()A.某0≤0,使得(某0+1)e某0≤1B.某0>0,使得(某0+1)e某0≤1C.某>0,总有(某+1)e某≤1第-3-页共8页D.某≤0,使得(某+1)e某≤1【解析】因为全称命题某∈M,p(某)的否定为某0∈M,綈p(某),故綈p:某0>0,使得(某0+1)e某0≤1.【答案】B12.已知p:点P在直线y=2某-3上;q:点P在直线y=-3某+2上,则使p∧q为真命题的点P的坐标是()A.(0,-3)C.(1,-1)B.(1,2)D.(-1,1)【解析】因为p∧q为真命题,所以p,q均为真命题.所以点P为直线y=2某y=2某-3,某=1,-3与直线y=-3某+2的交点.解方程组得即点P的坐标为(1,y=-3某+2,y=-1,-1).【答案】C二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上)13.命题p:若a,b∈R,则ab=0是a=0的充分条件,命题q:函数y=某-3的定义域是[3,+∞),则“p∨q”“p∧q”“綈p”中是真命题的为________.【解析】p为假命题,q为真命题,故p∨q为真命题,綈p为真命题.【答案】p∨q与綈p14.“末位数字是1或3的整数不能被8整除”的否定形式是________________,否命题是________________.【解析】命题的否定仅否定结论,所以该命题的否定形式是:末位数字是1或3的整数能被8整除;而否命题要同时否定原命题的条件和结论,所以否命题是:末位数字不是1且不是3的整数能被8整除.【答案】末位数字是1或3的整数能被8整除末位数字不是1且不是3的整数能被8整除15.已知f(某)=某2+2某-m,如果f(1)>0是假命题,f(2)>0是真命题,则实数m的取值范围是______.f(1)=3-m≤0,【解析】依题意,∴3≤m<8.f(2)=8-m>0,第-4-页共8页【答案】[3,8)16.给出以下判断:①命题“负数的平方是正数”不是全称命题;3②命题“某∈N,某3>某2”的否定是“某0∈N,使某0>某2;0”③“b=0”是“函数f(某)=a某2+b某+c为偶函数”的充要条件;④“正四棱锥的底面是正方形”的逆命题为真命题.其中正确命题的序号是________.【解析】①②④是假命题,③是真命题.【答案】③三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)写出下列命题的否定,并判断其真假,同时说明理由.(1)q:所有的矩形都是正方形;(2)r:某0∈R,某20+2某0+2≤0;(3):至少有一个实数某0,使某30+3=0.【解】(1)綈q:至少存在一个矩形不是正方形,真命题.这是由于原命题是假命题.(2)綈r:某∈R,某2+2某+2>0,真命题.这是由于某∈R,某2+2某+2=(某+1)2+1≥1>0恒成立.(3)綈:某∈R,某+3≠0,假命题.这是由于当某=-3时,某3+3=0.18.(本小题满分12分)指出下列命题中,p是q的什么条件?(1)p:{某|某>-2或某<3};q:{某|某2-某-6<0};(2)p:a与b都是奇数;q:a+b是偶数;(3)p:03【解】(1)因为{某|某2-某-6<0}={某|-2-2或某<3}/{某|-2-2或某<3}.所以p是q的必要不充分条件.第-5-页共8页33(2)因为a,b都是奇数a+b为偶数,而a+b为偶数/a,b都是奇数,所以p是q的充分不必要条件.(3)m某2-2某+3=01Δ>0,4-12m>0,mm>0m>0m>03所以p是q的充要条件.19.(本小题满分12分)已知命题p:不等式2某-某2q:m2-2m-3≥0,如果“綈p”与“p∧q”同时为假命题,求实数m的取值范围.【解】2某-某2=-(某-1)2+1≤1,所以p为真时,m>1.由m2-2m-3≥0得m≤-1或m≥3,所以q为真时,m≤-1或m≥3.因为“綈p”与“p∧q”同时为假命题,所以p为真命题,q为假命题,所以得m>1,-1即120.(本小题满分12分)已知两个命题p:in某+co某>m,q:某2+m某+1>0,如果对任意某∈R,有p∨q为真,p∧q为假,求实数m的取值范围.【解】当命题p是真命题时,π由于某∈R,则in某+co某=2in某+≥-2,4所以有m<-2.当命题q是真命题时,由于某∈R,某2+m某+1>0,则Δ=m2-4<0,解得-2<m<2.由于p∨q为真,p∧q为假,所以p与q一真一假.考虑到函数f(某)=某2+m某+1的图象为开口向上的抛物线,对任意的某∈R,某2+m某第-6-页共8页+1≤0不可能恒成立.所以只能是p为假,q为真,m≥-2,此时有-2<m<2,解得-2≤m<2,所以实数m的取值范围是[-2,2).21.(本小题满分12分)已知命题p:对数loga(-2t2+7t-5)(a>0,且a≠1)有意义;命题q:实数t满足不等式t2-(a+3)t+a+2<0.(1)若命题p为真,求实数t的取值范围;(2)若p是q的充分不必要条件,求实数a的取值范围.5【解】(1)因为命题p为真,则对数的真数-2t2+7t-5>0,解得125所以实数t的取值范围是1,2.(2)因为p是q解集的真子集.5的充分不必要条件,所以t1的法一因为方程t2-(a+3)t+a+2=0的两根为1和a+2,51所以只需a+2>,解得a>.22即实数a的取值范围为2,+∞.法二令f(t)=t2-(a+3)t+a+2,因为f(1)=0,15所以只需f2<0,解得a>.2即实数a的取值范围为2,+∞.22.(本小题满分12分)设a,b,c为△ABC的三边,求证:方程某2+2a某+b2=0与某2+2c某-b2=0有公共根的充要条件是∠A=90°.【证明】充分性:∵∠A=90°,∴a2=b2+c2.于是方程某2+2a某+b2=0可化为某2+2a某+a2-c2=0,∴某2+2a某+(a+c)(a-c)=0.第-7-页共8页∴[某+(a+c)][某+(a-c)]=0.∴该方程有两根某1=-(a+c),某2=-(a-c),同样另一方程某2+2c某-b2=0也可化为某2+2c某-(a2-c2)=0,即[某+(c+a)][某+(c-a)]=0,∴该方程有两根某3=-(a+c),某4=-(c-a).可以发现,某1=某3,∴方程有公共根.必要性:设某是方程的公共根,某2+2a某+b2=0,①则22某+2c某-b=0,②由①+②,得某=-(a+c),某=0(舍去).代入①并整理,可得a2=b2+c2.∴∠A=90°.∴结论成立.第-8-页共8页。

高中数学人教版选修2-1模块综合检测(一) Word版含答案

高中数学人教版选修2-1模块综合检测(一) Word版含答案

模块综合检测(一)(时间分钟,满分分)一、选择题(本题共小题,每小题分,共分).命题“∃∈->”的否定是( ).∃∈-≤.∀∈->.∀∈-≤.∃∈->解析:选由特称命题的否定的定义即知..已知条件甲:>;条件乙:>,且>,则( ).甲是乙的充分但不必要条件.甲是乙的必要但不充分条件.甲是乙的充要条件.甲是乙的既不充分又不必要条件解析:选甲乙,而乙⇒甲..对∀∈,则方程+=所表示的曲线不可能的是( ).两条直线.圆.椭圆或双曲线.抛物线解析:选分=及>且≠,或<可知:方程+=不可能为抛物线..下列说法中正确的是( ).一个命题的逆命题为真,则它的逆否命题一定为真.“>”与“+>+”不等价.“+=,则,全为”的逆否命题是“若,全不为,则+≠”.一个命题的否命题为真,则它的逆命题一定为真解析:选否命题和逆命题互为逆否命题,有着一致的真假性,故选..已知空间向量=(,),=(-),若-与垂直,则等于( )())())解析:选由已知可得-=()-(-,)=(,-).又∵(-)⊥,∴-+-+=.∴=,=.∴==())..(山东高考)已知直线,分别在两个不同的平面α,β内,则“直线和直线相交”是“平面α和平面β相交”的( ).充分不必要条件.必要不充分条件.充要条件.既不充分也不必要条件解析:选由题意知⊂α,⊂β,若,相交,则,有公共点,从而α,β有公共点,可得出α,β相交;反之,若α,β相交,则,的位置关系可能为平行、相交或异面.因此“直线和直线相交”是“平面α和平面β相交”的充分不必要条件.故选..已知双曲线的中心在原点,离心率为,若它的一个焦点与抛物线=的焦点重合,则该双曲线的方程是( )-=-=-=-=解析:选由已知得=,=,∴=,=,且焦点在轴,所以方程为-=..若直线=与双曲线-=(>,>)有公共点,则双曲线的离心率的取值范围为( ) .(,) .(,+∞).(,] .[,+∞)解析:选双曲线的两条渐近线中斜率为正的渐近线为=.由条件知,应有>,故===>..已知(-),()是椭圆+=的两个焦点,点在椭圆上,∠=α.当α=时,△面积最大,则+的值是( )....解析:选由△=·=,知点为短轴端点时,△面积最大.此时∠=,得==,==,故+=..正三角形与正三角形所在平面垂直,则二面角­­的正弦值为( )解析:选取中点,连接,.建立如图所示坐标系,设=,则,,.∴=,=,=.由于=为平面的一个法向量,可进一步求出平面的一个法向量=(,-,),。

高二数学选修2-1测试试题及答案

高二数学选修2-1测试试题及答案

(选修2-1)模块测试试题(本试题满分150分;用时100分钟)一、选择题:(本大题共12小题;每小题5分;共60分.在每小题给出的四个选项中;只有一项是符合题目要求的.)1.命题“若a b >;则88a b ->-”的逆否命题是 ( )a b <;则88a b -<-88a b ->-;则a b > a ≤b ;则88a b -≤-88a b -≤-;则a ≤b2.如果方程x 2+k y 2=2表示焦点在y 轴上的椭圆;那么实数k 的取值范围是( ) A .(0; +∞)B .(0; 2)C .(0; 1)D . (1; +∞)3.P:12≥-x ;Q:0232≥+-x x ;则“非P ”是“非Q ”的( )A 、充分不必要条件B 、必要不充分条件C 、充要条件D 、既不充分也不必要条件4.双曲线221169x y -=的左、右焦点分别为F 1;F 2;在左支上过点F 1的弦AB 的长为5; 那么△ABF 2的周长是( )A 、24B 、25C 、26D 、 285.若焦点在x 轴上的椭圆1222=+m y x 的离心率为21;则m=( ) A.3 B.23 C.38 D.32 6.在同一坐标系中;方程)0(0122222>>=+=+b a by ax by a x 与的曲线大致是( )7.椭圆221259x y +=的两个焦点分别为F 1、F 2;P 为椭圆上的一点;已知PF 1⊥PF 2;则∆PF 1F 2的面积为( )A.9B.12 8.正方体1111ABCD A B C D -的棱长为1;E 是11A B 的中点;则E 到平面11ABC D 的距离是( ) A.32B.22C.12D.339.若向量a 与b 的夹角为60°;4=b ;(2)(3)72a b a b +-=-;则a =( ) A.2 B.4C.6D.1210.方程22111x y k k表示双曲线;则k 的取值范围是( )A .11<<-kB .0>kC .0≥kD .1>k 或1-<k11.方程12222=+kb y ka x (a >b >0;k >0且k ≠1);与方程12222=+by a x (a >b >0)表示的椭圆( )(A )有等长的短轴、长轴 (B )有共同的焦点(C )有公共的准线 (D )有相同的离心率 12.如图1;梯形ABCD 中;AB CD ∥;且AB ⊥平面α;224AB BC CD ===;点P 为α内一动点;且APB DPC ∠=∠;则P 点的轨迹为( ) A.直线 B.圆 C.椭圆 D.双曲线二、填空题:(本大题共5小题;每小题6分;共30分.将正确答案填在答题卷上对应题号的横线上.)13.设甲、乙、丙是三个命题;如果甲是乙的必要条件;丙是乙的充分条件;但不是乙的必要条件;那么丙是甲的 (①.充分而不必要条件;②.必要而不充分条件 ;③.充要条件) 14.在棱长为a 的正方体1111ABCD A B C D -中;向量1BA 与向量AC 所成的角为 . 15.已知向量)0,3,2(-=a ;)3,0,(k b =;若b a ,成1200的角;则k= .16.抛物线的的方程为22x y =;则抛物线的焦点坐标为____________17.以下三个关于圆锥曲线的命题中:①设A 、B 为两个定点;K 为非零常数;若|PA |-|PB |=K ;则动点P 的轨迹是双曲线。

高二数学选修2-1测试卷

高二数学选修2-1测试卷

CD CB高中数学选修2-1测试卷一、选择题1.双曲线19422-=-y x 的渐近线方程是( )A .x y 23±=B .x y 32±=C .x y 49±=D .x y 94±=2.若椭圆199x 22=++m y 的离心率为21,则m 的值等于 A .49-B . 41C .349或-D .341或 3.已知向量)2,0,1(),0,1,1(-==b a ,且b a b ka -+2与互相垂直,则k 的值是 A .1 B .51 C .53 D .574.抛物线 22y x -= 的准线方程是( ).A .21=y B.81=y C .41=x D.81=x 5.双曲线191622=-y x 右支点上的一点P 到右焦点的距离为2,则P 点到左准线的距离为 A .6 B .8 C .10 D .12 6.如图,正方体1111ABCD A B C D -的棱长为2, 点P 是平面ABCD 上的动点,点M 在棱AB 上,且13AM =,且动点P 到直线11A D 的距离与点P 到点M 的 距离的平方差为4,则动点P 的轨迹是( )A .圆B .抛物线C .双曲线D .直线 7.下列等式中,使点M 与点A 、B 、C 一定共面的是 A .--=23 B .OM 513121++=C .0=+++D .0=++8.已知向量(0,1,1),(1,0,2)a b =-=,若向量ka b + 与向量a b -互相垂直,则k 的值是( )A .32 B.2 C .74 D. 54二、填空题DAD 1C 1B 1A 1BCFE9.抛物线x y -=2的焦点坐标是________________。

10.已知点)4,1,3(--A ,则点A 关于y 轴对称的点的坐标为__________。

11.设O 是平面ABC 外一点,点P 满足311488OP OA OB OC =++,则直线AP 与平面ABC 的位置关系是 。

高二数学选修2-1测试试题及答案

(选修2-1)模块测试试题命题人:铁一中 周粉粉(本试题满分150分,用时100分钟)一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.命题“若a b >,则88a b ->-”的逆否命题是 ( )A.若a b <,则88a b -<-B.若88a b ->-,则a b >C.若a ≤b ,则88a b -≤-D.若88a b -≤-,则a ≤b2.如果方程x 2+k y 2=2表示焦点在y 轴上的椭圆,那么实数k 的取值范围是( ) A .(0, +∞)B .(0, 2)C .(0, 1)D . (1, +∞)3.P:12≥-x ,Q:0232≥+-x x ,则“非P ”是“非Q ”的( )A 、充分不必要条件B 、必要不充分条件C 、充要条件D 、既不充分也不必要条件4.双曲线221169x y -=的左、右焦点分别为F 1,F 2,在左支上过点F 1的弦AB 的长为5,那么△ABF 2的周长是( )A 、24B 、25C 、26D 、 285.若焦点在x 轴上的椭圆1222=+m y x 的离心率为21,则m=( ) A.3 B.23 C.38 D.32 6.在同一坐标系中,方程)0(0122222>>=+=+b a by ax by a x 与的曲线大致是( )7.椭圆221259x y +=的两个焦点分别为F 1、F 2,P 为椭圆上的一点,已知PF 1⊥PF 2,则∆PF 1F 2的面积为( )A.9B.12C.10D.8 8.正方体1111ABCD A B C D -的棱长为1,E 是11A B 的中点,则E 到平面11ABC D 的距离是( ) A.32B.22C.12D.339.若向量a 与b 的夹角为60°,4=b ,(2)(3)72a b a b +-=-,则a =( ) A.2 B.4C.6D.1210.方程22111x y k k表示双曲线,则k 的取值范围是( )A .11<<-kB .0>kC .0≥kD .1>k 或1-<k11.方程12222=+kb y ka x (a >b >0,k >0且k ≠1),与方程12222=+by a x (a >b >0)表示的椭圆( ) (A )有等长的短轴、长轴 (B )有共同的焦点(C )有公共的准线 (D )有相同的离心率 12.如图1,梯形ABCD 中,AB CD ∥,且AB ⊥平面α,224AB BC CD ===,点P 为α内一动点,且APB DPC ∠=∠,则P 点的轨迹为( ) A.直线 B.圆 C.椭圆 D.双曲线二、填空题:(本大题共5小题,每小题6分,共30分.将正确答案填在答题卷上对应题号的横线上.)13.设甲、乙、丙是三个命题,如果甲是乙的必要条件,丙是乙的充分条件,但不是乙的必要条件,那么丙是甲的 (①.充分而不必要条件,②.必要而不充分条件 ,③.充要条件) 14.在棱长为a 的正方体1111ABCD A B C D -中,向量1BA 与向量AC 所成的角为 . 15.已知向量)0,3,2(-=a ,)3,0,(k b =,若b a ,成1200的角,则k= .16.抛物线的的方程为22x y =,则抛物线的焦点坐标为____________17.以下三个关于圆锥曲线的命题中:①设A 、B 为两个定点,K 为非零常数,若|PA |-|PB |=K ,则动点P 的轨迹是双曲线。

人教版高中数学选修2-1 模块综合检测卷(附答案解析)

- 1 -人教版高中数学选修2-1模块综合检测题(满分150分 时间120分钟)一、单选题.(每小题5分,共12小题) 1.“如果x y >,则22x y >”的逆否命题是.A 如果x y ≤,则22x y ≤ .B 如果x y >,则22x y <.C 如果22x y ≤,则x y ≤ .D 如果x y <,则22x y < 【答案】.C【解析】原命题为“若p 则q 形式”,则其逆否命题为“若q ⌝则p ⌝形式”.故选.C 2. 不等式()20x x -<成立的一个必要不充分条件是.A ()0,2x ∈ .B [)1,x ∈-+∞ ().0,1C x ∈ ().1,3D x ∈【答案】.B【解析】由()20x x -<得02x <<,()[)0,21,⊂-+∞且()0,2x ∈是[)1,x ∈-+∞的一个真子集, ∴ [)1,x ∈-+∞是“不等式()20x x -<成立”的一个必要不充分条件.3.已知A 、B 、C 三点不共线,则下列条件中能使点M 与点A 、B 、C 一定共面的是 .A 32OM OA OB OC =-- .B 0OM OA OB OC +++= .C 0MA MB MC ++= 11.42D OM OB OA OC =-+【答案】.C【解析】∵ 0MA MB MC ++=,∴ MA MB MC =--,根据向量共面定理,可知点M 与点A 、B 、C 四点共面.4.若方程22216y x a a+=+表示焦点在x 轴上的椭圆,则实数a 的取值范围为.A 3a > .B 2a <- .C 3a >或2a <- .D 3a >或62a -<<- 【答案】.D【解析】∵ 椭圆22216y x a a+=+的焦点在x 轴上,∴ 2660a a a ⎧>+⎪⎨+>⎪⎩ 即 ()()2306a a a ⎧+->⎪⎨>-⎪⎩ 解得 3a >或62a -<<-,故选.D5. 如图,椭圆221259y x +=上的点M 到焦点1F 的距离为2,N 为1MF 的中点,则ON (O 为坐标原点)的值为 .A 8 .2B.4C 3.2D【答案】.C【解析】∵O 为12F F 的中点,N 为1MF 的中点,∴ 2//ON MF 且212ON MF =. ∵12210MF MF a +==∴ 21101028MF MF =-=-=,∴ 4ON =.6.已知椭圆的标准方程为()222210yx a b a b+=>>的左焦点为F ,右顶点为A ,点B 在椭圆上,且BF x⊥轴,直线AB 交y 轴于点P .若2AP PB =,则椭圆的离心率为AB 1.3C 1.2D【答案】.D- 2 -【解析】如图,∵ 2AP PB =,∴ 2OA OF =,即 2a c =,∴ 12e =.7.双曲线221412y x -=的焦点到渐近线的距离为A .2BC .1D 【答案】.A【解析】双曲线221412y x -=的焦点分别为()()4,0,4,0-.渐近线方程为y =或y =,由双曲线的对称性可知,任一焦点到任一条渐近线的距离都相等,∴d ==.A8.直线1y kx k =-+与椭圆22194yx +=的位置关系是.A 相交 .B 相切 .C 相离 .D 不确定 【答案】.A【解析】直线方程1y kx k =-+可化为()11y k x =-+,过定点()1,1.而把点()1,1代入椭圆方程可得131119436+=<,∴点()1,1在椭圆内部,∴直线与椭圆相交. 9.已知椭圆2211216y x +=,则以点()1,2M -为中点的弦所在直线方程为 .38190A x y -+= .38130B x y +-= .2380C x y -+= .2340D x y +-= 【答案】.C【解析】设弦的两端点为()()1122,,,A x y B x y ,代入椭圆方程得221122221121611216x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩ 两式相减得 ()()()()1212121201216x x x x y y y y -+-++= 整理得 121223y y x x -=-, ∴ 弦所在直线斜率为23,∴ 直线方程为()2213y x -=+,即2380x y -+=,故选.C10.在同一坐标系中,方程22221a x b y +=与()200ax by a b +=>>所表示的曲线大致是【答案】.D【解析】方法一 将方程22221a x b y +=与()200ax by a b +=>>转化为2222111y x a b +=和2a y x b =-,∵ 0a b >>,∴ 110b a >>. ∴ 椭圆焦点在y 轴上,抛物线焦点在x 轴上, 且开口向左,故选.D方法二 方程()200ax by a b +=>>中将y -代替y ,方程结果不变,∴ 20ax by +=图象关于x 轴对称,排除B 、C ;又椭圆焦点在y 轴上,排除A ,故选.D 11.过点()3,0A 且与y 轴相切的圆的圆心的轨迹为.A 直线 .B 椭圆 .C 双曲线 .D 抛物线 【答案】.D【解析】如图,设点P 为满足条件的一点,易知点P 到点A 的距离等于 点P 到y 轴的距离.故点P 在以点A 为焦点,y 轴为准线的抛物线上,故 点P 的轨迹为抛物线,故选.DPAB- 3 -12.已知0a b >>,椭圆1C 方程为22221y x a b +=,双曲线2C 的方程为22221y x a b-=,曲线1C 与2C 的离心率,则双曲线2C 的渐近线方程为.0A x ±=.0B y ±= .20C x y ±= .20D x y ±= 【答案】.A【解析】22221122c a b e a a -==,22222222c a b e a a +==,∴ ()44422124314a b b e e a a -⋅==-=,∴b a =∴渐近线方程为y =,即0x ±=,故选.A二、填空题.(每小题5分,共4小题)13. 命题“()**,n N f n N ∀∈∈且()f n n ≤”的否定形式为 . 【答案】()**00,n N f n N ∃∈∉或()00f n n >.【解析】全称命题的否定是特称命题,否定结论时“且”要换为“或”,“≤”换为“>”,故最后的否定形式为“()**00,n N f n N ∃∈∉或()00f n n >”.14. 已知平面α的一个法向量为()2,2,1n =--,点()1,3,0A -在平面α内,则点()2,1,4P -到平面α的距离为 . 【答案】10.3【解析】()1,2,4PA =-,()2,2,1n =--,∴ 点()2,1,4P -到平面α的距离为103PA n d n⋅==. 15. 设抛物线()20y mx m =≠的准线与直线1x =的距离为3,则抛物线的方程为 . 【答案】28y x =或216y x =-.【解析】当0m >时,2p m =,∴2m p =,∴抛物线的准线方程为4m x =-,依题意,()134m --=,∴8m =,∴抛物线方程为28y x =.当0m <时,2p m =-,∴2m p =-,∴抛物线的准线方程为4m x =-,依题意得134m +=,∴8m =(舍)或16m =-,∴抛物线的方程为216y x =-.综上,抛物线方程为28y x =或216y x =-.16. 与椭圆22194x y +=有公共焦点,且两条渐近线互相垂直的双曲线方程为 .【答案】2252x y -=.【解析】因为所求双曲线的两条渐近线互相垂直,∴渐近线方程为y x =±.故可设双曲线方程为()220xy λλ-=>,又∵椭圆焦点为(),根据题意,所求双曲线焦点为(). ∴25λ=,52λ=.故所求双曲线方程为2252x y -=.三、解答题.17.(10分)设命题:p 函数21y x mx =++在()1,-+∞上单调递增;命题:q 函数()24421y x m x =+-+大于零恒成立. 若p 或q 为真,而p 且q 为假,求实数m 的取值范围.【答案】{}312m m m ≥<<或.【解析】若函数21y x mx =++在()1,-+∞上单调递增,- 4 -则12m-≤-,∴2m ≥,即:2p m ≥; 若函数()24421y x m x =+-+大于零恒成立,则()2162160m ∆=--<,解得13m <<,即:13q m <<. ∵p q ∨为真,p q ∧为假,∴,p q 一真一假.当p 真q 假时,由231m m m ≥⎧⎨≥≤⎩或 得3m ≥,当p 假q 真时,由213m m <⎧⎨<<⎩ 得 12m <<,综上,m 的取值范围为{}3m m ≥或1<m<2.18.(12分)设圆222150x y x ++-=的圆心为A ,直线l 过点()1,0B 且与x 轴不重合,l 交圆A 于,C D 两点,过B 作AC 的平行线交AD 于点E .证明:EA EB +为定值,并写出点E 的轨迹方程. 【解析】将圆A 的方程整理得()22116x y ++=,∴点A 的坐标为()1,0-∵AD AC =,∴ACD ADC ∠=∠.∵//EB AC ,∴EBD ACD ∠=∠,故EBD ACD ADC ∠=∠=∠. ∴EB ED =,故EA EB EA ED AD +=+=.又圆A 的标准方程为()22116x y ++=,从而4AD =,∴4EA EB +=由题设得()()1,0,1,0,2A B AB -=,由椭圆定义可得点E 的轨迹方程为()221043x y y +=≠. 19.(12分)已知双曲线过点()3,2-且与椭圆224936x y +=有相同的焦点. (1)求双曲线的标准方程;(2)若点M 在双曲线上,1F 、2F 为双曲线的左右焦点,且122MF MF =,求12MF F ∆的面积. 【解析】(1)椭圆方程可化为22194x y +=,焦点在x 轴上,且c =,设双曲线方程为22221x y a b -=,则22229415a ba b ⎧-=⎪⎨⎪+=⎩ 解得 2232a b ⎧=⎪⎨=⎪⎩ , ∴ 双曲线的方程为22132x y -=.(2)因为点M 在双曲线上,又122MF MF =①,∴ 点M 在双曲线右支上,∴ 12MF MF -=②,由①②解得12MF MF ==12F F = 在12MF F ∆中,222121212125cos 26MF MF F F F MF MF MF +-∠==,∴ 12sin F MF ∠=∴12121211sin 226MF F S MF MF F MF ∆=∠=⨯=20.(12分)如图所示,在四棱锥P ABCD -中,PD ⊥底面ABCD ,底面ABCD 为正方形,PD DC =, E F 、分别为AB 、PB 的中点. (1)求证:EF CD ⊥;(2)在平面PAD 内求一点G ,使GF ⊥平面PCB ,并证明你的结论; (3)求DB 与平面DEF 所成角的正弦值. 【解析】如图,以D 为原点,,,DA DC DP 所在直线分别为x 轴、y 轴、z 轴 建立空间直角坐标系,P ABC D EF OA- 5 -设AD a =,则()()()()0,0,0,,0,0,,,0,0,,0D A a B a a C a ,,,02a E a ⎛⎫⎪⎝⎭,()0,0,,,,222a a a P a F ⎛⎫⎪⎝⎭.(1)证明:∵(),0,,0,,022a a EF DC a ⎛⎫=-= ⎪⎝⎭,∴0EF DC ⋅=,∴EF DC ⊥,即EF CD ⊥.(2)设(),0,G x z ,则,,222a a a FG x z ⎛⎫=--- ⎪⎝⎭,若使GF ⊥平面PCB ,则由(),,,0,002222a a a a FG CB x z a a x ⎛⎫⎛⎫⋅=---⋅=-= ⎪ ⎪⎝⎭⎝⎭,解得2a x =.由()2,,0,,022222a a a a a FG CP x z a a a z ⎛⎫⎛⎫⋅=---⋅-=+-= ⎪ ⎪⎝⎭⎝⎭,解得0z =. ∴G 点坐标为,0,02a ⎛⎫⎪⎝⎭,即点G 为AD 的中点.(3)设平面DEF 的一个法向量为(),,n x y z =,则00n DF n DE ⎧⋅=⎪⎨⋅=⎪⎩ ∴ ()(),,,,0222,,,,002a a a x y z a x y z a ⎧⎛⎫⋅= ⎪⎪⎪⎝⎭⎨⎛⎫⎪⋅= ⎪⎪⎝⎭⎩即()0202a x y z a ax y ⎧++=⎪⎪⎨⎪+=⎪⎩ 取1x =,则2,1y z =-=,∴()1,2,1n =-,∴cos ,2BD n BD n a BD n⋅==, ∴DB 与平面DEF . 21.(12分)如图所示,抛物线关于x 轴对称,它的顶点在坐标原点,点()()()11221,2,,,,P A x y B x y 均在抛物线上.(1)求抛物线的方程及其准线方程;(2)当PA 与PB 的斜率存在且倾斜角互补时,证明:直线AB 的斜率为定值. 【解析】(1)由题意可设抛物线的方程为()220y px p =>, 由点()1,2P 在抛物线上,得2221p =⨯,解得2p =,故所求抛物线方程 为24y x =,准线方程为1x =-.(2)∵PA 与PB 的斜率存在且倾斜角互补,∴PA PB k k =-,即12122211y y x x --=---,又()()1122,,,A x y B x y 均在抛物线上, ∴ 221212,44y y x x ==,从而有122212221144y y y y --=---, 即124422y y =-++,整理得124y y +=-, 故直线AB 的斜率12121241AB y y k x x y y -===--+. 22.(12分)已知12,F F 分别为椭圆()22122:10y x C a b a b+=>>的上、下焦点,其中1F 也是抛物线22:4C x y=的焦点,点M 是1C 与2C 在第二象限的交点,且153MF =.x。

高中数学 模块综合测评(含解析)新人教A版高二选修2-1数学试题

模块综合测评(满分:150分 时间:120分钟)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知a ∈R ,则“a <2”是“a 2<2a ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件B [∵a 2<2a ⇔a (a -2)<0⇔0<a <2. ∴“a <2”是“a 2<2a ”的必要不充分条件.] 2.已知命题p :∀x >0,总有(x +1)e x >1,则p 为( )A .∃x 0≤0,使得(x 0+1)e x 0≤1B .∃x 0>0,使得(x 0+1)e x 0≤1C .∀x >0,总有(x +1)e x 0≤1D .∀x ≤0,总有(x +1)e x 0≤1 B [命题p 为全称命题,所以p 为∃x 0>0,使得(x 0+1)e x 0≤1.故选B .]3.若椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为32,则双曲线x 2a 2-y 2b 2=1的离心率为( )A .54B .52C .32D .54B [由题意,1-b 2a 2=⎝⎛⎭⎫322=34,∴b 2a 2=14,而双曲线的离心率e 2=1+b 2a 2=1+14=54,∴e =52.]4.已知空间向量a =(t,1,t ),b =(t -2,t,1),则|a -b |的最小值为( ) A . 2 B . 3 C .2D .4C [|a -b |=2(t -1)2+4≥2,故选C .] 5.椭圆x 225+y 29=1与椭圆x 2a 2+y 29=1有()A .相同短轴B .相同长轴C .相同离心率D .以上都不对D [对于x 2a 2+y 29=1,有a 2>9或a 2<9,因此这两个椭圆可能长轴相同,也可能短轴相同,离心率是不确定的,因此A ,B ,C 均不正确,故选D .]6.长方体ABCD -A 1B 1C 1D 1中,AB =2,AD =AA 1=1,则二面角C 1-AB -C 为( ) A .π3B .2π3C .3π4D .π4D [以A 为原点,直线AB ,AD ,AA 1分别为x 轴、y 轴、z 轴建立空间直角坐标系,则平面ABC 的一个法向量为AA 1→=(0,0,1),平面ABC 1的一个法向量为A 1D →=(0,1,-1),∴cos 〈AA 1→,A 1D →〉=-12=-22,∴〈AA 1→,A 1D →〉=3π4,又二面角C 1-AB -C 为锐角,即π-34π=π4,故选D .]7.命题“∀x ∈[1,2],x 2-a ≤0”为真命题的一个充分不必要条件是( ) A .a ≥4 B .a ≤4 C .a ≥5D .a ≤5C [∵∀x ∈[1,2],1≤x 2≤4,∴要使x 2-a ≤0为真,则a ≥x 2,即a ≥4,本题求的是充分不必要条件,结合选项,只有C 符合,故选C .]8.设斜率为2的直线l 过抛物线y 2=ax (a ≠0)的焦点F ,且和y 轴交于点A ,若△OAF (O 为坐标原点)的面积为4,则抛物线的方程为( )A .y 2=±4xB .y 2=±8xC .y 2=4xD .y 2=8xB [由已知可得,抛物线的焦点坐标为⎝⎛⎭⎫a 4,0.又直线l 的斜率为2,故直线l 的方程为y =2⎝⎛⎭⎫x -a 4,则|OA |=|a |2,故S △OAF =12·|a |4·|a |2=4,解得a =±8,故抛物线的方程为y 2=±8x .] 9.已知A (1,2,3),B (2,1,2),C (1,1,2),O 为坐标原点,点D 在直线OC 上运动,则当DA →·DB →取最小值时,点D 的坐标为( )A .⎝⎛⎭⎫43,43,43B .⎝⎛⎭⎫83,43,83 C .⎝⎛⎭⎫43,43,83D .⎝⎛⎭⎫83,83,43C [点D 在直线OC 上运动,因而可设OD →=(a ,a,2a ),则DA →=(1-a,2-a,3-2a ),DB →=(2-a,1-a,2-2a ),DA →·DB →=(1-a )(2-a )+(2-a )(1-a )+(3-2a )(2-2a )=6a 2-16a +10,所以a =43时DA →·DB →取最小值,此时OD →=⎝⎛⎭⎫43,43,83.] 10.过椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左顶点A 的斜率为k 的直线交椭圆C 于另一点B ,且点B 在x 轴上的射影恰好为右焦点F ,若椭圆的离心率为23,则k 的值为( )A .-13B .13C .±13D .±12C [由题意知点B 的横坐标是c ,故点B 的坐标为⎝⎛⎭⎫c ,±b 2a ,则斜率k =±b 2ac +a =±b 2ac +a 2=±a 2-c 2ac +a 2=±1-e 2e +1=±(1-e )=±13,故选C .]11.若F 1,F 2为双曲线C :x 24-y 2=1的左、右焦点,点P 在双曲线C 上,∠F 1PF 2=60°,则点P 到x 轴的距离为( )A .55B .155C .2155D .1520B [设|PF 1|=r 1,|PF 2|=r 2,点P 到x 轴的距离为|y P |,则S △F 1PF 2=12r 1r 2sin 60°=34r 1r 2,又4c 2=r 21+r 22-2r 1r 2cos 60°=(r 1-r 2)2+2r 1r 2-r 1r 2=4a 2+r 1r 2,得r 1r 2=4c 2-4a 2=4b 2=4,所以S △F 1PF 2=12r 1r 2sin 60°=3=12·2c ·|y P |=5|y P |,得|y P |=155,故选B .]12.抛物线y 2=2px (p >0)的焦点为F ,准线为l ,A ,B 是抛物线上的两个动点,且满足∠AFB =2π3.设线段AB 的中点M 在l 上的投影为N ,则|MN ||AB |的最大值是( ) A . 3 B .32 C .33D .34C [如图.设|AF |=r 1,|BF |=r 2,则|MN |=r 1+r 22.在△AFB 中,因为|AF |=r 1,|BF |=r 2且∠AFB =2π3,所以由余弦定理,得|AB |=r 21+r 22-2r 1r 2cos 2π3=r 21+r 22+r 1r 2,所以|MN ||AB |=r 1+r 22r 21+r 22+r 1r 2=12×(r 1+r 2)2r 21+r 22+r 1r 2=12×1+r 1r 2r 21+r 22+r 1r 2≤12×1+r 1r 23r 1r 2=33,当且仅当r 1=r 2时取等号.故选C .] 二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上) 13.已知点P 是平行四边形ABCD 所在平面外的一点,如果AB →=(2,-1,-4),AD →=(4,2,0),AP →=(-1,2,-1).对于下列结论:①AP ⊥AB ;②AP ⊥AD ;③AP →是平面ABCD 的法向量;④AP →∥BD →.其中正确的是________.(填序号)①②③[∵AB →·AP →=-2-2+4=0,∴AB →⊥AP →,即AP ⊥AB ,①正确;∵AP →·AD →=-4+4=0,∴AP →⊥AD →,即AP ⊥AD ,②正确;由①②可得AP →是平面ABCD 的法向量,③正确;由③可得AP →⊥BD →,④错误.]14.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线平行于直线l :y =2x +10,双曲线的一个焦点在直线l 上,则双曲线的方程为________.x 25-y 220=1[由已知得ba =2,所以b =2a .在y =2x +10中令y =0得x =-5,故c =5,从而a 2+b 2=5a 2=c 2=25,所以a 2=5,b 2=20,所以双曲线的方程为x 25-y 220=1.] 15.在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率e =23,且椭圆C 上的点到点Q (0,2)的距离的最大值为3,则椭圆C 的方程为________.x 23+y 2=1[由e =c a=23,得c 2=23a 2,所以b 2=a 2-c 2=13a 2, 设P (x ,y )是椭圆C 上任意一点,则x 2a 2+y 2b 2=1,所以x 2=a 2⎝⎛⎭⎫1-y 2b 2=a 2-3y 2.|PQ |=x 2+(y -2)2=a 2-3y 2+(y -2)2=-2(y +1)2+a 2+6,当y =-1时,|PQ |有最大值a 2+6.由a 2+6=3,可得a 2=3,所以b 2=1,故椭圆C 的方程为x 23+y 2=1.]16.四棱锥P -ABCD 中,PD ⊥底面ABCD ,底面ABCD 是正方形,且PD =AB =1,G 为△ABC 的重心,则PG 与底面ABCD 所成的角θ的正弦值为________.31717[如图,分别以DA ,DC ,DP 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系,由已知P (0,0,1),A (1,0,0),B (1,1,0),C (0,1,0),则重心G ⎝⎛⎭⎫23,23,0,因此DP →=(0,0,1),GP →=⎝⎛⎭⎫-23,-23,1,所以sin θ=|cos 〈DP →,GP →〉|=|DP →·GP →||DP →|·|GP →|=31717.]三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分10分)设集合A ={x |x 2-3x +2=0},B ={x |ax =1}.“x ∈B ”是“x ∈A ”的充分不必要条件,试求满足条件的实数a 组成的集合.[解]∵A ={x |x 2-3x +2=0}={1,2},由于“x ∈B ”是“x ∈A ”的充分不必要条件,∴B A .当B =∅时,得a =0;当B ≠∅时,由题意得B ={1}或B ={2}.则当B ={1}时,得a =1;当B ={2}时,得a =12.综上所述,实数a 组成的集合是⎩⎨⎧⎭⎬⎫0,1,12.18.(本小题满分12分)已知双曲线的中心在原点,焦点F 1,F 2在坐标轴上,离心率为2,且过点(4,-10).(1)求双曲线的方程;(2)若点M (3,m )在双曲线上,求证:MF 1→·MF 2→=0.[解](1)由双曲线的离心率为2,可知双曲线为等轴双曲线,设双曲线的方程为x 2-y 2=λ,又双曲线过点(4,-10),代入解得λ=6,故双曲线的方程为x 2-y 2=6.(2)证明:由双曲线的方程为x 2-y 2=6,可得a =b =6,c =23,所以F 1(-23,0),F 2(23,0).由点M (3,m ),得MF 1→=(-23-3,-m ),MF 2→=(23-3,-m ),又点M (3,m )在双曲线上,所以9-m 2=6,解得m 2=3,所以MF 1→·MF 2→=m 2-3=0.19.(本小题满分12分)如图,在四棱柱ABCD -A 1B 1C 1D 1中,侧棱AA 1⊥底面ABCD ,AB ∥DC ,AA 1=1,AB =3k ,AD =4k ,BC =5k ,DC =6k (k >0).(1)求证:CD ⊥平面ADD 1A 1;(2)若直线AA 1与平面AB 1C 所成角的正弦值为67,求k 的值.[解] (1)证明:取CD 的中点E ,连接BE ,如图①.①∵AB ∥DE ,AB =DE =3k , ∴四边形ABED 为平行四边形, ∴BE ∥AD 且BE =AD =4k . 在△BCE 中,∵BE =4k ,CE =3k ,BC =5k ,∴BE 2+CE 2=BC 2,∴∠BEC =90°,即BE ⊥CD . 又∵BE ∥AD ,∴CD ⊥AD .∵AA 1⊥平面ABCD ,CD ⊂平面ABCD ,∴AA 1⊥CD . 又AA 1∩AD =A ,∴CD ⊥平面ADD 1A 1.(2)以D 为原点,DA →,DC →,DD 1→的方向为x ,y ,z 轴的正方向建立如图②所示的空间直角坐标系,则A (4k,0,0),C (0,6k,0),B 1(4k,3k,1),A 1(4k,0,1),②∴AC →=(-4k,6k,0),AB 1→=(0,3k,1),AA 1→=(0,0,1).设平面AB 1C 的法向量n =(x ,y ,z ),则由⎩⎪⎨⎪⎧AC →·n =0,AB 1→·n =0,得⎩⎪⎨⎪⎧-4kx +6ky =0,3ky +z =0.取y =2,得n =(3,2,-6k ). 设AA 1与平面AB 1C 所成的角为θ,则sin θ=|cos 〈AA 1→,n 〉|=⎪⎪⎪⎪⎪⎪⎪⎪AA 1→·n |AA 1→||n |=6k 36k 2+13=67,解得k =1,故所求k 的值为1. 20.(本小题满分12分)如图,过抛物线y 2=2px (p >0)的焦点F 作一条倾斜角为π4的直线与抛物线相交于A ,B 两点.(1)用p 表示|AB |;(2)若OA →·OB →=-3,求这个抛物线的方程.[解](1)抛物线的焦点为F ⎝⎛⎭⎫p 2,0,过点F 且倾斜角为π4的直线方程为y =x -p2. 设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y 2=2px ,y =x -p 2,得x 2-3px +p 24=0, ∴x 1+x 2=3p ,x 1x 2=p 24,∴|AB |=x 1+x 2+p =4p .(2)由(1)知,x 1x 2=p 24,x 1+x 2=3p ,∴y 1y 2=⎝⎛⎭⎫x 1-p 2⎝⎛⎭⎫x 2-p 2=x 1x 2-p 2(x 1+x 2)+p 24=p 24-3p 22+p 24=-p 2,∴OA →·OB →=x 1x 2+y 1y 2=p 24-p 2=-3p 24=-3,解得p 2=4,∴p =2. ∴这个抛物线的方程为y 2=4x .21.(本小题满分12分)如图所示,四棱锥P -ABCD 的底面是边长为1的正方形,P A ⊥CD ,P A =1,PD =2,E 为PD 上一点,PE =2ED .(1)求证:P A ⊥平面ABCD ;(2)在侧棱PC 上是否存在一点F ,使得BF ∥平面AEC ?若存在,指出F 点的位置,并证明;若不存在,说明理由.[解](1)证明:∵P A =AD =1,PD =2,∴P A 2+AD 2=PD 2, 即P A ⊥AD .又P A ⊥CD ,AD ∩CD =D , ∴P A ⊥平面ABCD .(2)以A 为原点,AB ,AD ,AP 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系. 则A (0,0,0),B (1,0,0),C (1,1,0),P (0,0,1),E ⎝⎛⎭⎫0,23,13,AC →=(1,1,0),AE →=⎝⎛⎭⎫0,23,13.设平面AEC 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·AC →=0,n ·AE →=0,即⎩⎪⎨⎪⎧x +y =0,2y +z =0,令y =1,则n =(-1,1,-2).假设侧棱PC 上存在一点F ,且CF →=λCP →(0≤λ≤1), 使得BF ∥平面AEC ,则BF →·n =0.又∵BF →=BC →+CF →=(0,1,0)+(-λ,-λ,λ)=(-λ,1-λ,λ), ∴BF →·n =λ+1-λ-2λ=0,∴λ=12,∴存在点F ,使得BF ∥平面AEC ,且F 为PC 的中点.22.(本小题满分12分)如图,在平面直角坐标系xOy 中,F 1,F 2分别是椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,顶点B 的坐标为(0,b ),连接BF 2并延长交椭圆于点A ,过点A 作x 轴的垂线交椭圆于另一点C ,连接F 1C .(1)若点C 的坐标为⎝⎛⎭⎫43,13,且BF 2=2,求椭圆的方程; (2)若F 1C ⊥AB ,求椭圆离心率e 的值.[解](1)∵BF 2=2,而BF 22=OB 2+OF 22=b 2+c 2=2=a 2,∵点C 在椭圆上,C ⎝⎛⎭⎫43,13, ∴169a 2+19b2=1, ∴b 2=1,∴椭圆的方程为x 22+y 2=1. (2)直线BF 2的方程为x c +y b =1,与椭圆方程x 2a 2+y 2b2=1联立方程组,解得A 点坐标为⎝ ⎛⎭⎪⎫2a 2c a 2+c 2,-b 3a 2+c 2,则C 点的坐标为⎝ ⎛⎭⎪⎫2a 2c a 2+c 2,b 3a 2+c 2,又F 1为(-c,0),kF 1C =b 3a 2+c 22a 2c a 2+c 2+c=b 33a 2c +c 3, 又k AB =-b c ,由F 1C ⊥AB ,得b 33a 2c +c 3·⎝⎛⎭⎫-b c =-1, 即b 4=3a 2c 2+c 4,所以(a 2-c 2)2=3a 2c 2+c 4,化简得e =c a =55.。

人教版高中数学选修2-1 模块综合检测卷(附答案解析)


a2 a 6 ∴ a 6 0
a 2 a 3 0 即 a 6
解得 a 3 或 6 a 2 ,故选 D.
2 y2 5. 如图, 椭圆 x 1 上的点 M 到焦点 F1 的距离为 2, N 为 MF1 的中点,则 ON ( O 为坐标原点)的值为 25 9 y A. 8 B.2 M C .4 D. 3 2 N 【答案】 C. x F1 O F2 【解析】∵ O 为 F1 F2 的中点, N 为 MF1 的中点,
PA n 【解析】 PA 1, 2, 4 , n 2, 2,1 ,∴ 点 P 2,1, 4 到平面 的距离为 d 10 . 3 n
15. 设抛物线 y 2 mx m 0 的准线与直线 x 1 的距离为 3,则抛物线的方程为 【答案】 y 8 x 或 y 16 x .
∴ ON / / MF2 且 ON 1 MF2 . ∵ MF1 MF2 2a 10 2 ∴ MF2 10 MF1 10 2 8 ,∴ ON 4 .
2 y2 6.已知椭圆的标准方程为 x 2 2 1 a b 0 的左焦点为 F ,右顶点为 A , 点 B 在椭圆上,且 BF x a b 轴,直线 AB 交 y 轴于点 P .若 AP 2PB ,则椭圆的离心率为
二、填空题.(每小题 5 分,共 4 小题) 13. 命题“ n N * , f n N * 且 f n n ”的否定形式为 【答案】 n0 N , f n0 N 或 f n0 n0 .
* *

4
3 ,∴ b 2 , a 2 4
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高二年级理科数学选修2-1期末试卷(1)(测试时间:120分钟 满分150分)注意事项:答题前,考生务必将自己的班级、姓名、考试号写在答题纸的密封线内.答题时,答案写在答题纸上对应题目的空格内,答案写在试卷上无效..........本卷考试结束后,上交答题纸. 一、选择题(每小题5 分,共12小题,满分60分)1. 已知命题tan 1p x R x ∃∈=:,使,其中正确的是 ( ) (A) tan 1p x R x ⌝∃∈≠:,使(B) tan 1p x R x ⌝∃∉≠:,使 (C) tan 1p x R x ⌝∀∈≠:,使(D) tan 1p x R x ⌝∀∉≠:,使 2. 抛物线24(0)y ax a =<的焦点坐标是 ( ) (A )(a , 0) (B )(-a , 0) (C )(0, a ) (D )(0, -a ) 3. 设a R ∈,则1a >是11a< 的 ( ) (A )充分但不必要条件 (B )必要但不充分条件(C )充要条件(D )既不充分也不必要条件4. 已知△ABC 的三个顶点为A (3,3,2),B (4,-3,7),C (0,5,1),则BC 边上的 中线长为 ( ) (A )2 (B )3 (C )4 (D )55.有以下命题:①如果向量,与任何向量不能构成空间向量的一组基底,那么,的关系是不共线;②,,,O A B C 为空间四点,且向量,,不构成空间的一个基底,则点,,,O A B C 一定共面; ③已知向量,,是空间的一个基底,则向量,,-+也是空间的一个基底。

其中正确的命题是 ( ) (A )①② (B )①③ (C )②③ (D )①②③6. 如图:在平行六面体1111D C B A ABCD -中,M 为11C A 与11D B 的交点。

若a AB =,b AD =,=1则下列向量中与相等的向量是( )(A ) ++-2121 (B )++2121 (C )c b a +--2121 (D )c b a +-21217. 已知△ABC 的周长为20,且顶点B (0,-4),C (0,4),则顶点A 的轨迹方程是 ( )(A )1203622=+y x (x ≠0) (B )1362022=+y x (x ≠0) (C )120622=+y x (x ≠0) (D )162022=+y x (x ≠0) 8. 过抛物线 y 2 = 4x 的焦点作直线交抛物线于A (x 1, y 1)B (x 2, y 2)两点,如果21x x +=6,那么AB = ( ) (A )6 (B )8 (C )9 (D )10C19. 若直线2+=kx y 与双曲线622=-y x 的右支交于不同的两点,那么k 的取值范围是 ( )(A )(315,315-)(B )(315,0) (C )(0,315-) (D )(1,315--)10.试在抛物线x y 42-=上求一点P ,使其到焦点F 的距离与到()1,2-A 的距离之和最小,则该点 坐标为 ( ) (A )⎪⎭⎫ ⎝⎛-1,41 (B )⎪⎭⎫⎝⎛1,41 (C )()22,2-- (D )()22,2- 11. 在长方体ABCD-A 1B 1C 1D 1中,如果AB=BC=1,AA 1=2,那么A 到直线A 1C 的距离为 ( )(A (B ) (C (D )12.已知点F 1、F 2分别是椭圆22221x y a b+=的左、右焦点,过F 1且垂直于x 轴的直线与椭圆交于A 、B 两点,若△ABF 2为正三角形,则该椭圆的离心率e 为 ( )(A )12 (B ) 2(C )13(D二、填空题(每小题4分,共4小题,满分16分)13.已知A (1,-2,11)、B (4,2,3)、C (x ,y ,15)三点共线,则x y =___________。

14.已知当抛物线型拱桥的顶点距水面2米时,量得水面宽8米。

当水面升高1米后,水面宽度是________米。

15. 如果椭圆193622=+y x 的弦被点(4,2)平分,则这条弦所在的直线方程是___________。

16.①一个命题的逆命题为真,它的否命题也一定为真;②在ABC ∆中,“︒=∠60B ”是“C B A ∠∠∠,,三个角成等差数列”的充要条件.③12x y >⎧⎨>⎩是32x y xy +>⎧⎨>⎩的充要条件;④“am 2<bm 2”是“a <b ”的充分必要条件.以上说法中,判断错误的有___________.三、解答题(共6小题,满分74分)17.(本题满分12分)设p :方程210x mx ++=有两个不等的负根,q :方程244(2)10x m x +-+=无实根,若p 或q 为真,p 且q 为假,求m 的取值范围.18.(本题满分12分)已知椭圆C 的两焦点分别为()()12F F 、,长轴长为6,⑴求椭圆C 的标准方程;⑵已知过点(0,2)且斜率为1的直线交椭圆C 于A 、B 两点,求线段AB 的长度。

.19.(本题满分12分)如图,已知三棱锥O ABC -的侧棱OA OB OC ,,两两垂直,且1OA =,2OB OC ==,E 是OC 的中点。

(1)求异面直线BE 与AC 所成角的余弦值; (2)求直线BE 和平面ABC 的所成角的正弦值。

20.(本题满分12分)在平面直角坐标系x O y 中,直线l 与抛物线2y =2x 相交于A 、B 两点。

(1)求证:命题“如果直线l 过点T (3,0),那么OB OA ⋅=3”是真命题; (2)写出(1)中命题的逆命题,判断它是真命题还是假命题,并说明理由。

21.(本题满分14分)如图,棱锥P —ABCD 的底面ABCD 是矩形,PA ⊥平面ABCD , PA=AD=2,BD=22. (1)求证:BD ⊥平面PAC ;(2)求二面角P —CD —B 余弦值的大小; (3)求点C 到平面PBD 的距离.22. (本题满分12分)如图所示,F 1、F 2分别为椭圆C :)0(12222>>=+b a by a x 的左、右两个焦点,A 、B 为两个顶点,已知椭圆C 上的点)23,1(到F 1、F 2两点的距离之和为4.(1)求椭圆C 的方程和焦点坐标;(2)过椭圆C 的焦点F 2作AB 的平行线交椭圆于P 、Q 两点,求△F 1PQ 的面积.B高二年级理科数学选修2-1期末试卷(1)参考答案一、选择题:二、填空题: 13、 2 14、24 15、 082=-+y x 16、③④ 三、解答题:17、解:若方程210x mx ++=有两个不等的负根,则21240m x x m ⎧∆=->⎨+=-<⎩, …………2分所以2m >,即:2p m >. ………………………………………………………3分 若方程244(2)10x m x +-+=无实根,则216(2)160m ∆=--<, …………5分即13m <<, 所以:13p m <<. …………………………………………………6分 因为p q ∨为真,则,p q 至少一个为真,又p q ∧为假,则,p q 至少一个为假.所以,p q 一真一假,即“p 真q 假”或“p 假q 真”. ……………………………8分所以213m m m >⎧⎨≤≥⎩或或213m m ≤⎧⎨<<⎩…………………………………………………10分所以3m ≥或12m <≤.故实数m 的取值范围为(1,2][3,)+∞ . …………………………………………12分 18、解:⑴由()()12F F 、,长轴长为6得:3c a ==所以1b =∴椭圆方程为22191x y += …………………………………………………5分 ⑵设1122(,),(,)A x y B x y ,由⑴可知椭圆方程为22191x y +=①,∵直线AB 的方程为2y x =+②……………………………7分把②代入①得化简并整理得21036270x x ++=∴12121827,510x x x x +=-= ……………………………10分又AB ……………………………12分19、解:(1)以O 为原点,OB 、OC 、OA 分别为x 、y 、z 轴建立空间直角坐标系.则有(0,0,1)A 、(2,0,0)B 、(0,2,0)C 、(0,1,0).E ……………………………3分(2,0,0)(0,1,0)(2,1,0),(0,2,1)EB AC =-=-=-COS<,EB AC>2,5==- ……………………………5分 所以异面直线BE 与AC 所成角的余弦为52……………………………6分 (2)设平面ABC 的法向量为1(,,),n x y z =则 11:20;n AB n AB x z ⊥⋅=-=知11:20.n AC n AC y z ⊥⋅=-= 知取1(1,1,2)n =, ………8分则303065012,cos 1=+->=<n EB ,…………………10分 故BE 和平面ABC 的所成角的正弦值为3030…………12分 20、证明:(1)解法一:设过点T(3,0)的直线l 交抛物线2y =2x 于点A(x 1,y 1)、B(x 2,y 2).当直线l 的钭率下存在时,直线l 的方程为x =3,此时,直线l 与抛物线相交于A(3,6)、B(3,-6),∴3=⋅OB OA 。

……………………………3分 当直线l 的钭率存在时,设直线l 的方程为y =k (x -3),其中k≠0.⎩⎨⎧-==)3(22x k y x y 得ky 2-2y -6k =0,则y 1y 2=-6. 又∵x 1=21y 12, x 2=21y 22, ∴⋅=x 1x 2+y 1y 2=21221)(41y y y y +=3. ……………………………7分综上所述, 命题“......”是真命题. ……………………………8分 解法二:设直线l 的方程为my =x -3与2y =2x 联立得到y 2-2my-6=0 ⋅=x 1x 2+y 1y 2=(my 1+3) (my 2+3)+ y 1y 2=(m 2+1) y 1y 2+3m(y 1+y 2)+9=(m 2+1)× (-6)+3m ×2m+9=3 ………8分(2)逆命题是:“设直线l 交抛物线y 2=2x 于A 、B 两点,如果3=⋅,那么该直线过点T(3,0).”…………………………………………………10分该命题是假命题. 例如:取抛物线上的点A(2,2),B(21,1),此时3=⋅OB OA =3, 直线AB 的方程为y =32(x +1),而T(3,0)不在直线AB 上. ………………………………12分 点评:由抛物线y 2=2x 上的点A(x 1,y 1)、B(x 2,y 2)满足3=⋅,可得y 1y 2=-6。

相关文档
最新文档